| /* |
| * Copyright (C) 2017 Western Digital Corporation or its affiliates. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-zoned.h" |
| |
| #include <linux/module.h> |
| |
| #define DM_MSG_PREFIX "zoned" |
| |
| #define DMZ_MIN_BIOS 8192 |
| |
| /* |
| * Zone BIO context. |
| */ |
| struct dmz_bioctx { |
| struct dmz_target *target; |
| struct dm_zone *zone; |
| struct bio *bio; |
| atomic_t ref; |
| blk_status_t status; |
| }; |
| |
| /* |
| * Chunk work descriptor. |
| */ |
| struct dm_chunk_work { |
| struct work_struct work; |
| atomic_t refcount; |
| struct dmz_target *target; |
| unsigned int chunk; |
| struct bio_list bio_list; |
| }; |
| |
| /* |
| * Target descriptor. |
| */ |
| struct dmz_target { |
| struct dm_dev *ddev; |
| |
| unsigned long flags; |
| |
| /* Zoned block device information */ |
| struct dmz_dev *dev; |
| |
| /* For metadata handling */ |
| struct dmz_metadata *metadata; |
| |
| /* For reclaim */ |
| struct dmz_reclaim *reclaim; |
| |
| /* For chunk work */ |
| struct mutex chunk_lock; |
| struct radix_tree_root chunk_rxtree; |
| struct workqueue_struct *chunk_wq; |
| |
| /* For cloned BIOs to zones */ |
| struct bio_set *bio_set; |
| |
| /* For flush */ |
| spinlock_t flush_lock; |
| struct bio_list flush_list; |
| struct delayed_work flush_work; |
| struct workqueue_struct *flush_wq; |
| }; |
| |
| /* |
| * Flush intervals (seconds). |
| */ |
| #define DMZ_FLUSH_PERIOD (10 * HZ) |
| |
| /* |
| * Target BIO completion. |
| */ |
| static inline void dmz_bio_endio(struct bio *bio, blk_status_t status) |
| { |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| |
| if (bioctx->status == BLK_STS_OK && status != BLK_STS_OK) |
| bioctx->status = status; |
| bio_endio(bio); |
| } |
| |
| /* |
| * Partial clone read BIO completion callback. This terminates the |
| * target BIO when there are no more references to its context. |
| */ |
| static void dmz_read_bio_end_io(struct bio *bio) |
| { |
| struct dmz_bioctx *bioctx = bio->bi_private; |
| blk_status_t status = bio->bi_status; |
| |
| bio_put(bio); |
| dmz_bio_endio(bioctx->bio, status); |
| } |
| |
| /* |
| * Issue a BIO to a zone. The BIO may only partially process the |
| * original target BIO. |
| */ |
| static int dmz_submit_read_bio(struct dmz_target *dmz, struct dm_zone *zone, |
| struct bio *bio, sector_t chunk_block, |
| unsigned int nr_blocks) |
| { |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| sector_t sector; |
| struct bio *clone; |
| |
| /* BIO remap sector */ |
| sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block); |
| |
| /* If the read is not partial, there is no need to clone the BIO */ |
| if (nr_blocks == dmz_bio_blocks(bio)) { |
| /* Setup and submit the BIO */ |
| bio->bi_iter.bi_sector = sector; |
| atomic_inc(&bioctx->ref); |
| generic_make_request(bio); |
| return 0; |
| } |
| |
| /* Partial BIO: we need to clone the BIO */ |
| clone = bio_clone_fast(bio, GFP_NOIO, dmz->bio_set); |
| if (!clone) |
| return -ENOMEM; |
| |
| /* Setup the clone */ |
| clone->bi_iter.bi_sector = sector; |
| clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT; |
| clone->bi_end_io = dmz_read_bio_end_io; |
| clone->bi_private = bioctx; |
| |
| bio_advance(bio, clone->bi_iter.bi_size); |
| |
| /* Submit the clone */ |
| atomic_inc(&bioctx->ref); |
| generic_make_request(clone); |
| |
| return 0; |
| } |
| |
| /* |
| * Zero out pages of discarded blocks accessed by a read BIO. |
| */ |
| static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio, |
| sector_t chunk_block, unsigned int nr_blocks) |
| { |
| unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT; |
| |
| /* Clear nr_blocks */ |
