blob: cf04666868045d6e632dfda9a6fff39c4e8d88b1 [file] [log] [blame]
/*
* Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
* Copyright (c) 2014- QLogic Corporation.
* All rights reserved
* www.qlogic.com
*
* Linux driver for QLogic BR-series Fibre Channel Host Bus Adapter.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (GPL) Version 2 as
* published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/*
* bfad.c Linux driver PCI interface module.
*/
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <asm/fcntl.h>
#include "bfad_drv.h"
#include "bfad_im.h"
#include "bfa_fcs.h"
#include "bfa_defs.h"
#include "bfa.h"
BFA_TRC_FILE(LDRV, BFAD);
DEFINE_MUTEX(bfad_mutex);
LIST_HEAD(bfad_list);
static int bfad_inst;
static int num_sgpgs_parm;
int supported_fc4s;
char *host_name, *os_name, *os_patch;
int num_rports, num_ios, num_tms;
int num_fcxps, num_ufbufs;
int reqq_size, rspq_size, num_sgpgs;
int rport_del_timeout = BFA_FCS_RPORT_DEF_DEL_TIMEOUT;
int bfa_lun_queue_depth = BFAD_LUN_QUEUE_DEPTH;
int bfa_io_max_sge = BFAD_IO_MAX_SGE;
int bfa_log_level = 3; /* WARNING log level */
int ioc_auto_recover = BFA_TRUE;
int bfa_linkup_delay = -1;
int fdmi_enable = BFA_TRUE;
int pcie_max_read_reqsz;
int bfa_debugfs_enable = 1;
int msix_disable_cb = 0, msix_disable_ct = 0;
int max_xfer_size = BFAD_MAX_SECTORS >> 1;
int max_rport_logins = BFA_FCS_MAX_RPORT_LOGINS;
/* Firmware releated */
u32 bfi_image_cb_size, bfi_image_ct_size, bfi_image_ct2_size;
u32 *bfi_image_cb, *bfi_image_ct, *bfi_image_ct2;
#define BFAD_FW_FILE_CB "cbfw-3.2.5.1.bin"
#define BFAD_FW_FILE_CT "ctfw-3.2.5.1.bin"
#define BFAD_FW_FILE_CT2 "ct2fw-3.2.5.1.bin"
static u32 *bfad_load_fwimg(struct pci_dev *pdev);
static void bfad_free_fwimg(void);
static void bfad_read_firmware(struct pci_dev *pdev, u32 **bfi_image,
u32 *bfi_image_size, char *fw_name);
static const char *msix_name_ct[] = {
"ctrl",
"cpe0", "cpe1", "cpe2", "cpe3",
"rme0", "rme1", "rme2", "rme3" };
static const char *msix_name_cb[] = {
"cpe0", "cpe1", "cpe2", "cpe3",
"rme0", "rme1", "rme2", "rme3",
"eemc", "elpu0", "elpu1", "epss", "mlpu" };
MODULE_FIRMWARE(BFAD_FW_FILE_CB);
MODULE_FIRMWARE(BFAD_FW_FILE_CT);
MODULE_FIRMWARE(BFAD_FW_FILE_CT2);
module_param(os_name, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(os_name, "OS name of the hba host machine");
module_param(os_patch, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(os_patch, "OS patch level of the hba host machine");
module_param(host_name, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(host_name, "Hostname of the hba host machine");
module_param(num_rports, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_rports, "Max number of rports supported per port "
"(physical/logical), default=1024");
module_param(num_ios, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_ios, "Max number of ioim requests, default=2000");
module_param(num_tms, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_tms, "Max number of task im requests, default=128");
module_param(num_fcxps, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_fcxps, "Max number of fcxp requests, default=64");
module_param(num_ufbufs, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_ufbufs, "Max number of unsolicited frame "
"buffers, default=64");
module_param(reqq_size, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(reqq_size, "Max number of request queue elements, "
"default=256");
module_param(rspq_size, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(rspq_size, "Max number of response queue elements, "
"default=64");
module_param(num_sgpgs, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(num_sgpgs, "Number of scatter/gather pages, default=2048");
module_param(rport_del_timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(rport_del_timeout, "Rport delete timeout, default=90 secs, "
"Range[>0]");
module_param(bfa_lun_queue_depth, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bfa_lun_queue_depth, "Lun queue depth, default=32, Range[>0]");
module_param(bfa_io_max_sge, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bfa_io_max_sge, "Max io scatter/gather elements, default=255");
module_param(bfa_log_level, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bfa_log_level, "Driver log level, default=3, "
"Range[Critical:1|Error:2|Warning:3|Info:4]");
module_param(ioc_auto_recover, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ioc_auto_recover, "IOC auto recovery, default=1, "
"Range[off:0|on:1]");
module_param(bfa_linkup_delay, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bfa_linkup_delay, "Link up delay, default=30 secs for "
"boot port. Otherwise 10 secs in RHEL4 & 0 for "
"[RHEL5, SLES10, ESX40] Range[>0]");
module_param(msix_disable_cb, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(msix_disable_cb, "Disable Message Signaled Interrupts for QLogic-415/425/815/825 cards, default=0 Range[false:0|true:1]");
module_param(msix_disable_ct, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(msix_disable_ct, "Disable Message Signaled Interrupts if possible for QLogic-1010/1020/804/1007/902/1741 cards, default=0, Range[false:0|true:1]");
module_param(fdmi_enable, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(fdmi_enable, "Enables fdmi registration, default=1, "
"Range[false:0|true:1]");
module_param(pcie_max_read_reqsz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pcie_max_read_reqsz, "PCIe max read request size, default=0 "
"(use system setting), Range[128|256|512|1024|2048|4096]");
module_param(bfa_debugfs_enable, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bfa_debugfs_enable, "Enables debugfs feature, default=1,"
