| /* |
| * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3 |
| * |
| * (C) 2001 San Mehat <nettwerk@valinux.com> |
| * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com> |
| * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au> |
| * |
| * This driver for the Micro Memory PCI Memory Module with Battery Backup |
| * is Copyright Micro Memory Inc 2001-2002. All rights reserved. |
| * |
| * This driver is released to the public under the terms of the |
| * GNU GENERAL PUBLIC LICENSE version 2 |
| * See the file COPYING for details. |
| * |
| * This driver provides a standard block device interface for Micro Memory(tm) |
| * PCI based RAM boards. |
| * 10/05/01: Phap Nguyen - Rebuilt the driver |
| * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning |
| * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn |
| * - use stand disk partitioning (so fdisk works). |
| * 08nov2001:NeilBrown - change driver name from "mm" to "umem" |
| * - incorporate into main kernel |
| * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet |
| * - use spin_lock_bh instead of _irq |
| * - Never block on make_request. queue |
| * bh's instead. |
| * - unregister umem from devfs at mod unload |
| * - Change version to 2.3 |
| * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal) |
| * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA |
| * 15May2002:NeilBrown - convert to bio for 2.5 |
| * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect |
| * - a sequence of writes that cover the card, and |
| * - set initialised bit then. |
| */ |
| |
| #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */ |
| #include <linux/fs.h> |
| #include <linux/bio.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/gfp.h> |
| #include <linux/ioctl.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/timer.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <linux/fcntl.h> /* O_ACCMODE */ |
| #include <linux/hdreg.h> /* HDIO_GETGEO */ |
| |
| #include "umem.h" |
| |
| #include <linux/uaccess.h> |
| #include <asm/io.h> |
| |
| #define MM_MAXCARDS 4 |
| #define MM_RAHEAD 2 /* two sectors */ |
| #define MM_BLKSIZE 1024 /* 1k blocks */ |
| #define MM_HARDSECT 512 /* 512-byte hardware sectors */ |
| #define MM_SHIFT 6 /* max 64 partitions on 4 cards */ |
| |
| /* |
| * Version Information |
| */ |
| |
| #define DRIVER_NAME "umem" |
| #define DRIVER_VERSION "v2.3" |
| #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown" |
| #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver" |
| |
| static int debug; |
| /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */ |
| #define HW_TRACE(x) |
| |
| #define DEBUG_LED_ON_TRANSFER 0x01 |
| #define DEBUG_BATTERY_POLLING 0x02 |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Debug bitmask"); |
| |
| static int pci_read_cmd = 0x0C; /* Read Multiple */ |
| module_param(pci_read_cmd, int, 0); |
| MODULE_PARM_DESC(pci_read_cmd, "PCI read command"); |
| |
| static int pci_write_cmd = 0x0F; /* Write and Invalidate */ |
| module_param(pci_write_cmd, int, 0); |
| MODULE_PARM_DESC(pci_write_cmd, "PCI write command"); |
| |
| static int pci_cmds; |
| |
| static int major_nr; |
| |
| #include <linux/blkdev.h> |
| #include <linux/blkpg.h> |
| |
| struct cardinfo { |
| struct pci_dev *dev; |
| |
| unsigned char __iomem *csr_remap; |
| unsigned int mm_size; /* size in kbytes */ |
| |
| unsigned int init_size; /* initial segment, in sectors, |
| * that we know to |
| * have been written |
| */ |
| struct bio *bio, *currentbio, **biotail; |
| struct bvec_iter current_iter; |
| |
| struct request_queue *queue; |
| |
| struct mm_page { |
| dma_addr_t page_dma; |
| struct mm_dma_desc *desc; |
| int cnt, headcnt; |
| struct bio *bio, **biotail; |
| struct bvec_iter iter; |
| } mm_pages[2]; |
| #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc)) |
| |
| int Active, Ready; |
| |
| struct tasklet_struct tasklet; |
| unsigned int dma_status; |
| |
| struct { |
| int good; |
| int warned; |
| unsigned long last_change; |
| } battery[2]; |
| |
| spinlock_t lock; |
| int check_batteries; |