| swap(bio->bi_iter.bi_size, size); |
| zero_fill_bio(bio); |
| swap(bio->bi_iter.bi_size, size); |
| |
| bio_advance(bio, size); |
| } |
| |
| /* |
| * Process a read BIO. |
| */ |
| static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone, |
| struct bio *bio) |
| { |
| sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); |
| unsigned int nr_blocks = dmz_bio_blocks(bio); |
| sector_t end_block = chunk_block + nr_blocks; |
| struct dm_zone *rzone, *bzone; |
| int ret; |
| |
| /* Read into unmapped chunks need only zeroing the BIO buffer */ |
| if (!zone) { |
| zero_fill_bio(bio); |
| return 0; |
| } |
| |
| dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks", |
| (unsigned long long)dmz_bio_chunk(dmz->dev, bio), |
| (dmz_is_rnd(zone) ? "RND" : "SEQ"), |
| dmz_id(dmz->metadata, zone), |
| (unsigned long long)chunk_block, nr_blocks); |
| |
| /* Check block validity to determine the read location */ |
| bzone = zone->bzone; |
| while (chunk_block < end_block) { |
| nr_blocks = 0; |
| if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) { |
| /* Test block validity in the data zone */ |
| ret = dmz_block_valid(dmz->metadata, zone, chunk_block); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) { |
| /* Read data zone blocks */ |
| nr_blocks = ret; |
| rzone = zone; |
| } |
| } |
| |
| /* |
| * No valid blocks found in the data zone. |
| * Check the buffer zone, if there is one. |
| */ |
| if (!nr_blocks && bzone) { |
| ret = dmz_block_valid(dmz->metadata, bzone, chunk_block); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) { |
| /* Read buffer zone blocks */ |
| nr_blocks = ret; |
| rzone = bzone; |
| } |
| } |
| |
| if (nr_blocks) { |
| /* Valid blocks found: read them */ |
| nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block); |
| ret = dmz_submit_read_bio(dmz, rzone, bio, chunk_block, nr_blocks); |
| if (ret) |
| return ret; |
| chunk_block += nr_blocks; |
| } else { |
| /* No valid block: zeroout the current BIO block */ |
| dmz_handle_read_zero(dmz, bio, chunk_block, 1); |
| chunk_block++; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Issue a write BIO to a zone. |
| */ |
| static void dmz_submit_write_bio(struct dmz_target *dmz, struct dm_zone *zone, |
| struct bio *bio, sector_t chunk_block, |
| unsigned int nr_blocks) |
| { |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| |
| /* Setup and submit the BIO */ |
| bio_set_dev(bio, dmz->dev->bdev); |
| bio->bi_iter.bi_sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block); |
| atomic_inc(&bioctx->ref); |
| generic_make_request(bio); |
| |
| if (dmz_is_seq(zone)) |
| zone->wp_block += nr_blocks; |
| } |
| |
| /* |
| * Write blocks directly in a data zone, at the write pointer. |
| * If a buffer zone is assigned, invalidate the blocks written |
| * in place. |
| */ |
| static int dmz_handle_direct_write(struct dmz_target *dmz, |
| struct dm_zone *zone, struct bio *bio, |
| sector_t chunk_block, |
| unsigned int nr_blocks) |
| { |
| struct dmz_metadata *zmd = dmz->metadata; |
| struct dm_zone *bzone = zone->bzone; |
| int ret; |
| |
| if (dmz_is_readonly(zone)) |
| return -EROFS; |
| |
| /* Submit write */ |
| dmz_submit_write_bio(dmz, zone, bio, chunk_block, nr_blocks); |
| |
| /* |
| * Validate the blocks in the data zone and invalidate |
| * in the buffer zone, if there is one. |
| */ |
| ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks); |
| if (ret == 0 && bzone) |
| ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks); |
| |
| return ret; |
| } |
| |
| /* |
| * Write blocks in the buffer zone of @zone. |
| * If no buffer zone is assigned yet, get one. |
| * Called with @zone write locked. |