" Range[false:0|true:1]");
module_param(max_xfer_size, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_xfer_size, "default=32MB,"
" Range[64k|128k|256k|512k|1024k|2048k]");
module_param(max_rport_logins, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_rport_logins, "Max number of logins to initiator and target rports on a port (physical/logical), default=1024");
static void
bfad_sm_uninit(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_created(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_initializing(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_operational(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_stopping(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_failed(struct bfad_s *bfad, enum bfad_sm_event event);
static void
bfad_sm_fcs_exit(struct bfad_s *bfad, enum bfad_sm_event event);
/*
* Beginning state for the driver instance, awaiting the pci_probe event
*/
static void
bfad_sm_uninit(struct bfad_s *bfad, enum bfad_sm_event event)
{
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_CREATE:
bfa_sm_set_state(bfad, bfad_sm_created);
bfad->bfad_tsk = kthread_create(bfad_worker, (void *) bfad,
"%s", "bfad_worker");
if (IS_ERR(bfad->bfad_tsk)) {
printk(KERN_INFO "bfad[%d]: Kernel thread "
"creation failed!\n", bfad->inst_no);
bfa_sm_send_event(bfad, BFAD_E_KTHREAD_CREATE_FAILED);
}
bfa_sm_send_event(bfad, BFAD_E_INIT);
break;
case BFAD_E_STOP:
/* Ignore stop; already in uninit */
break;
default:
bfa_sm_fault(bfad, event);
}
}
/*
* Driver Instance is created, awaiting event INIT to initialize the bfad
*/
static void
bfad_sm_created(struct bfad_s *bfad, enum bfad_sm_event event)
{
unsigned long flags;
bfa_status_t ret;
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_INIT:
bfa_sm_set_state(bfad, bfad_sm_initializing);
init_completion(&bfad->comp);
/* Enable Interrupt and wait bfa_init completion */
if (bfad_setup_intr(bfad)) {
printk(KERN_WARNING "bfad%d: bfad_setup_intr failed\n",
bfad->inst_no);
bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED);
break;
}
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_iocfc_init(&bfad->bfa);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
/* Set up interrupt handler for each vectors */
if ((bfad->bfad_flags & BFAD_MSIX_ON) &&
bfad_install_msix_handler(bfad)) {
printk(KERN_WARNING "%s: install_msix failed, bfad%d\n",
__func__, bfad->inst_no);
}
bfad_init_timer(bfad);
wait_for_completion(&bfad->comp);
if ((bfad->bfad_flags & BFAD_HAL_INIT_DONE)) {
bfa_sm_send_event(bfad, BFAD_E_INIT_SUCCESS);
} else {
printk(KERN_WARNING
"bfa %s: bfa init failed\n",
bfad->pci_name);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_fcs_init(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
ret = bfad_cfg_pport(bfad, BFA_LPORT_ROLE_FCP_IM);
if (ret != BFA_STATUS_OK) {
init_completion(&bfad->comp);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->pport.flags |= BFAD_PORT_DELETE;
bfa_fcs_exit(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED);
break;
}
bfad->bfad_flags |= BFAD_HAL_INIT_FAIL;
bfa_sm_send_event(bfad, BFAD_E_HAL_INIT_FAILED);
}
break;
case BFAD_E_KTHREAD_CREATE_FAILED:
bfa_sm_set_state(bfad, bfad_sm_uninit);
break;
default:
bfa_sm_fault(bfad, event);
}
}
static void
bfad_sm_initializing(struct bfad_s *bfad, enum bfad_sm_event event)
{
int retval;
unsigned long flags;
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_INIT_SUCCESS:
kthread_stop(bfad->bfad_tsk);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_tsk = NULL;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
retval = bfad_start_ops(bfad);
if (retval != BFA_STATUS_OK) {
bfa_sm_set_state(bfad, bfad_sm_failed);
break;
}
bfa_sm_set_state(bfad, bfad_sm_operational);
break;
case BFAD_E_INIT_FAILED:
bfa_sm_set_state(bfad, bfad_sm_uninit);
kthread_stop(bfad->bfad_tsk);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_tsk = NULL;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
break;
case BFAD_E_HAL_INIT_FAILED:
bfa_sm_set_state(bfad, bfad_sm_failed);
break;
default:
bfa_sm_fault(bfad, event);
}
}
static void
bfad_sm_failed(struct bfad_s *bfad, enum bfad_sm_event event)
{
int retval;
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_INIT_SUCCESS:
retval = bfad_start_ops(bfad);
if (retval != BFA_STATUS_OK)
break;
bfa_sm_set_state(bfad, bfad_sm_operational);
break;
case BFAD_E_STOP:
bfa_sm_set_state(bfad, bfad_sm_fcs_exit);
bfa_sm_send_event(bfad, BFAD_E_FCS_EXIT_COMP);
break;
case BFAD_E_EXIT_COMP:
bfa_sm_set_state(bfad, bfad_sm_uninit);
bfad_remove_intr(bfad);
del_timer_sync(&bfad->hal_tmo);
break;
default:
bfa_sm_fault(bfad, event);
}
}
static void
bfad_sm_operational(struct bfad_s *bfad, enum bfad_sm_event event)
{
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_STOP:
bfa_sm_set_state(bfad, bfad_sm_fcs_exit);
bfad_fcs_stop(bfad);
break;
default:
bfa_sm_fault(bfad, event);
}
}
static void
bfad_sm_fcs_exit(struct bfad_s *bfad, enum bfad_sm_event event)
{
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_FCS_EXIT_COMP:
bfa_sm_set_state(bfad, bfad_sm_stopping);
bfad_stop(bfad);
break;
default:
bfa_sm_fault(bfad, event);
}
}
static void
bfad_sm_stopping(struct bfad_s *bfad, enum bfad_sm_event event)
{
bfa_trc(bfad, event);
switch (event) {
case BFAD_E_EXIT_COMP:
bfa_sm_set_state(bfad, bfad_sm_uninit);
bfad_remove_intr(bfad);
del_timer_sync(&bfad->hal_tmo);
bfad_im_probe_undo(bfad);
bfad->bfad_flags &= ~BFAD_FC4_PROBE_DONE;
bfad_uncfg_pport(bfad);
break;
default:
bfa_sm_fault(bfad, event);
break;
}
}
/*
* BFA callbacks
*/
void
bfad_hcb_comp(void *arg, bfa_status_t status)
