blob: b2b838724a9b8608ac683a0925a30266f216cdef [file] [log] [blame]
/*
* Broadcom Starfighter 2 DSA switch driver
*
* Copyright (C) 2014, Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <net/dsa.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/brcmphy.h>
#include <linux/etherdevice.h>
#include <net/switchdev.h>
#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
/* String, offset, and register size in bytes if different from 4 bytes */
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
{ "TxOctets", 0x000, 8 },
{ "TxDropPkts", 0x020 },
{ "TxQPKTQ0", 0x030 },
{ "TxBroadcastPkts", 0x040 },
{ "TxMulticastPkts", 0x050 },
{ "TxUnicastPKts", 0x060 },
{ "TxCollisions", 0x070 },
{ "TxSingleCollision", 0x080 },
{ "TxMultipleCollision", 0x090 },
{ "TxDeferredCollision", 0x0a0 },
{ "TxLateCollision", 0x0b0 },
{ "TxExcessiveCollision", 0x0c0 },
{ "TxFrameInDisc", 0x0d0 },
{ "TxPausePkts", 0x0e0 },
{ "TxQPKTQ1", 0x0f0 },
{ "TxQPKTQ2", 0x100 },
{ "TxQPKTQ3", 0x110 },
{ "TxQPKTQ4", 0x120 },
{ "TxQPKTQ5", 0x130 },
{ "RxOctets", 0x140, 8 },
{ "RxUndersizePkts", 0x160 },
{ "RxPausePkts", 0x170 },
{ "RxPkts64Octets", 0x180 },
{ "RxPkts65to127Octets", 0x190 },
{ "RxPkts128to255Octets", 0x1a0 },
{ "RxPkts256to511Octets", 0x1b0 },
{ "RxPkts512to1023Octets", 0x1c0 },
{ "RxPkts1024toMaxPktsOctets", 0x1d0 },
{ "RxOversizePkts", 0x1e0 },
{ "RxJabbers", 0x1f0 },
{ "RxAlignmentErrors", 0x200 },
{ "RxFCSErrors", 0x210 },
{ "RxGoodOctets", 0x220, 8 },
{ "RxDropPkts", 0x240 },
{ "RxUnicastPkts", 0x250 },
{ "RxMulticastPkts", 0x260 },
{ "RxBroadcastPkts", 0x270 },
{ "RxSAChanges", 0x280 },
{ "RxFragments", 0x290 },
{ "RxJumboPkt", 0x2a0 },
{ "RxSymblErr", 0x2b0 },
{ "InRangeErrCount", 0x2c0 },
{ "OutRangeErrCount", 0x2d0 },
{ "EEELpiEvent", 0x2e0 },
{ "EEELpiDuration", 0x2f0 },
{ "RxDiscard", 0x300, 8 },
{ "TxQPKTQ6", 0x320 },
{ "TxQPKTQ7", 0x330 },
{ "TxPkts64Octets", 0x340 },
{ "TxPkts65to127Octets", 0x350 },
{ "TxPkts128to255Octets", 0x360 },
{ "TxPkts256to511Ocets", 0x370 },
{ "TxPkts512to1023Ocets", 0x380 },
{ "TxPkts1024toMaxPktOcets", 0x390 },
};
#define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
int port, uint8_t *data)
{
unsigned int i;
for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
memcpy(data + i * ETH_GSTRING_LEN,
bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
}
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
int port, uint64_t *data)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
const struct bcm_sf2_hw_stats *s;
unsigned int i;
u64 val = 0;
u32 offset;
mutex_lock(&priv->stats_mutex);
/* Now fetch the per-port counters */
for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
s = &bcm_sf2_mib[i];
/* Do a latched 64-bit read if needed */
offset = s->reg + CORE_P_MIB_OFFSET(port);
if (s->sizeof_stat == 8)
val = core_readq(priv, offset);
else
val = core_readl(priv, offset);
data[i] = (u64)val;
}
mutex_unlock(&priv->stats_mutex);
}
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
{
return BCM_SF2_STATS_SIZE;
}
static const char *bcm_sf2_sw_drv_probe(struct device *dsa_dev,
struct device *host_dev, int sw_addr,
void **_priv)
{
struct bcm_sf2_priv *priv;
priv = devm_kzalloc(dsa_dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return NULL;
*_priv = priv;
return "Broadcom Starfighter 2";
}
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
unsigned int i;
u32 reg;
/* Enable the IMP Port to be in the same VLAN as the other ports
* on a per-port basis such that we only have Port i and IMP in
* the same VLAN.