| */ |
| static int dmz_handle_buffered_write(struct dmz_target *dmz, |
| struct dm_zone *zone, struct bio *bio, |
| sector_t chunk_block, |
| unsigned int nr_blocks) |
| { |
| struct dmz_metadata *zmd = dmz->metadata; |
| struct dm_zone *bzone; |
| int ret; |
| |
| /* Get the buffer zone. One will be allocated if needed */ |
| bzone = dmz_get_chunk_buffer(zmd, zone); |
| if (!bzone) |
| return -ENOSPC; |
| |
| if (dmz_is_readonly(bzone)) |
| return -EROFS; |
| |
| /* Submit write */ |
| dmz_submit_write_bio(dmz, bzone, bio, chunk_block, nr_blocks); |
| |
| /* |
| * Validate the blocks in the buffer zone |
| * and invalidate in the data zone. |
| */ |
| ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks); |
| if (ret == 0 && chunk_block < zone->wp_block) |
| ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); |
| |
| return ret; |
| } |
| |
| /* |
| * Process a write BIO. |
| */ |
| static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone, |
| struct bio *bio) |
| { |
| sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); |
| unsigned int nr_blocks = dmz_bio_blocks(bio); |
| |
| if (!zone) |
| return -ENOSPC; |
| |
| dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks", |
| (unsigned long long)dmz_bio_chunk(dmz->dev, bio), |
| (dmz_is_rnd(zone) ? "RND" : "SEQ"), |
| dmz_id(dmz->metadata, zone), |
| (unsigned long long)chunk_block, nr_blocks); |
| |
| if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) { |
| /* |
| * zone is a random zone or it is a sequential zone |
| * and the BIO is aligned to the zone write pointer: |
| * direct write the zone. |
| */ |
| return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks); |
| } |
| |
| /* |
| * This is an unaligned write in a sequential zone: |
| * use buffered write. |
| */ |
| return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks); |
| } |
| |
| /* |
| * Process a discard BIO. |
| */ |
| static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone, |
| struct bio *bio) |
| { |
| struct dmz_metadata *zmd = dmz->metadata; |
| sector_t block = dmz_bio_block(bio); |
| unsigned int nr_blocks = dmz_bio_blocks(bio); |
| sector_t chunk_block = dmz_chunk_block(dmz->dev, block); |
| int ret = 0; |
| |
| /* For unmapped chunks, there is nothing to do */ |
| if (!zone) |
| return 0; |
| |
| if (dmz_is_readonly(zone)) |
| return -EROFS; |
| |
| dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks", |
| (unsigned long long)dmz_bio_chunk(dmz->dev, bio), |
| dmz_id(zmd, zone), |
| (unsigned long long)chunk_block, nr_blocks); |
| |
| /* |
| * Invalidate blocks in the data zone and its |
| * buffer zone if one is mapped. |
| */ |
| if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) |
| ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); |
| if (ret == 0 && zone->bzone) |
| ret = dmz_invalidate_blocks(zmd, zone->bzone, |
| chunk_block, nr_blocks); |
| return ret; |
| } |
| |
| /* |
| * Process a BIO. |
| */ |
| static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw, |
| struct bio *bio) |
| { |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| struct dmz_metadata *zmd = dmz->metadata; |
| struct dm_zone *zone; |
| int ret; |
| |
| /* |
| * Write may trigger a zone allocation. So make sure the |
| * allocation can succeed. |
| */ |
| if (bio_op(bio) == REQ_OP_WRITE) |
| dmz_schedule_reclaim(dmz->reclaim); |
| |
| dmz_lock_metadata(zmd); |
| |
| /* |
| * Get the data zone mapping the chunk. There may be no |
| * mapping for read and discard. If a mapping is obtained, |
| + the zone returned will be set to active state. |
| */ |
| zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio), |
| bio_op(bio)); |