{
struct bfad_hal_comp *fcomp = (struct bfad_hal_comp *)arg;
fcomp->status = status;
complete(&fcomp->comp);
}
/*
* bfa_init callback
*/
void
bfa_cb_init(void *drv, bfa_status_t init_status)
{
struct bfad_s *bfad = drv;
if (init_status == BFA_STATUS_OK) {
bfad->bfad_flags |= BFAD_HAL_INIT_DONE;
/*
* If BFAD_HAL_INIT_FAIL flag is set:
* Wake up the kernel thread to start
* the bfad operations after HAL init done
*/
if ((bfad->bfad_flags & BFAD_HAL_INIT_FAIL)) {
bfad->bfad_flags &= ~BFAD_HAL_INIT_FAIL;
wake_up_process(bfad->bfad_tsk);
}
}
complete(&bfad->comp);
}
/*
* BFA_FCS callbacks
*/
struct bfad_port_s *
bfa_fcb_lport_new(struct bfad_s *bfad, struct bfa_fcs_lport_s *port,
enum bfa_lport_role roles, struct bfad_vf_s *vf_drv,
struct bfad_vport_s *vp_drv)
{
bfa_status_t rc;
struct bfad_port_s *port_drv;
if (!vp_drv && !vf_drv) {
port_drv = &bfad->pport;
port_drv->pvb_type = BFAD_PORT_PHYS_BASE;
} else if (!vp_drv && vf_drv) {
port_drv = &vf_drv->base_port;
port_drv->pvb_type = BFAD_PORT_VF_BASE;
} else if (vp_drv && !vf_drv) {
port_drv = &vp_drv->drv_port;
port_drv->pvb_type = BFAD_PORT_PHYS_VPORT;
} else {
port_drv = &vp_drv->drv_port;
port_drv->pvb_type = BFAD_PORT_VF_VPORT;
}
port_drv->fcs_port = port;
port_drv->roles = roles;
if (roles & BFA_LPORT_ROLE_FCP_IM) {
rc = bfad_im_port_new(bfad, port_drv);
if (rc != BFA_STATUS_OK) {
bfad_im_port_delete(bfad, port_drv);
port_drv = NULL;
}
}
return port_drv;
}
/*
* FCS RPORT alloc callback, after successful PLOGI by FCS
*/
bfa_status_t
bfa_fcb_rport_alloc(struct bfad_s *bfad, struct bfa_fcs_rport_s **rport,
struct bfad_rport_s **rport_drv)
{
bfa_status_t rc = BFA_STATUS_OK;
*rport_drv = kzalloc(sizeof(struct bfad_rport_s), GFP_ATOMIC);
if (*rport_drv == NULL) {
rc = BFA_STATUS_ENOMEM;
goto ext;
}
*rport = &(*rport_drv)->fcs_rport;
ext:
return rc;
}
/*
* FCS PBC VPORT Create
*/
void
bfa_fcb_pbc_vport_create(struct bfad_s *bfad, struct bfi_pbc_vport_s pbc_vport)
{
struct bfa_lport_cfg_s port_cfg = {0};
struct bfad_vport_s *vport;
int rc;
vport = kzalloc(sizeof(struct bfad_vport_s), GFP_ATOMIC);
if (!vport) {
bfa_trc(bfad, 0);
return;
}
vport->drv_port.bfad = bfad;
port_cfg.roles = BFA_LPORT_ROLE_FCP_IM;
port_cfg.pwwn = pbc_vport.vp_pwwn;
port_cfg.nwwn = pbc_vport.vp_nwwn;
port_cfg.preboot_vp = BFA_TRUE;
rc = bfa_fcs_pbc_vport_create(&vport->fcs_vport, &bfad->bfa_fcs, 0,
&port_cfg, vport);
if (rc != BFA_STATUS_OK) {
bfa_trc(bfad, 0);
return;
}
list_add_tail(&vport->list_entry, &bfad->pbc_vport_list);
}
void
bfad_hal_mem_release(struct bfad_s *bfad)
{
struct bfa_meminfo_s *hal_meminfo = &bfad->meminfo;
struct bfa_mem_dma_s *dma_info, *dma_elem;
struct bfa_mem_kva_s *kva_info, *kva_elem;
struct list_head *dm_qe, *km_qe;
dma_info = &hal_meminfo->dma_info;
kva_info = &hal_meminfo->kva_info;
/* Iterate through the KVA meminfo queue */
list_for_each(km_qe, &kva_info->qe) {
kva_elem = (struct bfa_mem_kva_s *) km_qe;
vfree(kva_elem->kva);
}
/* Iterate through the DMA meminfo queue */
list_for_each(dm_qe, &dma_info->qe) {
dma_elem = (struct bfa_mem_dma_s *) dm_qe;
dma_free_coherent(&bfad->pcidev->dev,
dma_elem->mem_len, dma_elem->kva,
(dma_addr_t) dma_elem->dma);
}
memset(hal_meminfo, 0, sizeof(struct bfa_meminfo_s));
}
void
bfad_update_hal_cfg(struct bfa_iocfc_cfg_s *bfa_cfg)
{
if (num_rports > 0)
bfa_cfg->fwcfg.num_rports = num_rports;
if (num_ios > 0)
bfa_cfg->fwcfg.num_ioim_reqs = num_ios;
if (num_tms > 0)
bfa_cfg->fwcfg.num_tskim_reqs = num_tms;
if (num_fcxps > 0 && num_fcxps <= BFA_FCXP_MAX)
bfa_cfg->fwcfg.num_fcxp_reqs = num_fcxps;
if (num_ufbufs > 0 && num_ufbufs <= BFA_UF_MAX)
bfa_cfg->fwcfg.num_uf_bufs = num_ufbufs;
if (reqq_size > 0)
bfa_cfg->drvcfg.num_reqq_elems = reqq_size;
if (rspq_size > 0)
bfa_cfg->drvcfg.num_rspq_elems = rspq_size;
if (num_sgpgs > 0 && num_sgpgs <= BFA_SGPG_MAX)
bfa_cfg->drvcfg.num_sgpgs = num_sgpgs;
/*
* populate the hal values back to the driver for sysfs use.
* otherwise, the default values will be shown as 0 in sysfs
*/
num_rports = bfa_cfg->fwcfg.num_rports;
num_ios = bfa_cfg->fwcfg.num_ioim_reqs;
num_tms = bfa_cfg->fwcfg.num_tskim_reqs;
num_fcxps = bfa_cfg->fwcfg.num_fcxp_reqs;
num_ufbufs = bfa_cfg->fwcfg.num_uf_bufs;
reqq_size = bfa_cfg->drvcfg.num_reqq_elems;
rspq_size = bfa_cfg->drvcfg.num_rspq_elems;
num_sgpgs = bfa_cfg->drvcfg.num_sgpgs;
}
bfa_status_t
bfad_hal_mem_alloc(struct bfad_s *bfad)
{
struct bfa_meminfo_s *hal_meminfo = &bfad->meminfo;
struct bfa_mem_dma_s *dma_info, *dma_elem;
struct bfa_mem_kva_s *kva_info, *kva_elem;
struct list_head *dm_qe, *km_qe;
bfa_status_t rc = BFA_STATUS_OK;
dma_addr_t phys_addr;
bfa_cfg_get_default(&bfad->ioc_cfg);
bfad_update_hal_cfg(&bfad->ioc_cfg);
bfad->cfg_data.ioc_queue_depth = bfad->ioc_cfg.fwcfg.num_ioim_reqs;
bfa_cfg_get_meminfo(&bfad->ioc_cfg, hal_meminfo, &bfad->bfa);
dma_info = &hal_meminfo->dma_info;
kva_info = &hal_meminfo->kva_info;
/* Iterate through the KVA meminfo queue */
list_for_each(km_qe, &kva_info->qe) {
kva_elem = (struct bfa_mem_kva_s *) km_qe;
kva_elem->kva = vmalloc(kva_elem->mem_len);
if (kva_elem->kva == NULL) {
bfad_hal_mem_release(bfad);
rc = BFA_STATUS_ENOMEM;
goto ext;
}
memset(kva_elem->kva, 0, kva_elem->mem_len);
}
/* Iterate through the DMA meminfo queue */
list_for_each(dm_qe, &dma_info->qe) {
dma_elem = (struct bfa_mem_dma_s *) dm_qe;
dma_elem->kva = dma_alloc_coherent(&bfad->pcidev->dev,
dma_elem->mem_len,
&phys_addr, GFP_KERNEL);
if (dma_elem->kva == NULL) {
bfad_hal_mem_release(bfad);
rc = BFA_STATUS_ENOMEM;
goto ext;
}
dma_elem->dma = phys_addr;
memset(dma_elem->kva, 0, dma_elem->mem_len);
}
ext:
return rc;
}
/*
* Create a vport under a vf.