| |
| int flags; |
| }; |
| |
| static struct cardinfo cards[MM_MAXCARDS]; |
| static struct timer_list battery_timer; |
| |
| static int num_cards; |
| |
| static struct gendisk *mm_gendisk[MM_MAXCARDS]; |
| |
| static void check_batteries(struct cardinfo *card); |
| |
| static int get_userbit(struct cardinfo *card, int bit) |
| { |
| unsigned char led; |
| |
| led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| return led & bit; |
| } |
| |
| static int set_userbit(struct cardinfo *card, int bit, unsigned char state) |
| { |
| unsigned char led; |
| |
| led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| if (state) |
| led |= bit; |
| else |
| led &= ~bit; |
| writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE: For the power LED, use the LED_POWER_* macros since they differ |
| */ |
| static void set_led(struct cardinfo *card, int shift, unsigned char state) |
| { |
| unsigned char led; |
| |
| led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| if (state == LED_FLIP) |
| led ^= (1<<shift); |
| else { |
| led &= ~(0x03 << shift); |
| led |= (state << shift); |
| } |
| writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| |
| } |
| |
| #ifdef MM_DIAG |
| static void dump_regs(struct cardinfo *card) |
| { |
| unsigned char *p; |
| int i, i1; |
| |
| p = card->csr_remap; |
| for (i = 0; i < 8; i++) { |
| printk(KERN_DEBUG "%p ", p); |
| |
| for (i1 = 0; i1 < 16; i1++) |
| printk("%02x ", *p++); |
| |
| printk("\n"); |
| } |
| } |
| #endif |
| |
| static void dump_dmastat(struct cardinfo *card, unsigned int dmastat) |
| { |
| dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - "); |
| if (dmastat & DMASCR_ANY_ERR) |
| printk(KERN_CONT "ANY_ERR "); |
| if (dmastat & DMASCR_MBE_ERR) |
| printk(KERN_CONT "MBE_ERR "); |
| if (dmastat & DMASCR_PARITY_ERR_REP) |
| printk(KERN_CONT "PARITY_ERR_REP "); |
| if (dmastat & DMASCR_PARITY_ERR_DET) |
| printk(KERN_CONT "PARITY_ERR_DET "); |
| if (dmastat & DMASCR_SYSTEM_ERR_SIG) |
| printk(KERN_CONT "SYSTEM_ERR_SIG "); |
| if (dmastat & DMASCR_TARGET_ABT) |
| printk(KERN_CONT "TARGET_ABT "); |
| if (dmastat & DMASCR_MASTER_ABT) |
| printk(KERN_CONT "MASTER_ABT "); |
| if (dmastat & DMASCR_CHAIN_COMPLETE) |
| printk(KERN_CONT "CHAIN_COMPLETE "); |
| if (dmastat & DMASCR_DMA_COMPLETE) |
| printk(KERN_CONT "DMA_COMPLETE "); |
| printk("\n"); |
| } |
| |
| /* |
| * Theory of request handling |
| * |
| * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME |
| * We have two pages of mm_dma_desc, holding about 64 descriptors |
| * each. These are allocated at init time. |
| * One page is "Ready" and is either full, or can have request added. |
| * The other page might be "Active", which DMA is happening on it. |
| * |
| * Whenever IO on the active page completes, the Ready page is activated |
| * and the ex-Active page is clean out and made Ready. |
| * Otherwise the Ready page is only activated when it becomes full. |
| * |
| * If a request arrives while both pages a full, it is queued, and b_rdev is |
| * overloaded to record whether it was a read or a write. |
| * |
| * The interrupt handler only polls the device to clear the interrupt. |
| * The processing of the result is done in a tasklet. |
| */ |
| |
| static void mm_start_io(struct cardinfo *card) |
| { |
| /* we have the lock, we know there is |
| * no IO active, and we know that card->Active |
| * is set |
| */ |
| struct mm_dma_desc *desc; |
| struct mm_page *page; |
| int offset; |
| |
| /* make the last descriptor end the chain */ |
| page = &card->mm_pages[card->Active]; |
| pr_debug("start_io: %d %d->%d\n", |
| card->Active, page->headcnt, page->cnt - 1); |
| desc = &page->desc[page->cnt-1]; |
| |
| desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN); |
| desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN); |
| desc->sem_control_bits = desc->control_bits; |
| |
| |
| if (debug & DEBUG_LED_ON_TRANSFER) |
| set_led(card, LED_REMOVE, LED_ON); |
| |
| desc = &page->desc[page->headcnt]; |
| writel(0, card->csr_remap + DMA_PCI_ADDR); |
| writel(0, card->csr_remap + DMA_PCI_ADDR + 4); |
