| /* |
| * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public Licens |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- |
| * |
| */ |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/iocontext.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/mempool.h> |
| #include <linux/workqueue.h> |
| #include <linux/cgroup.h> |
| #include <scsi/sg.h> /* for struct sg_iovec */ |
| |
| #include <trace/events/block.h> |
| |
| /* |
| * Test patch to inline a certain number of bi_io_vec's inside the bio |
| * itself, to shrink a bio data allocation from two mempool calls to one |
| */ |
| #define BIO_INLINE_VECS 4 |
| |
| static mempool_t *bio_split_pool __read_mostly; |
| |
| /* |
| * if you change this list, also change bvec_alloc or things will |
| * break badly! cannot be bigger than what you can fit into an |
| * unsigned short |
| */ |
| #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
| static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
| BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
| }; |
| #undef BV |
| |
| /* |
| * fs_bio_set is the bio_set containing bio and iovec memory pools used by |
| * IO code that does not need private memory pools. |
| */ |
| struct bio_set *fs_bio_set; |
| |
| /* |
| * Our slab pool management |
| */ |
| struct bio_slab { |
| struct kmem_cache *slab; |
| unsigned int slab_ref; |
| unsigned int slab_size; |
| char name[8]; |
| }; |
| static DEFINE_MUTEX(bio_slab_lock); |
| static struct bio_slab *bio_slabs; |
| static unsigned int bio_slab_nr, bio_slab_max; |
| |
| static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) |
| { |
| unsigned int sz = sizeof(struct bio) + extra_size; |
| struct kmem_cache *slab = NULL; |
| struct bio_slab *bslab; |
| unsigned int i, entry = -1; |
| |
| mutex_lock(&bio_slab_lock); |
| |
| i = 0; |
| while (i < bio_slab_nr) { |
| bslab = &bio_slabs[i]; |
| |
| if (!bslab->slab && entry == -1) |
| entry = i; |
| else if (bslab->slab_size == sz) { |
| slab = bslab->slab; |
| bslab->slab_ref++; |
| break; |
| } |
| i++; |
| } |
| |
| if (slab) |
| goto out_unlock; |
| |
| if (bio_slab_nr == bio_slab_max && entry == -1) { |
| bio_slab_max <<= 1; |
| bio_slabs = krealloc(bio_slabs, |
| bio_slab_max * sizeof(struct bio_slab), |
| GFP_KERNEL); |
| if (!bio_slabs) |
| goto out_unlock; |
| } |
| if (entry == -1) |
| entry = bio_slab_nr++; |
| |
| bslab = &bio_slabs[entry]; |
| |
| snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); |
| slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); |
| if (!slab) |
| goto out_unlock; |
| |
| printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry); |
| bslab->slab = slab; |
| bslab->slab_ref = 1; |
| bslab->slab_size = sz; |
| out_unlock: |
| mutex_unlock(&bio_slab_lock); |
| return slab; |
| } |
| |
| static void bio_put_slab(struct bio_set *bs) |
| { |
| struct bio_slab *bslab = NULL; |
| unsigned int i; |
| |
| mutex_lock(&bio_slab_lock); |
| |
| for (i = 0; i < bio_slab_nr; i++) { |
| if (bs->bio_slab == bio_slabs[i].slab) { |
| bslab = &bio_slabs[i]; |
| break; |
| } |
| } |
| |
| if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) |
| goto out; |
| |
| WARN_ON(!bslab->slab_ref); |
| |
| if (--bslab->slab_ref) |
| goto out; |
| |
| kmem_cache_destroy(bslab->slab); |
| bslab->slab = NULL; |
| |
| out: |
| mutex_unlock(&bio_slab_lock); |
| } |
| |
| unsigned int bvec_nr_vecs(unsigned short idx) |
| { |
| return bvec_slabs[idx].nr_vecs; |
| } |
| |
| void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) |
| { |
| BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); |
| |
| if (idx == BIOVEC_MAX_IDX) |
| mempool_free(bv, bs->bvec_pool); |
| else { |
| struct biovec_slab *bvs = bvec_slabs + idx; |
| |
| kmem_cache_free(bvs->slab, bv); |
| } |
| } |
| |
| struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, |
| struct bio_set *bs) |
| { |
| struct bio_vec *bvl; |
| |
| /* |
| * see comment near bvec_array define! |
| */ |
| switch (nr) { |
| case 1: |
| *idx = 0; |
| break; |
| case 2 ... 4: |
| *idx = 1; |
| break; |
| case 5 ... 16: |
| *idx = 2; |
| break; |
| case 17 ... 64: |
| *idx = 3; |
| break; |
| case 65 ... 128: |
| *idx = 4; |
| break; |
| case 129 ... BIO_MAX_PAGES: |
| *idx = 5; |
| break; |
| default: |
| return NULL; |
| } |
| |
| /* |
| * idx now points to the pool we want to allocate from. only the |
| * 1-vec entry pool is mempool backed. |
| */ |
| if (*idx == BIOVEC_MAX_IDX) { |
| fallback: |
| bvl = mempool_alloc(bs->bvec_pool, gfp_mask); |
| } else { |
| struct biovec_slab *bvs = bvec_slabs + *idx; |
| gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); |
| |
| /* |
| * Make this allocation restricted and don't dump info on |
| * allocation failures, since we'll fallback to the mempool |
| * in case of failure. |
| */ |
| __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
| |
| /* |
| * Try a slab allocation. If this fails and __GFP_WAIT |
| * is set, retry with the 1-entry mempool |
| */ |
| bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
| if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { |
| *idx = BIOVEC_MAX_IDX; |
| goto fallback; |
| } |
| } |
| |
| return bvl; |
| } |
| |
| void bio_free(struct bio *bio, struct bio_set *bs) |
| { |
| void *p; |
| |
| if (bio_has_allocated_vec(bio)) |
| bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); |
| |
| if (bio_integrity(bio)) |
| bio_integrity_free(bio, bs); |
| |
| /* |
| * If we have front padding, adjust the bio pointer before freeing |
| */ |
| p = bio; |
| if (bs->front_pad) |
