| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2010 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "spi.h" |
| #include "regs.h" |
| #include "io.h" |
| #include "phy.h" |
| #include "workarounds.h" |
| #include "mcdi.h" |
| #include "mcdi_pcol.h" |
| #include "selftest.h" |
| |
| /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */ |
| |
| static void siena_init_wol(struct efx_nic *efx); |
| |
| |
| static void siena_push_irq_moderation(struct efx_channel *channel) |
| { |
| efx_dword_t timer_cmd; |
| |
| if (channel->irq_moderation) |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_CZ_TC_TIMER_MODE, |
| FFE_CZ_TIMER_MODE_INT_HLDOFF, |
| FRF_CZ_TC_TIMER_VAL, |
| channel->irq_moderation - 1); |
| else |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_CZ_TC_TIMER_MODE, |
| FFE_CZ_TIMER_MODE_DIS, |
| FRF_CZ_TC_TIMER_VAL, 0); |
| efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, |
| channel->channel); |
| } |
| |
| static int siena_mdio_write(struct net_device *net_dev, |
| int prtad, int devad, u16 addr, u16 value) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| uint32_t status; |
| int rc; |
| |
| rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad, |
| addr, value, &status); |
| if (rc) |
| return rc; |
| if (status != MC_CMD_MDIO_STATUS_GOOD) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int siena_mdio_read(struct net_device *net_dev, |
| int prtad, int devad, u16 addr) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| uint16_t value; |
| uint32_t status; |
| int rc; |
| |
| rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad, |
| addr, &value, &status); |
| if (rc) |
| return rc; |
| if (status != MC_CMD_MDIO_STATUS_GOOD) |
| return -EIO; |
| |
| return (int)value; |
| } |
| |
| /* This call is responsible for hooking in the MAC and PHY operations */ |
| static int siena_probe_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| /* Hook in PHY operations table */ |
| efx->phy_op = &efx_mcdi_phy_ops; |
| |
| /* Set up MDIO structure for PHY */ |
| efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; |
| efx->mdio.mdio_read = siena_mdio_read; |
| efx->mdio.mdio_write = siena_mdio_write; |
| |
| /* Fill out MDIO structure, loopback modes, and initial link state */ |
| rc = efx->phy_op->probe(efx); |
| if (rc != 0) |
| return rc; |
| |
| /* Allocate buffer for stats */ |
| rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, |
| MC_CMD_MAC_NSTATS * sizeof(u64)); |
| if (rc) |
| return rc; |
| netif_dbg(efx, probe, efx->net_dev, |
| "stats buffer at %llx (virt %p phys %llx)\n", |
| (u64)efx->stats_buffer.dma_addr, |
| efx->stats_buffer.addr, |
| (u64)virt_to_phys(efx->stats_buffer.addr)); |
| |
| efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1); |
| |
| return 0; |
| } |
| |
| static void siena_remove_port(struct efx_nic *efx) |
| { |
| efx->phy_op->remove(efx); |
| efx_nic_free_buffer(efx, &efx->stats_buffer); |
| } |
| |
| void siena_prepare_flush(struct efx_nic *efx) |
| { |
| if (efx->fc_disable++ == 0) |
| efx_mcdi_set_mac(efx); |
| } |
| |
| void siena_finish_flush(struct efx_nic *efx) |
| { |
| if (--efx->fc_disable == 0) |
| efx_mcdi_set_mac(efx); |
| } |
| |
| static const struct efx_nic_register_test siena_register_tests[] = { |
| { FR_AZ_ADR_REGION, |
| EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, |
| { FR_CZ_USR_EV_CFG, |
| EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_CFG, |
| EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) }, |
| { FR_AZ_TX_CFG, |
| EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) }, |
| { FR_AZ_TX_RESERVED, |
| EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, |
| { FR_AZ_SRM_TX_DC_CFG, |
| EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_CFG, |
| EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_PF_WM, |
| EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_BZ_DP_CTRL, |
| EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_BZ_RX_RSS_TKEY, |
| EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, |
| { FR_CZ_RX_RSS_IPV6_REG1, |
| EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, |
| { FR_CZ_RX_RSS_IPV6_REG2, |
| EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, |
| { FR_CZ_RX_RSS_IPV6_REG3, |
| EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) }, |