| if (IS_ERR(zone)) { |
| ret = PTR_ERR(zone); |
| goto out; |
| } |
| |
| /* Process the BIO */ |
| if (zone) { |
| dmz_activate_zone(zone); |
| bioctx->zone = zone; |
| } |
| |
| switch (bio_op(bio)) { |
| case REQ_OP_READ: |
| ret = dmz_handle_read(dmz, zone, bio); |
| break; |
| case REQ_OP_WRITE: |
| ret = dmz_handle_write(dmz, zone, bio); |
| break; |
| case REQ_OP_DISCARD: |
| case REQ_OP_WRITE_ZEROES: |
| ret = dmz_handle_discard(dmz, zone, bio); |
| break; |
| default: |
| dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x", |
| bio_op(bio)); |
| ret = -EIO; |
| } |
| |
| /* |
| * Release the chunk mapping. This will check that the mapping |
| * is still valid, that is, that the zone used still has valid blocks. |
| */ |
| if (zone) |
| dmz_put_chunk_mapping(zmd, zone); |
| out: |
| dmz_bio_endio(bio, errno_to_blk_status(ret)); |
| |
| dmz_unlock_metadata(zmd); |
| } |
| |
| /* |
| * Increment a chunk reference counter. |
| */ |
| static inline void dmz_get_chunk_work(struct dm_chunk_work *cw) |
| { |
| atomic_inc(&cw->refcount); |
| } |
| |
| /* |
| * Decrement a chunk work reference count and |
| * free it if it becomes 0. |
| */ |
| static void dmz_put_chunk_work(struct dm_chunk_work *cw) |
| { |
| if (atomic_dec_and_test(&cw->refcount)) { |
| WARN_ON(!bio_list_empty(&cw->bio_list)); |
| radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk); |
| kfree(cw); |
| } |
| } |
| |
| /* |
| * Chunk BIO work function. |
| */ |
| static void dmz_chunk_work(struct work_struct *work) |
| { |
| struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work); |
| struct dmz_target *dmz = cw->target; |
| struct bio *bio; |
| |
| mutex_lock(&dmz->chunk_lock); |
| |
| /* Process the chunk BIOs */ |
| while ((bio = bio_list_pop(&cw->bio_list))) { |
| mutex_unlock(&dmz->chunk_lock); |
| dmz_handle_bio(dmz, cw, bio); |
| mutex_lock(&dmz->chunk_lock); |
| dmz_put_chunk_work(cw); |
| } |
| |
| /* Queueing the work incremented the work refcount */ |
| dmz_put_chunk_work(cw); |
| |
| mutex_unlock(&dmz->chunk_lock); |
| } |
| |
| /* |
| * Flush work. |
| */ |
| static void dmz_flush_work(struct work_struct *work) |
| { |
| struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work); |
| struct bio *bio; |
| int ret; |
| |
| /* Flush dirty metadata blocks */ |
| ret = dmz_flush_metadata(dmz->metadata); |
| |
| /* Process queued flush requests */ |
| while (1) { |
| spin_lock(&dmz->flush_lock); |
| bio = bio_list_pop(&dmz->flush_list); |
| spin_unlock(&dmz->flush_lock); |
| |
| if (!bio) |
| break; |
| |
| dmz_bio_endio(bio, errno_to_blk_status(ret)); |
| } |
| |
| queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); |
| } |
| |
| /* |
| * Get a chunk work and start it to process a new BIO. |
| * If the BIO chunk has no work yet, create one. |
| */ |
| static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio) |
| { |
| unsigned int chunk = dmz_bio_chunk(dmz->dev, bio); |
| struct dm_chunk_work *cw; |
| |
| mutex_lock(&dmz->chunk_lock); |
| |
| /* Get the BIO chunk work. If one is not active yet, create one */ |
| cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk); |
| if (!cw) { |
| int ret; |
| |
| /* Create a new chunk work */ |
| cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO); |
| if (!cw) |
| goto out; |
| |
| INIT_WORK(&cw->work, dmz_chunk_work); |
| atomic_set(&cw->refcount, 0); |
| cw->target = dmz; |
| cw->chunk = chunk; |
| bio_list_init(&cw->bio_list); |
| |
| ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw); |
| if (unlikely(ret)) { |
| kfree(cw); |
| cw = NULL; |
| goto out; |
| } |
| } |
| |
| bio_list_add(&cw->bio_list, bio); |
| dmz_get_chunk_work(cw); |
| |