| p -= bs->front_pad; |
| |
| mempool_free(p, bs->bio_pool); |
| } |
| EXPORT_SYMBOL(bio_free); |
| |
| void bio_init(struct bio *bio) |
| { |
| memset(bio, 0, sizeof(*bio)); |
| bio->bi_flags = 1 << BIO_UPTODATE; |
| atomic_set(&bio->bi_cnt, 1); |
| } |
| EXPORT_SYMBOL(bio_init); |
| |
| /** |
| * bio_alloc_bioset - allocate a bio for I/O |
| * @gfp_mask: the GFP_ mask given to the slab allocator |
| * @nr_iovecs: number of iovecs to pre-allocate |
| * @bs: the bio_set to allocate from. |
| * |
| * Description: |
| * bio_alloc_bioset will try its own mempool to satisfy the allocation. |
| * If %__GFP_WAIT is set then we will block on the internal pool waiting |
| * for a &struct bio to become free. |
| * |
| * Note that the caller must set ->bi_destructor on successful return |
| * of a bio, to do the appropriate freeing of the bio once the reference |
| * count drops to zero. |
| **/ |
| struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
| { |
| unsigned long idx = BIO_POOL_NONE; |
| struct bio_vec *bvl = NULL; |
| struct bio *bio; |
| void *p; |
| |
| p = mempool_alloc(bs->bio_pool, gfp_mask); |
| if (unlikely(!p)) |
| return NULL; |
| bio = p + bs->front_pad; |
| |
| bio_init(bio); |
| |
| if (unlikely(!nr_iovecs)) |
| goto out_set; |
| |
| if (nr_iovecs <= BIO_INLINE_VECS) { |
| bvl = bio->bi_inline_vecs; |
| nr_iovecs = BIO_INLINE_VECS; |
| } else { |
| bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); |
| if (unlikely(!bvl)) |
| goto err_free; |
| |
| nr_iovecs = bvec_nr_vecs(idx); |
| } |
| out_set: |
| bio->bi_flags |= idx << BIO_POOL_OFFSET; |
| bio->bi_max_vecs = nr_iovecs; |
| bio->bi_io_vec = bvl; |
| return bio; |
| |
| err_free: |
| mempool_free(p, bs->bio_pool); |
| return NULL; |
| } |
| EXPORT_SYMBOL(bio_alloc_bioset); |
| |
| static void bio_fs_destructor(struct bio *bio) |
| { |
| bio_free(bio, fs_bio_set); |
| } |
| |
| /** |
| * bio_alloc - allocate a new bio, memory pool backed |
| * @gfp_mask: allocation mask to use |
| * @nr_iovecs: number of iovecs |
| * |
| * bio_alloc will allocate a bio and associated bio_vec array that can hold |
| * at least @nr_iovecs entries. Allocations will be done from the |
| * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc. |
| * |
| * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate |
| * a bio. This is due to the mempool guarantees. To make this work, callers |
| * must never allocate more than 1 bio at a time from this pool. Callers |
| * that need to allocate more than 1 bio must always submit the previously |
| * allocated bio for IO before attempting to allocate a new one. Failure to |
| * do so can cause livelocks under memory pressure. |
| * |
| * RETURNS: |
| * Pointer to new bio on success, NULL on failure. |
| */ |
| struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) |
| { |
| struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); |
| |
| if (bio) |
| bio->bi_destructor = bio_fs_destructor; |
| |
| return bio; |
| } |
| EXPORT_SYMBOL(bio_alloc); |
| |
| static void bio_kmalloc_destructor(struct bio *bio) |
| { |
| if (bio_integrity(bio)) |
| bio_integrity_free(bio, fs_bio_set); |
| kfree(bio); |
| } |
| |
| /** |
| * bio_kmalloc - allocate a bio for I/O using kmalloc() |
| * @gfp_mask: the GFP_ mask given to the slab allocator |
| * @nr_iovecs: number of iovecs to pre-allocate |
| * |
| * Description: |
| * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains |
| * %__GFP_WAIT, the allocation is guaranteed to succeed. |
| * |
| **/ |
| struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) |
| { |
| struct bio *bio; |
| |
| if (nr_iovecs > UIO_MAXIOV) |
| return NULL; |
| |
| bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec), |
| gfp_mask); |
| if (unlikely(!bio)) |
| return NULL; |
| |
| bio_init(bio); |
| bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET; |
| bio->bi_max_vecs = nr_iovecs; |
| bio->bi_io_vec = bio->bi_inline_vecs; |
| bio->bi_destructor = bio_kmalloc_destructor; |
| |
| return bio; |
| } |
| EXPORT_SYMBOL(bio_kmalloc); |
| |
| void zero_fill_bio(struct bio *bio) |
| { |
| unsigned long flags; |
| struct bio_vec *bv; |
| int i; |
| |
| bio_for_each_segment(bv, bio, i) { |
| char *data = bvec_kmap_irq(bv, &flags); |
| memset(data, 0, bv->bv_len); |
| flush_dcache_page(bv->bv_page); |
| bvec_kunmap_irq(data, &flags); |
| } |
| } |
| EXPORT_SYMBOL(zero_fill_bio); |
| |
| /** |
| * bio_put - release a reference to a bio |
| * @bio: bio to release reference to |
| * |
| * Description: |
| * Put a reference to a &struct bio, either one you have gotten with |
| * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. |
| **/ |
| void bio_put(struct bio *bio) |
| { |
| BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); |
| |
| /* |
| * last put frees it |
| */ |
| if (atomic_dec_and_test(&bio->bi_cnt)) { |
| bio_disassociate_task(bio); |
| bio->bi_next = NULL; |
| bio->bi_destructor(bio); |
| } |
| } |
| EXPORT_SYMBOL(bio_put); |
| |
| inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
| { |
| if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) |
| blk_recount_segments(q, bio); |
| |
| return bio->bi_phys_segments; |
| } |
| EXPORT_SYMBOL(bio_phys_segments); |
| |
| /** |
| * __bio_clone - clone a bio |
| * @bio: destination bio |
| * @bio_src: bio to clone |
| * |
| * Clone a &bio. Caller will own the returned bio, but not |
| * the actual data it points to. Reference count of returned |
| * bio will be one. |
| */ |
| void __bio_clone(struct bio *bio, struct bio *bio_src) |
| { |