*/
bfa_status_t
bfad_vport_create(struct bfad_s *bfad, u16 vf_id,
struct bfa_lport_cfg_s *port_cfg, struct device *dev)
{
struct bfad_vport_s *vport;
int rc = BFA_STATUS_OK;
unsigned long flags;
struct completion fcomp;
vport = kzalloc(sizeof(struct bfad_vport_s), GFP_KERNEL);
if (!vport) {
rc = BFA_STATUS_ENOMEM;
goto ext;
}
vport->drv_port.bfad = bfad;
spin_lock_irqsave(&bfad->bfad_lock, flags);
rc = bfa_fcs_vport_create(&vport->fcs_vport, &bfad->bfa_fcs, vf_id,
port_cfg, vport);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (rc != BFA_STATUS_OK)
goto ext_free_vport;
if (port_cfg->roles & BFA_LPORT_ROLE_FCP_IM) {
rc = bfad_im_scsi_host_alloc(bfad, vport->drv_port.im_port,
dev);
if (rc != BFA_STATUS_OK)
goto ext_free_fcs_vport;
}
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_fcs_vport_start(&vport->fcs_vport);
list_add_tail(&vport->list_entry, &bfad->vport_list);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
return BFA_STATUS_OK;
ext_free_fcs_vport:
spin_lock_irqsave(&bfad->bfad_lock, flags);
vport->comp_del = &fcomp;
init_completion(vport->comp_del);
bfa_fcs_vport_delete(&vport->fcs_vport);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(vport->comp_del);
ext_free_vport:
kfree(vport);
ext:
return rc;
}
void
bfad_bfa_tmo(struct timer_list *t)
{
struct bfad_s *bfad = from_timer(bfad, t, hal_tmo);
unsigned long flags;
struct list_head doneq;
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_timer_beat(&bfad->bfa.timer_mod);
bfa_comp_deq(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (!list_empty(&doneq)) {
bfa_comp_process(&bfad->bfa, &doneq);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_comp_free(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
}
mod_timer(&bfad->hal_tmo,
jiffies + msecs_to_jiffies(BFA_TIMER_FREQ));
}
void
bfad_init_timer(struct bfad_s *bfad)
{
timer_setup(&bfad->hal_tmo, bfad_bfa_tmo, 0);
mod_timer(&bfad->hal_tmo,
jiffies + msecs_to_jiffies(BFA_TIMER_FREQ));
}
int
bfad_pci_init(struct pci_dev *pdev, struct bfad_s *bfad)
{
int rc = -ENODEV;
if (pci_enable_device(pdev)) {
printk(KERN_ERR "pci_enable_device fail %p\n", pdev);
goto out;
}
if (pci_request_regions(pdev, BFAD_DRIVER_NAME))
goto out_disable_device;
pci_set_master(pdev);
if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) != 0)) {
if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
printk(KERN_ERR "pci_set_dma_mask fail %p\n", pdev);
goto out_release_region;
}
}
/* Enable PCIE Advanced Error Recovery (AER) if kernel supports */
pci_enable_pcie_error_reporting(pdev);
bfad->pci_bar0_kva = pci_iomap(pdev, 0, pci_resource_len(pdev, 0));
bfad->pci_bar2_kva = pci_iomap(pdev, 2, pci_resource_len(pdev, 2));
if (bfad->pci_bar0_kva == NULL) {
printk(KERN_ERR "Fail to map bar0\n");
goto out_release_region;
}
bfad->hal_pcidev.pci_slot = PCI_SLOT(pdev->devfn);
bfad->hal_pcidev.pci_func = PCI_FUNC(pdev->devfn);
bfad->hal_pcidev.pci_bar_kva = bfad->pci_bar0_kva;
bfad->hal_pcidev.device_id = pdev->device;
bfad->hal_pcidev.ssid = pdev->subsystem_device;
bfad->pci_name = pci_name(pdev);
bfad->pci_attr.vendor_id = pdev->vendor;
bfad->pci_attr.device_id = pdev->device;
bfad->pci_attr.ssid = pdev->subsystem_device;
bfad->pci_attr.ssvid = pdev->subsystem_vendor;
bfad->pci_attr.pcifn = PCI_FUNC(pdev->devfn);
bfad->pcidev = pdev;
/* Adjust PCIe Maximum Read Request Size */
if (pci_is_pcie(pdev) && pcie_max_read_reqsz) {
if (pcie_max_read_reqsz >= 128 &&
pcie_max_read_reqsz <= 4096 &&
is_power_of_2(pcie_max_read_reqsz)) {
int max_rq = pcie_get_readrq(pdev);
printk(KERN_WARNING "BFA[%s]: "
"pcie_max_read_request_size is %d, "
"reset to %d\n", bfad->pci_name, max_rq,
pcie_max_read_reqsz);
pcie_set_readrq(pdev, pcie_max_read_reqsz);
} else {
printk(KERN_WARNING "BFA[%s]: invalid "
"pcie_max_read_request_size %d ignored\n",
bfad->pci_name, pcie_max_read_reqsz);
}
}
pci_save_state(pdev);
return 0;
out_release_region:
pci_release_regions(pdev);
out_disable_device:
pci_disable_device(pdev);
out:
return rc;
}
void
bfad_pci_uninit(struct pci_dev *pdev, struct bfad_s *bfad)
{
pci_iounmap(pdev, bfad->pci_bar0_kva);
pci_iounmap(pdev, bfad->pci_bar2_kva);
pci_release_regions(pdev);
/* Disable PCIE Advanced Error Recovery (AER) */
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
bfa_status_t
bfad_drv_init(struct bfad_s *bfad)
{
bfa_status_t rc;
unsigned long flags;
bfad->cfg_data.rport_del_timeout = rport_del_timeout;
bfad->cfg_data.lun_queue_depth = bfa_lun_queue_depth;
bfad->cfg_data.io_max_sge = bfa_io_max_sge;
bfad->cfg_data.binding_method = FCP_PWWN_BINDING;
rc = bfad_hal_mem_alloc(bfad);
if (rc != BFA_STATUS_OK) {
printk(KERN_WARNING "bfad%d bfad_hal_mem_alloc failure\n",
bfad->inst_no);
printk(KERN_WARNING
"Not enough memory to attach all QLogic BR-series HBA ports. System may need more memory.\n");
return BFA_STATUS_FAILED;
}
bfad->bfa.trcmod = bfad->trcmod;
bfad->bfa.plog = &bfad->plog_buf;
bfa_plog_init(&bfad->plog_buf);
bfa_plog_str(&bfad->plog_buf, BFA_PL_MID_DRVR, BFA_PL_EID_DRIVER_START,
0, "Driver Attach");
bfa_attach(&bfad->bfa, bfad, &bfad->ioc_cfg, &bfad->meminfo,
&bfad->hal_pcidev);
/* FCS INIT */
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfa_fcs.trcmod = bfad->trcmod;