| |
| writel(0, card->csr_remap + DMA_LOCAL_ADDR); |
| writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4); |
| |
| writel(0, card->csr_remap + DMA_TRANSFER_SIZE); |
| writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4); |
| |
| writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR); |
| writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4); |
| |
| offset = ((char *)desc) - ((char *)page->desc); |
| writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff), |
| card->csr_remap + DMA_DESCRIPTOR_ADDR); |
| /* Force the value to u64 before shifting otherwise >> 32 is undefined C |
| * and on some ports will do nothing ! */ |
| writel(cpu_to_le32(((u64)page->page_dma)>>32), |
| card->csr_remap + DMA_DESCRIPTOR_ADDR + 4); |
| |
| /* Go, go, go */ |
| writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds), |
| card->csr_remap + DMA_STATUS_CTRL); |
| } |
| |
| static int add_bio(struct cardinfo *card); |
| |
| static void activate(struct cardinfo *card) |
| { |
| /* if No page is Active, and Ready is |
| * not empty, then switch Ready page |
| * to active and start IO. |
| * Then add any bh's that are available to Ready |
| */ |
| |
| do { |
| while (add_bio(card)) |
| ; |
| |
| if (card->Active == -1 && |
| card->mm_pages[card->Ready].cnt > 0) { |
| card->Active = card->Ready; |
| card->Ready = 1-card->Ready; |
| mm_start_io(card); |
| } |
| |
| } while (card->Active == -1 && add_bio(card)); |
| } |
| |
| static inline void reset_page(struct mm_page *page) |
| { |
| page->cnt = 0; |
| page->headcnt = 0; |
| page->bio = NULL; |
| page->biotail = &page->bio; |
| } |
| |
| /* |
| * If there is room on Ready page, take |
| * one bh off list and add it. |
| * return 1 if there was room, else 0. |
| */ |
| static int add_bio(struct cardinfo *card) |
| { |
| struct mm_page *p; |
| struct mm_dma_desc *desc; |
| dma_addr_t dma_handle; |
| int offset; |
| struct bio *bio; |
| struct bio_vec vec; |
| |
| bio = card->currentbio; |
| if (!bio && card->bio) { |
| card->currentbio = card->bio; |
| card->current_iter = card->bio->bi_iter; |
| card->bio = card->bio->bi_next; |
| if (card->bio == NULL) |
| card->biotail = &card->bio; |
| card->currentbio->bi_next = NULL; |
| return 1; |
| } |
| if (!bio) |
| return 0; |
| |
| if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE) |
| return 0; |
| |
| vec = bio_iter_iovec(bio, card->current_iter); |
| |
| dma_handle = dma_map_page(&card->dev->dev, |
| vec.bv_page, |
| vec.bv_offset, |
| vec.bv_len, |
| bio_op(bio) == REQ_OP_READ ? |
| DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| |
| p = &card->mm_pages[card->Ready]; |
| desc = &p->desc[p->cnt]; |
| p->cnt++; |
| if (p->bio == NULL) |
| p->iter = card->current_iter; |
| if ((p->biotail) != &bio->bi_next) { |
| *(p->biotail) = bio; |
| p->biotail = &(bio->bi_next); |
| bio->bi_next = NULL; |
| } |
| |
| desc->data_dma_handle = dma_handle; |
| |
| desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle); |
| desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9); |
| desc->transfer_size = cpu_to_le32(vec.bv_len); |
| offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc)); |
| desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset)); |
| desc->zero1 = desc->zero2 = 0; |
| offset = (((char *)(desc+1)) - ((char *)p->desc)); |
| desc->next_desc_addr = cpu_to_le64(p->page_dma+offset); |
| desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN| |
| DMASCR_PARITY_INT_EN| |
| DMASCR_CHAIN_EN | |
| DMASCR_SEM_EN | |
| pci_cmds); |
| if (bio_op(bio) == REQ_OP_WRITE) |
| desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ); |
| desc->sem_control_bits = desc->control_bits; |
| |
| |
| bio_advance_iter(bio, &card->current_iter, vec.bv_len); |
| if (!card->current_iter.bi_size) |
| card->currentbio = NULL; |
| |
| return 1; |
| } |
| |
| static void process_page(unsigned long data) |
| { |
| /* check if any of the requests in the page are DMA_COMPLETE, |
| * and deal with them appropriately. |
| * If we find a descriptor without DMA_COMPLETE in the semaphore, then |