| memcpy(bio->bi_io_vec, bio_src->bi_io_vec, |
| bio_src->bi_max_vecs * sizeof(struct bio_vec)); |
| |
| /* |
| * most users will be overriding ->bi_bdev with a new target, |
| * so we don't set nor calculate new physical/hw segment counts here |
| */ |
| bio->bi_sector = bio_src->bi_sector; |
| bio->bi_bdev = bio_src->bi_bdev; |
| bio->bi_flags |= 1 << BIO_CLONED; |
| bio->bi_rw = bio_src->bi_rw; |
| bio->bi_vcnt = bio_src->bi_vcnt; |
| bio->bi_size = bio_src->bi_size; |
| bio->bi_idx = bio_src->bi_idx; |
| } |
| EXPORT_SYMBOL(__bio_clone); |
| |
| /** |
| * bio_clone - clone a bio |
| * @bio: bio to clone |
| * @gfp_mask: allocation priority |
| * |
| * Like __bio_clone, only also allocates the returned bio |
| */ |
| struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) |
| { |
| struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); |
| |
| if (!b) |
| return NULL; |
| |
| b->bi_destructor = bio_fs_destructor; |
| __bio_clone(b, bio); |
| |
| if (bio_integrity(bio)) { |
| int ret; |
| |
| ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set); |
| |
| if (ret < 0) { |
| bio_put(b); |
| return NULL; |
| } |
| } |
| |
| return b; |
| } |
| EXPORT_SYMBOL(bio_clone); |
| |
| /** |
| * bio_get_nr_vecs - return approx number of vecs |
| * @bdev: I/O target |
| * |
| * Return the approximate number of pages we can send to this target. |
| * There's no guarantee that you will be able to fit this number of pages |
| * into a bio, it does not account for dynamic restrictions that vary |
| * on offset. |
| */ |
| int bio_get_nr_vecs(struct block_device *bdev) |
| { |
| struct request_queue *q = bdev_get_queue(bdev); |
| return min_t(unsigned, |
| queue_max_segments(q), |
| queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); |
| } |
| EXPORT_SYMBOL(bio_get_nr_vecs); |
| |
| static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page |
| *page, unsigned int len, unsigned int offset, |
| unsigned short max_sectors) |
| { |
| int retried_segments = 0; |
| struct bio_vec *bvec; |
| |
| /* |
| * cloned bio must not modify vec list |
| */ |
| if (unlikely(bio_flagged(bio, BIO_CLONED))) |
| return 0; |
| |
| if (((bio->bi_size + len) >> 9) > max_sectors) |
| return 0; |
| |
| /* |
| * For filesystems with a blocksize smaller than the pagesize |
| * we will often be called with the same page as last time and |
| * a consecutive offset. Optimize this special case. |
| */ |
| if (bio->bi_vcnt > 0) { |
| struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
| |
| if (page == prev->bv_page && |
| offset == prev->bv_offset + prev->bv_len) { |
| unsigned int prev_bv_len = prev->bv_len; |
| prev->bv_len += len; |
| |
| if (q->merge_bvec_fn) { |
| struct bvec_merge_data bvm = { |
| /* prev_bvec is already charged in |
| bi_size, discharge it in order to |
| simulate merging updated prev_bvec |
| as new bvec. */ |
| .bi_bdev = bio->bi_bdev, |
| .bi_sector = bio->bi_sector, |
| .bi_size = bio->bi_size - prev_bv_len, |
| .bi_rw = bio->bi_rw, |
| }; |
| |
| if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { |
| prev->bv_len -= len; |
| return 0; |
| } |
| } |
| |
| goto done; |
| } |
| } |
| |
| if (bio->bi_vcnt >= bio->bi_max_vecs) |
| return 0; |
| |
| /* |
| * we might lose a segment or two here, but rather that than |
| * make this too complex. |
| */ |
| |
| while (bio->bi_phys_segments >= queue_max_segments(q)) { |
| |
| if (retried_segments) |
| return 0; |
| |
| retried_segments = 1; |
| blk_recount_segments(q, bio); |
| } |
| |
| /* |
| * setup the new entry, we might clear it again later if we |
| * cannot add the page |
| */ |
| bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
| bvec->bv_page = page; |
| bvec->bv_len = len; |
| bvec->bv_offset = offset; |
| |
| /* |
| * if queue has other restrictions (eg varying max sector size |
| * depending on offset), it can specify a merge_bvec_fn in the |
| * queue to get further control |
| */ |
| if (q->merge_bvec_fn) { |
| struct bvec_merge_data bvm = { |
| .bi_bdev = bio->bi_bdev, |
| .bi_sector = bio->bi_sector, |
| .bi_size = bio->bi_size, |
| .bi_rw = bio->bi_rw, |
| }; |
| |
| /* |
| * merge_bvec_fn() returns number of bytes it can accept |
| * at this offset |
| */ |
| if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { |
| bvec->bv_page = NULL; |
| bvec->bv_len = 0; |
| bvec->bv_offset = 0; |
| return 0; |
| } |
| } |
| |
| /* If we may be able to merge these biovecs, force a recount */ |
| if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
| bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
| |
| bio->bi_vcnt++; |
| bio->bi_phys_segments++; |
| done: |
| bio->bi_size += len; |
| return len; |
| } |
| |
| /** |
| * bio_add_pc_page - attempt to add page to bio |
| * @q: the target queue |
| * @bio: destination bio |
| * @page: page to add |
| * @len: vec entry length |
| * @offset: vec entry offset |
| * |
| * Attempt to add a page to the bio_vec maplist. This can fail for a |
| * number of reasons, such as the bio being full or target block device |
| * limitations. The target block device must allow bio's up to PAGE_SIZE, |
| * so it is always possible to add a single page to an empty bio. |
| * |
| * This should only be used by REQ_PC bios. |
| */ |
| int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, |
| unsigned int len, unsigned int offset) |
| { |
| return __bio_add_page(q, bio, page, len, offset, |
| queue_max_hw_sectors(q)); |
| } |
| EXPORT_SYMBOL(bio_add_pc_page); |
| |
| /** |
| * bio_add_page - attempt to add page to bio |
| * @bio: destination bio |
| * @page: page to add |