| if (queue_work(dmz->chunk_wq, &cw->work)) |
| dmz_get_chunk_work(cw); |
| out: |
| mutex_unlock(&dmz->chunk_lock); |
| } |
| |
| /* |
| * Process a new BIO. |
| */ |
| static int dmz_map(struct dm_target *ti, struct bio *bio) |
| { |
| struct dmz_target *dmz = ti->private; |
| struct dmz_dev *dev = dmz->dev; |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| sector_t sector = bio->bi_iter.bi_sector; |
| unsigned int nr_sectors = bio_sectors(bio); |
| sector_t chunk_sector; |
| |
| dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks", |
| bio_op(bio), (unsigned long long)sector, nr_sectors, |
| (unsigned long long)dmz_bio_chunk(dmz->dev, bio), |
| (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)), |
| (unsigned int)dmz_bio_blocks(bio)); |
| |
| bio_set_dev(bio, dev->bdev); |
| |
| if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE) |
| return DM_MAPIO_REMAPPED; |
| |
| /* The BIO should be block aligned */ |
| if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK)) |
| return DM_MAPIO_KILL; |
| |
| /* Initialize the BIO context */ |
| bioctx->target = dmz; |
| bioctx->zone = NULL; |
| bioctx->bio = bio; |
| atomic_set(&bioctx->ref, 1); |
| bioctx->status = BLK_STS_OK; |
| |
| /* Set the BIO pending in the flush list */ |
| if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) { |
| spin_lock(&dmz->flush_lock); |
| bio_list_add(&dmz->flush_list, bio); |
| spin_unlock(&dmz->flush_lock); |
| mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0); |
| return DM_MAPIO_SUBMITTED; |
| } |
| |
| /* Split zone BIOs to fit entirely into a zone */ |
| chunk_sector = sector & (dev->zone_nr_sectors - 1); |
| if (chunk_sector + nr_sectors > dev->zone_nr_sectors) |
| dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector); |
| |
| /* Now ready to handle this BIO */ |
| dmz_reclaim_bio_acc(dmz->reclaim); |
| dmz_queue_chunk_work(dmz, bio); |
| |
| return DM_MAPIO_SUBMITTED; |
| } |
| |
| /* |
| * Completed target BIO processing. |
| */ |
| static int dmz_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) |
| { |
| struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); |
| |
| if (bioctx->status == BLK_STS_OK && *error) |
| bioctx->status = *error; |
| |
| if (!atomic_dec_and_test(&bioctx->ref)) |
| return DM_ENDIO_INCOMPLETE; |
| |
| /* Done */ |
| bio->bi_status = bioctx->status; |
| |
| if (bioctx->zone) { |
| struct dm_zone *zone = bioctx->zone; |
| |
| if (*error && bio_op(bio) == REQ_OP_WRITE) { |
| if (dmz_is_seq(zone)) |
| set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags); |
| } |
| dmz_deactivate_zone(zone); |
| } |
| |
| return DM_ENDIO_DONE; |
| } |
| |
| /* |
| * Get zoned device information. |
| */ |
| static int dmz_get_zoned_device(struct dm_target *ti, char *path) |
| { |
| struct dmz_target *dmz = ti->private; |
| struct request_queue *q; |
| struct dmz_dev *dev; |
| sector_t aligned_capacity; |
| int ret; |
| |
| /* Get the target device */ |
| ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev); |
| if (ret) { |
| ti->error = "Get target device failed"; |
| dmz->ddev = NULL; |
| return ret; |
| } |
| |
| dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL); |
| if (!dev) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| dev->bdev = dmz->ddev->bdev; |
| (void)bdevname(dev->bdev, dev->name); |
| |
| if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) { |
| ti->error = "Not a zoned block device"; |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| q = bdev_get_queue(dev->bdev); |
| dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; |
| aligned_capacity = dev->capacity & ~(blk_queue_zone_sectors(q) - 1); |
| if (ti->begin || |
| ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) { |
| ti->error = "Partial mapping not supported"; |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| dev->zone_nr_sectors = blk_queue_zone_sectors(q); |
| dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors); |
| |
| dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors); |
| dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks); |
| |
| dev->nr_zones = (dev->capacity + dev->zone_nr_sectors - 1) |
| >> dev->zone_nr_sectors_shift; |
| |
| dmz->dev = dev; |
| |
| return 0; |
| err: |
| dm_put_device(ti, dmz->ddev); |
| kfree(dev); |
| |
| return ret; |
| } |
| |
| /* |
| * Cleanup zoned device information. |
| */ |
| static void dmz_put_zoned_device(struct dm_target *ti) |
| { |
| struct dmz_target *dmz = ti->private; |
| |
| dm_put_device(ti, dmz->ddev); |
| kfree(dmz->dev); |
| dmz->dev = NULL; |
| } |
| |
| /* |
| * Setup target. |
| */ |
| static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv) |
| { |
| struct dmz_target *dmz; |
| struct dmz_dev *dev; |
| int ret; |
| |
| /* Check arguments */ |
| if (argc != 1) { |
| ti->error = "Invalid argument count"; |
| return -EINVAL; |
| } |
| |
| /* Allocate and initialize the target descriptor */ |
| dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL); |
| if (!dmz) { |
| ti->error = "Unable to allocate the zoned target descriptor"; |
| return -ENOMEM; |
| } |
| ti->private = dmz; |
| |
| /* Get the target zoned block device */ |
| ret = dmz_get_zoned_device(ti, argv[0]); |
| if (ret) { |
| dmz->ddev = NULL; |
| goto err; |
| } |
| |
| /* Initialize metadata */ |
| dev = dmz->dev; |
| ret = dmz_ctr_metadata(dev, &dmz->metadata); |
| if (ret) { |
| ti->error = "Metadata initialization failed"; |
| goto err_dev; |
| } |
| |
| /* Set target (no write same support) */ |
| ti->max_io_len = dev->zone_nr_sectors << 9; |
| ti->num_flush_bios = 1; |
| ti->num_discard_bios = 1; |
| ti->num_write_zeroes_bios = 1; |
| ti->per_io_data_size = sizeof(struct dmz_bioctx); |
| ti->flush_supported = true; |
| ti->discards_supported = true; |
| ti->split_discard_bios = true; |
| |
| /* The exposed capacity is the number of chunks that can be mapped */ |
| ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift; |
| |
| /* Zone BIO */ |
| dmz->bio_set = bioset_create(DMZ_MIN_BIOS, 0, 0); |
| if (!dmz->bio_set) { |
| ti->error = "Create BIO set failed"; |
| ret = -ENOMEM; |
| goto err_meta; |
| } |
| |
| /* Chunk BIO work */ |
| mutex_init(&dmz->chunk_lock); |
| INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_KERNEL); |
| dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND, |
| 0, dev->name); |
| if (!dmz->chunk_wq) { |
| ti->error = "Create chunk workqueue failed"; |
| ret = -ENOMEM; |
| goto err_bio; |
| } |
| |
| /* Flush work */ |
| spin_lock_init(&dmz->flush_lock); |
| bio_list_init(&dmz->flush_list); |
| INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work); |
| dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM, |
| dev->name); |
| if (!dmz->flush_wq) { |
| ti->error = "Create flush workqueue failed"; |
| ret = -ENOMEM; |
| goto err_cwq; |
| } |
| mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); |
| |
| /* Initialize reclaim */ |
| ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim); |
| if (ret) { |
| ti->error = "Zone reclaim initialization failed"; |
| goto err_fwq; |
| } |
| |
| dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)", |
| (unsigned long long)ti->len, |
| (unsigned long long)dmz_sect2blk(ti->len)); |
| |
| return 0; |
| err_fwq: |
| destroy_workqueue(dmz->flush_wq); |
| err_cwq: |
| destroy_workqueue(dmz->chunk_wq); |
| err_bio: |