bfa_fcs_attach(&bfad->bfa_fcs, &bfad->bfa, bfad, BFA_FALSE);
bfad->bfa_fcs.fdmi_enabled = fdmi_enable;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
bfad->bfad_flags |= BFAD_DRV_INIT_DONE;
return BFA_STATUS_OK;
}
void
bfad_drv_uninit(struct bfad_s *bfad)
{
unsigned long flags;
spin_lock_irqsave(&bfad->bfad_lock, flags);
init_completion(&bfad->comp);
bfa_iocfc_stop(&bfad->bfa);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
del_timer_sync(&bfad->hal_tmo);
bfa_isr_disable(&bfad->bfa);
bfa_detach(&bfad->bfa);
bfad_remove_intr(bfad);
bfad_hal_mem_release(bfad);
bfad->bfad_flags &= ~BFAD_DRV_INIT_DONE;
}
void
bfad_drv_start(struct bfad_s *bfad)
{
unsigned long flags;
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_iocfc_start(&bfad->bfa);
bfa_fcs_pbc_vport_init(&bfad->bfa_fcs);
bfa_fcs_fabric_modstart(&bfad->bfa_fcs);
bfad->bfad_flags |= BFAD_HAL_START_DONE;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (bfad->im)
flush_workqueue(bfad->im->drv_workq);
}
void
bfad_fcs_stop(struct bfad_s *bfad)
{
unsigned long flags;
spin_lock_irqsave(&bfad->bfad_lock, flags);
init_completion(&bfad->comp);
bfad->pport.flags |= BFAD_PORT_DELETE;
bfa_fcs_exit(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
bfa_sm_send_event(bfad, BFAD_E_FCS_EXIT_COMP);
}
void
bfad_stop(struct bfad_s *bfad)
{
unsigned long flags;
spin_lock_irqsave(&bfad->bfad_lock, flags);
init_completion(&bfad->comp);
bfa_iocfc_stop(&bfad->bfa);
bfad->bfad_flags &= ~BFAD_HAL_START_DONE;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
bfa_sm_send_event(bfad, BFAD_E_EXIT_COMP);
}
bfa_status_t
bfad_cfg_pport(struct bfad_s *bfad, enum bfa_lport_role role)
{
int rc = BFA_STATUS_OK;
/* Allocate scsi_host for the physical port */
if ((supported_fc4s & BFA_LPORT_ROLE_FCP_IM) &&
(role & BFA_LPORT_ROLE_FCP_IM)) {
if (bfad->pport.im_port == NULL) {
rc = BFA_STATUS_FAILED;
goto out;
}
rc = bfad_im_scsi_host_alloc(bfad, bfad->pport.im_port,
&bfad->pcidev->dev);
if (rc != BFA_STATUS_OK)
goto out;
bfad->pport.roles |= BFA_LPORT_ROLE_FCP_IM;
}
bfad->bfad_flags |= BFAD_CFG_PPORT_DONE;
out:
return rc;
}
void
bfad_uncfg_pport(struct bfad_s *bfad)
{
if ((supported_fc4s & BFA_LPORT_ROLE_FCP_IM) &&
(bfad->pport.roles & BFA_LPORT_ROLE_FCP_IM)) {
bfad_im_scsi_host_free(bfad, bfad->pport.im_port);
bfad_im_port_clean(bfad->pport.im_port);
kfree(bfad->pport.im_port);
bfad->pport.roles &= ~BFA_LPORT_ROLE_FCP_IM;
}
bfad->bfad_flags &= ~BFAD_CFG_PPORT_DONE;
}
bfa_status_t
bfad_start_ops(struct bfad_s *bfad) {
int retval;
unsigned long flags;
struct bfad_vport_s *vport, *vport_new;
struct bfa_fcs_driver_info_s driver_info;
/* Limit min/max. xfer size to [64k-32MB] */
if (max_xfer_size < BFAD_MIN_SECTORS >> 1)
max_xfer_size = BFAD_MIN_SECTORS >> 1;
if (max_xfer_size > BFAD_MAX_SECTORS >> 1)
max_xfer_size = BFAD_MAX_SECTORS >> 1;
/* Fill the driver_info info to fcs*/
memset(&driver_info, 0, sizeof(driver_info));
strncpy(driver_info.version, BFAD_DRIVER_VERSION,
sizeof(driver_info.version) - 1);
if (host_name)
strncpy(driver_info.host_machine_name, host_name,
sizeof(driver_info.host_machine_name) - 1);
if (os_name)
strncpy(driver_info.host_os_name, os_name,
sizeof(driver_info.host_os_name) - 1);
if (os_patch)
strncpy(driver_info.host_os_patch, os_patch,
sizeof(driver_info.host_os_patch) - 1);
strncpy(driver_info.os_device_name, bfad->pci_name,
sizeof(driver_info.os_device_name) - 1);
/* FCS driver info init */
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_fcs_driver_info_init(&bfad->bfa_fcs, &driver_info);
if (bfad->bfad_flags & BFAD_CFG_PPORT_DONE)
bfa_fcs_update_cfg(&bfad->bfa_fcs);
else
bfa_fcs_init(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (!(bfad->bfad_flags & BFAD_CFG_PPORT_DONE)) {
retval = bfad_cfg_pport(bfad, BFA_LPORT_ROLE_FCP_IM);
if (retval != BFA_STATUS_OK)
return BFA_STATUS_FAILED;
}
/* Setup fc host fixed attribute if the lk supports */
bfad_fc_host_init(bfad->pport.im_port);
/* BFAD level FC4 IM specific resource allocation */
retval = bfad_im_probe(bfad);
if (retval != BFA_STATUS_OK) {
printk(KERN_WARNING "bfad_im_probe failed\n");
if (bfa_sm_cmp_state(bfad, bfad_sm_initializing))
bfa_sm_set_state(bfad, bfad_sm_failed);
return BFA_STATUS_FAILED;
} else
bfad->bfad_flags |= BFAD_FC4_PROBE_DONE;
bfad_drv_start(bfad);
/* Complete pbc vport create */
list_for_each_entry_safe(vport, vport_new, &bfad->pbc_vport_list,
list_entry) {
struct fc_vport_identifiers vid;
struct fc_vport *fc_vport;
char pwwn_buf[BFA_STRING_32];
memset(&vid, 0, sizeof(vid));
vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
vid.vport_type = FC_PORTTYPE_NPIV;
vid.disable = false;
vid.node_name = wwn_to_u64((u8 *)
(&((vport->fcs_vport).lport.port_cfg.nwwn)));
vid.port_name = wwn_to_u64((u8 *)
(&((vport->fcs_vport).lport.port_cfg.pwwn)));
fc_vport = fc_vport_create(bfad->pport.im_port->shost, 0, &vid);
if (!fc_vport) {
wwn2str(pwwn_buf, vid.port_name);
printk(KERN_WARNING "bfad%d: failed to create pbc vport"
" %s\n", bfad->inst_no, pwwn_buf);
}
list_del(&vport->list_entry);
kfree(vport);
}
/*
* If bfa_linkup_delay is set to -1 default; try to retrive the
* value using the bfad_get_linkup_delay(); else use the
* passed in module param value as the bfa_linkup_delay.
