| /* QLogic qede NIC Driver |
| * Copyright (c) 2015 QLogic Corporation |
| * |
| * This software is available under the terms of the GNU General Public License |
| * (GPL) Version 2, available from the file COPYING in the main directory of |
| * this source tree. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/version.h> |
| #include <linux/device.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/errno.h> |
| #include <linux/list.h> |
| #include <linux/string.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <asm/byteorder.h> |
| #include <asm/param.h> |
| #include <linux/io.h> |
| #include <linux/netdev_features.h> |
| #include <linux/udp.h> |
| #include <linux/tcp.h> |
| #include <net/udp_tunnel.h> |
| #include <linux/ip.h> |
| #include <net/ipv6.h> |
| #include <net/tcp.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <linux/pkt_sched.h> |
| #include <linux/ethtool.h> |
| #include <linux/in.h> |
| #include <linux/random.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/bitops.h> |
| #include <linux/qed/qede_roce.h> |
| #include "qede.h" |
| |
| static char version[] = |
| "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; |
| |
| MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| static uint debug; |
| module_param(debug, uint, 0); |
| MODULE_PARM_DESC(debug, " Default debug msglevel"); |
| |
| static const struct qed_eth_ops *qed_ops; |
| |
| #define CHIP_NUM_57980S_40 0x1634 |
| #define CHIP_NUM_57980S_10 0x1666 |
| #define CHIP_NUM_57980S_MF 0x1636 |
| #define CHIP_NUM_57980S_100 0x1644 |
| #define CHIP_NUM_57980S_50 0x1654 |
| #define CHIP_NUM_57980S_25 0x1656 |
| #define CHIP_NUM_57980S_IOV 0x1664 |
| |
| #ifndef PCI_DEVICE_ID_NX2_57980E |
| #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 |
| #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 |
| #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF |
| #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 |
| #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 |
| #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 |
| #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV |
| #endif |
| |
| enum qede_pci_private { |
| QEDE_PRIVATE_PF, |
| QEDE_PRIVATE_VF |
| }; |
| |
| static const struct pci_device_id qede_pci_tbl[] = { |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, |
| #ifdef CONFIG_QED_SRIOV |
| {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, |
| #endif |
| { 0 } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, qede_pci_tbl); |
| |
| static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); |
| |
| #define TX_TIMEOUT (5 * HZ) |
| |
| static void qede_remove(struct pci_dev *pdev); |
| static int qede_alloc_rx_buffer(struct qede_dev *edev, |
| struct qede_rx_queue *rxq); |
| static void qede_link_update(void *dev, struct qed_link_output *link); |
| |
| #ifdef CONFIG_QED_SRIOV |
| static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, |
| __be16 vlan_proto) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| |
| if (vlan > 4095) { |
| DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); |
| return -EINVAL; |
| } |
| |
| if (vlan_proto != htons(ETH_P_8021Q)) |
| return -EPROTONOSUPPORT; |
| |
| DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", |
| vlan, vf); |
| |
| return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); |
| } |
| |
| static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| |
| DP_VERBOSE(edev, QED_MSG_IOV, |
| "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", |
| mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); |
| |
| if (!is_valid_ether_addr(mac)) { |
| DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); |
| return -EINVAL; |
| } |
| |
| return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); |
| } |
| |
| static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) |
| { |
| struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); |
| struct qed_dev_info *qed_info = &edev->dev_info.common; |
| int rc; |
| |
| DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); |
| |
| rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); |
| |
| /* Enable/Disable Tx switching for PF */ |
| if ((rc == num_vfs_param) && netif_running(edev->ndev) && |
| qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) { |
| struct qed_update_vport_params params; |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.vport_id = 0; |
| params.update_tx_switching_flg = 1; |
| params.tx_switching_flg = num_vfs_param ? 1 : 0; |
| edev->ops->vport_update(edev->cdev, ¶ms); |
| } |
| |
| return rc; |
| } |
| #endif |
| |
| static struct pci_driver qede_pci_driver = { |
| .name = "qede", |
| .id_table = qede_pci_tbl, |
| .probe = qede_probe, |
| .remove = qede_remove, |
| #ifdef CONFIG_QED_SRIOV |
| .sriov_configure = qede_sriov_configure, |
| #endif |
| }; |
| |
| static void qede_force_mac(void *dev, u8 *mac) |
| { |
| struct qede_dev *edev = dev; |
| |
| ether_addr_copy(edev->ndev->dev_addr, mac); |
| ether_addr_copy(edev->primary_mac, mac); |
| } |
| |
| static struct qed_eth_cb_ops qede_ll_ops = { |
| { |
| .link_update = qede_link_update, |
| }, |
| .force_mac = qede_force_mac, |
| }; |
| |
| static int qede_netdev_event(struct notifier_block *this, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *ndev = netdev_notifier_info_to_dev(ptr); |
| struct ethtool_drvinfo drvinfo; |
| struct qede_dev *edev; |
| |
| if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) |
| goto done; |
| |
| /* Check whether this is a qede device */ |
| if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) |
| goto done; |
| |
| memset(&drvinfo, 0, sizeof(drvinfo)); |
| ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); |
| if (strcmp(drvinfo.driver, "qede")) |
| goto done; |
| edev = netdev_priv(ndev); |
| |
| switch (event) { |
| case NETDEV_CHANGENAME: |
| /* Notify qed of the name change */ |
| if (!edev->ops || !edev->ops->common) |
| goto done; |
| edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede"); |
| break; |
| case NETDEV_CHANGEADDR: |
| edev = netdev_priv(ndev); |
| qede_roce_event_changeaddr(edev); |
| break; |
| } |
| |
| done: |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block qede_netdev_notifier = { |
| .notifier_call = qede_netdev_event, |
| }; |
| |
| static |
| int __init qede_init(void) |
| { |
| int ret; |
| |
| pr_info("qede_init: %s\n", version); |
| |
| qed_ops = qed_get_eth_ops(); |
| if (!qed_ops) { |
| pr_notice("Failed to get qed ethtool operations\n"); |
| return -EINVAL; |
| } |
| |
| /* Must register notifier before pci ops, since we might miss |
| * interface rename after pci probe and netdev registeration. |
| */ |
| ret = register_netdevice_notifier(&qede_netdev_notifier); |
| if (ret) { |
| pr_notice("Failed to register netdevice_notifier\n"); |
| qed_put_eth_ops(); |
| return -EINVAL; |
| } |
| |
| ret = pci_register_driver(&qede_pci_driver); |
| if (ret) { |
| pr_notice("Failed to register driver\n"); |
| unregister_netdevice_notifier(&qede_netdev_notifier); |
| qed_put_eth_ops(); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void __exit qede_cleanup(void) |
| { |
| if (debug & QED_LOG_INFO_MASK) |
| pr_info("qede_cleanup called\n"); |
| |
| unregister_netdevice_notifier(&qede_netdev_notifier); |
| pci_unregister_driver(&qede_pci_driver); |
| qed_put_eth_ops(); |
| } |
| |
| module_init(qede_init); |
| module_exit(qede_cleanup); |
| |
| /* ------------------------------------------------------------------------- |
| * START OF FAST-PATH |
| * ------------------------------------------------------------------------- |
| */ |
| |
| /* Unmap the data and free skb */ |
| static int qede_free_tx_pkt(struct qede_dev *edev, |
| struct qede_tx_queue *txq, int *len) |
| { |
| u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; |
| struct sk_buff *skb = txq->sw_tx_ring[idx].skb; |
| struct eth_tx_1st_bd *first_bd; |
| struct eth_tx_bd *tx_data_bd; |
| int bds_consumed = 0; |
| int nbds; |
| bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; |
| int i, split_bd_len = 0; |
| |
| if (unlikely(!skb)) { |
| DP_ERR(edev, |
| "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", |
| idx, txq->sw_tx_cons, txq->sw_tx_prod); |
| return -1; |
| } |
| |
| *len = skb->len; |
| |
| first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); |
| |
| bds_consumed++; |
| |
| nbds = first_bd->data.nbds; |
| |
| if (data_split) { |
| struct eth_tx_bd *split = (struct eth_tx_bd *) |
| qed_chain_consume(&txq->tx_pbl); |
| split_bd_len = BD_UNMAP_LEN(split); |
| bds_consumed++; |
| } |
| dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), |
| BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| |
| /* Unmap the data of the skb frags */ |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_consume(&txq->tx_pbl); |
| dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), |
| BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| } |
| |
| while (bds_consumed++ < nbds) |
| qed_chain_consume(&txq->tx_pbl); |
| |
| /* Free skb */ |
| dev_kfree_skb_any(skb); |
| txq->sw_tx_ring[idx].skb = NULL; |
| txq->sw_tx_ring[idx].flags = 0; |
| |
| return 0; |
| } |
| |
| /* Unmap the data and free skb when mapping failed during start_xmit */ |
| static void qede_free_failed_tx_pkt(struct qede_dev *edev, |
| struct qede_tx_queue *txq, |
| struct eth_tx_1st_bd *first_bd, |
| int nbd, bool data_split) |
| { |
| u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; |
| struct sk_buff *skb = txq->sw_tx_ring[idx].skb; |
| struct eth_tx_bd *tx_data_bd; |
| int i, split_bd_len = 0; |
| |
| /* Return prod to its position before this skb was handled */ |
| qed_chain_set_prod(&txq->tx_pbl, |
| le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); |
| |
| first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); |
| |
| if (data_split) { |
| struct eth_tx_bd *split = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| split_bd_len = BD_UNMAP_LEN(split); |
| nbd--; |
| } |
| |
| dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), |
| BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| |
| /* Unmap the data of the skb frags */ |
| for (i = 0; i < nbd; i++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| if (tx_data_bd->nbytes) |
| dma_unmap_page(&edev->pdev->dev, |
| BD_UNMAP_ADDR(tx_data_bd), |
| BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| } |
| |
| /* Return again prod to its position before this skb was handled */ |
| qed_chain_set_prod(&txq->tx_pbl, |
| le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); |
| |
| /* Free skb */ |
| dev_kfree_skb_any(skb); |
| txq->sw_tx_ring[idx].skb = NULL; |
| txq->sw_tx_ring[idx].flags = 0; |
| } |
| |
| static u32 qede_xmit_type(struct qede_dev *edev, |
| struct sk_buff *skb, int *ipv6_ext) |
| { |
| u32 rc = XMIT_L4_CSUM; |
| __be16 l3_proto; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return XMIT_PLAIN; |
| |
| l3_proto = vlan_get_protocol(skb); |
| if (l3_proto == htons(ETH_P_IPV6) && |
| (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) |
| *ipv6_ext = 1; |
| |
| if (skb->encapsulation) |
| rc |= XMIT_ENC; |
| |
| if (skb_is_gso(skb)) |
| rc |= XMIT_LSO; |
| |
| return rc; |
| } |
| |
| static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, |
| struct eth_tx_2nd_bd *second_bd, |
| struct eth_tx_3rd_bd *third_bd) |
| { |
| u8 l4_proto; |
| u16 bd2_bits1 = 0, bd2_bits2 = 0; |
| |
| bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); |
| |
| bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & |
| ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) |
| << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; |
| |
| bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << |
| ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); |
| |
| if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) |
| l4_proto = ipv6_hdr(skb)->nexthdr; |
| else |
| l4_proto = ip_hdr(skb)->protocol; |
| |
| if (l4_proto == IPPROTO_UDP) |
| bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; |
| |
| if (third_bd) |
| third_bd->data.bitfields |= |
| cpu_to_le16(((tcp_hdrlen(skb) / 4) & |
| ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << |
| ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); |
| |
| second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); |
| second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); |
| } |
| |
| static int map_frag_to_bd(struct qede_dev *edev, |
| skb_frag_t *frag, struct eth_tx_bd *bd) |
| { |
| dma_addr_t mapping; |
| |
| /* Map skb non-linear frag data for DMA */ |
| mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); |
| return -ENOMEM; |
| } |
| |
| /* Setup the data pointer of the frag data */ |
| BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); |
| |
| return 0; |
| } |
| |
| static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) |
| { |
| if (is_encap_pkt) |
| return (skb_inner_transport_header(skb) + |
| inner_tcp_hdrlen(skb) - skb->data); |
| else |
| return (skb_transport_header(skb) + |
| tcp_hdrlen(skb) - skb->data); |
| } |
| |
| /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) |
| static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb, |
| u8 xmit_type) |
| { |
| int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; |
| |
| if (xmit_type & XMIT_LSO) { |
| int hlen; |
| |
| hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); |
| |
| /* linear payload would require its own BD */ |
| if (skb_headlen(skb) > hlen) |
| allowed_frags--; |
| } |
| |
| return (skb_shinfo(skb)->nr_frags > allowed_frags); |
| } |
| #endif |
| |
| static inline void qede_update_tx_producer(struct qede_tx_queue *txq) |
| { |