*/
for (i = 0; i < priv->hw_params.num_ports; i++) {
if (!((1 << i) & ds->enabled_port_mask))
continue;
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
reg |= (1 << cpu_port);
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
}
}
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 reg, val;
/* Enable the port memories */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
reg = core_readl(priv, CORE_IMP_CTL);
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
reg &= ~(RX_DIS | TX_DIS);
core_writel(priv, reg, CORE_IMP_CTL);
/* Enable forwarding */
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
/* Enable IMP port in dumb mode */
reg = core_readl(priv, CORE_SWITCH_CTRL);
reg |= MII_DUMB_FWDG_EN;
core_writel(priv, reg, CORE_SWITCH_CTRL);
/* Resolve which bit controls the Broadcom tag */
switch (port) {
case 8:
val = BRCM_HDR_EN_P8;
break;
case 7:
val = BRCM_HDR_EN_P7;
break;
case 5:
val = BRCM_HDR_EN_P5;
break;
default:
val = 0;
break;
}
/* Enable Broadcom tags for IMP port */
reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
reg |= val;
core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
/* Enable reception Broadcom tag for CPU TX (switch RX) to
* allow us to tag outgoing frames
*/
reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
reg &= ~(1 << port);
core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
/* Enable transmission of Broadcom tags from the switch (CPU RX) to
* allow delivering frames to the per-port net_devices
*/
reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
reg &= ~(1 << port);
core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
/* Force link status for IMP port */
reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
reg |= (MII_SW_OR | LINK_STS);
core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
}
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 reg;
reg = core_readl(priv, CORE_EEE_EN_CTRL);
if (enable)
reg |= 1 << port;
else
reg &= ~(1 << port);
core_writel(priv, reg, CORE_EEE_EN_CTRL);
}
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 reg;
reg = reg_readl(priv, REG_SPHY_CNTRL);
if (enable) {
reg |= PHY_RESET;
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
reg_writel(priv, reg, REG_SPHY_CNTRL);
udelay(21);
reg = reg_readl(priv, REG_SPHY_CNTRL);
reg &= ~PHY_RESET;
} else {
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
reg_writel(priv, reg, REG_SPHY_CNTRL);
mdelay(1);
reg |= CK25_DIS;
}
reg_writel(priv, reg, REG_SPHY_CNTRL);
/* Use PHY-driven LED signaling */
if (!enable) {
reg = reg_readl(priv, REG_LED_CNTRL(0));
reg |= SPDLNK_SRC_SEL;
reg_writel(priv, reg, REG_LED_CNTRL(0));
}
}
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
s8 cpu_port = ds->dst[ds->index].cpu_port;
u32 reg;
/* Clear the memory power down */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Clear the Rx and Tx disable bits and set to no spanning tree */
core_writel(priv, 0, CORE_G_PCTL_PORT(port));
/* Re-enable the GPHY and re-apply workarounds */
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
bcm_sf2_gphy_enable_set(ds, true);
if (phy) {
/* if phy_stop() has been called before, phy
* will be in halted state, and phy_start()
* will call resume.
*
* the resume path does not configure back
* autoneg settings, and since we hard reset
* the phy manually here, we need to reset the
* state machine also.
*/
phy->state = PHY_READY;
phy_init_hw(phy);
}
}
/* Enable MoCA port interrupts to get notified */
if (port == priv->moca_port)
bcm_sf2_port_intr_enable(priv, port);
/* Set this port, and only this one to be in the default VLAN,
* if member of a bridge, restore its membership prior to
* bringing down this port.
*/
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
reg &= ~PORT_VLAN_CTRL_MASK;
reg |= (1 << port);
reg |= priv->port_sts[port].vlan_ctl_mask;
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
bcm_sf2_imp_vlan_setup(ds, cpu_port);
/* If EEE was enabled, restore it */
if (priv->port_sts[port].eee.eee_enabled)
bcm_sf2_eee_enable_set(ds, port, true);
return 0;
}
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 off, reg;
if (priv->wol_ports_mask & (1 << port))
return;
if (port == priv->moca_port)
bcm_sf2_port_intr_disable(priv, port);
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, false);
if (dsa_is_cpu_port(ds, port))
off = CORE_IMP_CTL;
else
off = CORE_G_PCTL_PORT(port);
reg = core_readl(priv, off);
reg |= RX_DIS | TX_DIS;
core_writel(priv, reg, off);
/* Power down the port memory */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg |= P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
}
/* Returns 0 if EEE was not enabled, or 1 otherwise
*/
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct ethtool_eee *p = &priv->port_sts[port].eee;
int ret;
p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
ret = phy_init_eee(phy, 0);
if (ret)
return 0;
bcm_sf2_eee_enable_set(ds, port, true);
return 1;
}
static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
struct ethtool_eee *e)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct ethtool_eee *p = &priv->port_sts[port].eee;
u32 reg;
reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
e->eee_enabled = p->eee_enabled;
e->eee_active = !!(reg & (1 << port));
return 0;
}
static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
struct phy_device *phydev,
struct ethtool_eee *e)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct ethtool_eee *p = &priv->port_sts[port].eee;
p->eee_enabled = e->eee_enabled;
if (!p->eee_enabled) {
bcm_sf2_eee_enable_set(ds, port, false);
} else {
p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
if (!p->eee_enabled)
return -EOPNOTSUPP;
}
return 0;
}
static int bcm_sf2_fast_age_op(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 1000;
u32 reg;
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
reg |= EN_AGE_PORT | EN_AGE_VLAN | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
core_writel(priv, reg, CORE_FAST_AGE_CTRL);
do {
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
if (!(reg & FAST_AGE_STR_DONE))
break;
cpu_relax();
} while (timeout--);
if (!timeout)
return -ETIMEDOUT;
core_writel(priv, 0, CORE_FAST_AGE_CTRL);
return 0;
}
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
* flush for that port.