*/
if (bfa_linkup_delay < 0) {
bfa_linkup_delay = bfad_get_linkup_delay(bfad);
bfad_rport_online_wait(bfad);
bfa_linkup_delay = -1;
} else
bfad_rport_online_wait(bfad);
BFA_LOG(KERN_INFO, bfad, bfa_log_level, "bfa device claimed\n");
return BFA_STATUS_OK;
}
int
bfad_worker(void *ptr)
{
struct bfad_s *bfad = ptr;
unsigned long flags;
if (kthread_should_stop())
return 0;
/* Send event BFAD_E_INIT_SUCCESS */
bfa_sm_send_event(bfad, BFAD_E_INIT_SUCCESS);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_tsk = NULL;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
return 0;
}
/*
* BFA driver interrupt functions
*/
irqreturn_t
bfad_intx(int irq, void *dev_id)
{
struct bfad_s *bfad = dev_id;
struct list_head doneq;
unsigned long flags;
bfa_boolean_t rc;
spin_lock_irqsave(&bfad->bfad_lock, flags);
rc = bfa_intx(&bfad->bfa);
if (!rc) {
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
return IRQ_NONE;
}
bfa_comp_deq(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (!list_empty(&doneq)) {
bfa_comp_process(&bfad->bfa, &doneq);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_comp_free(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
}
return IRQ_HANDLED;
}
static irqreturn_t
bfad_msix(int irq, void *dev_id)
{
struct bfad_msix_s *vec = dev_id;
struct bfad_s *bfad = vec->bfad;
struct list_head doneq;
unsigned long flags;
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_msix(&bfad->bfa, vec->msix.entry);
bfa_comp_deq(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
if (!list_empty(&doneq)) {
bfa_comp_process(&bfad->bfa, &doneq);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_comp_free(&bfad->bfa, &doneq);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
}
return IRQ_HANDLED;
}
/*
* Initialize the MSIX entry table.
*/
static void
bfad_init_msix_entry(struct bfad_s *bfad, struct msix_entry *msix_entries,
int mask, int max_bit)
{
int i;
int match = 0x00000001;
for (i = 0, bfad->nvec = 0; i < MAX_MSIX_ENTRY; i++) {
if (mask & match) {
bfad->msix_tab[bfad->nvec].msix.entry = i;
bfad->msix_tab[bfad->nvec].bfad = bfad;
msix_entries[bfad->nvec].entry = i;
bfad->nvec++;
}
match <<= 1;
}
}
int
bfad_install_msix_handler(struct bfad_s *bfad)
{
int i, error = 0;
for (i = 0; i < bfad->nvec; i++) {
sprintf(bfad->msix_tab[i].name, "bfa-%s-%s",
bfad->pci_name,
((bfa_asic_id_cb(bfad->hal_pcidev.device_id)) ?
msix_name_cb[i] : msix_name_ct[i]));
error = request_irq(bfad->msix_tab[i].msix.vector,
(irq_handler_t) bfad_msix, 0,
bfad->msix_tab[i].name, &bfad->msix_tab[i]);
bfa_trc(bfad, i);
bfa_trc(bfad, bfad->msix_tab[i].msix.vector);
if (error) {
int j;
for (j = 0; j < i; j++)
free_irq(bfad->msix_tab[j].msix.vector,
&bfad->msix_tab[j]);
bfad->bfad_flags &= ~BFAD_MSIX_ON;
pci_disable_msix(bfad->pcidev);
return 1;
}
}
return 0;
}
/*
* Setup MSIX based interrupt.
*/
int
bfad_setup_intr(struct bfad_s *bfad)
{
int error;
u32 mask = 0, i, num_bit = 0, max_bit = 0;
struct msix_entry msix_entries[MAX_MSIX_ENTRY];
struct pci_dev *pdev = bfad->pcidev;
u16 reg;
/* Call BFA to get the msix map for this PCI function. */
bfa_msix_getvecs(&bfad->bfa, &mask, &num_bit, &max_bit);
/* Set up the msix entry table */
bfad_init_msix_entry(bfad, msix_entries, mask, max_bit);
if ((bfa_asic_id_ctc(pdev->device) && !msix_disable_ct) ||
(bfa_asic_id_cb(pdev->device) && !msix_disable_cb)) {
error = pci_enable_msix_exact(bfad->pcidev,
msix_entries, bfad->nvec);
/* In CT1 & CT2, try to allocate just one vector */
if (error == -ENOSPC && bfa_asic_id_ctc(pdev->device)) {
printk(KERN_WARNING "bfa %s: trying one msix "
"vector failed to allocate %d[%d]\n",
bfad->pci_name, bfad->nvec, error);
bfad->nvec = 1;
error = pci_enable_msix_exact(bfad->pcidev,
msix_entries, 1);
}
if (error) {
printk(KERN_WARNING "bfad%d: "
"pci_enable_msix_exact failed (%d), "
"use line based.\n",
bfad->inst_no, error);
goto line_based;
}
/* Disable INTX in MSI-X mode */
pci_read_config_word(pdev, PCI_COMMAND, &reg);
if (!(reg & PCI_COMMAND_INTX_DISABLE))
pci_write_config_word(pdev, PCI_COMMAND,
reg | PCI_COMMAND_INTX_DISABLE);
/* Save the vectors */
for (i = 0; i < bfad->nvec; i++) {
bfa_trc(bfad, msix_entries[i].vector);
bfad->msix_tab[i].msix.vector = msix_entries[i].vector;
}
bfa_msix_init(&bfad->bfa, bfad->nvec);
bfad->bfad_flags |= BFAD_MSIX_ON;
return 0;
}
line_based:
error = request_irq(bfad->pcidev->irq, (irq_handler_t)bfad_intx,
BFAD_IRQ_FLAGS, BFAD_DRIVER_NAME, bfad);
if (error)
return error;
bfad->bfad_flags |= BFAD_INTX_ON;
return 0;
}
void
bfad_remove_intr(struct bfad_s *bfad)
{
int i;
if (bfad->bfad_flags & BFAD_MSIX_ON) {
for (i = 0; i < bfad->nvec; i++)
free_irq(bfad->msix_tab[i].msix.vector,
&bfad->msix_tab[i]);
pci_disable_msix(bfad->pcidev);
bfad->bfad_flags &= ~BFAD_MSIX_ON;
} else if (bfad->bfad_flags & BFAD_INTX_ON) {
free_irq(bfad->pcidev->irq, bfad);
}
}
/*
* PCI probe entry.