| }; |
| |
| static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) |
| { |
| enum reset_type reset_method = RESET_TYPE_ALL; |
| int rc, rc2; |
| |
| efx_reset_down(efx, reset_method); |
| |
| /* Reset the chip immediately so that it is completely |
| * quiescent regardless of what any VF driver does. |
| */ |
| rc = efx_mcdi_reset(efx, reset_method); |
| if (rc) |
| goto out; |
| |
| tests->registers = |
| efx_nic_test_registers(efx, siena_register_tests, |
| ARRAY_SIZE(siena_register_tests)) |
| ? -1 : 1; |
| |
| rc = efx_mcdi_reset(efx, reset_method); |
| out: |
| rc2 = efx_reset_up(efx, reset_method, rc == 0); |
| return rc ? rc : rc2; |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset |
| * |
| ************************************************************************** |
| */ |
| |
| static int siena_map_reset_flags(u32 *flags) |
| { |
| enum { |
| SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER | |
| ETH_RESET_OFFLOAD | ETH_RESET_MAC | |
| ETH_RESET_PHY), |
| SIENA_RESET_MC = (SIENA_RESET_PORT | |
| ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT), |
| }; |
| |
| if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) { |
| *flags &= ~SIENA_RESET_MC; |
| return RESET_TYPE_WORLD; |
| } |
| |
| if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) { |
| *flags &= ~SIENA_RESET_PORT; |
| return RESET_TYPE_ALL; |
| } |
| |
| /* no invisible reset implemented */ |
| |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_EEH |
| /* When a PCI device is isolated from the bus, a subsequent MMIO read is |
| * required for the kernel EEH mechanisms to notice. As the Solarflare driver |
| * was written to minimise MMIO read (for latency) then a periodic call to check |
| * the EEH status of the device is required so that device recovery can happen |
| * in a timely fashion. |
| */ |
| static void siena_monitor(struct efx_nic *efx) |
| { |
| struct eeh_dev *eehdev = |
| of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); |
| |
| eeh_dev_check_failure(eehdev); |
| } |
| #endif |
| |
| static int siena_probe_nvconfig(struct efx_nic *efx) |
| { |
| u32 caps = 0; |
| int rc; |
| |
| rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps); |
| |
| efx->timer_quantum_ns = |
| (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ? |
| 3072 : 6144; /* 768 cycles */ |
| return rc; |
| } |
| |
| static void siena_dimension_resources(struct efx_nic *efx) |
| { |
| /* Each port has a small block of internal SRAM dedicated to |
| * the buffer table and descriptor caches. In theory we can |
| * map both blocks to one port, but we don't. |
| */ |
| efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2); |
| } |
| |
| static int siena_probe_nic(struct efx_nic *efx) |
| { |
| struct siena_nic_data *nic_data; |
| bool already_attached = false; |
| efx_oword_t reg; |
| int rc; |
| |
| /* Allocate storage for hardware specific data */ |
| nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| |
| if (efx_nic_fpga_ver(efx) != 0) { |
| netif_err(efx, probe, efx->net_dev, |
| "Siena FPGA not supported\n"); |
| rc = -ENODEV; |
| goto fail1; |
| } |
| |
| efx_reado(efx, ®, FR_AZ_CS_DEBUG); |
| efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1; |
| |
| efx_mcdi_init(efx); |
| |
| /* Recover from a failed assertion before probing */ |
| rc = efx_mcdi_handle_assertion(efx); |
| if (rc) |
| goto fail1; |
| |
| /* Let the BMC know that the driver is now in charge of link and |
| * filter settings. We must do this before we reset the NIC */ |
| rc = efx_mcdi_drv_attach(efx, true, &already_attached); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "Unable to register driver with MCPU\n"); |
| goto fail2; |
| } |
| if (already_attached) |
| /* Not a fatal error */ |
| netif_err(efx, probe, efx->net_dev, |
| "Host already registered with MCPU\n"); |
| |
| /* Now we can reset the NIC */ |
| rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); |
| goto fail3; |
| } |
| |
| siena_init_wol(efx); |
| |
| /* Allocate memory for INT_KER */ |
| rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); |
| if (rc) |
| goto fail4; |
| BUG_ON(efx->irq_status.dma_addr & 0x0f); |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "INT_KER at %llx (virt %p phys %llx)\n", |