*/
static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
core_writel(priv, port, CORE_FAST_AGE_PORT);
return bcm_sf2_fast_age_op(priv);
}
static int bcm_sf2_sw_fast_age_vlan(struct bcm_sf2_priv *priv, u16 vid)
{
core_writel(priv, vid, CORE_FAST_AGE_VID);
return bcm_sf2_fast_age_op(priv);
}
static int bcm_sf2_vlan_op_wait(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 10;
u32 reg;
do {
reg = core_readl(priv, CORE_ARLA_VTBL_RWCTRL);
if (!(reg & ARLA_VTBL_STDN))
return 0;
usleep_range(1000, 2000);
} while (timeout--);
return -ETIMEDOUT;
}
static int bcm_sf2_vlan_op(struct bcm_sf2_priv *priv, u8 op)
{
core_writel(priv, ARLA_VTBL_STDN | op, CORE_ARLA_VTBL_RWCTRL);
return bcm_sf2_vlan_op_wait(priv);
}
static void bcm_sf2_set_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
struct bcm_sf2_vlan *vlan)
{
int ret;
core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);
core_writel(priv, vlan->untag << UNTAG_MAP_SHIFT | vlan->members,
CORE_ARLA_VTBL_ENTRY);
ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_WRITE);
if (ret)
pr_err("failed to write VLAN entry\n");
}
static int bcm_sf2_get_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
struct bcm_sf2_vlan *vlan)
{
u32 entry;
int ret;
core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);
ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_READ);
if (ret)
return ret;
entry = core_readl(priv, CORE_ARLA_VTBL_ENTRY);
vlan->members = entry & FWD_MAP_MASK;
vlan->untag = (entry >> UNTAG_MAP_SHIFT) & UNTAG_MAP_MASK;
return 0;
}
static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
s8 cpu_port = ds->dst->cpu_port;
unsigned int i;
u32 reg, p_ctl;
/* Make this port leave the all VLANs join since we will have proper
* VLAN entries from now on
*/
reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
reg &= ~BIT(port);
if ((reg & BIT(cpu_port)) == BIT(cpu_port))
reg &= ~BIT(cpu_port);
core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
priv->port_sts[port].bridge_dev = bridge;
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
for (i = 0; i < priv->hw_params.num_ports; i++) {
if (priv->port_sts[i].bridge_dev != bridge)
continue;
/* Add this local port to the remote port VLAN control
* membership and update the remote port bitmask
*/
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
reg |= 1 << port;
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
priv->port_sts[i].vlan_ctl_mask = reg;
p_ctl |= 1 << i;
}
/* Configure the local port VLAN control membership to include
* remote ports and update the local port bitmask
*/
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
priv->port_sts[port].vlan_ctl_mask = p_ctl;
return 0;
}
static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct net_device *bridge = priv->port_sts[port].bridge_dev;
s8 cpu_port = ds->dst->cpu_port;
unsigned int i;
u32 reg, p_ctl;
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
for (i = 0; i < priv->hw_params.num_ports; i++) {
/* Don't touch the remaining ports */
if (priv->port_sts[i].bridge_dev != bridge)
continue;
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
reg &= ~(1 << port);
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
priv->port_sts[port].vlan_ctl_mask = reg;
/* Prevent self removal to preserve isolation */
if (port != i)
p_ctl &= ~(1 << i);
}
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
priv->port_sts[port].vlan_ctl_mask = p_ctl;
priv->port_sts[port].bridge_dev = NULL;
/* Make this port join all VLANs without VLAN entries */
reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
reg |= BIT(port);
if (!(reg & BIT(cpu_port)))
reg |= BIT(cpu_port);
core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
}
static void bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
u8 state)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u8 hw_state, cur_hw_state;
u32 reg;
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
switch (state) {
case BR_STATE_DISABLED:
hw_state = G_MISTP_DIS_STATE;
break;
case BR_STATE_LISTENING:
hw_state = G_MISTP_LISTEN_STATE;
break;
case BR_STATE_LEARNING:
hw_state = G_MISTP_LEARN_STATE;
break;
case BR_STATE_FORWARDING:
hw_state = G_MISTP_FWD_STATE;
break;
case BR_STATE_BLOCKING:
hw_state = G_MISTP_BLOCK_STATE;
break;
default:
pr_err("%s: invalid STP state: %d\n", __func__, state);
return;
}
/* Fast-age ARL entries if we are moving a port from Learning or
* Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
* state (hw_state)
*/
if (cur_hw_state != hw_state) {