| * dma must have hit an error on that descriptor, so use dma_status |
| * instead and assume that all following descriptors must be re-tried. |
| */ |
| struct mm_page *page; |
| struct bio *return_bio = NULL; |
| struct cardinfo *card = (struct cardinfo *)data; |
| unsigned int dma_status = card->dma_status; |
| |
| spin_lock(&card->lock); |
| if (card->Active < 0) |
| goto out_unlock; |
| page = &card->mm_pages[card->Active]; |
| |
| while (page->headcnt < page->cnt) { |
| struct bio *bio = page->bio; |
| struct mm_dma_desc *desc = &page->desc[page->headcnt]; |
| int control = le32_to_cpu(desc->sem_control_bits); |
| int last = 0; |
| struct bio_vec vec; |
| |
| if (!(control & DMASCR_DMA_COMPLETE)) { |
| control = dma_status; |
| last = 1; |
| } |
| |
| page->headcnt++; |
| vec = bio_iter_iovec(bio, page->iter); |
| bio_advance_iter(bio, &page->iter, vec.bv_len); |
| |
| if (!page->iter.bi_size) { |
| page->bio = bio->bi_next; |
| if (page->bio) |
| page->iter = page->bio->bi_iter; |
| } |
| |
| dma_unmap_page(&card->dev->dev, desc->data_dma_handle, |
| vec.bv_len, |
| (control & DMASCR_TRANSFER_READ) ? |
| DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| if (control & DMASCR_HARD_ERROR) { |
| /* error */ |
| bio->bi_status = BLK_STS_IOERR; |
| dev_printk(KERN_WARNING, &card->dev->dev, |
| "I/O error on sector %d/%d\n", |
| le32_to_cpu(desc->local_addr)>>9, |
| le32_to_cpu(desc->transfer_size)); |
| dump_dmastat(card, control); |
| } else if (op_is_write(bio_op(bio)) && |
| le32_to_cpu(desc->local_addr) >> 9 == |
| card->init_size) { |
| card->init_size += le32_to_cpu(desc->transfer_size) >> 9; |
| if (card->init_size >> 1 >= card->mm_size) { |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "memory now initialised\n"); |
| set_userbit(card, MEMORY_INITIALIZED, 1); |
| } |
| } |
| if (bio != page->bio) { |
| bio->bi_next = return_bio; |
| return_bio = bio; |
| } |
| |
| if (last) |
| break; |
| } |
| |
| if (debug & DEBUG_LED_ON_TRANSFER) |
| set_led(card, LED_REMOVE, LED_OFF); |
| |
| if (card->check_batteries) { |
| card->check_batteries = 0; |
| check_batteries(card); |
| } |
| if (page->headcnt >= page->cnt) { |
| reset_page(page); |
| card->Active = -1; |
| activate(card); |
| } else { |
| /* haven't finished with this one yet */ |
| pr_debug("do some more\n"); |
| mm_start_io(card); |
| } |
| out_unlock: |
| spin_unlock(&card->lock); |
| |
| while (return_bio) { |
| struct bio *bio = return_bio; |
| |
| return_bio = bio->bi_next; |
| bio->bi_next = NULL; |
| bio_endio(bio); |
| } |
| } |
| |
| static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| { |
| struct cardinfo *card = cb->data; |
| |
| spin_lock_irq(&card->lock); |
| activate(card); |
| spin_unlock_irq(&card->lock); |
| kfree(cb); |
| } |
| |
| static int mm_check_plugged(struct cardinfo *card) |
| { |
| return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb)); |
| } |
| |
| static blk_qc_t mm_make_request(struct request_queue *q, struct bio *bio) |
| { |
| struct cardinfo *card = q->queuedata; |
| pr_debug("mm_make_request %llu %u\n", |
| (unsigned long long)bio->bi_iter.bi_sector, |
| bio->bi_iter.bi_size); |
| |
| blk_queue_split(q, &bio); |
| |
| spin_lock_irq(&card->lock); |
| *card->biotail = bio; |
| bio->bi_next = NULL; |
| card->biotail = &bio->bi_next; |
| if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card)) |
| activate(card); |
| spin_unlock_irq(&card->lock); |
| |
| return BLK_QC_T_NONE; |
| } |
| |
| static irqreturn_t mm_interrupt(int irq, void *__card) |
| { |
| struct cardinfo *card = (struct cardinfo *) __card; |
| unsigned int dma_status; |
| unsigned short cfg_status; |
| |
| HW_TRACE(0x30); |
| |
| dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL)); |
| |
| if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) { |
| /* interrupt wasn't for me ... */ |
| return IRQ_NONE; |
| } |
| |
| /* clear COMPLETION interrupts */ |
| if (card->flags & UM_FLAG_NO_BYTE_STATUS) |
| writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE), |
| card->csr_remap + DMA_STATUS_CTRL); |
| else |
| writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16, |
| card->csr_remap + DMA_STATUS_CTRL + 2); |
| |
| /* log errors and clear interrupt status */ |
| if (dma_status & DMASCR_ANY_ERR) { |
| unsigned int data_log1, data_log2; |
| unsigned int addr_log1, addr_log2; |
| unsigned char stat, count, syndrome, check; |
| |
| stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS); |
| |
| data_log1 = le32_to_cpu(readl(card->csr_remap + |
| ERROR_DATA_LOG)); |
| data_log2 = le32_to_cpu(readl(card->csr_remap + |
| ERROR_DATA_LOG + 4)); |
| addr_log1 = le32_to_cpu(readl(card->csr_remap + |
| ERROR_ADDR_LOG)); |
| addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4); |
| |
| count = readb(card->csr_remap + ERROR_COUNT); |
| syndrome = readb(card->csr_remap + ERROR_SYNDROME); |
| check = readb(card->csr_remap + ERROR_CHECK); |
| |
| dump_dmastat(card, dma_status); |
| |
| if (stat & 0x01) |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Memory access error detected (err count %d)\n", |
| count); |
| if (stat & 0x02) |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Multi-bit EDC error\n"); |
| |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n", |
| addr_log2, addr_log1, data_log2, data_log1); |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Fault Check 0x%02x, Fault Syndrome 0x%02x\n", |
| check, syndrome); |
| |
| writeb(0, card->csr_remap + ERROR_COUNT); |
| } |
| |
| if (dma_status & DMASCR_PARITY_ERR_REP) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "PARITY ERROR REPORTED\n"); |
| pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| } |
| |
| if (dma_status & DMASCR_PARITY_ERR_DET) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "PARITY ERROR DETECTED\n"); |
| pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| } |
| |
| if (dma_status & DMASCR_SYSTEM_ERR_SIG) { |
| dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n"); |
| pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| } |
| |
| if (dma_status & DMASCR_TARGET_ABT) { |
| dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n"); |
| pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| } |
| |
| if (dma_status & DMASCR_MASTER_ABT) { |
| dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n"); |
| pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| } |
| |
| /* and process the DMA descriptors */ |
| card->dma_status = dma_status; |
| tasklet_schedule(&card->tasklet); |
| |
| HW_TRACE(0x36); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * If both batteries are good, no LED |
| * If either battery has been warned, solid LED |
| * If both batteries are bad, flash the LED quickly |
| * If either battery is bad, flash the LED semi quickly |
| */ |
| static void set_fault_to_battery_status(struct cardinfo *card) |
| { |
| if (card->battery[0].good && card->battery[1].good) |
| set_led(card, LED_FAULT, LED_OFF); |
| else if (card->battery[0].warned || card->battery[1].warned) |
| set_led(card, LED_FAULT, LED_ON); |
| else if (!card->battery[0].good && !card->battery[1].good) |
| set_led(card, LED_FAULT, LED_FLASH_7_0); |
| else |
| set_led(card, LED_FAULT, LED_FLASH_3_5); |
| } |
| |
| static void init_battery_timer(void); |
| |
| static int check_battery(struct cardinfo *card, int battery, int status) |
| { |
| if (status != card->battery[battery].good) { |
| card->battery[battery].good = !card->battery[battery].good; |
| card->battery[battery].last_change = jiffies; |
| |
| if (card->battery[battery].good) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Battery %d now good\n", battery + 1); |
| card->battery[battery].warned = 0; |
| } else |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Battery %d now FAILED\n", battery + 1); |
| |
| return 1; |
| } else if (!card->battery[battery].good && |
| !card->battery[battery].warned && |
| time_after_eq(jiffies, card->battery[battery].last_change + |
| (HZ * 60 * 60 * 5))) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Battery %d still FAILED after 5 hours\n", battery + 1); |