| * @len: vec entry length |
| * @offset: vec entry offset |
| * |
| * Attempt to add a page to the bio_vec maplist. This can fail for a |
| * number of reasons, such as the bio being full or target block device |
| * limitations. The target block device must allow bio's up to PAGE_SIZE, |
| * so it is always possible to add a single page to an empty bio. |
| */ |
| int bio_add_page(struct bio *bio, struct page *page, unsigned int len, |
| unsigned int offset) |
| { |
| struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
| return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); |
| } |
| EXPORT_SYMBOL(bio_add_page); |
| |
| struct bio_map_data { |
| struct bio_vec *iovecs; |
| struct sg_iovec *sgvecs; |
| int nr_sgvecs; |
| int is_our_pages; |
| }; |
| |
| static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, |
| struct sg_iovec *iov, int iov_count, |
| int is_our_pages) |
| { |
| memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); |
| memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); |
| bmd->nr_sgvecs = iov_count; |
| bmd->is_our_pages = is_our_pages; |
| bio->bi_private = bmd; |
| } |
| |
| static void bio_free_map_data(struct bio_map_data *bmd) |
| { |
| kfree(bmd->iovecs); |
| kfree(bmd->sgvecs); |
| kfree(bmd); |
| } |
| |
| static struct bio_map_data *bio_alloc_map_data(int nr_segs, |
| unsigned int iov_count, |
| gfp_t gfp_mask) |
| { |
| struct bio_map_data *bmd; |
| |
| if (iov_count > UIO_MAXIOV) |
| return NULL; |
| |
| bmd = kmalloc(sizeof(*bmd), gfp_mask); |
| if (!bmd) |
| return NULL; |
| |
| bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); |
| if (!bmd->iovecs) { |
| kfree(bmd); |
| return NULL; |
| } |
| |
| bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); |
| if (bmd->sgvecs) |
| return bmd; |
| |
| kfree(bmd->iovecs); |
| kfree(bmd); |
| return NULL; |
| } |
| |
| static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, |
| struct sg_iovec *iov, int iov_count, |
| int to_user, int from_user, int do_free_page) |
| { |
| int ret = 0, i; |
| struct bio_vec *bvec; |
| int iov_idx = 0; |
| unsigned int iov_off = 0; |
| |
| __bio_for_each_segment(bvec, bio, i, 0) { |
| char *bv_addr = page_address(bvec->bv_page); |
| unsigned int bv_len = iovecs[i].bv_len; |
| |
| while (bv_len && iov_idx < iov_count) { |
| unsigned int bytes; |
| char __user *iov_addr; |
| |
| bytes = min_t(unsigned int, |
| iov[iov_idx].iov_len - iov_off, bv_len); |
| iov_addr = iov[iov_idx].iov_base + iov_off; |
| |
| if (!ret) { |
| if (to_user) |
| ret = copy_to_user(iov_addr, bv_addr, |
| bytes); |
| |
| if (from_user) |
| ret = copy_from_user(bv_addr, iov_addr, |
| bytes); |
| |
| if (ret) |
| ret = -EFAULT; |
| } |
| |
| bv_len -= bytes; |
| bv_addr += bytes; |
| iov_addr += bytes; |
| iov_off += bytes; |
| |
| if (iov[iov_idx].iov_len == iov_off) { |
| iov_idx++; |
| iov_off = 0; |
| } |
| } |
| |
| if (do_free_page) |
| __free_page(bvec->bv_page); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * bio_uncopy_user - finish previously mapped bio |
| * @bio: bio being terminated |
| * |
| * Free pages allocated from bio_copy_user() and write back data |
| * to user space in case of a read. |
| */ |
| int bio_uncopy_user(struct bio *bio) |
| { |
| struct bio_map_data *bmd = bio->bi_private; |
| int ret = 0; |
| |
| if (!bio_flagged(bio, BIO_NULL_MAPPED)) |
| ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, |
| bmd->nr_sgvecs, bio_data_dir(bio) == READ, |
| 0, bmd->is_our_pages); |
| bio_free_map_data(bmd); |
| bio_put(bio); |
| return ret; |
| } |
| EXPORT_SYMBOL(bio_uncopy_user); |
| |
| /** |
| * bio_copy_user_iov - copy user data to bio |
| * @q: destination block queue |
| * @map_data: pointer to the rq_map_data holding pages (if necessary) |
| * @iov: the iovec. |
| * @iov_count: number of elements in the iovec |
| * @write_to_vm: bool indicating writing to pages or not |
| * @gfp_mask: memory allocation flags |
| * |
| * Prepares and returns a bio for indirect user io, bouncing data |
| * to/from kernel pages as necessary. Must be paired with |
| * call bio_uncopy_user() on io completion. |
| */ |
| struct bio *bio_copy_user_iov(struct request_queue *q, |
| struct rq_map_data *map_data, |
| struct sg_iovec *iov, int iov_count, |
| int write_to_vm, gfp_t gfp_mask) |
| { |
| struct bio_map_data *bmd; |
| struct bio_vec *bvec; |
| struct page *page; |
| struct bio *bio; |
| int i, ret; |
| int nr_pages = 0; |
| unsigned int len = 0; |
| unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; |
| |
| for (i = 0; i < iov_count; i++) { |
| unsigned long uaddr; |
| unsigned long end; |
| unsigned long start; |
| |
| uaddr = (unsigned long)iov[i].iov_base; |
| end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| start = uaddr >> PAGE_SHIFT; |
| |
| /* |
| * Overflow, abort |
| */ |
| if (end < start) |
| return ERR_PTR(-EINVAL); |
| |
| nr_pages += end - start; |
| len += iov[i].iov_len; |
| } |
| |
| if (offset) |
| nr_pages++; |
| |
| bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); |
| if (!bmd) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = -ENOMEM; |
| bio = bio_kmalloc(gfp_mask, nr_pages); |
| if (!bio) |
| goto out_bmd; |
| |
| if (!write_to_vm) |
| bio->bi_rw |= REQ_WRITE; |
| |
| ret = 0; |
| |
| if (map_data) { |
| nr_pages = 1 << map_data->page_order; |
| i = map_data->offset / PAGE_SIZE; |
| } |
| while (len) { |
| unsigned int bytes = PAGE_SIZE; |
| |
| bytes -= offset; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| if (map_data) { |