if (cur_hw_state >= G_MISTP_LEARN_STATE &&
hw_state <= G_MISTP_LISTEN_STATE) {
if (bcm_sf2_sw_fast_age_port(ds, port)) {
pr_err("%s: fast-ageing failed\n", __func__);
return;
}
}
}
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
reg |= hw_state;
core_writel(priv, reg, CORE_G_PCTL_PORT(port));
}
/* Address Resolution Logic routines */
static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 10;
u32 reg;
do {
reg = core_readl(priv, CORE_ARLA_RWCTL);
if (!(reg & ARL_STRTDN))
return 0;
usleep_range(1000, 2000);
} while (timeout--);
return -ETIMEDOUT;
}
static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
{
u32 cmd;
if (op > ARL_RW)
return -EINVAL;
cmd = core_readl(priv, CORE_ARLA_RWCTL);
cmd &= ~IVL_SVL_SELECT;
cmd |= ARL_STRTDN;
if (op)
cmd |= ARL_RW;
else
cmd &= ~ARL_RW;
core_writel(priv, cmd, CORE_ARLA_RWCTL);
return bcm_sf2_arl_op_wait(priv);
}
static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
bool is_valid)
{
unsigned int i;
int ret;
ret = bcm_sf2_arl_op_wait(priv);
if (ret)
return ret;
/* Read the 4 bins */
for (i = 0; i < 4; i++) {
u64 mac_vid;
u32 fwd_entry;
mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
if (ent->is_valid && is_valid) {
*idx = i;
return 0;
}
/* This is the MAC we just deleted */
if (!is_valid && (mac_vid & mac))
return 0;
}
return -ENOENT;
}
static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
const unsigned char *addr, u16 vid, bool is_valid)
{
struct bcm_sf2_arl_entry ent;
u32 fwd_entry;
u64 mac, mac_vid = 0;
u8 idx = 0;
int ret;
/* Convert the array into a 64-bit MAC */
mac = bcm_sf2_mac_to_u64(addr);
/* Perform a read for the given MAC and VID */
core_writeq(priv, mac, CORE_ARLA_MAC);
core_writel(priv, vid, CORE_ARLA_VID);
/* Issue a read operation for this MAC */
ret = bcm_sf2_arl_rw_op(priv, 1);
if (ret)
return ret;
ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
/* If this is a read, just finish now */
if (op)
return ret;
/* We could not find a matching MAC, so reset to a new entry */
if (ret) {
fwd_entry = 0;
idx = 0;
}
memset(&ent, 0, sizeof(ent));
ent.port = port;
ent.is_valid = is_valid;
ent.vid = vid;
ent.is_static = true;
memcpy(ent.mac, addr, ETH_ALEN);
bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
ret = bcm_sf2_arl_rw_op(priv, 0);
if (ret)
return ret;
/* Re-read the entry to check */
return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
}
static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
/* We do not need to do anything specific here yet */
return 0;
}
static void bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
if (bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
pr_err("%s: failed to add MAC address\n", __func__);
}
static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
}
static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
{
unsigned timeout = 1000;
u32 reg;
do {
reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
if (!(reg & ARLA_SRCH_STDN))
return 0;
if (reg & ARLA_SRCH_VLID)
return 0;
usleep_range(1000, 2000);
} while (timeout--);
return -ETIMEDOUT;
}
static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
struct bcm_sf2_arl_entry *ent)
{
u64 mac_vid;
u32 fwd_entry;
mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
}
static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
const struct bcm_sf2_arl_entry *ent,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
if (!ent->is_valid)
return 0;
if (port != ent->port)
return 0;
ether_addr_copy(fdb->addr, ent->mac);
fdb->vid = ent->vid;
fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
return cb(&fdb->obj);
}
static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct net_device *dev = ds->ports[port].netdev;
struct bcm_sf2_arl_entry results[2];
unsigned int count = 0;
int ret;
/* Start search operation */
core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
do {
ret = bcm_sf2_arl_search_wait(priv);
if (ret)
return ret;
/* Read both entries, then return their values back */
bcm_sf2_arl_search_rd(priv, 0, &results[0]);
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
if (ret)
return ret;
bcm_sf2_arl_search_rd(priv, 1, &results[1]);
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
if (ret)
return ret;
if (!results[0].is_valid && !results[1].is_valid)
break;
} while (count++ < CORE_ARLA_NUM_ENTRIES);
return 0;
}
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
int regnum, u16 val)
{
int ret = 0;
u32 reg;
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg |= MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