| /* wmb makes sure that the BDs data is updated before updating the |
| * producer, otherwise FW may read old data from the BDs. |
| */ |
| wmb(); |
| barrier(); |
| writel(txq->tx_db.raw, txq->doorbell_addr); |
| |
| /* mmiowb is needed to synchronize doorbell writes from more than one |
| * processor. It guarantees that the write arrives to the device before |
| * the queue lock is released and another start_xmit is called (possibly |
| * on another CPU). Without this barrier, the next doorbell can bypass |
| * this doorbell. This is applicable to IA64/Altix systems. |
| */ |
| mmiowb(); |
| } |
| |
| /* Main transmit function */ |
| static netdev_tx_t qede_start_xmit(struct sk_buff *skb, |
| struct net_device *ndev) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| struct netdev_queue *netdev_txq; |
| struct qede_tx_queue *txq; |
| struct eth_tx_1st_bd *first_bd; |
| struct eth_tx_2nd_bd *second_bd = NULL; |
| struct eth_tx_3rd_bd *third_bd = NULL; |
| struct eth_tx_bd *tx_data_bd = NULL; |
| u16 txq_index; |
| u8 nbd = 0; |
| dma_addr_t mapping; |
| int rc, frag_idx = 0, ipv6_ext = 0; |
| u8 xmit_type; |
| u16 idx; |
| u16 hlen; |
| bool data_split = false; |
| |
| /* Get tx-queue context and netdev index */ |
| txq_index = skb_get_queue_mapping(skb); |
| WARN_ON(txq_index >= QEDE_TSS_COUNT(edev)); |
| txq = QEDE_TX_QUEUE(edev, txq_index); |
| netdev_txq = netdev_get_tx_queue(ndev, txq_index); |
| |
| WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); |
| |
| xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); |
| |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) |
| if (qede_pkt_req_lin(edev, skb, xmit_type)) { |
| if (skb_linearize(skb)) { |
| DP_NOTICE(edev, |
| "SKB linearization failed - silently dropping this SKB\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| } |
| #endif |
| |
| /* Fill the entry in the SW ring and the BDs in the FW ring */ |
| idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; |
| txq->sw_tx_ring[idx].skb = skb; |
| first_bd = (struct eth_tx_1st_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(first_bd, 0, sizeof(*first_bd)); |
| first_bd->data.bd_flags.bitfields = |
| 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; |
| |
| /* Map skb linear data for DMA and set in the first BD */ |
| mapping = dma_map_single(&edev->pdev->dev, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| DP_NOTICE(edev, "SKB mapping failed\n"); |
| qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| nbd++; |
| BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); |
| |
| /* In case there is IPv6 with extension headers or LSO we need 2nd and |
| * 3rd BDs. |
| */ |
| if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { |
| second_bd = (struct eth_tx_2nd_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(second_bd, 0, sizeof(*second_bd)); |
| |
| nbd++; |
| third_bd = (struct eth_tx_3rd_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(third_bd, 0, sizeof(*third_bd)); |
| |
| nbd++; |
| /* We need to fill in additional data in second_bd... */ |
| tx_data_bd = (struct eth_tx_bd *)second_bd; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; |
| } |
| |
| /* Fill the parsing flags & params according to the requested offload */ |
| if (xmit_type & XMIT_L4_CSUM) { |
| /* We don't re-calculate IP checksum as it is already done by |
| * the upper stack |
| */ |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; |
| |
| if (xmit_type & XMIT_ENC) { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; |
| first_bd->data.bitfields |= |
| 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; |
| } |
| |
| /* Legacy FW had flipped behavior in regard to this bit - |
| * I.e., needed to set to prevent FW from touching encapsulated |
| * packets when it didn't need to. |
| */ |
| if (unlikely(txq->is_legacy)) |
| first_bd->data.bitfields ^= |
| 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; |
| |
| /* If the packet is IPv6 with extension header, indicate that |
| * to FW and pass few params, since the device cracker doesn't |
| * support parsing IPv6 with extension header/s. |
| */ |
| if (unlikely(ipv6_ext)) |
| qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); |
| } |
| |
| if (xmit_type & XMIT_LSO) { |
| first_bd->data.bd_flags.bitfields |= |
| (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); |
| third_bd->data.lso_mss = |
| cpu_to_le16(skb_shinfo(skb)->gso_size); |
| |
| if (unlikely(xmit_type & XMIT_ENC)) { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; |
| hlen = qede_get_skb_hlen(skb, true); |
| } else { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; |
| hlen = qede_get_skb_hlen(skb, false); |
| } |
| |
| /* @@@TBD - if will not be removed need to check */ |
| third_bd->data.bitfields |= |
| cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT)); |
| |
| /* Make life easier for FW guys who can't deal with header and |
| * data on same BD. If we need to split, use the second bd... |
| */ |
| if (unlikely(skb_headlen(skb) > hlen)) { |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "TSO split header size is %d (%x:%x)\n", |
| first_bd->nbytes, first_bd->addr.hi, |
| first_bd->addr.lo); |
| |
| mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), |
| le32_to_cpu(first_bd->addr.lo)) + |
| hlen; |
| |
| BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, |
| le16_to_cpu(first_bd->nbytes) - |
| hlen); |
| |
| /* this marks the BD as one that has no |
| * individual mapping |
| */ |
| txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; |
| |
| first_bd->nbytes = cpu_to_le16(hlen); |
| |
| tx_data_bd = (struct eth_tx_bd *)third_bd; |
| data_split = true; |
| } |
| } else { |
| first_bd->data.bitfields |= |
| (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << |
| ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; |
| } |
| |
| /* Handle fragmented skb */ |
| /* special handle for frags inside 2nd and 3rd bds.. */ |
| while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { |
| rc = map_frag_to_bd(edev, |
| &skb_shinfo(skb)->frags[frag_idx], |
| tx_data_bd); |
| if (rc) { |
| qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, |
| data_split); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| |
| if (tx_data_bd == (struct eth_tx_bd *)second_bd) |
| tx_data_bd = (struct eth_tx_bd *)third_bd; |
| else |
| tx_data_bd = NULL; |
| |
| frag_idx++; |
| } |
| |
| /* map last frags into 4th, 5th .... */ |
| for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| |
| memset(tx_data_bd, 0, sizeof(*tx_data_bd)); |
| |
| rc = map_frag_to_bd(edev, |
| &skb_shinfo(skb)->frags[frag_idx], |
| tx_data_bd); |
| if (rc) { |
| qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, |
| data_split); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| } |
| |
| /* update the first BD with the actual num BDs */ |
| first_bd->data.nbds = nbd; |
| |
| netdev_tx_sent_queue(netdev_txq, skb->len); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Advance packet producer only before sending the packet since mapping |
| * of pages may fail. |
| */ |
| txq->sw_tx_prod++; |
| |
| /* 'next page' entries are counted in the producer value */ |
| txq->tx_db.data.bd_prod = |
| cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); |
| |
| if (!skb->xmit_more || netif_xmit_stopped(netdev_txq)) |
| qede_update_tx_producer(txq); |
| |
| if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) |
| < (MAX_SKB_FRAGS + 1))) { |
| if (skb->xmit_more) |
| qede_update_tx_producer(txq); |
| |
| netif_tx_stop_queue(netdev_txq); |
| txq->stopped_cnt++; |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "Stop queue was called\n"); |
| /* paired memory barrier is in qede_tx_int(), we have to keep |
| * ordering of set_bit() in netif_tx_stop_queue() and read of |
| * fp->bd_tx_cons |
| */ |
| smp_mb(); |
| |
| if (qed_chain_get_elem_left(&txq->tx_pbl) |
| >= (MAX_SKB_FRAGS + 1) && |
| (edev->state == QEDE_STATE_OPEN)) { |
| netif_tx_wake_queue(netdev_txq); |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "Wake queue was called\n"); |
| } |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| int qede_txq_has_work(struct qede_tx_queue *txq) |
| { |
| u16 hw_bd_cons; |
| |
| /* Tell compiler that consumer and producer can change */ |
| barrier(); |
| hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) |
| return 0; |
| |
| return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); |
| } |
| |
| static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) |
| { |
| struct netdev_queue *netdev_txq; |
| u16 hw_bd_cons; |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| int rc; |
| |
| netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); |
| |
| hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| barrier(); |
| |
| while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { |
| int len = 0; |
| |
| rc = qede_free_tx_pkt(edev, txq, &len); |
| if (rc) { |
| DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", |
| hw_bd_cons, |
| qed_chain_get_cons_idx(&txq->tx_pbl)); |
| break; |
| } |
| |
| bytes_compl += len; |
| pkts_compl++; |
| txq->sw_tx_cons++; |
| txq->xmit_pkts++; |
| } |
| |
| netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); |
| |
| /* Need to make the tx_bd_cons update visible to start_xmit() |
| * before checking for netif_tx_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that |
| * start_xmit() will miss it and cause the queue to be stopped |
| * forever. |
| * On the other hand we need an rmb() here to ensure the proper |
| * ordering of bit testing in the following |
| * netif_tx_queue_stopped(txq) call. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(netdev_txq))) { |
| /* Taking tx_lock is needed to prevent reenabling the queue |
| * while it's empty. This could have happen if rx_action() gets |
| * suspended in qede_tx_int() after the condition before |
| * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): |
| * |
| * stops the queue->sees fresh tx_bd_cons->releases the queue-> |
| * sends some packets consuming the whole queue again-> |
| * stops the queue |
| */ |
| |
| __netif_tx_lock(netdev_txq, smp_processor_id()); |
| |
| if ((netif_tx_queue_stopped(netdev_txq)) && |
| (edev->state == QEDE_STATE_OPEN) && |
| (qed_chain_get_elem_left(&txq->tx_pbl) |
| >= (MAX_SKB_FRAGS + 1))) { |
| netif_tx_wake_queue(netdev_txq); |
| DP_VERBOSE(edev, NETIF_MSG_TX_DONE, |
| "Wake queue was called\n"); |
| } |
| |
| __netif_tx_unlock(netdev_txq); |
| } |
| |
| return 0; |
| } |
| |
| bool qede_has_rx_work(struct qede_rx_queue *rxq) |
| { |
| u16 hw_comp_cons, sw_comp_cons; |
| |
| /* Tell compiler that status block fields can change */ |
| barrier(); |
| |
| hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| |
| return hw_comp_cons != sw_comp_cons; |
| } |
| |
| static bool qede_has_tx_work(struct qede_fastpath *fp) |
| { |
| u8 tc; |
| |
| for (tc = 0; tc < fp->edev->num_tc; tc++) |
| if (qede_txq_has_work(&fp->txqs[tc])) |
| return true; |
| return false; |
| } |
| |
| static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) |
| { |
| qed_chain_consume(&rxq->rx_bd_ring); |
| rxq->sw_rx_cons++; |
| } |
| |
| /* This function reuses the buffer(from an offset) from |
| * consumer index to producer index in the bd ring |
| */ |
| static inline void qede_reuse_page(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct sw_rx_data *curr_cons) |
| { |
| struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); |
| struct sw_rx_data *curr_prod; |
| dma_addr_t new_mapping; |
| |
| curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| *curr_prod = *curr_cons; |
| |
| new_mapping = curr_prod->mapping + curr_prod->page_offset; |
| |
| rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); |
| rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); |
| |
| rxq->sw_rx_prod++; |
| curr_cons->data = NULL; |
| } |
| |
| /* In case of allocation failures reuse buffers |
| * from consumer index to produce buffers for firmware |
| */ |
| void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, |
| struct qede_dev *edev, u8 count) |
| { |
| struct sw_rx_data *curr_cons; |
| |
| for (; count > 0; count--) { |
| curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; |
| qede_reuse_page(edev, rxq, curr_cons); |
| qede_rx_bd_ring_consume(rxq); |
| } |
| } |
| |
| static inline int qede_realloc_rx_buffer(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct sw_rx_data *curr_cons) |
| { |
| /* Move to the next segment in the page */ |
| curr_cons->page_offset += rxq->rx_buf_seg_size; |
| |
| if (curr_cons->page_offset == PAGE_SIZE) { |
| if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { |
| /* Since we failed to allocate new buffer |
| * current buffer can be used again. |
| */ |
| curr_cons->page_offset -= rxq->rx_buf_seg_size; |
| |
| return -ENOMEM; |
| } |
| |
| dma_unmap_page(&edev->pdev->dev, curr_cons->mapping, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| } else { |
| /* Increment refcount of the page as we don't want |
| * network stack to take the ownership of the page |
| * which can be recycled multiple times by the driver. |
| */ |
| page_ref_inc(curr_cons->data); |
| qede_reuse_page(edev, rxq, curr_cons); |
| } |
| |
| return 0; |
| } |
| |
| static inline void qede_update_rx_prod(struct qede_dev *edev, |
| struct qede_rx_queue *rxq) |
| { |
| u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); |
| u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); |
| struct eth_rx_prod_data rx_prods = {0}; |
| |
| /* Update producers */ |
| rx_prods.bd_prod = cpu_to_le16(bd_prod); |
| rx_prods.cqe_prod = cpu_to_le16(cqe_prod); |
| |
| /* Make sure that the BD and SGE data is updated before updating the |