| if (i == map_data->nr_entries * nr_pages) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| page = map_data->pages[i / nr_pages]; |
| page += (i % nr_pages); |
| |
| i++; |
| } else { |
| page = alloc_page(q->bounce_gfp | gfp_mask); |
| if (!page) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| |
| if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
| break; |
| |
| len -= bytes; |
| offset = 0; |
| } |
| |
| if (ret) |
| goto cleanup; |
| |
| /* |
| * success |
| */ |
| if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || |
| (map_data && map_data->from_user)) { |
| ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0); |
| if (ret) |
| goto cleanup; |
| } |
| |
| bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); |
| return bio; |
| cleanup: |
| if (!map_data) |
| bio_for_each_segment(bvec, bio, i) |
| __free_page(bvec->bv_page); |
| |
| bio_put(bio); |
| out_bmd: |
| bio_free_map_data(bmd); |
| return ERR_PTR(ret); |
| } |
| |
| /** |
| * bio_copy_user - copy user data to bio |
| * @q: destination block queue |
| * @map_data: pointer to the rq_map_data holding pages (if necessary) |
| * @uaddr: start of user address |
| * @len: length in bytes |
| * @write_to_vm: bool indicating writing to pages or not |
| * @gfp_mask: memory allocation flags |
| * |
| * Prepares and returns a bio for indirect user io, bouncing data |
| * to/from kernel pages as necessary. Must be paired with |
| * call bio_uncopy_user() on io completion. |
| */ |
| struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, |
| unsigned long uaddr, unsigned int len, |
| int write_to_vm, gfp_t gfp_mask) |
| { |
| struct sg_iovec iov; |
| |
| iov.iov_base = (void __user *)uaddr; |
| iov.iov_len = len; |
| |
| return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); |
| } |
| EXPORT_SYMBOL(bio_copy_user); |
| |
| static struct bio *__bio_map_user_iov(struct request_queue *q, |
| struct block_device *bdev, |
| struct sg_iovec *iov, int iov_count, |
| int write_to_vm, gfp_t gfp_mask) |
| { |
| int i, j; |
| int nr_pages = 0; |
| struct page **pages; |
| struct bio *bio; |
| int cur_page = 0; |
| int ret, offset; |
| |
| for (i = 0; i < iov_count; i++) { |
| unsigned long uaddr = (unsigned long)iov[i].iov_base; |
| unsigned long len = iov[i].iov_len; |
| unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long start = uaddr >> PAGE_SHIFT; |
| |
| /* |
| * Overflow, abort |
| */ |
| if (end < start) |
| return ERR_PTR(-EINVAL); |
| |
| nr_pages += end - start; |
| /* |
| * buffer must be aligned to at least hardsector size for now |
| */ |
| if (uaddr & queue_dma_alignment(q)) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!nr_pages) |
| return ERR_PTR(-EINVAL); |
| |
| bio = bio_kmalloc(gfp_mask, nr_pages); |
| if (!bio) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = -ENOMEM; |
| pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
| if (!pages) |
| goto out; |
| |
| for (i = 0; i < iov_count; i++) { |
| unsigned long uaddr = (unsigned long)iov[i].iov_base; |
| unsigned long len = iov[i].iov_len; |
| unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long start = uaddr >> PAGE_SHIFT; |
| const int local_nr_pages = end - start; |
| const int page_limit = cur_page + local_nr_pages; |
| |
| ret = get_user_pages_fast(uaddr, local_nr_pages, |
| write_to_vm, &pages[cur_page]); |
| if (ret < local_nr_pages) { |
| ret = -EFAULT; |
| goto out_unmap; |
| } |
| |
| offset = uaddr & ~PAGE_MASK; |
| for (j = cur_page; j < page_limit; j++) { |
| unsigned int bytes = PAGE_SIZE - offset; |
| |
| if (len <= 0) |
| break; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| /* |
| * sorry... |
| */ |
| if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
| bytes) |
| break; |
| |
| len -= bytes; |
| offset = 0; |
| } |
| |
| cur_page = j; |
| /* |
| * release the pages we didn't map into the bio, if any |
| */ |
| while (j < page_limit) |
| page_cache_release(pages[j++]); |
| } |
| |
| kfree(pages); |
| |
| /* |
| * set data direction, and check if mapped pages need bouncing |
| */ |
| if (!write_to_vm) |
| bio->bi_rw |= REQ_WRITE; |
| |
| bio->bi_bdev = bdev; |
| bio->bi_flags |= (1 << BIO_USER_MAPPED); |
| return bio; |
| |
| out_unmap: |
| for (i = 0; i < nr_pages; i++) { |
| if(!pages[i]) |
| break; |
| page_cache_release(pages[i]); |
| } |
| out: |
| kfree(pages); |
| bio_put(bio); |
| return ERR_PTR(ret); |
| } |
| |
| /** |
| * bio_map_user - map user address into bio |
| * @q: the struct request_queue for the bio |
| * @bdev: destination block device |
| * @uaddr: start of user address |
| * @len: length in bytes |
| * @write_to_vm: bool indicating writing to pages or not |
| * @gfp_mask: memory allocation flags |
| * |
| * Map the user space address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, |
| unsigned long uaddr, unsigned int len, int write_to_vm, |
| gfp_t gfp_mask) |
| { |
| struct sg_iovec iov; |
| |
| iov.iov_base = (void __user *)uaddr; |
| iov.iov_len = len; |
| |
| return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); |
| } |
| EXPORT_SYMBOL(bio_map_user); |
| |
| /** |
| * bio_map_user_iov - map user sg_iovec table into bio |
| * @q: the struct request_queue for the bio |
| * @bdev: destination block device |
| * @iov: the iovec. |
| * @iov_count: number of elements in the iovec |
| * @write_to_vm: bool indicating writing to pages or not |
| * @gfp_mask: memory allocation flags |
| * |
| * Map the user space address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, |
| struct sg_iovec *iov, int iov_count, |