| card->battery[battery].warned = 1; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void check_batteries(struct cardinfo *card) |
| { |
| /* NOTE: this must *never* be called while the card |
| * is doing (bus-to-card) DMA, or you will need the |
| * reset switch |
| */ |
| unsigned char status; |
| int ret1, ret2; |
| |
| status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); |
| if (debug & DEBUG_BATTERY_POLLING) |
| dev_printk(KERN_DEBUG, &card->dev->dev, |
| "checking battery status, 1 = %s, 2 = %s\n", |
| (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK", |
| (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK"); |
| |
| ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE)); |
| ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE)); |
| |
| if (ret1 || ret2) |
| set_fault_to_battery_status(card); |
| } |
| |
| static void check_all_batteries(struct timer_list *unused) |
| { |
| int i; |
| |
| for (i = 0; i < num_cards; i++) |
| if (!(cards[i].flags & UM_FLAG_NO_BATT)) { |
| struct cardinfo *card = &cards[i]; |
| spin_lock_bh(&card->lock); |
| if (card->Active >= 0) |
| card->check_batteries = 1; |
| else |
| check_batteries(card); |
| spin_unlock_bh(&card->lock); |
| } |
| |
| init_battery_timer(); |
| } |
| |
| static void init_battery_timer(void) |
| { |
| timer_setup(&battery_timer, check_all_batteries, 0); |
| battery_timer.expires = jiffies + (HZ * 60); |
| add_timer(&battery_timer); |
| } |
| |
| static void del_battery_timer(void) |
| { |
| del_timer(&battery_timer); |
| } |
| |
| /* |
| * Note no locks taken out here. In a worst case scenario, we could drop |
| * a chunk of system memory. But that should never happen, since validation |
| * happens at open or mount time, when locks are held. |
| * |
| * That's crap, since doing that while some partitions are opened |
| * or mounted will give you really nasty results. |
| */ |
| static int mm_revalidate(struct gendisk *disk) |
| { |
| struct cardinfo *card = disk->private_data; |
| set_capacity(disk, card->mm_size << 1); |
| return 0; |
| } |
| |
| static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| struct cardinfo *card = bdev->bd_disk->private_data; |
| int size = card->mm_size * (1024 / MM_HARDSECT); |
| |
| /* |
| * get geometry: we have to fake one... trim the size to a |
| * multiple of 2048 (1M): tell we have 32 sectors, 64 heads, |
| * whatever cylinders. |
| */ |
| geo->heads = 64; |
| geo->sectors = 32; |
| geo->cylinders = size / (geo->heads * geo->sectors); |
| return 0; |
| } |
| |
| static const struct block_device_operations mm_fops = { |
| .owner = THIS_MODULE, |
| .getgeo = mm_getgeo, |
| .revalidate_disk = mm_revalidate, |
| }; |
| |
| static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| int ret = -ENODEV; |
| struct cardinfo *card = &cards[num_cards]; |
| unsigned char mem_present; |
| unsigned char batt_status; |
| unsigned int saved_bar, data; |
| unsigned long csr_base; |
| unsigned long csr_len; |
| int magic_number; |
| static int printed_version; |
| |
| if (!printed_version++) |
| printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n"); |
| |
| ret = pci_enable_device(dev); |
| if (ret) |
| return ret; |
| |
| pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8); |
| pci_set_master(dev); |
| |
| card->dev = dev; |
| |
| csr_base = pci_resource_start(dev, 0); |
| csr_len = pci_resource_len(dev, 0); |
| if (!csr_base || !csr_len) |
| return -ENODEV; |
| |
| dev_printk(KERN_INFO, &dev->dev, |
| "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n"); |
| |
| if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) { |
| dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n"); |
| return -ENOMEM; |
| } |
| |
| ret = pci_request_regions(dev, DRIVER_NAME); |
| if (ret) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Unable to request memory region\n"); |
| goto failed_req_csr; |
| } |
| |
| card->csr_remap = ioremap_nocache(csr_base, csr_len); |
| if (!card->csr_remap) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Unable to remap memory region\n"); |
| ret = -ENOMEM; |
| |
| goto failed_remap_csr; |
| } |