| * producers since FW might read the BD/SGE right after the producer |
| * is updated. |
| */ |
| wmb(); |
| |
| internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), |
| (u32 *)&rx_prods); |
| |
| /* mmiowb is needed to synchronize doorbell writes from more than one |
| * processor. It guarantees that the write arrives to the device before |
| * the napi lock is released and another qede_poll is called (possibly |
| * on another CPU). Without this barrier, the next doorbell can bypass |
| * this doorbell. This is applicable to IA64/Altix systems. |
| */ |
| mmiowb(); |
| } |
| |
| static u32 qede_get_rxhash(struct qede_dev *edev, |
| u8 bitfields, |
| __le32 rss_hash, enum pkt_hash_types *rxhash_type) |
| { |
| enum rss_hash_type htype; |
| |
| htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); |
| |
| if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { |
| *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || |
| (htype == RSS_HASH_TYPE_IPV6)) ? |
| PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; |
| return le32_to_cpu(rss_hash); |
| } |
| *rxhash_type = PKT_HASH_TYPE_NONE; |
| return 0; |
| } |
| |
| static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) |
| { |
| skb_checksum_none_assert(skb); |
| |
| if (csum_flag & QEDE_CSUM_UNNECESSARY) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) |
| skb->csum_level = 1; |
| } |
| |
| static inline void qede_skb_receive(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct sk_buff *skb, u16 vlan_tag) |
| { |
| if (vlan_tag) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| |
| napi_gro_receive(&fp->napi, skb); |
| } |
| |
| static void qede_set_gro_params(struct qede_dev *edev, |
| struct sk_buff *skb, |
| struct eth_fast_path_rx_tpa_start_cqe *cqe) |
| { |
| u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); |
| |
| if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & |
| PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; |
| else |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; |
| |
| skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - |
| cqe->header_len; |
| } |
| |
| static int qede_fill_frag_skb(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| u8 tpa_agg_index, u16 len_on_bd) |
| { |
| struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & |
| NUM_RX_BDS_MAX]; |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; |
| struct sk_buff *skb = tpa_info->skb; |
| |
| if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) |
| goto out; |
| |
| /* Add one frag and update the appropriate fields in the skb */ |
| skb_fill_page_desc(skb, tpa_info->frag_id++, |
| current_bd->data, current_bd->page_offset, |
| len_on_bd); |
| |
| if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) { |
| /* Incr page ref count to reuse on allocation failure |
| * so that it doesn't get freed while freeing SKB. |
| */ |
| page_ref_inc(current_bd->data); |
| goto out; |
| } |
| |
| qed_chain_consume(&rxq->rx_bd_ring); |
| rxq->sw_rx_cons++; |
| |
| skb->data_len += len_on_bd; |
| skb->truesize += rxq->rx_buf_seg_size; |
| skb->len += len_on_bd; |
| |
| return 0; |
| |
| out: |
| tpa_info->agg_state = QEDE_AGG_STATE_ERROR; |
| qede_recycle_rx_bd_ring(rxq, edev, 1); |
| return -ENOMEM; |
| } |
| |
| static void qede_tpa_start(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct eth_fast_path_rx_tpa_start_cqe *cqe) |
| { |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; |
| struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); |
| struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); |
| struct sw_rx_data *replace_buf = &tpa_info->replace_buf; |
| dma_addr_t mapping = tpa_info->replace_buf_mapping; |
| struct sw_rx_data *sw_rx_data_cons; |
| struct sw_rx_data *sw_rx_data_prod; |
| enum pkt_hash_types rxhash_type; |
| u32 rxhash; |
| |
| sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; |
| sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| |
| /* Use pre-allocated replacement buffer - we can't release the agg. |
| * start until its over and we don't want to risk allocation failing |
| * here, so re-allocate when aggregation will be over. |
| */ |
| sw_rx_data_prod->mapping = replace_buf->mapping; |
| |
| sw_rx_data_prod->data = replace_buf->data; |
| rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); |
| rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); |
| sw_rx_data_prod->page_offset = replace_buf->page_offset; |
| |
| rxq->sw_rx_prod++; |
| |
| /* move partial skb from cons to pool (don't unmap yet) |
| * save mapping, incase we drop the packet later on. |
| */ |
| tpa_info->start_buf = *sw_rx_data_cons; |
| mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), |
| le32_to_cpu(rx_bd_cons->addr.lo)); |
| |
| tpa_info->start_buf_mapping = mapping; |
| rxq->sw_rx_cons++; |
| |
| /* set tpa state to start only if we are able to allocate skb |
| * for this aggregation, otherwise mark as error and aggregation will |
| * be dropped |
| */ |
| tpa_info->skb = netdev_alloc_skb(edev->ndev, |
| le16_to_cpu(cqe->len_on_first_bd)); |
| if (unlikely(!tpa_info->skb)) { |
| DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); |
| tpa_info->agg_state = QEDE_AGG_STATE_ERROR; |
| goto cons_buf; |
| } |
| |
| skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); |
| memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe)); |
| |
| /* Start filling in the aggregation info */ |
| tpa_info->frag_id = 0; |
| tpa_info->agg_state = QEDE_AGG_STATE_START; |
| |
| rxhash = qede_get_rxhash(edev, cqe->bitfields, |
| cqe->rss_hash, &rxhash_type); |
| skb_set_hash(tpa_info->skb, rxhash, rxhash_type); |
| if ((le16_to_cpu(cqe->pars_flags.flags) >> |
| PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & |
| PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) |
| tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); |
| else |
| tpa_info->vlan_tag = 0; |
| |
| /* This is needed in order to enable forwarding support */ |
| qede_set_gro_params(edev, tpa_info->skb, cqe); |
| |
| cons_buf: /* We still need to handle bd_len_list to consume buffers */ |
| if (likely(cqe->ext_bd_len_list[0])) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->ext_bd_len_list[0])); |
| |
| if (unlikely(cqe->ext_bd_len_list[1])) { |
| DP_ERR(edev, |
| "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); |
| tpa_info->agg_state = QEDE_AGG_STATE_ERROR; |
| } |
| } |
| |
| #ifdef CONFIG_INET |
| static void qede_gro_ip_csum(struct sk_buff *skb) |
| { |
| const struct iphdr *iph = ip_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct iphdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), |
| iph->saddr, iph->daddr, 0); |
| |
| tcp_gro_complete(skb); |
| } |
| |
| static void qede_gro_ipv6_csum(struct sk_buff *skb) |
| { |
| struct ipv6hdr *iph = ipv6_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct ipv6hdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), |
| &iph->saddr, &iph->daddr, 0); |
| tcp_gro_complete(skb); |
| } |
| #endif |
| |
| static void qede_gro_receive(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct sk_buff *skb, |
| u16 vlan_tag) |
| { |
| /* FW can send a single MTU sized packet from gro flow |
| * due to aggregation timeout/last segment etc. which |
| * is not expected to be a gro packet. If a skb has zero |
| * frags then simply push it in the stack as non gso skb. |
| */ |
| if (unlikely(!skb->data_len)) { |
| skb_shinfo(skb)->gso_type = 0; |
| skb_shinfo(skb)->gso_size = 0; |
| goto send_skb; |
| } |
| |
| #ifdef CONFIG_INET |
| if (skb_shinfo(skb)->gso_size) { |
| skb_set_network_header(skb, 0); |
| |
| switch (skb->protocol) { |
| case htons(ETH_P_IP): |
| qede_gro_ip_csum(skb); |
| break; |
| case htons(ETH_P_IPV6): |
| qede_gro_ipv6_csum(skb); |
| break; |
| default: |
| DP_ERR(edev, |
| "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", |
| ntohs(skb->protocol)); |
| } |
| } |
| #endif |
| |
| send_skb: |
| skb_record_rx_queue(skb, fp->rxq->rxq_id); |
| qede_skb_receive(edev, fp, skb, vlan_tag); |
| } |
| |
| static inline void qede_tpa_cont(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct eth_fast_path_rx_tpa_cont_cqe *cqe) |
| { |
| int i; |
| |
| for (i = 0; cqe->len_list[i]; i++) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->len_list[i])); |
| |
| if (unlikely(i > 1)) |
| DP_ERR(edev, |
| "Strange - TPA cont with more than a single len_list entry\n"); |
| } |
| |
| static void qede_tpa_end(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct eth_fast_path_rx_tpa_end_cqe *cqe) |
| { |
| struct qede_rx_queue *rxq = fp->rxq; |
| struct qede_agg_info *tpa_info; |
| struct sk_buff *skb; |
| int i; |
| |
| tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; |
| skb = tpa_info->skb; |
| |
| for (i = 0; cqe->len_list[i]; i++) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->len_list[i])); |
| if (unlikely(i > 1)) |
| DP_ERR(edev, |
| "Strange - TPA emd with more than a single len_list entry\n"); |
| |
| if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) |
| goto err; |
| |
| /* Sanity */ |
| if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) |
| DP_ERR(edev, |
| "Strange - TPA had %02x BDs, but SKB has only %d frags\n", |
| cqe->num_of_bds, tpa_info->frag_id); |
| if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) |
| DP_ERR(edev, |
| "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", |
| le16_to_cpu(cqe->total_packet_len), skb->len); |
| |
| memcpy(skb->data, |
| page_address(tpa_info->start_buf.data) + |
| tpa_info->start_cqe.placement_offset + |
| tpa_info->start_buf.page_offset, |
| le16_to_cpu(tpa_info->start_cqe.len_on_first_bd)); |
| |
| /* Recycle [mapped] start buffer for the next replacement */ |
| tpa_info->replace_buf = tpa_info->start_buf; |
| tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; |
| |
| /* Finalize the SKB */ |
| skb->protocol = eth_type_trans(skb, edev->ndev); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count |
| * to skb_shinfo(skb)->gso_segs |
| */ |
| NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); |
| |
| qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); |
| |
| tpa_info->agg_state = QEDE_AGG_STATE_NONE; |
| |
| return; |
| err: |
| /* The BD starting the aggregation is still mapped; Re-use it for |
| * future aggregations [as replacement buffer] |
| */ |
| memcpy(&tpa_info->replace_buf, &tpa_info->start_buf, |
| sizeof(struct sw_rx_data)); |
| tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; |
| tpa_info->start_buf.data = NULL; |
| tpa_info->agg_state = QEDE_AGG_STATE_NONE; |
| dev_kfree_skb_any(tpa_info->skb); |
| tpa_info->skb = NULL; |
| } |
| |
| static bool qede_tunn_exist(u16 flag) |
| { |
| return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); |
| } |
| |
| static u8 qede_check_tunn_csum(u16 flag) |
| { |
| u16 csum_flag = 0; |
| u8 tcsum = 0; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) |
| csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { |
| csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; |
| tcsum = QEDE_TUNN_CSUM_UNNECESSARY; |
| } |
| |
| csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; |
| |
| if (csum_flag & flag) |
| return QEDE_CSUM_ERROR; |
| |
| return QEDE_CSUM_UNNECESSARY | tcsum; |
| } |
| |
| static u8 qede_check_notunn_csum(u16 flag) |
| { |
| u16 csum_flag = 0; |
| u8 csum = 0; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { |
| csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; |
| csum = QEDE_CSUM_UNNECESSARY; |
| } |
| |
| csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; |
| |
| if (csum_flag & flag) |
| return QEDE_CSUM_ERROR; |
| |
| return csum; |
| } |
| |
| static u8 qede_check_csum(u16 flag) |
| { |
| if (!qede_tunn_exist(flag)) |
| return qede_check_notunn_csum(flag); |
| else |
| return qede_check_tunn_csum(flag); |
| } |
| |
| static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, |
| u16 flag) |
| { |
| u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; |
| |
| if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << |
| ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || |
| (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << |
| PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) |
| return true; |
| |
| return false; |
| } |
| |
| static int qede_rx_int(struct qede_fastpath *fp, int budget) |
| { |
| struct qede_dev *edev = fp->edev; |
| struct qede_rx_queue *rxq = fp->rxq; |
| |
| u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; |
| int rx_pkt = 0; |
| u8 csum_flag; |
| |
| hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| |
| /* Memory barrier to prevent the CPU from doing speculative reads of CQE |
| * / BD in the while-loop before reading hw_comp_cons. If the CQE is |
| * read before it is written by FW, then FW writes CQE and SB, and then |
| * the CPU reads the hw_comp_cons, it will use an old CQE. |
| */ |
| rmb(); |
| |
| /* Loop to complete all indicated BDs */ |
| while (sw_comp_cons != hw_comp_cons) { |
| struct eth_fast_path_rx_reg_cqe *fp_cqe; |
| enum pkt_hash_types rxhash_type; |
| enum eth_rx_cqe_type cqe_type; |
| struct sw_rx_data *sw_rx_data; |
| union eth_rx_cqe *cqe; |
| struct sk_buff *skb; |
| struct page *data; |
| __le16 flags; |
| u16 len, pad; |
| u32 rx_hash; |
| |
| /* Get the CQE from the completion ring */ |
| cqe = (union eth_rx_cqe *) |
| qed_chain_consume(&rxq->rx_comp_ring); |
| cqe_type = cqe->fast_path_regular.type; |
| |
| if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { |
| edev->ops->eth_cqe_completion( |
| edev->cdev, fp->id, |
| (struct eth_slow_path_rx_cqe *)cqe); |
| goto next_cqe; |
| } |
| |
| if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) { |