/* Page << 8 | offset */
reg = 0x70;
reg <<= 2;
core_writel(priv, addr, reg);
/* Page << 8 | offset */
reg = 0x80 << 8 | regnum << 1;
reg <<= 2;
if (op)
ret = core_readl(priv, reg);
else
core_writel(priv, val, reg);
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg &= ~MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
return ret & 0xffff;
}
static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept reads from Broadcom pseudo-PHY address, else, send
* them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
else
return mdiobus_read(priv->master_mii_bus, addr, regnum);
}
static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept writes to the Broadcom pseudo-PHY address, else,
* send them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
else
mdiobus_write(priv->master_mii_bus, addr, regnum, val);
return 0;
}
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
struct bcm_sf2_priv *priv = dev_id;
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq0_mask;
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
return IRQ_HANDLED;
}
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
struct bcm_sf2_priv *priv = dev_id;
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq1_mask;
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
priv->port_sts[7].link = 1;
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
priv->port_sts[7].link = 0;
return IRQ_HANDLED;
}
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 1000;
u32 reg;
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
do {
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
if (!(reg & SOFTWARE_RESET))
break;
usleep_range(1000, 2000);
} while (timeout-- > 0);
if (timeout == 0)
return -ETIMEDOUT;
return 0;
}
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
}
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
struct device_node *dn)
{
struct device_node *port;
const char *phy_mode_str;
int mode;
unsigned int port_num;
int ret;
priv->moca_port = -1;
for_each_available_child_of_node(dn, port) {
if (of_property_read_u32(port, "reg", &port_num))
continue;
/* Internal PHYs get assigned a specific 'phy-mode' property
* value: "internal" to help flag them before MDIO probing
* has completed, since they might be turned off at that
* time
*/
mode = of_get_phy_mode(port);
if (mode < 0) {
ret = of_property_read_string(port, "phy-mode",
&phy_mode_str);
if (ret < 0)
continue;
if (!strcasecmp(phy_mode_str, "internal"))
priv->int_phy_mask |= 1 << port_num;
}
if (mode == PHY_INTERFACE_MODE_MOCA)
priv->moca_port = port_num;
}
}
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct device_node *dn;
static int index;
int err;
/* Find our integrated MDIO bus node */
dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
priv->master_mii_bus = of_mdio_find_bus(dn);
if (!priv->master_mii_bus)
return -EPROBE_DEFER;
get_device(&priv->master_mii_bus->dev);
priv->master_mii_dn = dn;
priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!priv->slave_mii_bus)
return -ENOMEM;
priv->slave_mii_bus->priv = priv;
priv->slave_mii_bus->name = "sf2 slave mii";
priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
index++);
priv->slave_mii_bus->dev.of_node = dn;
/* Include the pseudo-PHY address to divert reads towards our
* workaround. This is only required for 7445D0, since 7445E0
* disconnects the internal switch pseudo-PHY such that we can use the
* regular SWITCH_MDIO master controller instead.
*
* Here we flag the pseudo PHY as needing special treatment and would
* otherwise make all other PHY read/writes go to the master MDIO bus
* controller that comes with this switch backed by the "mdio-unimac"
* driver.
*/
if (of_machine_is_compatible("brcm,bcm7445d0"))
priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
else
priv->indir_phy_mask = 0;
ds->phys_mii_mask = priv->indir_phy_mask;
ds->slave_mii_bus = priv->slave_mii_bus;
priv->slave_mii_bus->parent = ds->dev->parent;
priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;
if (dn)
err = of_mdiobus_register(priv->slave_mii_bus, dn);
else
err = mdiobus_register(priv->slave_mii_bus);
if (err)
of_node_put(dn);
return err;
}
static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
mdiobus_unregister(priv->slave_mii_bus);
if (priv->master_mii_dn)
of_node_put(priv->master_mii_dn);
}
static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
{
return 0;
}
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
* the REG_PHY_REVISION register layout is.