| |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "CSR 0x%08lx -> 0x%p (0x%lx)\n", |
| csr_base, card->csr_remap, csr_len); |
| |
| switch (card->dev->device) { |
| case 0x5415: |
| card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG; |
| magic_number = 0x59; |
| break; |
| |
| case 0x5425: |
| card->flags |= UM_FLAG_NO_BYTE_STATUS; |
| magic_number = 0x5C; |
| break; |
| |
| case 0x6155: |
| card->flags |= UM_FLAG_NO_BYTE_STATUS | |
| UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT; |
| magic_number = 0x99; |
| break; |
| |
| default: |
| magic_number = 0x100; |
| break; |
| } |
| |
| if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) { |
| dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n"); |
| ret = -ENOMEM; |
| goto failed_magic; |
| } |
| |
| card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev, |
| PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL); |
| card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev, |
| PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL); |
| if (card->mm_pages[0].desc == NULL || |
| card->mm_pages[1].desc == NULL) { |
| dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n"); |
| goto failed_alloc; |
| } |
| reset_page(&card->mm_pages[0]); |
| reset_page(&card->mm_pages[1]); |
| card->Ready = 0; /* page 0 is ready */ |
| card->Active = -1; /* no page is active */ |
| card->bio = NULL; |
| card->biotail = &card->bio; |
| spin_lock_init(&card->lock); |
| |
| card->queue = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); |
| if (!card->queue) |
| goto failed_alloc; |
| |
| blk_queue_make_request(card->queue, mm_make_request); |
| card->queue->queuedata = card; |
| |
| tasklet_init(&card->tasklet, process_page, (unsigned long)card); |
| |
| card->check_batteries = 0; |
| |
| mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY); |
| switch (mem_present) { |
| case MEM_128_MB: |
| card->mm_size = 1024 * 128; |
| break; |
| case MEM_256_MB: |
| card->mm_size = 1024 * 256; |
| break; |
| case MEM_512_MB: |
| card->mm_size = 1024 * 512; |
| break; |
| case MEM_1_GB: |
| card->mm_size = 1024 * 1024; |
| break; |
| case MEM_2_GB: |
| card->mm_size = 1024 * 2048; |
| break; |
| default: |
| card->mm_size = 0; |
| break; |
| } |
| |
| /* Clear the LED's we control */ |
| set_led(card, LED_REMOVE, LED_OFF); |
| set_led(card, LED_FAULT, LED_OFF); |
| |
| batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); |
| |
| card->battery[0].good = !(batt_status & BATTERY_1_FAILURE); |
| card->battery[1].good = !(batt_status & BATTERY_2_FAILURE); |
| card->battery[0].last_change = card->battery[1].last_change = jiffies; |
| |
| if (card->flags & UM_FLAG_NO_BATT) |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "Size %d KB\n", card->mm_size); |
| else { |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n", |
| card->mm_size, |
| batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled", |
| card->battery[0].good ? "OK" : "FAILURE", |
| batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled", |
| card->battery[1].good ? "OK" : "FAILURE"); |
| |
| set_fault_to_battery_status(card); |
| } |
| |
| pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar); |
| data = 0xffffffff; |
| pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data); |
| pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data); |
| pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar); |
| data &= 0xfffffff0; |
| data = ~data; |
| data += 1; |
| |
| if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME, |
| card)) { |
| dev_printk(KERN_ERR, &card->dev->dev, |
| "Unable to allocate IRQ\n"); |
| ret = -ENODEV; |
| goto failed_req_irq; |
| } |
| |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "Window size %d bytes, IRQ %d\n", data, dev->irq); |
| |
| pci_set_drvdata(dev, card); |
| |
| if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */ |
| pci_write_cmd = 0x07; /* then Memory Write command */ |
| |
| if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */ |
| unsigned short cfg_command; |
| pci_read_config_word(dev, PCI_COMMAND, &cfg_command); |