| switch (cqe_type) { |
| case ETH_RX_CQE_TYPE_TPA_START: |
| qede_tpa_start(edev, rxq, |
| &cqe->fast_path_tpa_start); |
| goto next_cqe; |
| case ETH_RX_CQE_TYPE_TPA_CONT: |
| qede_tpa_cont(edev, rxq, |
| &cqe->fast_path_tpa_cont); |
| goto next_cqe; |
| case ETH_RX_CQE_TYPE_TPA_END: |
| qede_tpa_end(edev, fp, |
| &cqe->fast_path_tpa_end); |
| goto next_rx_only; |
| default: |
| break; |
| } |
| } |
| |
| /* Get the data from the SW ring */ |
| sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; |
| sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; |
| data = sw_rx_data->data; |
| |
| fp_cqe = &cqe->fast_path_regular; |
| len = le16_to_cpu(fp_cqe->len_on_first_bd); |
| pad = fp_cqe->placement_offset; |
| flags = cqe->fast_path_regular.pars_flags.flags; |
| |
| /* If this is an error packet then drop it */ |
| parse_flag = le16_to_cpu(flags); |
| |
| csum_flag = qede_check_csum(parse_flag); |
| if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { |
| if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular, |
| parse_flag)) { |
| rxq->rx_ip_frags++; |
| goto alloc_skb; |
| } |
| |
| DP_NOTICE(edev, |
| "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", |
| sw_comp_cons, parse_flag); |
| rxq->rx_hw_errors++; |
| qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); |
| goto next_cqe; |
| } |
| |
| alloc_skb: |
| skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); |
| if (unlikely(!skb)) { |
| DP_NOTICE(edev, |
| "skb allocation failed, dropping incoming packet\n"); |
| qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); |
| rxq->rx_alloc_errors++; |
| goto next_cqe; |
| } |
| |
| /* Copy data into SKB */ |
| if (len + pad <= edev->rx_copybreak) { |
| memcpy(skb_put(skb, len), |
| page_address(data) + pad + |
| sw_rx_data->page_offset, len); |
| qede_reuse_page(edev, rxq, sw_rx_data); |
| } else { |
| struct skb_frag_struct *frag; |
| unsigned int pull_len; |
| unsigned char *va; |
| |
| frag = &skb_shinfo(skb)->frags[0]; |
| |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data, |
| pad + sw_rx_data->page_offset, |
| len, rxq->rx_buf_seg_size); |
| |
| va = skb_frag_address(frag); |
| pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); |
| |
| /* Align the pull_len to optimize memcpy */ |
| memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); |
| |
| skb_frag_size_sub(frag, pull_len); |
| frag->page_offset += pull_len; |
| skb->data_len -= pull_len; |
| skb->tail += pull_len; |
| |
| if (unlikely(qede_realloc_rx_buffer(edev, rxq, |
| sw_rx_data))) { |
| DP_ERR(edev, "Failed to allocate rx buffer\n"); |
| /* Incr page ref count to reuse on allocation |
| * failure so that it doesn't get freed while |
| * freeing SKB. |
| */ |
| |
| page_ref_inc(sw_rx_data->data); |
| rxq->rx_alloc_errors++; |
| qede_recycle_rx_bd_ring(rxq, edev, |
| fp_cqe->bd_num); |
| dev_kfree_skb_any(skb); |
| goto next_cqe; |
| } |
| } |
| |
| qede_rx_bd_ring_consume(rxq); |
| |
| if (fp_cqe->bd_num != 1) { |
| u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len); |
| u8 num_frags; |
| |
| pkt_len -= len; |
| |
| for (num_frags = fp_cqe->bd_num - 1; num_frags > 0; |
| num_frags--) { |
| u16 cur_size = pkt_len > rxq->rx_buf_size ? |
| rxq->rx_buf_size : pkt_len; |
| if (unlikely(!cur_size)) { |
| DP_ERR(edev, |
| "Still got %d BDs for mapping jumbo, but length became 0\n", |
| num_frags); |
| qede_recycle_rx_bd_ring(rxq, edev, |
| num_frags); |
| dev_kfree_skb_any(skb); |
| goto next_cqe; |
| } |
| |
| if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { |
| qede_recycle_rx_bd_ring(rxq, edev, |
| num_frags); |
| dev_kfree_skb_any(skb); |
| goto next_cqe; |
| } |
| |
| sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; |
| sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; |
| qede_rx_bd_ring_consume(rxq); |
| |
| dma_unmap_page(&edev->pdev->dev, |
| sw_rx_data->mapping, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| |
| skb_fill_page_desc(skb, |
| skb_shinfo(skb)->nr_frags++, |
| sw_rx_data->data, 0, |
| cur_size); |
| |
| skb->truesize += PAGE_SIZE; |
| skb->data_len += cur_size; |
| skb->len += cur_size; |
| pkt_len -= cur_size; |
| } |
| |
| if (unlikely(pkt_len)) |
| DP_ERR(edev, |
| "Mapped all BDs of jumbo, but still have %d bytes\n", |
| pkt_len); |
| } |
| |
| skb->protocol = eth_type_trans(skb, edev->ndev); |
| |
| rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, |
| fp_cqe->rss_hash, &rxhash_type); |
| |
| skb_set_hash(skb, rx_hash, rxhash_type); |
| |
| qede_set_skb_csum(skb, csum_flag); |
| |
| skb_record_rx_queue(skb, fp->rxq->rxq_id); |
| |
| qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); |
| next_rx_only: |
| rx_pkt++; |
| |
| next_cqe: /* don't consume bd rx buffer */ |
| qed_chain_recycle_consumed(&rxq->rx_comp_ring); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| /* CR TPA - revisit how to handle budget in TPA perhaps |
| * increase on "end" |
| */ |
| if (rx_pkt == budget) |
| break; |
| } /* repeat while sw_comp_cons != hw_comp_cons... */ |
| |
| /* Update producers */ |
| qede_update_rx_prod(edev, rxq); |
| |
| rxq->rcv_pkts += rx_pkt; |
| |
| return rx_pkt; |
| } |
| |
| static int qede_poll(struct napi_struct *napi, int budget) |
| { |
| struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, |
| napi); |
| struct qede_dev *edev = fp->edev; |
| int rx_work_done = 0; |
| u8 tc; |
| |
| for (tc = 0; tc < edev->num_tc; tc++) |
| if (likely(fp->type & QEDE_FASTPATH_TX) && |
| qede_txq_has_work(&fp->txqs[tc])) |
| qede_tx_int(edev, &fp->txqs[tc]); |
| |
| rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && |
| qede_has_rx_work(fp->rxq)) ? |
| qede_rx_int(fp, budget) : 0; |
| if (rx_work_done < budget) { |
| qed_sb_update_sb_idx(fp->sb_info); |
| /* *_has_*_work() reads the status block, |
| * thus we need to ensure that status block indices |
| * have been actually read (qed_sb_update_sb_idx) |
| * prior to this check (*_has_*_work) so that |
| * we won't write the "newer" value of the status block |
| * to HW (if there was a DMA right after |
| * qede_has_rx_work and if there is no rmb, the memory |
| * reading (qed_sb_update_sb_idx) may be postponed |
| * to right before *_ack_sb). In this case there |
| * will never be another interrupt until there is |
| * another update of the status block, while there |
| * is still unhandled work. |
| */ |
| rmb(); |
| |
| /* Fall out from the NAPI loop if needed */ |
| if (!((likely(fp->type & QEDE_FASTPATH_RX) && |
| qede_has_rx_work(fp->rxq)) || |
| (likely(fp->type & QEDE_FASTPATH_TX) && |
| qede_has_tx_work(fp)))) { |
| napi_complete(napi); |
| |
| /* Update and reenable interrupts */ |
| qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, |
| 1 /*update*/); |
| } else { |
| rx_work_done = budget; |
| } |
| } |
| |
| return rx_work_done; |
| } |
| |
| static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) |
| { |
| struct qede_fastpath *fp = fp_cookie; |
| |
| qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); |
| |
| napi_schedule_irqoff(&fp->napi); |
| return IRQ_HANDLED; |
| } |
| |
| /* ------------------------------------------------------------------------- |
| * END OF FAST-PATH |
| * ------------------------------------------------------------------------- |
| */ |
| |
| static int qede_open(struct net_device *ndev); |
| static int qede_close(struct net_device *ndev); |
| static int qede_set_mac_addr(struct net_device *ndev, void *p); |
| static void qede_set_rx_mode(struct net_device *ndev); |
| static void qede_config_rx_mode(struct net_device *ndev); |
| |
| static int qede_set_ucast_rx_mac(struct qede_dev *edev, |
| enum qed_filter_xcast_params_type opcode, |
| unsigned char mac[ETH_ALEN]) |
| { |
| struct qed_filter_params filter_cmd; |
| |
| memset(&filter_cmd, 0, sizeof(filter_cmd)); |
| filter_cmd.type = QED_FILTER_TYPE_UCAST; |
| filter_cmd.filter.ucast.type = opcode; |
| filter_cmd.filter.ucast.mac_valid = 1; |
| ether_addr_copy(filter_cmd.filter.ucast.mac, mac); |
| |
| return edev->ops->filter_config(edev->cdev, &filter_cmd); |
| } |
| |
| static int qede_set_ucast_rx_vlan(struct qede_dev *edev, |
| enum qed_filter_xcast_params_type opcode, |
| u16 vid) |
| { |
| struct qed_filter_params filter_cmd; |
| |
| memset(&filter_cmd, 0, sizeof(filter_cmd)); |
| filter_cmd.type = QED_FILTER_TYPE_UCAST; |
| filter_cmd.filter.ucast.type = opcode; |
| filter_cmd.filter.ucast.vlan_valid = 1; |
| filter_cmd.filter.ucast.vlan = vid; |
| |
| return edev->ops->filter_config(edev->cdev, &filter_cmd); |
| } |
| |
| void qede_fill_by_demand_stats(struct qede_dev *edev) |
| { |
| struct qed_eth_stats stats; |
| |
| edev->ops->get_vport_stats(edev->cdev, &stats); |
| edev->stats.no_buff_discards = stats.no_buff_discards; |
| edev->stats.packet_too_big_discard = stats.packet_too_big_discard; |
| edev->stats.ttl0_discard = stats.ttl0_discard; |
| edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; |
| edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; |
| edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; |
| edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; |
| edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; |
| edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; |
| edev->stats.mftag_filter_discards = stats.mftag_filter_discards; |
| edev->stats.mac_filter_discards = stats.mac_filter_discards; |
| |
| edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; |
| edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; |
| edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; |
| edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; |
| edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; |
| edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; |
| edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; |
| edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; |
| edev->stats.coalesced_events = stats.tpa_coalesced_events; |
| edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; |
| edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; |
| edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; |
| |
| edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; |
| edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets; |
| edev->stats.rx_128_to_255_byte_packets = |
| stats.rx_128_to_255_byte_packets; |
| edev->stats.rx_256_to_511_byte_packets = |
| stats.rx_256_to_511_byte_packets; |
| edev->stats.rx_512_to_1023_byte_packets = |
| stats.rx_512_to_1023_byte_packets; |
| edev->stats.rx_1024_to_1518_byte_packets = |
| stats.rx_1024_to_1518_byte_packets; |
| edev->stats.rx_1519_to_1522_byte_packets = |
| stats.rx_1519_to_1522_byte_packets; |
| edev->stats.rx_1519_to_2047_byte_packets = |
| stats.rx_1519_to_2047_byte_packets; |
| edev->stats.rx_2048_to_4095_byte_packets = |
| stats.rx_2048_to_4095_byte_packets; |
| edev->stats.rx_4096_to_9216_byte_packets = |
| stats.rx_4096_to_9216_byte_packets; |
| edev->stats.rx_9217_to_16383_byte_packets = |
| stats.rx_9217_to_16383_byte_packets; |
| edev->stats.rx_crc_errors = stats.rx_crc_errors; |
| edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; |
| edev->stats.rx_pause_frames = stats.rx_pause_frames; |
| edev->stats.rx_pfc_frames = stats.rx_pfc_frames; |
| edev->stats.rx_align_errors = stats.rx_align_errors; |
| edev->stats.rx_carrier_errors = stats.rx_carrier_errors; |
| edev->stats.rx_oversize_packets = stats.rx_oversize_packets; |
| edev->stats.rx_jabbers = stats.rx_jabbers; |
| edev->stats.rx_undersize_packets = stats.rx_undersize_packets; |
| edev->stats.rx_fragments = stats.rx_fragments; |
| edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; |
| edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; |
| edev->stats.tx_128_to_255_byte_packets = |
| stats.tx_128_to_255_byte_packets; |
| edev->stats.tx_256_to_511_byte_packets = |
| stats.tx_256_to_511_byte_packets; |
| edev->stats.tx_512_to_1023_byte_packets = |
| stats.tx_512_to_1023_byte_packets; |
| edev->stats.tx_1024_to_1518_byte_packets = |
| stats.tx_1024_to_1518_byte_packets; |
| edev->stats.tx_1519_to_2047_byte_packets = |
| stats.tx_1519_to_2047_byte_packets; |
| edev->stats.tx_2048_to_4095_byte_packets = |
| stats.tx_2048_to_4095_byte_packets; |
| edev->stats.tx_4096_to_9216_byte_packets = |
| stats.tx_4096_to_9216_byte_packets; |
| edev->stats.tx_9217_to_16383_byte_packets = |
| stats.tx_9217_to_16383_byte_packets; |
| edev->stats.tx_pause_frames = stats.tx_pause_frames; |
| edev->stats.tx_pfc_frames = stats.tx_pfc_frames; |
| edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; |
| edev->stats.tx_total_collisions = stats.tx_total_collisions; |
| edev->stats.brb_truncates = stats.brb_truncates; |
| edev->stats.brb_discards = stats.brb_discards; |
| edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; |
| } |
| |
| static |
| struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| |
| qede_fill_by_demand_stats(edev); |
| |
| stats->rx_packets = edev->stats.rx_ucast_pkts + |
| edev->stats.rx_mcast_pkts + |
| edev->stats.rx_bcast_pkts; |
| stats->tx_packets = edev->stats.tx_ucast_pkts + |
| edev->stats.tx_mcast_pkts + |
| edev->stats.tx_bcast_pkts; |
| |
| stats->rx_bytes = edev->stats.rx_ucast_bytes + |
| edev->stats.rx_mcast_bytes + |
| edev->stats.rx_bcast_bytes; |
| |
| stats->tx_bytes = edev->stats.tx_ucast_bytes + |
| edev->stats.tx_mcast_bytes + |
| edev->stats.tx_bcast_bytes; |
| |
| stats->tx_errors = edev->stats.tx_err_drop_pkts; |
| stats->multicast = edev->stats.rx_mcast_pkts + |
| edev->stats.rx_bcast_pkts; |
| |
| stats->rx_fifo_errors = edev->stats.no_buff_discards; |
| |
| stats->collisions = edev->stats.tx_total_collisions; |
| stats->rx_crc_errors = edev->stats.rx_crc_errors; |