| int write_to_vm, gfp_t gfp_mask) |
| { |
| struct bio *bio; |
| |
| bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, |
| gfp_mask); |
| if (IS_ERR(bio)) |
| return bio; |
| |
| /* |
| * subtle -- if __bio_map_user() ended up bouncing a bio, |
| * it would normally disappear when its bi_end_io is run. |
| * however, we need it for the unmap, so grab an extra |
| * reference to it |
| */ |
| bio_get(bio); |
| |
| return bio; |
| } |
| |
| static void __bio_unmap_user(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| int i; |
| |
| /* |
| * make sure we dirty pages we wrote to |
| */ |
| __bio_for_each_segment(bvec, bio, i, 0) { |
| if (bio_data_dir(bio) == READ) |
| set_page_dirty_lock(bvec->bv_page); |
| |
| page_cache_release(bvec->bv_page); |
| } |
| |
| bio_put(bio); |
| } |
| |
| /** |
| * bio_unmap_user - unmap a bio |
| * @bio: the bio being unmapped |
| * |
| * Unmap a bio previously mapped by bio_map_user(). Must be called with |
| * a process context. |
| * |
| * bio_unmap_user() may sleep. |
| */ |
| void bio_unmap_user(struct bio *bio) |
| { |
| __bio_unmap_user(bio); |
| bio_put(bio); |
| } |
| EXPORT_SYMBOL(bio_unmap_user); |
| |
| static void bio_map_kern_endio(struct bio *bio, int err) |
| { |
| bio_put(bio); |
| } |
| |
| static struct bio *__bio_map_kern(struct request_queue *q, void *data, |
| unsigned int len, gfp_t gfp_mask) |
| { |
| unsigned long kaddr = (unsigned long)data; |
| unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long start = kaddr >> PAGE_SHIFT; |
| const int nr_pages = end - start; |
| int offset, i; |
| struct bio *bio; |
| |
| bio = bio_kmalloc(gfp_mask, nr_pages); |
| if (!bio) |
| return ERR_PTR(-ENOMEM); |
| |
| offset = offset_in_page(kaddr); |
| for (i = 0; i < nr_pages; i++) { |
| unsigned int bytes = PAGE_SIZE - offset; |
| |
| if (len <= 0) |
| break; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
| offset) < bytes) |
| break; |
| |
| data += bytes; |
| len -= bytes; |
| offset = 0; |
| } |
| |
| bio->bi_end_io = bio_map_kern_endio; |
| return bio; |
| } |
| |
| /** |
| * bio_map_kern - map kernel address into bio |
| * @q: the struct request_queue for the bio |
| * @data: pointer to buffer to map |
| * @len: length in bytes |
| * @gfp_mask: allocation flags for bio allocation |
| * |
| * Map the kernel address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, |
| gfp_t gfp_mask) |
| { |
| struct bio *bio; |
| |
| bio = __bio_map_kern(q, data, len, gfp_mask); |
| if (IS_ERR(bio)) |
| return bio; |
| |
| if (bio->bi_size == len) |
| return bio; |
| |
| /* |
| * Don't support partial mappings. |
| */ |
| bio_put(bio); |
| return ERR_PTR(-EINVAL); |
| } |
| EXPORT_SYMBOL(bio_map_kern); |
| |
| static void bio_copy_kern_endio(struct bio *bio, int err) |
| { |
| struct bio_vec *bvec; |
| const int read = bio_data_dir(bio) == READ; |
| struct bio_map_data *bmd = bio->bi_private; |
| int i; |
| char *p = bmd->sgvecs[0].iov_base; |
| |
| __bio_for_each_segment(bvec, bio, i, 0) { |
| char *addr = page_address(bvec->bv_page); |
| int len = bmd->iovecs[i].bv_len; |
| |
| if (read) |
| memcpy(p, addr, len); |
| |
| __free_page(bvec->bv_page); |
| p += len; |
| } |
| |
| bio_free_map_data(bmd); |
| bio_put(bio); |
| } |
| |
| /** |
| * bio_copy_kern - copy kernel address into bio |
| * @q: the struct request_queue for the bio |
| * @data: pointer to buffer to copy |
| * @len: length in bytes |
| * @gfp_mask: allocation flags for bio and page allocation |
| * @reading: data direction is READ |
| * |
| * copy the kernel address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, |
| gfp_t gfp_mask, int reading) |
| { |
| struct bio *bio; |
| struct bio_vec *bvec; |
| int i; |
| |
| bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); |
| if (IS_ERR(bio)) |
| return bio; |
| |
| if (!reading) { |
| void *p = data; |
| |
| bio_for_each_segment(bvec, bio, i) { |
| char *addr = page_address(bvec->bv_page); |
| |
| memcpy(addr, p, bvec->bv_len); |
| p += bvec->bv_len; |
| } |
| } |
| |
| bio->bi_end_io = bio_copy_kern_endio; |
| |
| return bio; |
| } |
| EXPORT_SYMBOL(bio_copy_kern); |
| |
| /* |
| * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions |
| * for performing direct-IO in BIOs. |
| * |
| * The problem is that we cannot run set_page_dirty() from interrupt context |
| * because the required locks are not interrupt-safe. So what we can do is to |
| * mark the pages dirty _before_ performing IO. And in interrupt context, |
| * check that the pages are still dirty. If so, fine. If not, redirty them |
| * in process context. |
| * |
| * We special-case compound pages here: normally this means reads into hugetlb |
| * pages. The logic in here doesn't really work right for compound pages |
| * because the VM does not uniformly chase down the head page in all cases. |
| * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't |
| * handle them at all. So we skip compound pages here at an early stage. |
| * |
| * Note that this code is very hard to test under normal circumstances because |
| * direct-io pins the pages with get_user_pages(). This makes |
| * is_page_cache_freeable return false, and the VM will not clean the pages. |
| * But other code (eg, pdflush) could clean the pages if they are mapped |
| * pagecache. |
| * |
| * Simply disabling the call to bio_set_pages_dirty() is a good way to test the |
| * deferred bio dirtying paths. |
| */ |
| |
| /* |
| * bio_set_pages_dirty() will mark all the bio's pages as dirty. |
| */ |
| void bio_set_pages_dirty(struct bio *bio) |
| { |