| (unsigned long long)efx->irq_status.dma_addr, |
| efx->irq_status.addr, |
| (unsigned long long)virt_to_phys(efx->irq_status.addr)); |
| |
| /* Read in the non-volatile configuration */ |
| rc = siena_probe_nvconfig(efx); |
| if (rc == -EINVAL) { |
| netif_err(efx, probe, efx->net_dev, |
| "NVRAM is invalid therefore using defaults\n"); |
| efx->phy_type = PHY_TYPE_NONE; |
| efx->mdio.prtad = MDIO_PRTAD_NONE; |
| } else if (rc) { |
| goto fail5; |
| } |
| |
| rc = efx_mcdi_mon_probe(efx); |
| if (rc) |
| goto fail5; |
| |
| efx_sriov_probe(efx); |
| efx_ptp_probe(efx); |
| |
| return 0; |
| |
| fail5: |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| fail4: |
| fail3: |
| efx_mcdi_drv_attach(efx, false, NULL); |
| fail2: |
| fail1: |
| kfree(efx->nic_data); |
| return rc; |
| } |
| |
| /* This call performs hardware-specific global initialisation, such as |
| * defining the descriptor cache sizes and number of RSS channels. |
| * It does not set up any buffers, descriptor rings or event queues. |
| */ |
| static int siena_init_nic(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| int rc; |
| |
| /* Recover from a failed assertion post-reset */ |
| rc = efx_mcdi_handle_assertion(efx); |
| if (rc) |
| return rc; |
| |
| /* Squash TX of packets of 16 bytes or less */ |
| efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| |
| /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 |
| * descriptors (which is bad). |
| */ |
| efx_reado(efx, &temp, FR_AZ_TX_CFG); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); |
| EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1); |
| efx_writeo(efx, &temp, FR_AZ_TX_CFG); |
| |
| efx_reado(efx, &temp, FR_AZ_RX_CFG); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1); |
| /* Enable hash insertion. This is broken for the 'Falcon' hash |
| * if IPv6 hashing is also enabled, so also select Toeplitz |
| * TCP/IPv4 and IPv4 hashes. */ |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE, |
| EFX_RX_USR_BUF_SIZE >> 5); |
| efx_writeo(efx, &temp, FR_AZ_RX_CFG); |
| |
| /* Set hash key for IPv4 */ |
| memcpy(&temp, efx->rx_hash_key, sizeof(temp)); |
| efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY); |
| |
| /* Enable IPv6 RSS */ |
| BUILD_BUG_ON(sizeof(efx->rx_hash_key) < |
| 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 || |
| FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0); |
| memcpy(&temp, efx->rx_hash_key, sizeof(temp)); |
| efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1); |
| memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp)); |
| efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2); |
| EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1, |
| FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1); |
| memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp), |
| FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8); |
| efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3); |
| |
| /* Enable event logging */ |
| rc = efx_mcdi_log_ctrl(efx, true, false, 0); |
| if (rc) |
| return rc; |
| |
| /* Set destination of both TX and RX Flush events */ |
| EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); |
| efx_writeo(efx, &temp, FR_BZ_DP_CTRL); |
| |
| EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1); |
| efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG); |
| |
| efx_nic_init_common(efx); |
| return 0; |
| } |
| |
| static void siena_remove_nic(struct efx_nic *efx) |
| { |
| efx_mcdi_mon_remove(efx); |
| |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| |
| efx_mcdi_reset(efx, RESET_TYPE_ALL); |
| |
| /* Relinquish the device back to the BMC */ |
| efx_mcdi_drv_attach(efx, false, NULL); |
| |
| /* Tear down the private nic state */ |
| kfree(efx->nic_data); |
| efx->nic_data = NULL; |
| } |
| |
| #define STATS_GENERATION_INVALID ((__force __le64)(-1)) |
| |
| static int siena_try_update_nic_stats(struct efx_nic *efx) |
| { |
| __le64 *dma_stats; |
| struct efx_mac_stats *mac_stats; |
| __le64 generation_start, generation_end; |
| |
| mac_stats = &efx->mac_stats; |
| dma_stats = efx->stats_buffer.addr; |
| |
| generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; |
| if (generation_end == STATS_GENERATION_INVALID) |
| return 0; |
| rmb(); |
| |