| stats->rx_frame_errors = edev->stats.rx_align_errors; |
| |
| return stats; |
| } |
| |
| #ifdef CONFIG_QED_SRIOV |
| static int qede_get_vf_config(struct net_device *dev, int vfidx, |
| struct ifla_vf_info *ivi) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| |
| if (!edev->ops) |
| return -EINVAL; |
| |
| return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); |
| } |
| |
| static int qede_set_vf_rate(struct net_device *dev, int vfidx, |
| int min_tx_rate, int max_tx_rate) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| |
| return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, |
| max_tx_rate); |
| } |
| |
| static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| |
| if (!edev->ops) |
| return -EINVAL; |
| |
| return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); |
| } |
| |
| static int qede_set_vf_link_state(struct net_device *dev, int vfidx, |
| int link_state) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| |
| if (!edev->ops) |
| return -EINVAL; |
| |
| return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); |
| } |
| #endif |
| |
| static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action) |
| { |
| struct qed_update_vport_params params; |
| int rc; |
| |
| /* Proceed only if action actually needs to be performed */ |
| if (edev->accept_any_vlan == action) |
| return; |
| |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.vport_id = 0; |
| params.accept_any_vlan = action; |
| params.update_accept_any_vlan_flg = 1; |
| |
| rc = edev->ops->vport_update(edev->cdev, ¶ms); |
| if (rc) { |
| DP_ERR(edev, "Failed to %s accept-any-vlan\n", |
| action ? "enable" : "disable"); |
| } else { |
| DP_INFO(edev, "%s accept-any-vlan\n", |
| action ? "enabled" : "disabled"); |
| edev->accept_any_vlan = action; |
| } |
| } |
| |
| static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| struct qede_vlan *vlan, *tmp; |
| int rc; |
| |
| DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); |
| |
| vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); |
| if (!vlan) { |
| DP_INFO(edev, "Failed to allocate struct for vlan\n"); |
| return -ENOMEM; |
| } |
| INIT_LIST_HEAD(&vlan->list); |
| vlan->vid = vid; |
| vlan->configured = false; |
| |
| /* Verify vlan isn't already configured */ |
| list_for_each_entry(tmp, &edev->vlan_list, list) { |
| if (tmp->vid == vlan->vid) { |
| DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), |
| "vlan already configured\n"); |
| kfree(vlan); |
| return -EEXIST; |
| } |
| } |
| |
| /* If interface is down, cache this VLAN ID and return */ |
| if (edev->state != QEDE_STATE_OPEN) { |
| DP_VERBOSE(edev, NETIF_MSG_IFDOWN, |
| "Interface is down, VLAN %d will be configured when interface is up\n", |
| vid); |
| if (vid != 0) |
| edev->non_configured_vlans++; |
| list_add(&vlan->list, &edev->vlan_list); |
| |
| return 0; |
| } |
| |
| /* Check for the filter limit. |
| * Note - vlan0 has a reserved filter and can be added without |
| * worrying about quota |
| */ |
| if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || |
| (vlan->vid == 0)) { |
| rc = qede_set_ucast_rx_vlan(edev, |
| QED_FILTER_XCAST_TYPE_ADD, |
| vlan->vid); |
| if (rc) { |
| DP_ERR(edev, "Failed to configure VLAN %d\n", |
| vlan->vid); |
| kfree(vlan); |
| return -EINVAL; |
| } |
| vlan->configured = true; |
| |
| /* vlan0 filter isn't consuming out of our quota */ |
| if (vlan->vid != 0) |
| edev->configured_vlans++; |
| } else { |
| /* Out of quota; Activate accept-any-VLAN mode */ |
| if (!edev->non_configured_vlans) |
| qede_config_accept_any_vlan(edev, true); |
| |
| edev->non_configured_vlans++; |
| } |
| |
| list_add(&vlan->list, &edev->vlan_list); |
| |
| return 0; |
| } |
| |
| static void qede_del_vlan_from_list(struct qede_dev *edev, |
| struct qede_vlan *vlan) |
| { |
| /* vlan0 filter isn't consuming out of our quota */ |
| if (vlan->vid != 0) { |
| if (vlan->configured) |
| edev->configured_vlans--; |
| else |
| edev->non_configured_vlans--; |
| } |
| |
| list_del(&vlan->list); |
| kfree(vlan); |
| } |
| |
| static int qede_configure_vlan_filters(struct qede_dev *edev) |
| { |
| int rc = 0, real_rc = 0, accept_any_vlan = 0; |
| struct qed_dev_eth_info *dev_info; |
| struct qede_vlan *vlan = NULL; |
| |
| if (list_empty(&edev->vlan_list)) |
| return 0; |
| |
| dev_info = &edev->dev_info; |
| |
| /* Configure non-configured vlans */ |
| list_for_each_entry(vlan, &edev->vlan_list, list) { |
| if (vlan->configured) |
| continue; |
| |
| /* We have used all our credits, now enable accept_any_vlan */ |
| if ((vlan->vid != 0) && |
| (edev->configured_vlans == dev_info->num_vlan_filters)) { |
| accept_any_vlan = 1; |
| continue; |
| } |
| |
| DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); |
| |
| rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, |
| vlan->vid); |
| if (rc) { |
| DP_ERR(edev, "Failed to configure VLAN %u\n", |
| vlan->vid); |
| real_rc = rc; |
| continue; |
| } |
| |
| vlan->configured = true; |
| /* vlan0 filter doesn't consume our VLAN filter's quota */ |
| if (vlan->vid != 0) { |
| edev->non_configured_vlans--; |
| edev->configured_vlans++; |
| } |
| } |
| |
| /* enable accept_any_vlan mode if we have more VLANs than credits, |
| * or remove accept_any_vlan mode if we've actually removed |
| * a non-configured vlan, and all remaining vlans are truly configured. |
| */ |
| |
| if (accept_any_vlan) |
| qede_config_accept_any_vlan(edev, true); |
| else if (!edev->non_configured_vlans) |
| qede_config_accept_any_vlan(edev, false); |
| |
| return real_rc; |
| } |
| |
| static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| struct qede_vlan *vlan = NULL; |
| int rc; |
| |
| DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); |
| |
| /* Find whether entry exists */ |
| list_for_each_entry(vlan, &edev->vlan_list, list) |
| if (vlan->vid == vid) |
| break; |
| |
| if (!vlan || (vlan->vid != vid)) { |
| DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), |
| "Vlan isn't configured\n"); |
| return 0; |
| } |
| |
| if (edev->state != QEDE_STATE_OPEN) { |
| /* As interface is already down, we don't have a VPORT |
| * instance to remove vlan filter. So just update vlan list |
| */ |
| DP_VERBOSE(edev, NETIF_MSG_IFDOWN, |
| "Interface is down, removing VLAN from list only\n"); |
| qede_del_vlan_from_list(edev, vlan); |
| return 0; |
| } |
| |
| /* Remove vlan */ |
| if (vlan->configured) { |
| rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, |
| vid); |
| if (rc) { |
| DP_ERR(edev, "Failed to remove VLAN %d\n", vid); |
| return -EINVAL; |
| } |
| } |
| |
| qede_del_vlan_from_list(edev, vlan); |
| |
| /* We have removed a VLAN - try to see if we can |
| * configure non-configured VLAN from the list. |
| */ |
| rc = qede_configure_vlan_filters(edev); |
| |
| return rc; |
| } |
| |
| static void qede_vlan_mark_nonconfigured(struct qede_dev *edev) |
| { |
| struct qede_vlan *vlan = NULL; |
| |
| if (list_empty(&edev->vlan_list)) |
| return; |
| |
| list_for_each_entry(vlan, &edev->vlan_list, list) { |
| if (!vlan->configured) |
| continue; |
| |
| vlan->configured = false; |
| |
| /* vlan0 filter isn't consuming out of our quota */ |
| if (vlan->vid != 0) { |
| edev->non_configured_vlans++; |
| edev->configured_vlans--; |
| } |
| |
| DP_VERBOSE(edev, NETIF_MSG_IFDOWN, |
| "marked vlan %d as non-configured\n", vlan->vid); |
| } |
| |
| edev->accept_any_vlan = false; |
| } |
| |
| static int qede_set_features(struct net_device *dev, netdev_features_t features) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| netdev_features_t changes = features ^ dev->features; |
| bool need_reload = false; |
| |
| /* No action needed if hardware GRO is disabled during driver load */ |
| if (changes & NETIF_F_GRO) { |
| if (dev->features & NETIF_F_GRO) |
| need_reload = !edev->gro_disable; |
| else |
| need_reload = edev->gro_disable; |
| } |
| |
| if (need_reload && netif_running(edev->ndev)) { |
| dev->features = features; |
| qede_reload(edev, NULL, NULL); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void qede_udp_tunnel_add(struct net_device *dev, |
| struct udp_tunnel_info *ti) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| u16 t_port = ntohs(ti->port); |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| if (edev->vxlan_dst_port) |
| return; |
| |
| edev->vxlan_dst_port = t_port; |
| |
| DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n", |
| t_port); |
| |
| set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (edev->geneve_dst_port) |
| return; |
| |
| edev->geneve_dst_port = t_port; |
| |
| DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n", |
| t_port); |
| set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); |
| break; |
| default: |
| return; |
| } |
| |
| schedule_delayed_work(&edev->sp_task, 0); |
| } |
| |
| static void qede_udp_tunnel_del(struct net_device *dev, |
| struct udp_tunnel_info *ti) |
| { |
| struct qede_dev *edev = netdev_priv(dev); |
| u16 t_port = ntohs(ti->port); |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| if (t_port != edev->vxlan_dst_port) |
| return; |
| |
| edev->vxlan_dst_port = 0; |
| |
| DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n", |
| t_port); |
| |
| set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (t_port != edev->geneve_dst_port) |
| return; |
| |
| edev->geneve_dst_port = 0; |
| |
| DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n", |
| t_port); |
| set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); |
| break; |
| default: |
| return; |
| } |
| |
| schedule_delayed_work(&edev->sp_task, 0); |
| } |
| |
| static const struct net_device_ops qede_netdev_ops = { |
| .ndo_open = qede_open, |
| .ndo_stop = qede_close, |
| .ndo_start_xmit = qede_start_xmit, |
| .ndo_set_rx_mode = qede_set_rx_mode, |
| .ndo_set_mac_address = qede_set_mac_addr, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_change_mtu = qede_change_mtu, |
| #ifdef CONFIG_QED_SRIOV |
| .ndo_set_vf_mac = qede_set_vf_mac, |
| .ndo_set_vf_vlan = qede_set_vf_vlan, |
| #endif |
| .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, |
| .ndo_set_features = qede_set_features, |
| .ndo_get_stats64 = qede_get_stats64, |
| #ifdef CONFIG_QED_SRIOV |
| .ndo_set_vf_link_state = qede_set_vf_link_state, |
| .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, |
| .ndo_get_vf_config = qede_get_vf_config, |
| .ndo_set_vf_rate = qede_set_vf_rate, |
| #endif |
| .ndo_udp_tunnel_add = qede_udp_tunnel_add, |
| .ndo_udp_tunnel_del = qede_udp_tunnel_del, |
| }; |
| |
| /* ------------------------------------------------------------------------- |
| * START OF PROBE / REMOVE |
| * ------------------------------------------------------------------------- |
| */ |
| |
| static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, |
| struct pci_dev *pdev, |
| struct qed_dev_eth_info *info, |
| u32 dp_module, u8 dp_level) |
| { |
| struct net_device *ndev; |
| struct qede_dev *edev; |
| |
| ndev = alloc_etherdev_mqs(sizeof(*edev), |
| info->num_queues, info->num_queues); |
| if (!ndev) { |
| pr_err("etherdev allocation failed\n"); |
| return NULL; |
| } |
| |
| edev = netdev_priv(ndev); |
| edev->ndev = ndev; |
| edev->cdev = cdev; |
| edev->pdev = pdev; |
| edev->dp_module = dp_module; |
| edev->dp_level = dp_level; |
| edev->ops = qed_ops; |
| edev->q_num_rx_buffers = NUM_RX_BDS_DEF; |
| edev->q_num_tx_buffers = NUM_TX_BDS_DEF; |
| |
| DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", |
| info->num_queues, info->num_queues); |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| |
| memset(&edev->stats, 0, sizeof(edev->stats)); |
| memcpy(&edev->dev_info, info, sizeof(*info)); |
| |
| edev->num_tc = edev->dev_info.num_tc; |
| |
| INIT_LIST_HEAD(&edev->vlan_list); |
| |
| return edev; |
| } |
| |
| static void qede_init_ndev(struct qede_dev *edev) |
| { |
| struct net_device *ndev = edev->ndev; |
| struct pci_dev *pdev = edev->pdev; |
| u32 hw_features; |
| |
| pci_set_drvdata(pdev, ndev); |
| |
| ndev->mem_start = edev->dev_info.common.pci_mem_start; |
| ndev->base_addr = ndev->mem_start; |
| ndev->mem_end = edev->dev_info.common.pci_mem_end; |
| ndev->irq = edev->dev_info.common.pci_irq; |
| |
| ndev->watchdog_timeo = TX_TIMEOUT; |
| |
| ndev->netdev_ops = &qede_netdev_ops; |
| |
| qede_set_ethtool_ops(ndev); |
| |
| /* user-changeble features */ |
| hw_features = NETIF_F_GRO | NETIF_F_SG | |
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_TSO | NETIF_F_TSO6; |
| |
| /* Encap features*/ |
| hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | |
| NETIF_F_TSO_ECN; |
| ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN | |
| NETIF_F_TSO6 | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM; |
| |
| ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | |
| NETIF_F_HIGHDMA; |
| ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | |
| NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | |
| NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; |
| |
| ndev->hw_features = hw_features; |
| |
| /* Set network device HW mac */ |
| ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); |
| } |
| |
| /* This function converts from 32b param to two params of level and module |
| * Input 32b decoding: |
| * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the |
| * 'happy' flow, e.g. memory allocation failed. |
| * b30 - enable all INFO prints. INFO prints are for major steps in the flow |
| * and provide important parameters. |
| * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that |
| * module. VERBOSE prints are for tracking the specific flow in low level. |
| * |
| * Notice that the level should be that of the lowest required logs. |