| struct bio_vec *bvec = bio->bi_io_vec; |
| int i; |
| |
| for (i = 0; i < bio->bi_vcnt; i++) { |
| struct page *page = bvec[i].bv_page; |
| |
| if (page && !PageCompound(page)) |
| set_page_dirty_lock(page); |
| } |
| } |
| |
| static void bio_release_pages(struct bio *bio) |
| { |
| struct bio_vec *bvec = bio->bi_io_vec; |
| int i; |
| |
| for (i = 0; i < bio->bi_vcnt; i++) { |
| struct page *page = bvec[i].bv_page; |
| |
| if (page) |
| put_page(page); |
| } |
| } |
| |
| /* |
| * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. |
| * If they are, then fine. If, however, some pages are clean then they must |
| * have been written out during the direct-IO read. So we take another ref on |
| * the BIO and the offending pages and re-dirty the pages in process context. |
| * |
| * It is expected that bio_check_pages_dirty() will wholly own the BIO from |
| * here on. It will run one page_cache_release() against each page and will |
| * run one bio_put() against the BIO. |
| */ |
| |
| static void bio_dirty_fn(struct work_struct *work); |
| |
| static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
| static DEFINE_SPINLOCK(bio_dirty_lock); |
| static struct bio *bio_dirty_list; |
| |
| /* |
| * This runs in process context |
| */ |
| static void bio_dirty_fn(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct bio *bio; |
| |
| spin_lock_irqsave(&bio_dirty_lock, flags); |
| bio = bio_dirty_list; |
| bio_dirty_list = NULL; |
| spin_unlock_irqrestore(&bio_dirty_lock, flags); |
| |
| while (bio) { |
| struct bio *next = bio->bi_private; |
| |
| bio_set_pages_dirty(bio); |
| bio_release_pages(bio); |
| bio_put(bio); |
| bio = next; |
| } |
| } |
| |
| void bio_check_pages_dirty(struct bio *bio) |
| { |
| struct bio_vec *bvec = bio->bi_io_vec; |
| int nr_clean_pages = 0; |
| int i; |
| |
| for (i = 0; i < bio->bi_vcnt; i++) { |
| struct page *page = bvec[i].bv_page; |
| |
| if (PageDirty(page) || PageCompound(page)) { |
| page_cache_release(page); |
| bvec[i].bv_page = NULL; |
| } else { |
| nr_clean_pages++; |
| } |
| } |
| |
| if (nr_clean_pages) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bio_dirty_lock, flags); |
| bio->bi_private = bio_dirty_list; |
| bio_dirty_list = bio; |
| spin_unlock_irqrestore(&bio_dirty_lock, flags); |
| schedule_work(&bio_dirty_work); |
| } else { |
| bio_put(bio); |
| } |
| } |
| |
| #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE |
| void bio_flush_dcache_pages(struct bio *bi) |
| { |
| int i; |
| struct bio_vec *bvec; |
| |
| bio_for_each_segment(bvec, bi, i) |
| flush_dcache_page(bvec->bv_page); |
| } |
| EXPORT_SYMBOL(bio_flush_dcache_pages); |
| #endif |
| |
| /** |
| * bio_endio - end I/O on a bio |
| * @bio: bio |
| * @error: error, if any |
| * |
| * Description: |
| * bio_endio() will end I/O on the whole bio. bio_endio() is the |
| * preferred way to end I/O on a bio, it takes care of clearing |
| * BIO_UPTODATE on error. @error is 0 on success, and and one of the |
| * established -Exxxx (-EIO, for instance) error values in case |
| * something went wrong. No one should call bi_end_io() directly on a |
| * bio unless they own it and thus know that it has an end_io |
| * function. |
| **/ |
| void bio_endio(struct bio *bio, int error) |
| { |
| if (error) |
| clear_bit(BIO_UPTODATE, &bio->bi_flags); |
| else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| error = -EIO; |
| |
| if (bio->bi_end_io) |
| bio->bi_end_io(bio, error); |
| } |
| EXPORT_SYMBOL(bio_endio); |
| |
| void bio_pair_release(struct bio_pair *bp) |
| { |
| if (atomic_dec_and_test(&bp->cnt)) { |
| struct bio *master = bp->bio1.bi_private; |
| |
| bio_endio(master, bp->error); |
| mempool_free(bp, bp->bio2.bi_private); |
| } |
| } |
| EXPORT_SYMBOL(bio_pair_release); |
| |
| static void bio_pair_end_1(struct bio *bi, int err) |
| { |
| struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); |
| |
| if (err) |
| bp->error = err; |
| |
| bio_pair_release(bp); |
| } |
| |
| static void bio_pair_end_2(struct bio *bi, int err) |
| { |
| struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); |
| |
| if (err) |
| bp->error = err; |
| |
| bio_pair_release(bp); |
| } |
| |
| /* |
| * split a bio - only worry about a bio with a single page in its iovec |
| */ |
| struct bio_pair *bio_split(struct bio *bi, int first_sectors) |
| { |
| struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); |
| |
| if (!bp) |
| return bp; |
| |
| trace_block_split(bdev_get_queue(bi->bi_bdev), bi, |
| bi->bi_sector + first_sectors); |
| |
| BUG_ON(bi->bi_vcnt != 1); |
| BUG_ON(bi->bi_idx != 0); |
| atomic_set(&bp->cnt, 3); |
| bp->error = 0; |
| bp->bio1 = *bi; |
| bp->bio2 = *bi; |
| bp->bio2.bi_sector += first_sectors; |
| bp->bio2.bi_size -= first_sectors << 9; |
| bp->bio1.bi_size = first_sectors << 9; |
| |
| bp->bv1 = bi->bi_io_vec[0]; |
| bp->bv2 = bi->bi_io_vec[0]; |
| bp->bv2.bv_offset += first_sectors << 9; |
| bp->bv2.bv_len -= first_sectors << 9; |
| bp->bv1.bv_len = first_sectors << 9; |
| |
| bp->bio1.bi_io_vec = &bp->bv1; |
| bp->bio2.bi_io_vec = &bp->bv2; |
| |
| bp->bio1.bi_max_vecs = 1; |
| bp->bio2.bi_max_vecs = 1; |
| |
| bp->bio1.bi_end_io = bio_pair_end_1; |
| bp->bio2.bi_end_io = bio_pair_end_2; |
| |
| bp->bio1.bi_private = bi; |
| bp->bio2.bi_private = bio_split_pool; |
| |
| if (bio_integrity(bi)) |
| bio_integrity_split(bi, bp, first_sectors); |
| |
| return bp; |
| } |
| EXPORT_SYMBOL(bio_split); |
| |
| /** |
| * bio_sector_offset - Find hardware sector offset in bio |
| * @bio: bio to inspect |
| * @index: bio_vec index |