| #define MAC_STAT(M, D) \ |
| mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D]) |
| |
| MAC_STAT(tx_bytes, TX_BYTES); |
| MAC_STAT(tx_bad_bytes, TX_BAD_BYTES); |
| efx_update_diff_stat(&mac_stats->tx_good_bytes, |
| mac_stats->tx_bytes - mac_stats->tx_bad_bytes); |
| MAC_STAT(tx_packets, TX_PKTS); |
| MAC_STAT(tx_bad, TX_BAD_FCS_PKTS); |
| MAC_STAT(tx_pause, TX_PAUSE_PKTS); |
| MAC_STAT(tx_control, TX_CONTROL_PKTS); |
| MAC_STAT(tx_unicast, TX_UNICAST_PKTS); |
| MAC_STAT(tx_multicast, TX_MULTICAST_PKTS); |
| MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS); |
| MAC_STAT(tx_lt64, TX_LT64_PKTS); |
| MAC_STAT(tx_64, TX_64_PKTS); |
| MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS); |
| MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS); |
| MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS); |
| MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS); |
| MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS); |
| MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS); |
| MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS); |
| mac_stats->tx_collision = 0; |
| MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS); |
| MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS); |
| MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS); |
| MAC_STAT(tx_deferred, TX_DEFERRED_PKTS); |
| MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS); |
| mac_stats->tx_collision = (mac_stats->tx_single_collision + |
| mac_stats->tx_multiple_collision + |
| mac_stats->tx_excessive_collision + |
| mac_stats->tx_late_collision); |
| MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS); |
| MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS); |
| MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS); |
| MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS); |
| MAC_STAT(rx_bytes, RX_BYTES); |
| MAC_STAT(rx_bad_bytes, RX_BAD_BYTES); |
| efx_update_diff_stat(&mac_stats->rx_good_bytes, |
| mac_stats->rx_bytes - mac_stats->rx_bad_bytes); |
| MAC_STAT(rx_packets, RX_PKTS); |
| MAC_STAT(rx_good, RX_GOOD_PKTS); |
| MAC_STAT(rx_bad, RX_BAD_FCS_PKTS); |
| MAC_STAT(rx_pause, RX_PAUSE_PKTS); |
| MAC_STAT(rx_control, RX_CONTROL_PKTS); |
| MAC_STAT(rx_unicast, RX_UNICAST_PKTS); |
| MAC_STAT(rx_multicast, RX_MULTICAST_PKTS); |
| MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS); |
| MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS); |
| MAC_STAT(rx_64, RX_64_PKTS); |
| MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS); |
| MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS); |
| MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS); |
| MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS); |
| MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS); |
| MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS); |
| MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS); |
| mac_stats->rx_bad_lt64 = 0; |
| mac_stats->rx_bad_64_to_15xx = 0; |
| mac_stats->rx_bad_15xx_to_jumbo = 0; |
| MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS); |
| MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS); |
| mac_stats->rx_missed = 0; |
| MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS); |
| MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS); |
| MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS); |
| MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS); |
| MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS); |
| mac_stats->rx_good_lt64 = 0; |
| |
| efx->n_rx_nodesc_drop_cnt = |
| le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]); |
| |
| #undef MAC_STAT |
| |
| rmb(); |
| generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; |
| if (generation_end != generation_start) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| static void siena_update_nic_stats(struct efx_nic *efx) |
| { |
| int retry; |
| |
| /* If we're unlucky enough to read statistics wduring the DMA, wait |
| * up to 10ms for it to finish (typically takes <500us) */ |
| for (retry = 0; retry < 100; ++retry) { |
| if (siena_try_update_nic_stats(efx) == 0) |
| return; |
| udelay(100); |
| } |
| |
| /* Use the old values instead */ |
| } |
| |
| static void siena_start_nic_stats(struct efx_nic *efx) |
| { |
| __le64 *dma_stats = efx->stats_buffer.addr; |