*/
int
bfad_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct bfad_s *bfad;
int error = -ENODEV, retval, i;
/* For single port cards - only claim function 0 */
if ((pdev->device == BFA_PCI_DEVICE_ID_FC_8G1P) &&
(PCI_FUNC(pdev->devfn) != 0))
return -ENODEV;
bfad = kzalloc(sizeof(struct bfad_s), GFP_KERNEL);
if (!bfad) {
error = -ENOMEM;
goto out;
}
bfad->trcmod = kzalloc(sizeof(struct bfa_trc_mod_s), GFP_KERNEL);
if (!bfad->trcmod) {
printk(KERN_WARNING "Error alloc trace buffer!\n");
error = -ENOMEM;
goto out_alloc_trace_failure;
}
/* TRACE INIT */
bfa_trc_init(bfad->trcmod);
bfa_trc(bfad, bfad_inst);
/* AEN INIT */
INIT_LIST_HEAD(&bfad->free_aen_q);
INIT_LIST_HEAD(&bfad->active_aen_q);
for (i = 0; i < BFA_AEN_MAX_ENTRY; i++)
list_add_tail(&bfad->aen_list[i].qe, &bfad->free_aen_q);
if (!(bfad_load_fwimg(pdev))) {
kfree(bfad->trcmod);
goto out_alloc_trace_failure;
}
retval = bfad_pci_init(pdev, bfad);
if (retval) {
printk(KERN_WARNING "bfad_pci_init failure!\n");
error = retval;
goto out_pci_init_failure;
}
mutex_lock(&bfad_mutex);
bfad->inst_no = bfad_inst++;
list_add_tail(&bfad->list_entry, &bfad_list);
mutex_unlock(&bfad_mutex);
/* Initializing the state machine: State set to uninit */
bfa_sm_set_state(bfad, bfad_sm_uninit);
spin_lock_init(&bfad->bfad_lock);
spin_lock_init(&bfad->bfad_aen_spinlock);
pci_set_drvdata(pdev, bfad);
bfad->ref_count = 0;
bfad->pport.bfad = bfad;
INIT_LIST_HEAD(&bfad->pbc_vport_list);
INIT_LIST_HEAD(&bfad->vport_list);
/* Setup the debugfs node for this bfad */
if (bfa_debugfs_enable)
bfad_debugfs_init(&bfad->pport);
retval = bfad_drv_init(bfad);
if (retval != BFA_STATUS_OK)
goto out_drv_init_failure;
bfa_sm_send_event(bfad, BFAD_E_CREATE);
if (bfa_sm_cmp_state(bfad, bfad_sm_uninit))
goto out_bfad_sm_failure;
return 0;
out_bfad_sm_failure:
bfad_hal_mem_release(bfad);
out_drv_init_failure:
/* Remove the debugfs node for this bfad */
kfree(bfad->regdata);
bfad_debugfs_exit(&bfad->pport);
mutex_lock(&bfad_mutex);
bfad_inst--;
list_del(&bfad->list_entry);
mutex_unlock(&bfad_mutex);
bfad_pci_uninit(pdev, bfad);
out_pci_init_failure:
kfree(bfad->trcmod);
out_alloc_trace_failure:
kfree(bfad);
out:
return error;
}
/*
* PCI remove entry.
*/
void
bfad_pci_remove(struct pci_dev *pdev)
{
struct bfad_s *bfad = pci_get_drvdata(pdev);
unsigned long flags;
bfa_trc(bfad, bfad->inst_no);
spin_lock_irqsave(&bfad->bfad_lock, flags);
if (bfad->bfad_tsk != NULL) {
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
kthread_stop(bfad->bfad_tsk);
} else {
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
}
/* Send Event BFAD_E_STOP */
bfa_sm_send_event(bfad, BFAD_E_STOP);
/* Driver detach and dealloc mem */
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_detach(&bfad->bfa);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
bfad_hal_mem_release(bfad);
/* Remove the debugfs node for this bfad */
kfree(bfad->regdata);
bfad_debugfs_exit(&bfad->pport);
/* Cleaning the BFAD instance */
mutex_lock(&bfad_mutex);
bfad_inst--;
list_del(&bfad->list_entry);
mutex_unlock(&bfad_mutex);
bfad_pci_uninit(pdev, bfad);
kfree(bfad->trcmod);
kfree(bfad);
}
/*
* PCI Error Recovery entry, error detected.
*/
static pci_ers_result_t
bfad_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct bfad_s *bfad = pci_get_drvdata(pdev);
unsigned long flags;
pci_ers_result_t ret = PCI_ERS_RESULT_NONE;
dev_printk(KERN_ERR, &pdev->dev,
"error detected state: %d - flags: 0x%x\n",
state, bfad->bfad_flags);
switch (state) {
case pci_channel_io_normal: /* non-fatal error */
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_flags &= ~BFAD_EEH_BUSY;
/* Suspend/fail all bfa operations */
bfa_ioc_suspend(&bfad->bfa.ioc);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
del_timer_sync(&bfad->hal_tmo);
ret = PCI_ERS_RESULT_CAN_RECOVER;
break;
case pci_channel_io_frozen: /* fatal error */
init_completion(&bfad->comp);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_flags |= BFAD_EEH_BUSY;
/* Suspend/fail all bfa operations */
bfa_ioc_suspend(&bfad->bfa.ioc);
bfa_fcs_stop(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
bfad_remove_intr(bfad);
del_timer_sync(&bfad->hal_tmo);
pci_disable_device(pdev);
ret = PCI_ERS_RESULT_NEED_RESET;
break;
case pci_channel_io_perm_failure: /* PCI Card is DEAD */
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_flags |= BFAD_EEH_BUSY |
BFAD_EEH_PCI_CHANNEL_IO_PERM_FAILURE;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
/* If the error_detected handler is called with the reason
* pci_channel_io_perm_failure - it will subsequently call
* pci_remove() entry point to remove the pci device from the
* system - So defer the cleanup to pci_remove(); cleaning up
* here causes inconsistent state during pci_remove().
*/
ret = PCI_ERS_RESULT_DISCONNECT;
break;
default:
WARN_ON(1);
}
return ret;
}
int
restart_bfa(struct bfad_s *bfad)
{
unsigned long flags;
struct pci_dev *pdev = bfad->pcidev;
bfa_attach(&bfad->bfa, bfad, &bfad->ioc_cfg,
&bfad->meminfo, &bfad->hal_pcidev);
/* Enable Interrupt and wait bfa_init completion */
if (bfad_setup_intr(bfad)) {
dev_printk(KERN_WARNING, &pdev->dev,
"%s: bfad_setup_intr failed\n", bfad->pci_name);
bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED);
return -1;
}
init_completion(&bfad->comp);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfa_iocfc_init(&bfad->bfa);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
/* Set up interrupt handler for each vectors */
if ((bfad->bfad_flags & BFAD_MSIX_ON) &&
bfad_install_msix_handler(bfad))
dev_printk(KERN_WARNING, &pdev->dev,
"%s: install_msix failed.\n", bfad->pci_name);
bfad_init_timer(bfad);
wait_for_completion(&bfad->comp);
bfad_drv_start(bfad);
return 0;
}
/*
* PCI Error Recovery entry, re-initialize the chip.
*/
static pci_ers_result_t
bfad_pci_slot_reset(struct pci_dev *pdev)
{
struct bfad_s *bfad = pci_get_drvdata(pdev);
u8 byte;
dev_printk(KERN_ERR, &pdev->dev,
"bfad_pci_slot_reset flags: 0x%x\n", bfad->bfad_flags);
if (pci_enable_device(pdev)) {
dev_printk(KERN_ERR, &pdev->dev, "Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
/*
* Read some byte (e.g. DMA max. payload size which can't
* be 0xff any time) to make sure - we did not hit another PCI error
* in the middle of recovery. If we did, then declare permanent failure.