*/
return priv->hw_params.gphy_rev;
}
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 id_mode_dis = 0, port_mode;
const char *str = NULL;
u32 reg;
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
str = "RGMII (no delay)";
id_mode_dis = 1;
case PHY_INTERFACE_MODE_RGMII_TXID:
if (!str)
str = "RGMII (TX delay)";
port_mode = EXT_GPHY;
break;
case PHY_INTERFACE_MODE_MII:
str = "MII";
port_mode = EXT_EPHY;
break;
case PHY_INTERFACE_MODE_REVMII:
str = "Reverse MII";
port_mode = EXT_REVMII;
break;
default:
/* All other PHYs: internal and MoCA */
goto force_link;
}
/* If the link is down, just disable the interface to conserve power */
if (!phydev->link) {
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
reg &= ~RGMII_MODE_EN;
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
goto force_link;
}
/* Clear id_mode_dis bit, and the existing port mode, but
* make sure we enable the RGMII block for data to pass
*/
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
reg &= ~ID_MODE_DIS;
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
reg |= port_mode | RGMII_MODE_EN;
if (id_mode_dis)
reg |= ID_MODE_DIS;
if (phydev->pause) {
if (phydev->asym_pause)
reg |= TX_PAUSE_EN;
reg |= RX_PAUSE_EN;
}
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
pr_info("Port %d configured for %s\n", port, str);
force_link:
/* Force link settings detected from the PHY */
reg = SW_OVERRIDE;
switch (phydev->speed) {
case SPEED_1000:
reg |= SPDSTS_1000 << SPEED_SHIFT;
break;
case SPEED_100:
reg |= SPDSTS_100 << SPEED_SHIFT;
break;
}
if (phydev->link)
reg |= LINK_STS;
if (phydev->duplex == DUPLEX_FULL)
reg |= DUPLX_MODE;
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
}
static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
struct fixed_phy_status *status)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
u32 duplex, pause;
u32 reg;
duplex = core_readl(priv, CORE_DUPSTS);
pause = core_readl(priv, CORE_PAUSESTS);
status->link = 0;
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
* which means that we need to force the link at the port override
* level to get the data to flow. We do use what the interrupt handler
* did determine before.
*
* For the other ports, we just force the link status, since this is
* a fixed PHY device.
*/
if (port == priv->moca_port) {
status->link = priv->port_sts[port].link;
/* For MoCA interfaces, also force a link down notification
* since some version of the user-space daemon (mocad) use
* cmd->autoneg to force the link, which messes up the PHY
* state machine and make it go in PHY_FORCING state instead.
*/
if (!status->link)
netif_carrier_off(ds->ports[port].netdev);
status->duplex = 1;
} else {
status->link = 1;
status->duplex = !!(duplex & (1 << port));
}
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
reg |= SW_OVERRIDE;
if (status->link)
reg |= LINK_STS;
else
reg &= ~LINK_STS;
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
if ((pause & (1 << port)) &&
(pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
status->asym_pause = 1;
status->pause = 1;
}
if (pause & (1 << port))
status->pause = 1;
}
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
unsigned int port;
bcm_sf2_intr_disable(priv);
/* Disable all ports physically present including the IMP
* port, the other ones have already been disabled during
* bcm_sf2_sw_setup
*/
for (port = 0; port < DSA_MAX_PORTS; port++) {
if ((1 << port) & ds->enabled_port_mask ||
dsa_is_cpu_port(ds, port))
bcm_sf2_port_disable(ds, port, NULL);
}
return 0;
}
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
unsigned int port;
int ret;
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("%s: failed to software reset switch\n", __func__);
return ret;
}
if (priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, true);
for (port = 0; port < DSA_MAX_PORTS; port++) {
if ((1 << port) & ds->enabled_port_mask)
bcm_sf2_port_setup(ds, port, NULL);
else if (dsa_is_cpu_port(ds, port))
bcm_sf2_imp_setup(ds, port);
}
return 0;
}
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = ds->dst[ds->index].master_netdev;
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct ethtool_wolinfo pwol;
/* Get the parent device WoL settings */
p->ethtool_ops->get_wol(p, &pwol);
/* Advertise the parent device supported settings */
wol->supported = pwol.supported;
memset(&wol->sopass, 0, sizeof(wol->sopass));
if (pwol.wolopts & WAKE_MAGICSECURE)
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
if (priv->wol_ports_mask & (1 << port))
wol->wolopts = pwol.wolopts;
else
wol->wolopts = 0;
}
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = ds->dst[ds->index].master_netdev;
struct bcm_sf2_priv *priv = ds_to_priv(ds);
s8 cpu_port = ds->dst[ds->index].cpu_port;
struct ethtool_wolinfo pwol;
p->ethtool_ops->get_wol(p, &pwol);
if (wol->wolopts & ~pwol.supported)
return -EINVAL;
if (wol->wolopts)
priv->wol_ports_mask |= (1 << port);
else
priv->wol_ports_mask &= ~(1 << port);
/* If we have at least one port enabled, make sure the CPU port
* is also enabled. If the CPU port is the last one enabled, we disable
* it since this configuration does not make sense.