| cfg_command |= 0x10; /* Memory Write & Invalidate Enable */ |
| pci_write_config_word(dev, PCI_COMMAND, cfg_command); |
| } |
| pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24); |
| |
| num_cards++; |
| |
| if (!get_userbit(card, MEMORY_INITIALIZED)) { |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "memory NOT initialized. Consider over-writing whole device.\n"); |
| card->init_size = 0; |
| } else { |
| dev_printk(KERN_INFO, &card->dev->dev, |
| "memory already initialized\n"); |
| card->init_size = card->mm_size; |
| } |
| |
| /* Enable ECC */ |
| writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL); |
| |
| return 0; |
| |
| failed_req_irq: |
| failed_alloc: |
| if (card->mm_pages[0].desc) |
| dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2, |
| card->mm_pages[0].desc, |
| card->mm_pages[0].page_dma); |
| if (card->mm_pages[1].desc) |
| dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2, |
| card->mm_pages[1].desc, |
| card->mm_pages[1].page_dma); |
| failed_magic: |
| iounmap(card->csr_remap); |
| failed_remap_csr: |
| pci_release_regions(dev); |
| failed_req_csr: |
| |
| return ret; |
| } |
| |
| static void mm_pci_remove(struct pci_dev *dev) |
| { |
| struct cardinfo *card = pci_get_drvdata(dev); |
| |
| tasklet_kill(&card->tasklet); |
| free_irq(dev->irq, card); |
| iounmap(card->csr_remap); |
| |
| if (card->mm_pages[0].desc) |
| dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2, |
| card->mm_pages[0].desc, |
| card->mm_pages[0].page_dma); |
| if (card->mm_pages[1].desc) |
| dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2, |
| card->mm_pages[1].desc, |
| card->mm_pages[1].page_dma); |
| blk_cleanup_queue(card->queue); |
| |
| pci_release_regions(dev); |
| pci_disable_device(dev); |
| } |
| |
| static const struct pci_device_id mm_pci_ids[] = { |
| {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)}, |
| {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)}, |
| {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)}, |
| { |
| .vendor = 0x8086, |
| .device = 0xB555, |
| .subvendor = 0x1332, |
| .subdevice = 0x5460, |
| .class = 0x050000, |
| .class_mask = 0, |
| }, { /* end: all zeroes */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, mm_pci_ids); |
| |
| static struct pci_driver mm_pci_driver = { |
| .name = DRIVER_NAME, |
| .id_table = mm_pci_ids, |
| .probe = mm_pci_probe, |
| .remove = mm_pci_remove, |
| }; |
| |
| static int __init mm_init(void) |
| { |
| int retval, i; |
| int err; |
| |
| retval = pci_register_driver(&mm_pci_driver); |
| if (retval) |
| return -ENOMEM; |
| |
| err = major_nr = register_blkdev(0, DRIVER_NAME); |
| if (err < 0) { |
| pci_unregister_driver(&mm_pci_driver); |
| return -EIO; |
| } |
| |
| for (i = 0; i < num_cards; i++) { |
| mm_gendisk[i] = alloc_disk(1 << MM_SHIFT); |
| if (!mm_gendisk[i]) |
| goto out; |
| } |
| |
| for (i = 0; i < num_cards; i++) { |
| struct gendisk *disk = mm_gendisk[i]; |
| sprintf(disk->disk_name, "umem%c", 'a'+i); |
| spin_lock_init(&cards[i].lock); |
| disk->major = major_nr; |
| disk->first_minor = i << MM_SHIFT; |
| disk->fops = &mm_fops; |
| disk->private_data = &cards[i]; |
| disk->queue = cards[i].queue; |
| set_capacity(disk, cards[i].mm_size << 1); |
| add_disk(disk); |
| } |
| |
| init_battery_timer(); |
| printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE); |
| /* printk("mm_init: Done. 10-19-01 9:00\n"); */ |
| return 0; |
| |
| out: |
| pci_unregister_driver(&mm_pci_driver); |
| unregister_blkdev(major_nr, DRIVER_NAME); |
| while (i--) |
| put_disk(mm_gendisk[i]); |
| return -ENOMEM; |
| } |
| |
| static void __exit mm_cleanup(void) |
| { |
| int i; |
| |
| del_battery_timer(); |
| |
| for (i = 0; i < num_cards ; i++) { |
| del_gendisk(mm_gendisk[i]); |
| put_disk(mm_gendisk[i]); |
| } |
| |
| pci_unregister_driver(&mm_pci_driver); |
| |
| unregister_blkdev(major_nr, DRIVER_NAME); |
| } |
| |
| module_init(mm_init); |
| module_exit(mm_cleanup); |
| |
| MODULE_AUTHOR(DRIVER_AUTHOR); |
| MODULE_DESCRIPTION(DRIVER_DESC); |
| MODULE_LICENSE("GPL"); |