| |
| dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID; |
| |
| efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, |
| MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0); |
| } |
| |
| static void siena_stop_nic_stats(struct efx_nic *efx) |
| { |
| efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0); |
| } |
| |
| /************************************************************************** |
| * |
| * Wake on LAN |
| * |
| ************************************************************************** |
| */ |
| |
| static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| |
| wol->supported = WAKE_MAGIC; |
| if (nic_data->wol_filter_id != -1) |
| wol->wolopts = WAKE_MAGIC; |
| else |
| wol->wolopts = 0; |
| memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| } |
| |
| |
| static int siena_set_wol(struct efx_nic *efx, u32 type) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| if (type & ~WAKE_MAGIC) |
| return -EINVAL; |
| |
| if (type & WAKE_MAGIC) { |
| if (nic_data->wol_filter_id != -1) |
| efx_mcdi_wol_filter_remove(efx, |
| nic_data->wol_filter_id); |
| rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr, |
| &nic_data->wol_filter_id); |
| if (rc) |
| goto fail; |
| |
| pci_wake_from_d3(efx->pci_dev, true); |
| } else { |
| rc = efx_mcdi_wol_filter_reset(efx); |
| nic_data->wol_filter_id = -1; |
| pci_wake_from_d3(efx->pci_dev, false); |
| if (rc) |
| goto fail; |
| } |
| |
| return 0; |
| fail: |
| netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n", |
| __func__, type, rc); |
| return rc; |
| } |
| |
| |
| static void siena_init_wol(struct efx_nic *efx) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id); |
| |
| if (rc != 0) { |
| /* If it failed, attempt to get into a synchronised |
| * state with MC by resetting any set WoL filters */ |
| efx_mcdi_wol_filter_reset(efx); |
| nic_data->wol_filter_id = -1; |
| } else if (nic_data->wol_filter_id != -1) { |
| pci_wake_from_d3(efx->pci_dev, true); |
| } |
| } |
| |
| |
| /************************************************************************** |
| * |
| * Revision-dependent attributes used by efx.c and nic.c |
| * |
| ************************************************************************** |
| */ |
| |
| const struct efx_nic_type siena_a0_nic_type = { |
| .probe = siena_probe_nic, |
| .remove = siena_remove_nic, |
| .init = siena_init_nic, |
| .dimension_resources = siena_dimension_resources, |
| .fini = efx_port_dummy_op_void, |
| #ifdef CONFIG_EEH |
| .monitor = siena_monitor, |
| #else |
| .monitor = NULL, |
| #endif |
| .map_reset_reason = efx_mcdi_map_reset_reason, |
| .map_reset_flags = siena_map_reset_flags, |
| .reset = efx_mcdi_reset, |
| .probe_port = siena_probe_port, |
| .remove_port = siena_remove_port, |
| .prepare_flush = siena_prepare_flush, |
| .finish_flush = siena_finish_flush, |
| .update_stats = siena_update_nic_stats, |
| .start_stats = siena_start_nic_stats, |
| .stop_stats = siena_stop_nic_stats, |
| .set_id_led = efx_mcdi_set_id_led, |
| .push_irq_moderation = siena_push_irq_moderation, |
| .reconfigure_mac = efx_mcdi_mac_reconfigure, |
| .check_mac_fault = efx_mcdi_mac_check_fault, |
| .reconfigure_port = efx_mcdi_phy_reconfigure, |
| .get_wol = siena_get_wol, |
| .set_wol = siena_set_wol, |
| .resume_wol = siena_init_wol, |
| .test_chip = siena_test_chip, |
| .test_nvram = efx_mcdi_nvram_test_all, |
| |
| .revision = EFX_REV_SIENA_A0, |
| .mem_map_size = (FR_CZ_MC_TREG_SMEM + |
| FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS), |
| .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, |
| .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, |
| .buf_tbl_base = FR_BZ_BUF_FULL_TBL, |
| .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, |
| .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, |
| .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_buffer_hash_size = 0x10, |
| .rx_buffer_padding = 0, |
| .can_rx_scatter = true, |
| .max_interrupt_mode = EFX_INT_MODE_MSIX, |
| .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy |
| * interrupt handler only supports 32 |
| * channels */ |
| .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH, |
| .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_RXHASH | NETIF_F_NTUPLE), |
| }; |