*/
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
priv->wol_ports_mask |= (1 << cpu_port);
else
priv->wol_ports_mask &= ~(1 << cpu_port);
return p->ethtool_ops->set_wol(p, wol);
}
static void bcm_sf2_enable_vlan(struct bcm_sf2_priv *priv, bool enable)
{
u32 mgmt, vc0, vc1, vc4, vc5;
mgmt = core_readl(priv, CORE_SWMODE);
vc0 = core_readl(priv, CORE_VLAN_CTRL0);
vc1 = core_readl(priv, CORE_VLAN_CTRL1);
vc4 = core_readl(priv, CORE_VLAN_CTRL4);
vc5 = core_readl(priv, CORE_VLAN_CTRL5);
mgmt &= ~SW_FWDG_MODE;
if (enable) {
vc0 |= VLAN_EN | VLAN_LEARN_MODE_IVL;
vc1 |= EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP;
vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
vc4 |= INGR_VID_CHK_DROP;
vc5 |= DROP_VTABLE_MISS | EN_VID_FFF_FWD;
} else {
vc0 &= ~(VLAN_EN | VLAN_LEARN_MODE_IVL);
vc1 &= ~(EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP);
vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
vc5 &= ~(DROP_VTABLE_MISS | EN_VID_FFF_FWD);
vc4 |= INGR_VID_CHK_VID_VIOL_IMP;
}
core_writel(priv, vc0, CORE_VLAN_CTRL0);
core_writel(priv, vc1, CORE_VLAN_CTRL1);
core_writel(priv, 0, CORE_VLAN_CTRL3);
core_writel(priv, vc4, CORE_VLAN_CTRL4);
core_writel(priv, vc5, CORE_VLAN_CTRL5);
core_writel(priv, mgmt, CORE_SWMODE);
}
static void bcm_sf2_sw_configure_vlan(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
unsigned int port;
/* Clear all VLANs */
bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_CLEAR);
for (port = 0; port < priv->hw_params.num_ports; port++) {
if (!((1 << port) & ds->enabled_port_mask))
continue;
core_writel(priv, 1, CORE_DEFAULT_1Q_TAG_P(port));
}
}
static int bcm_sf2_sw_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
return 0;
}
static int bcm_sf2_sw_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
bcm_sf2_enable_vlan(priv, true);
return 0;
}
static void bcm_sf2_sw_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
s8 cpu_port = ds->dst->cpu_port;
struct bcm_sf2_vlan *vl;
u16 vid;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
vl = &priv->vlans[vid];
bcm_sf2_get_vlan_entry(priv, vid, vl);
vl->members |= BIT(port) | BIT(cpu_port);
if (untagged)
vl->untag |= BIT(port) | BIT(cpu_port);
else
vl->untag &= ~(BIT(port) | BIT(cpu_port));
bcm_sf2_set_vlan_entry(priv, vid, vl);
bcm_sf2_sw_fast_age_vlan(priv, vid);
}
if (pvid) {
core_writel(priv, vlan->vid_end, CORE_DEFAULT_1Q_TAG_P(port));
core_writel(priv, vlan->vid_end,
CORE_DEFAULT_1Q_TAG_P(cpu_port));
bcm_sf2_sw_fast_age_vlan(priv, vid);
}
}
static int bcm_sf2_sw_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
s8 cpu_port = ds->dst->cpu_port;
struct bcm_sf2_vlan *vl;
u16 vid, pvid;
int ret;
pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
vl = &priv->vlans[vid];
ret = bcm_sf2_get_vlan_entry(priv, vid, vl);
if (ret)
return ret;
vl->members &= ~BIT(port);
if ((vl->members & BIT(cpu_port)) == BIT(cpu_port))
vl->members = 0;
if (pvid == vid)
pvid = 0;
if (untagged) {
vl->untag &= ~BIT(port);
if ((vl->untag & BIT(port)) == BIT(cpu_port))
vl->untag = 0;
}
bcm_sf2_set_vlan_entry(priv, vid, vl);
bcm_sf2_sw_fast_age_vlan(priv, vid);
}
core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(port));
core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(cpu_port));
bcm_sf2_sw_fast_age_vlan(priv, vid);
return 0;
}
static int bcm_sf2_sw_vlan_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_vlan *vlan,
int (*cb)(struct switchdev_obj *obj))
{
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct bcm_sf2_port_status *p = &priv->port_sts[port];
struct bcm_sf2_vlan *vl;
u16 vid, pvid;
int err = 0;
pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));
for (vid = 0; vid < VLAN_N_VID; vid++) {
vl = &priv->vlans[vid];
if (!(vl->members & BIT(port)))
continue;
vlan->vid_begin = vlan->vid_end = vid;
vlan->flags = 0;
if (vl->untag & BIT(port))
vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
if (p->pvid == vid)
vlan->flags |= BRIDGE_VLAN_INFO_PVID;
err = cb(&vlan->obj);
if (err)
break;
}
return err;
}
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
struct bcm_sf2_priv *priv = ds_to_priv(ds);
struct device_node *dn;
void __iomem **base;