*/
pci_read_config_byte(pdev, 0x68, &byte);
if (byte == 0xff) {
dev_printk(KERN_ERR, &pdev->dev,
"slot_reset failed ... got another PCI error !\n");
goto out_disable_device;
}
pci_save_state(pdev);
pci_set_master(pdev);
if (pci_set_dma_mask(bfad->pcidev, DMA_BIT_MASK(64)) != 0)
if (pci_set_dma_mask(bfad->pcidev, DMA_BIT_MASK(32)) != 0)
goto out_disable_device;
pci_cleanup_aer_uncorrect_error_status(pdev);
if (restart_bfa(bfad) == -1)
goto out_disable_device;
pci_enable_pcie_error_reporting(pdev);
dev_printk(KERN_WARNING, &pdev->dev,
"slot_reset completed flags: 0x%x!\n", bfad->bfad_flags);
return PCI_ERS_RESULT_RECOVERED;
out_disable_device:
pci_disable_device(pdev);
return PCI_ERS_RESULT_DISCONNECT;
}
static pci_ers_result_t
bfad_pci_mmio_enabled(struct pci_dev *pdev)
{
unsigned long flags;
struct bfad_s *bfad = pci_get_drvdata(pdev);
dev_printk(KERN_INFO, &pdev->dev, "mmio_enabled\n");
/* Fetch FW diagnostic information */
bfa_ioc_debug_save_ftrc(&bfad->bfa.ioc);
/* Cancel all pending IOs */
spin_lock_irqsave(&bfad->bfad_lock, flags);
init_completion(&bfad->comp);
bfa_fcs_stop(&bfad->bfa_fcs);
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
wait_for_completion(&bfad->comp);
bfad_remove_intr(bfad);
del_timer_sync(&bfad->hal_tmo);
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
}
static void
bfad_pci_resume(struct pci_dev *pdev)
{
unsigned long flags;
struct bfad_s *bfad = pci_get_drvdata(pdev);
dev_printk(KERN_WARNING, &pdev->dev, "resume\n");
/* wait until the link is online */
bfad_rport_online_wait(bfad);
spin_lock_irqsave(&bfad->bfad_lock, flags);
bfad->bfad_flags &= ~BFAD_EEH_BUSY;
spin_unlock_irqrestore(&bfad->bfad_lock, flags);
}
struct pci_device_id bfad_id_table[] = {
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_FC_8G2P,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_FC_8G1P,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_CT,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = (PCI_CLASS_SERIAL_FIBER << 8),
.class_mask = ~0,
},
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_CT_FC,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = (PCI_CLASS_SERIAL_FIBER << 8),
.class_mask = ~0,
},
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_CT2,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = (PCI_CLASS_SERIAL_FIBER << 8),
.class_mask = ~0,
},
{
.vendor = BFA_PCI_VENDOR_ID_BROCADE,
.device = BFA_PCI_DEVICE_ID_CT2_QUAD,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = (PCI_CLASS_SERIAL_FIBER << 8),
.class_mask = ~0,
},
{0, 0},
};
MODULE_DEVICE_TABLE(pci, bfad_id_table);
/*
* PCI error recovery handlers.
*/
static struct pci_error_handlers bfad_err_handler = {
.error_detected = bfad_pci_error_detected,
.slot_reset = bfad_pci_slot_reset,
.mmio_enabled = bfad_pci_mmio_enabled,
.resume = bfad_pci_resume,
};
static struct pci_driver bfad_pci_driver = {
.name = BFAD_DRIVER_NAME,
.id_table = bfad_id_table,
.probe = bfad_pci_probe,
.remove = bfad_pci_remove,
.err_handler = &bfad_err_handler,
};
/*
* Driver module init.
*/
static int __init
bfad_init(void)
{
int error = 0;
pr_info("QLogic BR-series BFA FC/FCOE SCSI driver - version: %s\n",
BFAD_DRIVER_VERSION);
if (num_sgpgs > 0)
num_sgpgs_parm = num_sgpgs;
error = bfad_im_module_init();
if (error) {
error = -ENOMEM;
printk(KERN_WARNING "bfad_im_module_init failure\n");
goto ext;
}
if (strcmp(FCPI_NAME, " fcpim") == 0)
supported_fc4s |= BFA_LPORT_ROLE_FCP_IM;
bfa_auto_recover = ioc_auto_recover;
bfa_fcs_rport_set_del_timeout(rport_del_timeout);
bfa_fcs_rport_set_max_logins(max_rport_logins);
error = pci_register_driver(&bfad_pci_driver);
if (error) {
printk(KERN_WARNING "pci_register_driver failure\n");
goto ext;
}
return 0;
ext:
bfad_im_module_exit();
return error;
}
/*
* Driver module exit.
*/
static void __exit
bfad_exit(void)
{
pci_unregister_driver(&bfad_pci_driver);
bfad_im_module_exit();
bfad_free_fwimg();
}
/* Firmware handling */
static void
bfad_read_firmware(struct pci_dev *pdev, u32 **bfi_image,
u32 *bfi_image_size, char *fw_name)
{
const struct firmware *fw;
if (request_firmware(&fw, fw_name, &pdev->dev)) {
printk(KERN_ALERT "Can't locate firmware %s\n", fw_name);
*bfi_image = NULL;
goto out;
}
*bfi_image = vmalloc(fw->size);
if (NULL == *bfi_image) {
printk(KERN_ALERT "Fail to allocate buffer for fw image "
"size=%x!\n", (u32) fw->size);
goto out;
}
memcpy(*bfi_image, fw->data, fw->size);
*bfi_image_size = fw->size/sizeof(u32);
out:
release_firmware(fw);
}
static u32 *
bfad_load_fwimg(struct pci_dev *pdev)
{
if (bfa_asic_id_ct2(pdev->device)) {
if (bfi_image_ct2_size == 0)
bfad_read_firmware(pdev, &bfi_image_ct2,
&bfi_image_ct2_size, BFAD_FW_FILE_CT2);
return bfi_image_ct2;
} else if (bfa_asic_id_ct(pdev->device)) {
if (bfi_image_ct_size == 0)
bfad_read_firmware(pdev, &bfi_image_ct,
&bfi_image_ct_size, BFAD_FW_FILE_CT);
return bfi_image_ct;
} else if (bfa_asic_id_cb(pdev->device)) {
if (bfi_image_cb_size == 0)
bfad_read_firmware(pdev, &bfi_image_cb,
&bfi_image_cb_size, BFAD_FW_FILE_CB);
return bfi_image_cb;
}
return NULL;
}
static void
bfad_free_fwimg(void)
{
if (bfi_image_ct2_size && bfi_image_ct2)
vfree(bfi_image_ct2);
if (bfi_image_ct_size && bfi_image_ct)
vfree(bfi_image_ct);
if (bfi_image_cb_size && bfi_image_cb)
vfree(bfi_image_cb);
}
module_init(bfad_init);
module_exit(bfad_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("QLogic BR-series Fibre Channel HBA Driver" BFAD_PROTO_NAME);
MODULE_AUTHOR("QLogic Corporation");
MODULE_VERSION(BFAD_DRIVER_VERSION);