| */ |
| void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) |
| { |
| *p_dp_level = QED_LEVEL_NOTICE; |
| *p_dp_module = 0; |
| |
| if (debug & QED_LOG_VERBOSE_MASK) { |
| *p_dp_level = QED_LEVEL_VERBOSE; |
| *p_dp_module = (debug & 0x3FFFFFFF); |
| } else if (debug & QED_LOG_INFO_MASK) { |
| *p_dp_level = QED_LEVEL_INFO; |
| } else if (debug & QED_LOG_NOTICE_MASK) { |
| *p_dp_level = QED_LEVEL_NOTICE; |
| } |
| } |
| |
| static void qede_free_fp_array(struct qede_dev *edev) |
| { |
| if (edev->fp_array) { |
| struct qede_fastpath *fp; |
| int i; |
| |
| for_each_queue(i) { |
| fp = &edev->fp_array[i]; |
| |
| kfree(fp->sb_info); |
| kfree(fp->rxq); |
| kfree(fp->txqs); |
| } |
| kfree(edev->fp_array); |
| } |
| |
| edev->num_queues = 0; |
| edev->fp_num_tx = 0; |
| edev->fp_num_rx = 0; |
| } |
| |
| static int qede_alloc_fp_array(struct qede_dev *edev) |
| { |
| u8 fp_combined, fp_rx = edev->fp_num_rx; |
| struct qede_fastpath *fp; |
| int i; |
| |
| edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), |
| sizeof(*edev->fp_array), GFP_KERNEL); |
| if (!edev->fp_array) { |
| DP_NOTICE(edev, "fp array allocation failed\n"); |
| goto err; |
| } |
| |
| fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; |
| |
| /* Allocate the FP elements for Rx queues followed by combined and then |
| * the Tx. This ordering should be maintained so that the respective |
| * queues (Rx or Tx) will be together in the fastpath array and the |
| * associated ids will be sequential. |
| */ |
| for_each_queue(i) { |
| fp = &edev->fp_array[i]; |
| |
| fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); |
| if (!fp->sb_info) { |
| DP_NOTICE(edev, "sb info struct allocation failed\n"); |
| goto err; |
| } |
| |
| if (fp_rx) { |
| fp->type = QEDE_FASTPATH_RX; |
| fp_rx--; |
| } else if (fp_combined) { |
| fp->type = QEDE_FASTPATH_COMBINED; |
| fp_combined--; |
| } else { |
| fp->type = QEDE_FASTPATH_TX; |
| } |
| |
| if (fp->type & QEDE_FASTPATH_TX) { |
| fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), |
| GFP_KERNEL); |
| if (!fp->txqs) { |
| DP_NOTICE(edev, |
| "TXQ array allocation failed\n"); |
| goto err; |
| } |
| } |
| |
| if (fp->type & QEDE_FASTPATH_RX) { |
| fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); |
| if (!fp->rxq) { |
| DP_NOTICE(edev, |
| "RXQ struct allocation failed\n"); |
| goto err; |
| } |
| } |
| } |
| |
| return 0; |
| err: |
| qede_free_fp_array(edev); |
| return -ENOMEM; |
| } |
| |
| static void qede_sp_task(struct work_struct *work) |
| { |
| struct qede_dev *edev = container_of(work, struct qede_dev, |
| sp_task.work); |
| struct qed_dev *cdev = edev->cdev; |
| |
| mutex_lock(&edev->qede_lock); |
| |
| if (edev->state == QEDE_STATE_OPEN) { |
| if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) |
| qede_config_rx_mode(edev->ndev); |
| } |
| |
| if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) { |
| struct qed_tunn_params tunn_params; |
| |
| memset(&tunn_params, 0, sizeof(tunn_params)); |
| tunn_params.update_vxlan_port = 1; |
| tunn_params.vxlan_port = edev->vxlan_dst_port; |
| qed_ops->tunn_config(cdev, &tunn_params); |
| } |
| |
| if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) { |
| struct qed_tunn_params tunn_params; |
| |
| memset(&tunn_params, 0, sizeof(tunn_params)); |
| tunn_params.update_geneve_port = 1; |
| tunn_params.geneve_port = edev->geneve_dst_port; |
| qed_ops->tunn_config(cdev, &tunn_params); |
| } |
| |
| mutex_unlock(&edev->qede_lock); |
| } |
| |
| static void qede_update_pf_params(struct qed_dev *cdev) |
| { |
| struct qed_pf_params pf_params; |
| |
| /* 64 rx + 64 tx */ |
| memset(&pf_params, 0, sizeof(struct qed_pf_params)); |
| pf_params.eth_pf_params.num_cons = 128; |
| qed_ops->common->update_pf_params(cdev, &pf_params); |
| } |
| |
| enum qede_probe_mode { |
| QEDE_PROBE_NORMAL, |
| }; |
| |
| static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, |
| bool is_vf, enum qede_probe_mode mode) |
| { |
| struct qed_probe_params probe_params; |
| struct qed_slowpath_params sp_params; |
| struct qed_dev_eth_info dev_info; |
| struct qede_dev *edev; |
| struct qed_dev *cdev; |
| int rc; |
| |
| if (unlikely(dp_level & QED_LEVEL_INFO)) |
| pr_notice("Starting qede probe\n"); |
| |
| memset(&probe_params, 0, sizeof(probe_params)); |
| probe_params.protocol = QED_PROTOCOL_ETH; |
| probe_params.dp_module = dp_module; |
| probe_params.dp_level = dp_level; |
| probe_params.is_vf = is_vf; |
| cdev = qed_ops->common->probe(pdev, &probe_params); |
| if (!cdev) { |
| rc = -ENODEV; |
| goto err0; |
| } |
| |
| qede_update_pf_params(cdev); |
| |
| /* Start the Slowpath-process */ |
| memset(&sp_params, 0, sizeof(sp_params)); |
| sp_params.int_mode = QED_INT_MODE_MSIX; |
| sp_params.drv_major = QEDE_MAJOR_VERSION; |
| sp_params.drv_minor = QEDE_MINOR_VERSION; |
| sp_params.drv_rev = QEDE_REVISION_VERSION; |
| sp_params.drv_eng = QEDE_ENGINEERING_VERSION; |
| strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); |
| rc = qed_ops->common->slowpath_start(cdev, &sp_params); |
| if (rc) { |
| pr_notice("Cannot start slowpath\n"); |
| goto err1; |
| } |
| |
| /* Learn information crucial for qede to progress */ |
| rc = qed_ops->fill_dev_info(cdev, &dev_info); |
| if (rc) |
| goto err2; |
| |
| edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, |
| dp_level); |
| if (!edev) { |
| rc = -ENOMEM; |
| goto err2; |
| } |
| |
| if (is_vf) |
| edev->flags |= QEDE_FLAG_IS_VF; |
| |
| qede_init_ndev(edev); |
| |
| rc = qede_roce_dev_add(edev); |
| if (rc) |
| goto err3; |
| |
| rc = register_netdev(edev->ndev); |
| if (rc) { |
| DP_NOTICE(edev, "Cannot register net-device\n"); |
| goto err4; |
| } |
| |
| edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); |
| |
| edev->ops->register_ops(cdev, &qede_ll_ops, edev); |
| |
| #ifdef CONFIG_DCB |
| if (!IS_VF(edev)) |
| qede_set_dcbnl_ops(edev->ndev); |
| #endif |
| |
| INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); |
| mutex_init(&edev->qede_lock); |
| edev->rx_copybreak = QEDE_RX_HDR_SIZE; |
| |
| DP_INFO(edev, "Ending successfully qede probe\n"); |
| |
| return 0; |
| |
| err4: |
| qede_roce_dev_remove(edev); |
| err3: |
| free_netdev(edev->ndev); |
| err2: |
| qed_ops->common->slowpath_stop(cdev); |
| err1: |
| qed_ops->common->remove(cdev); |
| err0: |
| return rc; |
| } |
| |
| static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| bool is_vf = false; |
| u32 dp_module = 0; |
| u8 dp_level = 0; |
| |
| switch ((enum qede_pci_private)id->driver_data) { |
| case QEDE_PRIVATE_VF: |
| if (debug & QED_LOG_VERBOSE_MASK) |
| dev_err(&pdev->dev, "Probing a VF\n"); |
| is_vf = true; |
| break; |
| default: |
| if (debug & QED_LOG_VERBOSE_MASK) |
| dev_err(&pdev->dev, "Probing a PF\n"); |
| } |
| |
| qede_config_debug(debug, &dp_module, &dp_level); |
| |
| return __qede_probe(pdev, dp_module, dp_level, is_vf, |
| QEDE_PROBE_NORMAL); |
| } |
| |
| enum qede_remove_mode { |
| QEDE_REMOVE_NORMAL, |
| }; |
| |
| static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) |
| { |
| struct net_device *ndev = pci_get_drvdata(pdev); |
| struct qede_dev *edev = netdev_priv(ndev); |
| struct qed_dev *cdev = edev->cdev; |
| |
| DP_INFO(edev, "Starting qede_remove\n"); |
| |
| cancel_delayed_work_sync(&edev->sp_task); |
| |
| unregister_netdev(ndev); |
| |
| qede_roce_dev_remove(edev); |
| |
| edev->ops->common->set_power_state(cdev, PCI_D0); |
| |
| pci_set_drvdata(pdev, NULL); |
| |
| free_netdev(ndev); |
| |
| /* Use global ops since we've freed edev */ |
| qed_ops->common->slowpath_stop(cdev); |
| qed_ops->common->remove(cdev); |
| |
| dev_info(&pdev->dev, "Ending qede_remove successfully\n"); |
| } |
| |
| static void qede_remove(struct pci_dev *pdev) |
| { |
| __qede_remove(pdev, QEDE_REMOVE_NORMAL); |
| } |
| |
| /* ------------------------------------------------------------------------- |
| * START OF LOAD / UNLOAD |
| * ------------------------------------------------------------------------- |
| */ |
| |
| static int qede_set_num_queues(struct qede_dev *edev) |
| { |
| int rc; |
| u16 rss_num; |
| |
| /* Setup queues according to possible resources*/ |
| if (edev->req_queues) |
| rss_num = edev->req_queues; |
| else |
| rss_num = netif_get_num_default_rss_queues() * |
| edev->dev_info.common.num_hwfns; |
| |
| rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); |
| |
| rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); |
| if (rc > 0) { |
| /* Managed to request interrupts for our queues */ |
| edev->num_queues = rc; |
| DP_INFO(edev, "Managed %d [of %d] RSS queues\n", |
| QEDE_QUEUE_CNT(edev), rss_num); |
| rc = 0; |
| } |
| |
| edev->fp_num_tx = edev->req_num_tx; |
| edev->fp_num_rx = edev->req_num_rx; |
| |
| return rc; |
| } |
| |
| static void qede_free_mem_sb(struct qede_dev *edev, |
| struct qed_sb_info *sb_info) |
| { |
| if (sb_info->sb_virt) |
| dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), |
| (void *)sb_info->sb_virt, sb_info->sb_phys); |
| } |
| |
| /* This function allocates fast-path status block memory */ |
| static int qede_alloc_mem_sb(struct qede_dev *edev, |
| struct qed_sb_info *sb_info, u16 sb_id) |
| { |
| struct status_block *sb_virt; |
| dma_addr_t sb_phys; |
| int rc; |
| |
| sb_virt = dma_alloc_coherent(&edev->pdev->dev, |
| sizeof(*sb_virt), &sb_phys, GFP_KERNEL); |
| if (!sb_virt) { |
| DP_ERR(edev, "Status block allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| rc = edev->ops->common->sb_init(edev->cdev, sb_info, |
| sb_virt, sb_phys, sb_id, |
| QED_SB_TYPE_L2_QUEUE); |
| if (rc) { |
| DP_ERR(edev, "Status block initialization failed\n"); |
| dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), |
| sb_virt, sb_phys); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void qede_free_rx_buffers(struct qede_dev *edev, |
| struct qede_rx_queue *rxq) |
| { |
| u16 i; |
| |
| for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { |
| struct sw_rx_data *rx_buf; |
| struct page *data; |
| |
| rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; |
| data = rx_buf->data; |
| |
| dma_unmap_page(&edev->pdev->dev, |
| rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE); |
| |
| rx_buf->data = NULL; |
| __free_page(data); |
| } |
| } |
| |
| static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) |
| { |
| int i; |
| |
| if (edev->gro_disable) |
| return; |
| |
| for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; |
| struct sw_rx_data *replace_buf = &tpa_info->replace_buf; |
| |
| if (replace_buf->data) { |
| dma_unmap_page(&edev->pdev->dev, |
| replace_buf->mapping, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| __free_page(replace_buf->data); |
| } |
| } |
| } |
| |
| static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) |
| { |
| qede_free_sge_mem(edev, rxq); |
| |
| /* Free rx buffers */ |
| qede_free_rx_buffers(edev, rxq); |
| |
| /* Free the parallel SW ring */ |
| kfree(rxq->sw_rx_ring); |
| |
| /* Free the real RQ ring used by FW */ |
| edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); |
| edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); |
| } |
| |
| static int qede_alloc_rx_buffer(struct qede_dev *edev, |
| struct qede_rx_queue *rxq) |
| { |
| struct sw_rx_data *sw_rx_data; |
| struct eth_rx_bd *rx_bd; |
| dma_addr_t mapping; |
| struct page *data; |
| |
| data = alloc_pages(GFP_ATOMIC, 0); |
| if (unlikely(!data)) { |
| DP_NOTICE(edev, "Failed to allocate Rx data [page]\n"); |
| return -ENOMEM; |
| } |
| |
| /* Map the entire page as it would be used |
| * for multiple RX buffer segment size mapping. |
| */ |
| mapping = dma_map_page(&edev->pdev->dev, data, 0, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| __free_page(data); |
| DP_NOTICE(edev, "Failed to map Rx buffer\n"); |
| return -ENOMEM; |
| } |
| |
| sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| sw_rx_data->page_offset = 0; |
| sw_rx_data->data = data; |
| sw_rx_data->mapping = mapping; |
| |
| /* Advance PROD and get BD pointer */ |
| rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); |
| WARN_ON(!rx_bd); |
| rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); |
| rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); |
| |
| rxq->sw_rx_prod++; |
| |
| return 0; |
| } |
| |
| static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) |
| { |
| dma_addr_t mapping; |
| int i; |
| |
| if (edev->gro_disable) |
| return 0; |
| |
| if (edev->ndev->mtu > PAGE_SIZE) { |
| edev->gro_disable = 1; |
| return 0; |
| } |
| |
| for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; |
| struct sw_rx_data *replace_buf = &tpa_info->replace_buf; |
| |
| replace_buf->data = alloc_pages(GFP_ATOMIC, 0); |
| if (unlikely(!replace_buf->data)) { |
| DP_NOTICE(edev, |
| "Failed to allocate TPA skb pool [replacement buffer]\n"); |
| goto err; |
| } |
| |
| mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, |
| rxq->rx_buf_size, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| DP_NOTICE(edev, |
| "Failed to map TPA replacement buffer\n"); |
| goto err; |
| } |
| |
| replace_buf->mapping = mapping; |
| tpa_info->replace_buf.page_offset = 0; |
| |
| tpa_info->replace_buf_mapping = mapping; |
| tpa_info->agg_state = QEDE_AGG_STATE_NONE; |
| } |
| |
| return 0; |
| err: |
| qede_free_sge_mem(edev, rxq); |
| edev->gro_disable = 1; |
| return -ENOMEM; |
| } |
| |
| /* This function allocates all memory needed per Rx queue */ |
| static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) |
| { |
| int i, rc, size; |
| |
| rxq->num_rx_buffers = edev->q_num_rx_buffers; |
| |
| rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; |
| |
| if (rxq->rx_buf_size > PAGE_SIZE) |