| * @offset: offset in bv_page |
| * |
| * Return the number of hardware sectors between beginning of bio |
| * and an end point indicated by a bio_vec index and an offset |
| * within that vector's page. |
| */ |
| sector_t bio_sector_offset(struct bio *bio, unsigned short index, |
| unsigned int offset) |
| { |
| unsigned int sector_sz; |
| struct bio_vec *bv; |
| sector_t sectors; |
| int i; |
| |
| sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue); |
| sectors = 0; |
| |
| if (index >= bio->bi_idx) |
| index = bio->bi_vcnt - 1; |
| |
| __bio_for_each_segment(bv, bio, i, 0) { |
| if (i == index) { |
| if (offset > bv->bv_offset) |
| sectors += (offset - bv->bv_offset) / sector_sz; |
| break; |
| } |
| |
| sectors += bv->bv_len / sector_sz; |
| } |
| |
| return sectors; |
| } |
| EXPORT_SYMBOL(bio_sector_offset); |
| |
| /* |
| * create memory pools for biovec's in a bio_set. |
| * use the global biovec slabs created for general use. |
| */ |
| static int biovec_create_pools(struct bio_set *bs, int pool_entries) |
| { |
| struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; |
| |
| bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); |
| if (!bs->bvec_pool) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void biovec_free_pools(struct bio_set *bs) |
| { |
| mempool_destroy(bs->bvec_pool); |
| } |
| |
| void bioset_free(struct bio_set *bs) |
| { |
| if (bs->bio_pool) |
| mempool_destroy(bs->bio_pool); |
| |
| bioset_integrity_free(bs); |
| biovec_free_pools(bs); |
| bio_put_slab(bs); |
| |
| kfree(bs); |
| } |
| EXPORT_SYMBOL(bioset_free); |
| |
| /** |
| * bioset_create - Create a bio_set |
| * @pool_size: Number of bio and bio_vecs to cache in the mempool |
| * @front_pad: Number of bytes to allocate in front of the returned bio |
| * |
| * Description: |
| * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller |
| * to ask for a number of bytes to be allocated in front of the bio. |
| * Front pad allocation is useful for embedding the bio inside |
| * another structure, to avoid allocating extra data to go with the bio. |
| * Note that the bio must be embedded at the END of that structure always, |
| * or things will break badly. |
| */ |
| struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) |
| { |
| unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
| struct bio_set *bs; |
| |
| bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
| if (!bs) |
| return NULL; |
| |
| bs->front_pad = front_pad; |
| |
| bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
| if (!bs->bio_slab) { |
| kfree(bs); |
| return NULL; |
| } |
| |
| bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); |
| if (!bs->bio_pool) |
| goto bad; |
| |
| if (!biovec_create_pools(bs, pool_size)) |
| return bs; |
| |
| bad: |
| bioset_free(bs); |
| return NULL; |
| } |
| EXPORT_SYMBOL(bioset_create); |
| |
| #ifdef CONFIG_BLK_CGROUP |
| /** |
| * bio_associate_current - associate a bio with %current |
| * @bio: target bio |
| * |
| * Associate @bio with %current if it hasn't been associated yet. Block |
| * layer will treat @bio as if it were issued by %current no matter which |
| * task actually issues it. |
| * |
| * This function takes an extra reference of @task's io_context and blkcg |
| * which will be put when @bio is released. The caller must own @bio, |
| * ensure %current->io_context exists, and is responsible for synchronizing |
| * calls to this function. |
| */ |
| int bio_associate_current(struct bio *bio) |
| { |
| struct io_context *ioc; |
| struct cgroup_subsys_state *css; |
| |
| if (bio->bi_ioc) |
| return -EBUSY; |
| |
| ioc = current->io_context; |
| if (!ioc) |
| return -ENOENT; |
| |
| /* acquire active ref on @ioc and associate */ |
| get_io_context_active(ioc); |
| bio->bi_ioc = ioc; |
| |
| /* associate blkcg if exists */ |
| rcu_read_lock(); |
| css = task_subsys_state(current, blkio_subsys_id); |
| if (css && css_tryget(css)) |
| bio->bi_css = css; |
| rcu_read_unlock(); |
| |
| return 0; |
| } |
| |
| /** |
| * bio_disassociate_task - undo bio_associate_current() |
| * @bio: target bio |
| */ |
| void bio_disassociate_task(struct bio *bio) |
| { |
| if (bio->bi_ioc) { |
| put_io_context(bio->bi_ioc); |
| bio->bi_ioc = NULL; |
| } |
| if (bio->bi_css) { |
| css_put(bio->bi_css); |
| bio->bi_css = NULL; |
| } |
| } |
| |
| #endif /* CONFIG_BLK_CGROUP */ |
| |
| static void __init biovec_init_slabs(void) |
| { |
| int i; |
| |
| for (i = 0; i < BIOVEC_NR_POOLS; i++) { |
| int size; |
| struct biovec_slab *bvs = bvec_slabs + i; |
| |
| if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
| bvs->slab = NULL; |
| continue; |
| } |
| |
| size = bvs->nr_vecs * sizeof(struct bio_vec); |
| bvs->slab = kmem_cache_create(bvs->name, size, 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
| } |
| } |
| |
| static int __init init_bio(void) |
| { |
| bio_slab_max = 2; |
| bio_slab_nr = 0; |
| bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); |
| if (!bio_slabs) |
| panic("bio: can't allocate bios\n"); |
| |
| bio_integrity_init(); |
| biovec_init_slabs(); |
| |
| fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
| if (!fs_bio_set) |
| panic("bio: can't allocate bios\n"); |
| |
| if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) |
| panic("bio: can't create integrity pool\n"); |
| |
| bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, |
| sizeof(struct bio_pair)); |
| if (!bio_split_pool) |
| panic("bio: can't create split pool\n"); |
| |
| return 0; |
| } |
| subsys_initcall(init_bio); |