| mutex_destroy(&dmz->chunk_lock); |
| bioset_free(dmz->bio_set); |
| err_meta: |
| dmz_dtr_metadata(dmz->metadata); |
| err_dev: |
| dmz_put_zoned_device(ti); |
| err: |
| kfree(dmz); |
| |
| return ret; |
| } |
| |
| /* |
| * Cleanup target. |
| */ |
| static void dmz_dtr(struct dm_target *ti) |
| { |
| struct dmz_target *dmz = ti->private; |
| |
| flush_workqueue(dmz->chunk_wq); |
| destroy_workqueue(dmz->chunk_wq); |
| |
| dmz_dtr_reclaim(dmz->reclaim); |
| |
| cancel_delayed_work_sync(&dmz->flush_work); |
| destroy_workqueue(dmz->flush_wq); |
| |
| (void) dmz_flush_metadata(dmz->metadata); |
| |
| dmz_dtr_metadata(dmz->metadata); |
| |
| bioset_free(dmz->bio_set); |
| |
| dmz_put_zoned_device(ti); |
| |
| mutex_destroy(&dmz->chunk_lock); |
| |
| kfree(dmz); |
| } |
| |
| /* |
| * Setup target request queue limits. |
| */ |
| static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits) |
| { |
| struct dmz_target *dmz = ti->private; |
| unsigned int chunk_sectors = dmz->dev->zone_nr_sectors; |
| |
| limits->logical_block_size = DMZ_BLOCK_SIZE; |
| limits->physical_block_size = DMZ_BLOCK_SIZE; |
| |
| blk_limits_io_min(limits, DMZ_BLOCK_SIZE); |
| blk_limits_io_opt(limits, DMZ_BLOCK_SIZE); |
| |
| limits->discard_alignment = DMZ_BLOCK_SIZE; |
| limits->discard_granularity = DMZ_BLOCK_SIZE; |
| limits->max_discard_sectors = chunk_sectors; |
| limits->max_hw_discard_sectors = chunk_sectors; |
| limits->max_write_zeroes_sectors = chunk_sectors; |
| |
| /* FS hint to try to align to the device zone size */ |
| limits->chunk_sectors = chunk_sectors; |
| limits->max_sectors = chunk_sectors; |
| |
| /* We are exposing a drive-managed zoned block device */ |
| limits->zoned = BLK_ZONED_NONE; |
| } |
| |
| /* |
| * Pass on ioctl to the backend device. |
| */ |
| static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) |
| { |
| struct dmz_target *dmz = ti->private; |
| |
| *bdev = dmz->dev->bdev; |
| |
| return 0; |
| } |
| |
| /* |
| * Stop works on suspend. |
| */ |
| static void dmz_suspend(struct dm_target *ti) |
| { |
| struct dmz_target *dmz = ti->private; |
| |
| flush_workqueue(dmz->chunk_wq); |
| dmz_suspend_reclaim(dmz->reclaim); |
| cancel_delayed_work_sync(&dmz->flush_work); |
| } |
| |
| /* |
| * Restart works on resume or if suspend failed. |
| */ |
| static void dmz_resume(struct dm_target *ti) |
| { |
| struct dmz_target *dmz = ti->private; |
| |
| queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); |
| dmz_resume_reclaim(dmz->reclaim); |
| } |
| |
| static int dmz_iterate_devices(struct dm_target *ti, |
| iterate_devices_callout_fn fn, void *data) |
| { |
| struct dmz_target *dmz = ti->private; |
| struct dmz_dev *dev = dmz->dev; |
| sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1); |
| |
| return fn(ti, dmz->ddev, 0, capacity, data); |
| } |
| |
| static struct target_type dmz_type = { |
| .name = "zoned", |
| .version = {1, 0, 0}, |
| .features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM, |
| .module = THIS_MODULE, |
| .ctr = dmz_ctr, |
| .dtr = dmz_dtr, |
| .map = dmz_map, |
| .end_io = dmz_end_io, |
| .io_hints = dmz_io_hints, |
| .prepare_ioctl = dmz_prepare_ioctl, |
| .postsuspend = dmz_suspend, |
| .resume = dmz_resume, |
| .iterate_devices = dmz_iterate_devices, |
| }; |
| |
| static int __init dmz_init(void) |
| { |
| return dm_register_target(&dmz_type); |
| } |
| |
| static void __exit dmz_exit(void) |
| { |
| dm_unregister_target(&dmz_type); |
| } |
| |
| module_init(dmz_init); |
| module_exit(dmz_exit); |
| |
| MODULE_DESCRIPTION(DM_NAME " target for zoned block devices"); |
| MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>"); |
| MODULE_LICENSE("GPL"); |