| rxq->rx_buf_size = PAGE_SIZE; |
| |
| /* Segment size to spilt a page in multiple equal parts */ |
| rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); |
| |
| /* Allocate the parallel driver ring for Rx buffers */ |
| size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; |
| rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); |
| if (!rxq->sw_rx_ring) { |
| DP_ERR(edev, "Rx buffers ring allocation failed\n"); |
| rc = -ENOMEM; |
| goto err; |
| } |
| |
| /* Allocate FW Rx ring */ |
| rc = edev->ops->common->chain_alloc(edev->cdev, |
| QED_CHAIN_USE_TO_CONSUME_PRODUCE, |
| QED_CHAIN_MODE_NEXT_PTR, |
| QED_CHAIN_CNT_TYPE_U16, |
| RX_RING_SIZE, |
| sizeof(struct eth_rx_bd), |
| &rxq->rx_bd_ring); |
| |
| if (rc) |
| goto err; |
| |
| /* Allocate FW completion ring */ |
| rc = edev->ops->common->chain_alloc(edev->cdev, |
| QED_CHAIN_USE_TO_CONSUME, |
| QED_CHAIN_MODE_PBL, |
| QED_CHAIN_CNT_TYPE_U16, |
| RX_RING_SIZE, |
| sizeof(union eth_rx_cqe), |
| &rxq->rx_comp_ring); |
| if (rc) |
| goto err; |
| |
| /* Allocate buffers for the Rx ring */ |
| for (i = 0; i < rxq->num_rx_buffers; i++) { |
| rc = qede_alloc_rx_buffer(edev, rxq); |
| if (rc) { |
| DP_ERR(edev, |
| "Rx buffers allocation failed at index %d\n", i); |
| goto err; |
| } |
| } |
| |
| rc = qede_alloc_sge_mem(edev, rxq); |
| err: |
| return rc; |
| } |
| |
| static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) |
| { |
| /* Free the parallel SW ring */ |
| kfree(txq->sw_tx_ring); |
| |
| /* Free the real RQ ring used by FW */ |
| edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); |
| } |
| |
| /* This function allocates all memory needed per Tx queue */ |
| static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) |
| { |
| int size, rc; |
| union eth_tx_bd_types *p_virt; |
| |
| txq->num_tx_buffers = edev->q_num_tx_buffers; |
| |
| /* Allocate the parallel driver ring for Tx buffers */ |
| size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; |
| txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); |
| if (!txq->sw_tx_ring) { |
| DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); |
| goto err; |
| } |
| |
| rc = edev->ops->common->chain_alloc(edev->cdev, |
| QED_CHAIN_USE_TO_CONSUME_PRODUCE, |
| QED_CHAIN_MODE_PBL, |
| QED_CHAIN_CNT_TYPE_U16, |
| NUM_TX_BDS_MAX, |
| sizeof(*p_virt), &txq->tx_pbl); |
| if (rc) |
| goto err; |
| |
| return 0; |
| |
| err: |
| qede_free_mem_txq(edev, txq); |
| return -ENOMEM; |
| } |
| |
| /* This function frees all memory of a single fp */ |
| static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) |
| { |
| int tc; |
| |
| qede_free_mem_sb(edev, fp->sb_info); |
| |
| if (fp->type & QEDE_FASTPATH_RX) |
| qede_free_mem_rxq(edev, fp->rxq); |
| |
| if (fp->type & QEDE_FASTPATH_TX) |
| for (tc = 0; tc < edev->num_tc; tc++) |
| qede_free_mem_txq(edev, &fp->txqs[tc]); |
| } |
| |
| /* This function allocates all memory needed for a single fp (i.e. an entity |
| * which contains status block, one rx queue and/or multiple per-TC tx queues. |
| */ |
| static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) |
| { |
| int rc, tc; |
| |
| rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); |
| if (rc) |
| goto err; |
| |
| if (fp->type & QEDE_FASTPATH_RX) { |
| rc = qede_alloc_mem_rxq(edev, fp->rxq); |
| if (rc) |
| goto err; |
| } |
| |
| if (fp->type & QEDE_FASTPATH_TX) { |
| for (tc = 0; tc < edev->num_tc; tc++) { |
| rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); |
| if (rc) |
| goto err; |
| } |
| } |
| |
| return 0; |
| err: |
| return rc; |
| } |
| |
| static void qede_free_mem_load(struct qede_dev *edev) |
| { |
| int i; |
| |
| for_each_queue(i) { |
| struct qede_fastpath *fp = &edev->fp_array[i]; |
| |
| qede_free_mem_fp(edev, fp); |
| } |
| } |
| |
| /* This function allocates all qede memory at NIC load. */ |
| static int qede_alloc_mem_load(struct qede_dev *edev) |
| { |
| int rc = 0, queue_id; |
| |
| for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { |
| struct qede_fastpath *fp = &edev->fp_array[queue_id]; |
| |
| rc = qede_alloc_mem_fp(edev, fp); |
| if (rc) { |
| DP_ERR(edev, |
| "Failed to allocate memory for fastpath - rss id = %d\n", |
| queue_id); |
| qede_free_mem_load(edev); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* This function inits fp content and resets the SB, RXQ and TXQ structures */ |
| static void qede_init_fp(struct qede_dev *edev) |
| { |
| int queue_id, rxq_index = 0, txq_index = 0, tc; |
| struct qede_fastpath *fp; |
| |
| for_each_queue(queue_id) { |
| fp = &edev->fp_array[queue_id]; |
| |
| fp->edev = edev; |
| fp->id = queue_id; |
| |
| memset((void *)&fp->napi, 0, sizeof(fp->napi)); |
| |
| memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); |
| |
| if (fp->type & QEDE_FASTPATH_RX) { |
| memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); |
| fp->rxq->rxq_id = rxq_index++; |
| } |
| |
| if (fp->type & QEDE_FASTPATH_TX) { |
| memset((void *)fp->txqs, 0, |
| (edev->num_tc * sizeof(*fp->txqs))); |
| for (tc = 0; tc < edev->num_tc; tc++) { |
| fp->txqs[tc].index = txq_index + |
| tc * QEDE_TSS_COUNT(edev); |
| if (edev->dev_info.is_legacy) |
| fp->txqs[tc].is_legacy = true; |
| } |
| txq_index++; |
| } |
| |
| snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", |
| edev->ndev->name, queue_id); |
| } |
| |
| edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); |
| } |
| |
| static int qede_set_real_num_queues(struct qede_dev *edev) |
| { |
| int rc = 0; |
| |
| rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); |
| if (rc) { |
| DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); |
| return rc; |
| } |
| |
| rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); |
| if (rc) { |
| DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void qede_napi_disable_remove(struct qede_dev *edev) |
| { |
| int i; |
| |
| for_each_queue(i) { |
| napi_disable(&edev->fp_array[i].napi); |
| |
| netif_napi_del(&edev->fp_array[i].napi); |
| } |
| } |
| |
| static void qede_napi_add_enable(struct qede_dev *edev) |
| { |
| int i; |
| |
| /* Add NAPI objects */ |
| for_each_queue(i) { |
| netif_napi_add(edev->ndev, &edev->fp_array[i].napi, |
| qede_poll, NAPI_POLL_WEIGHT); |
| napi_enable(&edev->fp_array[i].napi); |
| } |
| } |
| |
| static void qede_sync_free_irqs(struct qede_dev *edev) |
| { |
| int i; |
| |
| for (i = 0; i < edev->int_info.used_cnt; i++) { |
| if (edev->int_info.msix_cnt) { |
| synchronize_irq(edev->int_info.msix[i].vector); |
| free_irq(edev->int_info.msix[i].vector, |
| &edev->fp_array[i]); |
| } else { |
| edev->ops->common->simd_handler_clean(edev->cdev, i); |
| } |
| } |
| |
| edev->int_info.used_cnt = 0; |
| } |
| |
| static int qede_req_msix_irqs(struct qede_dev *edev) |
| { |
| int i, rc; |
| |
| /* Sanitize number of interrupts == number of prepared RSS queues */ |
| if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { |
| DP_ERR(edev, |
| "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", |
| QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { |
| rc = request_irq(edev->int_info.msix[i].vector, |
| qede_msix_fp_int, 0, edev->fp_array[i].name, |
| &edev->fp_array[i]); |
| if (rc) { |
| DP_ERR(edev, "Request fp %d irq failed\n", i); |
| qede_sync_free_irqs(edev); |
| return rc; |
| } |
| DP_VERBOSE(edev, NETIF_MSG_INTR, |
| "Requested fp irq for %s [entry %d]. Cookie is at %p\n", |
| edev->fp_array[i].name, i, |
| &edev->fp_array[i]); |
| edev->int_info.used_cnt++; |
| } |
| |
| return 0; |
| } |
| |
| static void qede_simd_fp_handler(void *cookie) |
| { |
| struct qede_fastpath *fp = (struct qede_fastpath *)cookie; |
| |
| napi_schedule_irqoff(&fp->napi); |
| } |
| |
| static int qede_setup_irqs(struct qede_dev *edev) |
| { |
| int i, rc = 0; |
| |
| /* Learn Interrupt configuration */ |
| rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); |
| if (rc) |
| return rc; |
| |
| if (edev->int_info.msix_cnt) { |
| rc = qede_req_msix_irqs(edev); |
| if (rc) |
| return rc; |
| edev->ndev->irq = edev->int_info.msix[0].vector; |
| } else { |
| const struct qed_common_ops *ops; |
| |
| /* qed should learn receive the RSS ids and callbacks */ |
| ops = edev->ops->common; |
| for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) |
| ops->simd_handler_config(edev->cdev, |
| &edev->fp_array[i], i, |
| qede_simd_fp_handler); |
| edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); |
| } |
| return 0; |
| } |
| |
| static int qede_drain_txq(struct qede_dev *edev, |
| struct qede_tx_queue *txq, bool allow_drain) |
| { |
| int rc, cnt = 1000; |
| |
| while (txq->sw_tx_cons != txq->sw_tx_prod) { |
| if (!cnt) { |
| if (allow_drain) { |
| DP_NOTICE(edev, |
| "Tx queue[%d] is stuck, requesting MCP to drain\n", |
| txq->index); |
| rc = edev->ops->common->drain(edev->cdev); |
| if (rc) |
| return rc; |
| return qede_drain_txq(edev, txq, false); |
| } |
| DP_NOTICE(edev, |
| "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", |
| txq->index, txq->sw_tx_prod, |
| txq->sw_tx_cons); |
| return -ENODEV; |
| } |
| cnt--; |
| usleep_range(1000, 2000); |
| barrier(); |
| } |
| |
| /* FW finished processing, wait for HW to transmit all tx packets */ |
| usleep_range(1000, 2000); |
| |
| return 0; |
| } |
| |
| static int qede_stop_queues(struct qede_dev *edev) |
| { |
| struct qed_update_vport_params vport_update_params; |
| struct qed_dev *cdev = edev->cdev; |
| int rc, tc, i; |
| |
| /* Disable the vport */ |
| memset(&vport_update_params, 0, sizeof(vport_update_params)); |
| vport_update_params.vport_id = 0; |
| vport_update_params.update_vport_active_flg = 1; |
| vport_update_params.vport_active_flg = 0; |
| vport_update_params.update_rss_flg = 0; |
| |
| rc = edev->ops->vport_update(cdev, &vport_update_params); |
| if (rc) { |
| DP_ERR(edev, "Failed to update vport\n"); |
| return rc; |
| } |
| |
| /* Flush Tx queues. If needed, request drain from MCP */ |
| for_each_queue(i) { |
| struct qede_fastpath *fp = &edev->fp_array[i]; |
| |
| if (fp->type & QEDE_FASTPATH_TX) { |
| for (tc = 0; tc < edev->num_tc; tc++) { |
| struct qede_tx_queue *txq = &fp->txqs[tc]; |
| |
| rc = qede_drain_txq(edev, txq, true); |
| if (rc) |
| return rc; |
| } |
| } |
| } |
| |
| /* Stop all Queues in reverse order */ |
| for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { |
| struct qed_stop_rxq_params rx_params; |
| |
| /* Stop the Tx Queue(s) */ |
| if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { |
| for (tc = 0; tc < edev->num_tc; tc++) { |
| struct qed_stop_txq_params tx_params; |
| u8 val; |
| |
| tx_params.rss_id = i; |
| val = edev->fp_array[i].txqs[tc].index; |
| tx_params.tx_queue_id = val; |
| rc = edev->ops->q_tx_stop(cdev, &tx_params); |
| if (rc) { |
| DP_ERR(edev, "Failed to stop TXQ #%d\n", |
| tx_params.tx_queue_id); |
| return rc; |
| } |
| } |
| } |
| |
| /* Stop the Rx Queue */ |
| if (edev->fp_array[i].type & QEDE_FASTPATH_RX) { |
| memset(&rx_params, 0, sizeof(rx_params)); |
| rx_params.rss_id = i; |
| rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id; |
| |
| rc = edev->ops->q_rx_stop(cdev, &rx_params); |
| if (rc) { |
| DP_ERR(edev, "Failed to stop RXQ #%d\n", i); |
| return rc; |
| } |
| } |
| } |
| |
| /* Stop the vport */ |
| rc = edev->ops->vport_stop(cdev, 0); |
| if (rc) |
| DP_ERR(edev, "Failed to stop VPORT\n"); |
| |
| return rc; |
| } |
| |
| static int qede_start_queues(struct qede_dev *edev, bool clear_stats) |
| { |
| int rc, tc, i; |
| int vlan_removal_en = 1; |
| struct qed_dev *cdev = edev->cdev; |
| struct qed_update_vport_params vport_update_params; |
| struct qed_queue_start_common_params q_params; |
| struct qed_dev_info *qed_info = &edev->dev_info.common; |
| struct qed_start_vport_params start = {0}; |
| bool reset_rss_indir = false; |
| |
| if (!edev->num_queues) { |
| DP_ERR(edev, |
| "Cannot update V-VPORT as active as there are no Rx queues\n"); |
| return -EINVAL; |
| } |
| |
| start.gro_enable = !edev->gro_disable; |
| start.mtu = edev->ndev->mtu; |
| start.vport_id = 0; |
| start.drop_ttl0 = true; |
| start.remove_inner_vlan = vlan_removal_en; |
| start.clear_stats = clear_stats; |
| |
| rc = edev->ops->vport_start(cdev, &start); |
| |
| if (rc) { |
| DP_ERR(edev, "Start V-PORT failed %d\n", rc); |
| return rc; |
| } |
| |
| DP_VERBOSE(edev, NETIF_MSG_IFUP, |
| "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", |
| start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); |
| |
| for_each_queue(i) { |
| struct qede_fastpath *fp = &edev->fp_array[i]; |
| dma_addr_t p_phys_table; |
| u32 page_cnt; |
| |
| if (fp->type & QEDE_FASTPATH_RX) { |
| struct qede_rx_queue *rxq = fp->rxq; |
| __le16 *val; |
| |
| memset(&q_params, 0, sizeof(q_params)); |
| q_params.rss_id = i; |
| q_params.queue_id = rxq->rxq_id; |
| q_params.vport_id = 0; |
| q_params.sb = fp->sb_info->igu_sb_id; |
| q_params.sb_idx = RX_PI; |
| |
| p_phys_table = |
| qed_chain_get_pbl_phys(&rxq->rx_comp_ring); |
| page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); |
| |
| rc = edev->ops->q_rx_start(cdev, &q_params, |
| rxq->rx_buf_size, |
| rxq->rx_bd_ring.p_phys_addr, |
| p_phys_table, |
| page_cnt, |
| &rxq->hw_rxq_prod_addr); |
| if (rc) { |
| DP_ERR(edev, "Start RXQ #%d failed %d\n", i, |
| rc); |
| return rc; |
| } |
| |
| val = &fp->sb_info->sb_virt->pi_array[RX_PI]; |
| rxq->hw_cons_ptr = val; |
| |
| qede_update_rx_prod(edev, rxq); |
| } |
| |
| if (!(fp->type & QEDE_FASTPATH_TX)) |
| continue; |
| |
| for (tc = 0; tc < edev->num_tc; tc++) { |
| struct qede_tx_queue *txq = &fp->txqs[tc]; |
| |
| p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); |
| page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); |
| |
| memset(&q_params, 0, sizeof(q_params)); |