unsigned int port;
unsigned int i;
u32 reg, rev;
int ret;
spin_lock_init(&priv->indir_lock);
mutex_init(&priv->stats_mutex);
/* All the interesting properties are at the parent device_node
* level
*/
dn = ds->cd->of_node->parent;
bcm_sf2_identify_ports(priv, ds->cd->of_node);
priv->irq0 = irq_of_parse_and_map(dn, 0);
priv->irq1 = irq_of_parse_and_map(dn, 1);
base = &priv->core;
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
*base = of_iomap(dn, i);
if (*base == NULL) {
pr_err("unable to find register: %s\n", reg_names[i]);
ret = -ENOMEM;
goto out_unmap;
}
base++;
}
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("unable to software reset switch: %d\n", ret);
goto out_unmap;
}
ret = bcm_sf2_mdio_register(ds);
if (ret) {
pr_err("failed to register MDIO bus\n");
goto out_unmap;
}
/* Disable all interrupts and request them */
bcm_sf2_intr_disable(priv);
ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
"switch_0", priv);
if (ret < 0) {
pr_err("failed to request switch_0 IRQ\n");
goto out_mdio;
}
ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
"switch_1", priv);
if (ret < 0) {
pr_err("failed to request switch_1 IRQ\n");
goto out_free_irq0;
}
/* Reset the MIB counters */
reg = core_readl(priv, CORE_GMNCFGCFG);
reg |= RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
reg &= ~RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
/* Get the maximum number of ports for this switch */
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
priv->hw_params.num_ports = DSA_MAX_PORTS;
/* Assume a single GPHY setup if we can't read that property */
if (of_property_read_u32(dn, "brcm,num-gphy",
&priv->hw_params.num_gphy))
priv->hw_params.num_gphy = 1;
/* Enable all valid ports and disable those unused */
for (port = 0; port < priv->hw_params.num_ports; port++) {
/* IMP port receives special treatment */
if ((1 << port) & ds->enabled_port_mask)
bcm_sf2_port_setup(ds, port, NULL);
else if (dsa_is_cpu_port(ds, port))
bcm_sf2_imp_setup(ds, port);
else
bcm_sf2_port_disable(ds, port, NULL);
}
bcm_sf2_sw_configure_vlan(ds);
rev = reg_readl(priv, REG_SWITCH_REVISION);
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
SWITCH_TOP_REV_MASK;
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
rev = reg_readl(priv, REG_PHY_REVISION);
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
priv->core, priv->irq0, priv->irq1);
return 0;
out_free_irq0:
free_irq(priv->irq0, priv);
out_mdio:
bcm_sf2_mdio_unregister(priv);
out_unmap:
base = &priv->core;
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
if (*base)
iounmap(*base);
base++;
}
return ret;
}
static struct dsa_switch_driver bcm_sf2_switch_driver = {
.tag_protocol = DSA_TAG_PROTO_BRCM,
.probe = bcm_sf2_sw_drv_probe,
.setup = bcm_sf2_sw_setup,
.set_addr = bcm_sf2_sw_set_addr,
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
.get_strings = bcm_sf2_sw_get_strings,
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
.get_sset_count = bcm_sf2_sw_get_sset_count,
.adjust_link = bcm_sf2_sw_adjust_link,
.fixed_link_update = bcm_sf2_sw_fixed_link_update,
.suspend = bcm_sf2_sw_suspend,
.resume = bcm_sf2_sw_resume,
.get_wol = bcm_sf2_sw_get_wol,
.set_wol = bcm_sf2_sw_set_wol,
.port_enable = bcm_sf2_port_setup,
.port_disable = bcm_sf2_port_disable,
.get_eee = bcm_sf2_sw_get_eee,
.set_eee = bcm_sf2_sw_set_eee,
.port_bridge_join = bcm_sf2_sw_br_join,
.port_bridge_leave = bcm_sf2_sw_br_leave,
.port_stp_state_set = bcm_sf2_sw_br_set_stp_state,
.port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
.port_fdb_add = bcm_sf2_sw_fdb_add,
.port_fdb_del = bcm_sf2_sw_fdb_del,
.port_fdb_dump = bcm_sf2_sw_fdb_dump,
.port_vlan_filtering = bcm_sf2_sw_vlan_filtering,
.port_vlan_prepare = bcm_sf2_sw_vlan_prepare,
.port_vlan_add = bcm_sf2_sw_vlan_add,
.port_vlan_del = bcm_sf2_sw_vlan_del,
.port_vlan_dump = bcm_sf2_sw_vlan_dump,
};
static int __init bcm_sf2_init(void)
{
register_switch_driver(&bcm_sf2_switch_driver);
return 0;
}
module_init(bcm_sf2_init);
static void __exit bcm_sf2_exit(void)
{
unregister_switch_driver(&bcm_sf2_switch_driver);
}
module_exit(bcm_sf2_exit);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");