| q_params.rss_id = i; |
| q_params.queue_id = txq->index; |
| q_params.vport_id = 0; |
| q_params.sb = fp->sb_info->igu_sb_id; |
| q_params.sb_idx = TX_PI(tc); |
| |
| rc = edev->ops->q_tx_start(cdev, &q_params, |
| p_phys_table, page_cnt, |
| &txq->doorbell_addr); |
| if (rc) { |
| DP_ERR(edev, "Start TXQ #%d failed %d\n", |
| txq->index, rc); |
| return rc; |
| } |
| |
| txq->hw_cons_ptr = |
| &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; |
| SET_FIELD(txq->tx_db.data.params, |
| ETH_DB_DATA_DEST, DB_DEST_XCM); |
| SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, |
| DB_AGG_CMD_SET); |
| SET_FIELD(txq->tx_db.data.params, |
| ETH_DB_DATA_AGG_VAL_SEL, |
| DQ_XCM_ETH_TX_BD_PROD_CMD); |
| |
| txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; |
| } |
| } |
| |
| /* Prepare and send the vport enable */ |
| memset(&vport_update_params, 0, sizeof(vport_update_params)); |
| vport_update_params.vport_id = start.vport_id; |
| vport_update_params.update_vport_active_flg = 1; |
| vport_update_params.vport_active_flg = 1; |
| |
| if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) && |
| qed_info->tx_switching) { |
| vport_update_params.update_tx_switching_flg = 1; |
| vport_update_params.tx_switching_flg = 1; |
| } |
| |
| /* Fill struct with RSS params */ |
| if (QEDE_RSS_COUNT(edev) > 1) { |
| vport_update_params.update_rss_flg = 1; |
| |
| /* Need to validate current RSS config uses valid entries */ |
| for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { |
| if (edev->rss_params.rss_ind_table[i] >= |
| QEDE_RSS_COUNT(edev)) { |
| reset_rss_indir = true; |
| break; |
| } |
| } |
| |
| if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || |
| reset_rss_indir) { |
| u16 val; |
| |
| for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { |
| u16 indir_val; |
| |
| val = QEDE_RSS_COUNT(edev); |
| indir_val = ethtool_rxfh_indir_default(i, val); |
| edev->rss_params.rss_ind_table[i] = indir_val; |
| } |
| edev->rss_params_inited |= QEDE_RSS_INDIR_INITED; |
| } |
| |
| if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) { |
| netdev_rss_key_fill(edev->rss_params.rss_key, |
| sizeof(edev->rss_params.rss_key)); |
| edev->rss_params_inited |= QEDE_RSS_KEY_INITED; |
| } |
| |
| if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) { |
| edev->rss_params.rss_caps = QED_RSS_IPV4 | |
| QED_RSS_IPV6 | |
| QED_RSS_IPV4_TCP | |
| QED_RSS_IPV6_TCP; |
| edev->rss_params_inited |= QEDE_RSS_CAPS_INITED; |
| } |
| |
| memcpy(&vport_update_params.rss_params, &edev->rss_params, |
| sizeof(vport_update_params.rss_params)); |
| } else { |
| memset(&vport_update_params.rss_params, 0, |
| sizeof(vport_update_params.rss_params)); |
| } |
| |
| rc = edev->ops->vport_update(cdev, &vport_update_params); |
| if (rc) { |
| DP_ERR(edev, "Update V-PORT failed %d\n", rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int qede_set_mcast_rx_mac(struct qede_dev *edev, |
| enum qed_filter_xcast_params_type opcode, |
| unsigned char *mac, int num_macs) |
| { |
| struct qed_filter_params filter_cmd; |
| int i; |
| |
| memset(&filter_cmd, 0, sizeof(filter_cmd)); |
| filter_cmd.type = QED_FILTER_TYPE_MCAST; |
| filter_cmd.filter.mcast.type = opcode; |
| filter_cmd.filter.mcast.num = num_macs; |
| |
| for (i = 0; i < num_macs; i++, mac += ETH_ALEN) |
| ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); |
| |
| return edev->ops->filter_config(edev->cdev, &filter_cmd); |
| } |
| |
| enum qede_unload_mode { |
| QEDE_UNLOAD_NORMAL, |
| }; |
| |
| static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) |
| { |
| struct qed_link_params link_params; |
| int rc; |
| |
| DP_INFO(edev, "Starting qede unload\n"); |
| |
| qede_roce_dev_event_close(edev); |
| mutex_lock(&edev->qede_lock); |
| edev->state = QEDE_STATE_CLOSED; |
| |
| /* Close OS Tx */ |
| netif_tx_disable(edev->ndev); |
| netif_carrier_off(edev->ndev); |
| |
| /* Reset the link */ |
| memset(&link_params, 0, sizeof(link_params)); |
| link_params.link_up = false; |
| edev->ops->common->set_link(edev->cdev, &link_params); |
| rc = qede_stop_queues(edev); |
| if (rc) { |
| qede_sync_free_irqs(edev); |
| goto out; |
| } |
| |
| DP_INFO(edev, "Stopped Queues\n"); |
| |
| qede_vlan_mark_nonconfigured(edev); |
| edev->ops->fastpath_stop(edev->cdev); |
| |
| /* Release the interrupts */ |
| qede_sync_free_irqs(edev); |
| edev->ops->common->set_fp_int(edev->cdev, 0); |
| |
| qede_napi_disable_remove(edev); |
| |
| qede_free_mem_load(edev); |
| qede_free_fp_array(edev); |
| |
| out: |
| mutex_unlock(&edev->qede_lock); |
| DP_INFO(edev, "Ending qede unload\n"); |
| } |
| |
| enum qede_load_mode { |
| QEDE_LOAD_NORMAL, |
| QEDE_LOAD_RELOAD, |
| }; |
| |
| static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) |
| { |
| struct qed_link_params link_params; |
| struct qed_link_output link_output; |
| int rc; |
| |
| DP_INFO(edev, "Starting qede load\n"); |
| |
| rc = qede_set_num_queues(edev); |
| if (rc) |
| goto err0; |
| |
| rc = qede_alloc_fp_array(edev); |
| if (rc) |
| goto err0; |
| |
| qede_init_fp(edev); |
| |
| rc = qede_alloc_mem_load(edev); |
| if (rc) |
| goto err1; |
| DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", |
| QEDE_QUEUE_CNT(edev), edev->num_tc); |
| |
| rc = qede_set_real_num_queues(edev); |
| if (rc) |
| goto err2; |
| |
| qede_napi_add_enable(edev); |
| DP_INFO(edev, "Napi added and enabled\n"); |
| |
| rc = qede_setup_irqs(edev); |
| if (rc) |
| goto err3; |
| DP_INFO(edev, "Setup IRQs succeeded\n"); |
| |
| rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); |
| if (rc) |
| goto err4; |
| DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); |
| |
| /* Add primary mac and set Rx filters */ |
| ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); |
| |
| mutex_lock(&edev->qede_lock); |
| edev->state = QEDE_STATE_OPEN; |
| mutex_unlock(&edev->qede_lock); |
| |
| /* Program un-configured VLANs */ |
| qede_configure_vlan_filters(edev); |
| |
| /* Ask for link-up using current configuration */ |
| memset(&link_params, 0, sizeof(link_params)); |
| link_params.link_up = true; |
| edev->ops->common->set_link(edev->cdev, &link_params); |
| |
| /* Query whether link is already-up */ |
| memset(&link_output, 0, sizeof(link_output)); |
| edev->ops->common->get_link(edev->cdev, &link_output); |
| qede_roce_dev_event_open(edev); |
| qede_link_update(edev, &link_output); |
| |
| DP_INFO(edev, "Ending successfully qede load\n"); |
| |
| return 0; |
| |
| err4: |
| qede_sync_free_irqs(edev); |
| memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); |
| err3: |
| qede_napi_disable_remove(edev); |
| err2: |
| qede_free_mem_load(edev); |
| err1: |
| edev->ops->common->set_fp_int(edev->cdev, 0); |
| qede_free_fp_array(edev); |
| edev->num_queues = 0; |
| edev->fp_num_tx = 0; |
| edev->fp_num_rx = 0; |
| err0: |
| return rc; |
| } |
| |
| void qede_reload(struct qede_dev *edev, |
| void (*func)(struct qede_dev *, union qede_reload_args *), |
| union qede_reload_args *args) |
| { |
| qede_unload(edev, QEDE_UNLOAD_NORMAL); |
| /* Call function handler to update parameters |
| * needed for function load. |
| */ |
| if (func) |
| func(edev, args); |
| |
| qede_load(edev, QEDE_LOAD_RELOAD); |
| |
| mutex_lock(&edev->qede_lock); |
| qede_config_rx_mode(edev->ndev); |
| mutex_unlock(&edev->qede_lock); |
| } |
| |
| /* called with rtnl_lock */ |
| static int qede_open(struct net_device *ndev) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| int rc; |
| |
| netif_carrier_off(ndev); |
| |
| edev->ops->common->set_power_state(edev->cdev, PCI_D0); |
| |
| rc = qede_load(edev, QEDE_LOAD_NORMAL); |
| |
| if (rc) |
| return rc; |
| |
| udp_tunnel_get_rx_info(ndev); |
| |
| return 0; |
| } |
| |
| static int qede_close(struct net_device *ndev) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| |
| qede_unload(edev, QEDE_UNLOAD_NORMAL); |
| |
| return 0; |
| } |
| |
| static void qede_link_update(void *dev, struct qed_link_output *link) |
| { |
| struct qede_dev *edev = dev; |
| |
| if (!netif_running(edev->ndev)) { |
| DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); |
| return; |
| } |
| |
| if (link->link_up) { |
| if (!netif_carrier_ok(edev->ndev)) { |
| DP_NOTICE(edev, "Link is up\n"); |
| netif_tx_start_all_queues(edev->ndev); |
| netif_carrier_on(edev->ndev); |
| } |
| } else { |
| if (netif_carrier_ok(edev->ndev)) { |
| DP_NOTICE(edev, "Link is down\n"); |
| netif_tx_disable(edev->ndev); |
| netif_carrier_off(edev->ndev); |
| } |
| } |
| } |
| |
| static int qede_set_mac_addr(struct net_device *ndev, void *p) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| struct sockaddr *addr = p; |
| int rc; |
| |
| ASSERT_RTNL(); /* @@@TBD To be removed */ |
| |
| DP_INFO(edev, "Set_mac_addr called\n"); |
| |
| if (!is_valid_ether_addr(addr->sa_data)) { |
| DP_NOTICE(edev, "The MAC address is not valid\n"); |
| return -EFAULT; |
| } |
| |
| if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) { |
| DP_NOTICE(edev, "qed prevents setting MAC\n"); |
| return -EINVAL; |
| } |
| |
| ether_addr_copy(ndev->dev_addr, addr->sa_data); |
| |
| if (!netif_running(ndev)) { |
| DP_NOTICE(edev, "The device is currently down\n"); |
| return 0; |
| } |
| |
| /* Remove the previous primary mac */ |
| rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, |
| edev->primary_mac); |
| if (rc) |
| return rc; |
| |
| /* Add MAC filter according to the new unicast HW MAC address */ |
| ether_addr_copy(edev->primary_mac, ndev->dev_addr); |
| return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, |
| edev->primary_mac); |
| } |
| |
| static int |
| qede_configure_mcast_filtering(struct net_device *ndev, |
| enum qed_filter_rx_mode_type *accept_flags) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| unsigned char *mc_macs, *temp; |
| struct netdev_hw_addr *ha; |
| int rc = 0, mc_count; |
| size_t size; |
| |
| size = 64 * ETH_ALEN; |
| |
| mc_macs = kzalloc(size, GFP_KERNEL); |
| if (!mc_macs) { |
| DP_NOTICE(edev, |
| "Failed to allocate memory for multicast MACs\n"); |
| rc = -ENOMEM; |
| goto exit; |
| } |
| |
| temp = mc_macs; |
| |
| /* Remove all previously configured MAC filters */ |
| rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, |
| mc_macs, 1); |
| if (rc) |
| goto exit; |
| |
| netif_addr_lock_bh(ndev); |
| |
| mc_count = netdev_mc_count(ndev); |
| if (mc_count < 64) { |
| netdev_for_each_mc_addr(ha, ndev) { |
| ether_addr_copy(temp, ha->addr); |
| temp += ETH_ALEN; |
| } |
| } |
| |
| netif_addr_unlock_bh(ndev); |
| |
| /* Check for all multicast @@@TBD resource allocation */ |
| if ((ndev->flags & IFF_ALLMULTI) || |
| (mc_count > 64)) { |
| if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) |
| *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; |
| } else { |
| /* Add all multicast MAC filters */ |
| rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, |
| mc_macs, mc_count); |
| } |
| |
| exit: |
| kfree(mc_macs); |
| return rc; |
| } |
| |
| static void qede_set_rx_mode(struct net_device *ndev) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| |
| DP_INFO(edev, "qede_set_rx_mode called\n"); |
| |
| if (edev->state != QEDE_STATE_OPEN) { |
| DP_INFO(edev, |
| "qede_set_rx_mode called while interface is down\n"); |
| } else { |
| set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); |
| schedule_delayed_work(&edev->sp_task, 0); |
| } |
| } |
| |
| /* Must be called with qede_lock held */ |
| static void qede_config_rx_mode(struct net_device *ndev) |
| { |
| enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; |
| struct qede_dev *edev = netdev_priv(ndev); |
| struct qed_filter_params rx_mode; |
| unsigned char *uc_macs, *temp; |
| struct netdev_hw_addr *ha; |
| int rc, uc_count; |
| size_t size; |
| |
| netif_addr_lock_bh(ndev); |
| |
| uc_count = netdev_uc_count(ndev); |
| size = uc_count * ETH_ALEN; |
| |
| uc_macs = kzalloc(size, GFP_ATOMIC); |
| if (!uc_macs) { |
| DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); |
| netif_addr_unlock_bh(ndev); |
| return; |
| } |
| |
| temp = uc_macs; |
| netdev_for_each_uc_addr(ha, ndev) { |
| ether_addr_copy(temp, ha->addr); |
| temp += ETH_ALEN; |
| } |
| |
| netif_addr_unlock_bh(ndev); |
| |
| /* Configure the struct for the Rx mode */ |
| memset(&rx_mode, 0, sizeof(struct qed_filter_params)); |
| rx_mode.type = QED_FILTER_TYPE_RX_MODE; |
| |
| /* Remove all previous unicast secondary macs and multicast macs |
| * (configrue / leave the primary mac) |
| */ |
| rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, |
| edev->primary_mac); |
| if (rc) |
| goto out; |
| |
| /* Check for promiscuous */ |
| if ((ndev->flags & IFF_PROMISC) || |
| (uc_count > 15)) { /* @@@TBD resource allocation - 1 */ |
| accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; |
| } else { |
| /* Add MAC filters according to the unicast secondary macs */ |
| int i; |
| |
| temp = uc_macs; |
| for (i = 0; i < uc_count; i++) { |
| rc = qede_set_ucast_rx_mac(edev, |
| QED_FILTER_XCAST_TYPE_ADD, |
| temp); |
| if (rc) |
| goto out; |
| |
| temp += ETH_ALEN; |
| } |
| |
| rc = qede_configure_mcast_filtering(ndev, &accept_flags); |
| if (rc) |
| goto out; |
| } |
| |
| /* take care of VLAN mode */ |
| if (ndev->flags & IFF_PROMISC) { |
| qede_config_accept_any_vlan(edev, true); |
| } else if (!edev->non_configured_vlans) { |
| /* It's possible that accept_any_vlan mode is set due to a |
| * previous setting of IFF_PROMISC. If vlan credits are |
| * sufficient, disable accept_any_vlan. |
| */ |
| qede_config_accept_any_vlan(edev, false); |
| } |
| |
| rx_mode.filter.accept_flags = accept_flags; |
| edev->ops->filter_config(edev->cdev, &rx_mode); |
| out: |
| kfree(uc_macs); |
| } |