blob: a9323bdb358591e457994c3cc28de1a9912f3606 [file] [log] [blame]
/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4fw_api.h"
/**
* t4_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t4_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay)
{
return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
delay, NULL);
}
/**
* t4_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t4_read_reg(adapter, addr) & ~mask;
t4_write_reg(adapter, addr, v | val);
(void) t4_read_reg(adapter, addr); /* flush */
}
/**
* t4_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @nregs: how many indirect registers to read
* @start_idx: index of first indirect register to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx);
*vals++ = t4_read_reg(adap, data_reg);
start_idx++;
}
}
/**
* t4_write_indirect - write indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect addresses
* @data_reg: register holding the value for the indirect registers
* @vals: values to write
* @nregs: how many indirect registers to write
* @start_idx: address of first indirect register to write
*
* Writes a sequential block of registers that are accessed indirectly
* through an address/data register pair.
*/
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, const u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx++);
t4_write_reg(adap, data_reg, *vals++);
}
}
/*
* Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
* mechanism. This guarantees that we get the real value even if we're
* operating within a Virtual Machine and the Hypervisor is trapping our
* Configuration Space accesses.
*/
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
{
u32 req = ENABLE | FUNCTION(adap->fn) | reg;
if (is_t4(adap->params.chip))
req |= F_LOCALCFG;
t4_write_reg(adap, PCIE_CFG_SPACE_REQ, req);
*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA);
/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
* Configuration Space read. (None of the other fields matter when
* ENABLE is 0 so a simple register write is easier than a
* read-modify-write via t4_set_reg_field().)
*/
t4_write_reg(adap, PCIE_CFG_SPACE_REQ, 0);
}
/*
* t4_report_fw_error - report firmware error
* @adap: the adapter
*
* The adapter firmware can indicate error conditions to the host.
* If the firmware has indicated an error, print out the reason for
* the firmware error.
*/
static void t4_report_fw_error(struct adapter *adap)
{
static const char *const reason[] = {
"Crash", /* PCIE_FW_EVAL_CRASH */
"During Device Preparation", /* PCIE_FW_EVAL_PREP */
"During Device Configuration", /* PCIE_FW_EVAL_CONF */
"During Device Initialization", /* PCIE_FW_EVAL_INIT */
"Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
"Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
"Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
"Reserved", /* reserved */
};
u32 pcie_fw;
pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
if (pcie_fw & PCIE_FW_ERR)
dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
reason[PCIE_FW_EVAL_G(pcie_fw)]);
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
*/
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
u32 mbox_addr)
{
for ( ; nflit; nflit--, mbox_addr += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}
/*
* Handle a FW assertion reported in a mailbox.
*/
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
struct fw_debug_cmd asrt;
get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
dev_alert(adap->pdev_dev,
"FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}
static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
dev_err(adap->pdev_dev,
"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
(unsigned long long)t4_read_reg64(adap, data_reg),
(unsigned long long)t4_read_reg64(adap, data_reg + 8),
(unsigned long long)t4_read_reg64(adap, data_reg + 16),
(unsigned long long)t4_read_reg64(adap, data_reg + 24),
(unsigned long long)t4_read_reg64(adap, data_reg + 32),
(unsigned long long)t4_read_reg64(adap, data_reg + 40),
(unsigned long long)t4_read_reg64(adap, data_reg + 48),
(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}
/**
* t4_wr_mbox_meat - send a command to FW through the given mailbox
* @adap: the adapter
* @mbox: index of the mailbox to use
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the selected mailbox and waits
* for the FW to execute the command. If @rpl is not %NULL it is used to
* store the FW's reply to the command. The command and its optional
* reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
* to respond. @sleep_ok determines whether we may sleep while awaiting
* the response. If sleeping is allowed we use progressive backoff
* otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100, 200
};
u32 v;
u64 res;
int i, ms, delay_idx;
const __be64 *p = cmd;
u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
if ((size & 15) || size > MBOX_LEN)
return -EINVAL;
/*
* If the device is off-line, as in EEH, commands will time out.
* Fail them early so we don't waste time waiting.
*/
if (adap->pdev->error_state != pci_channel_io_normal)
return -EIO;
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
if (v != MBOX_OWNER_DRV)
return v ? -EBUSY : -ETIMEDOUT;
for (i = 0; i < size; i += 8)
t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
t4_read_reg(adap, ctl_reg); /* flush write */
delay_idx = 0;
ms = delay[0];
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else
mdelay(ms);
v = t4_read_reg(adap, ctl_reg);
if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
if (!(v & MBMSGVALID)) {
t4_write_reg(adap, ctl_reg, 0);
continue;
}
res = t4_read_reg64(adap, data_reg);
if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
fw_asrt(adap, data_reg);
res = FW_CMD_RETVAL_V(EIO);
} else if (rpl) {
get_mbox_rpl(adap, rpl, size / 8, data_reg);
}
if (FW_CMD_RETVAL_G((int)res))
dump_mbox(adap, mbox, data_reg);
t4_write_reg(adap, ctl_reg, 0);
return -FW_CMD_RETVAL_G((int)res);
}
}
dump_mbox(adap, mbox, data_reg);
dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
*(const u8 *)cmd, mbox);
t4_report_fw_error(adap);
return -ETIMEDOUT;
}
/**
* t4_mc_read - read from MC through backdoor accesses
* @adap: the adapter
* @addr: address of first byte requested
* @idx: which MC to access
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
u32 mc_bist_status_rdata, mc_bist_data_pattern;
if (is_t4(adap->params.chip)) {
mc_bist_cmd = MC_BIST_CMD;
mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
mc_bist_cmd_len = MC_BIST_CMD_LEN;
mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
} else {
mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
}
if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
return -EBUSY;
t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
t4_write_reg(adap, mc_bist_cmd_len, 64);
t4_write_reg(adap, mc_bist_data_pattern, 0xc);
t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
BIST_CMD_GAP(1));
i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
if (i)
return i;
#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
for (i = 15; i >= 0; i--)
*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
return 0;
}
/**
* t4_edc_read - read from EDC through backdoor accesses
* @adap: the adapter
* @idx: which EDC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
if (is_t4(adap->params.chip)) {
edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
idx);
edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
idx);
} else {
edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern =
EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
edc_bist_status_rdata =
EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
}
if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
return -EBUSY;
t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
t4_write_reg(adap, edc_bist_cmd_len, 64);
t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
t4_write_reg(adap, edc_bist_cmd,
BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
if (i)
return i;
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
for (i = 15; i >= 0; i--)
*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
return 0;
}
/**
* t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
* @adap: the adapter
* @win: PCI-E Memory Window to use
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
* @addr: address within indicated memory type
* @len: amount of memory to transfer
* @buf: host memory buffer
* @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
*
* Reads/writes an [almost] arbitrary memory region in the firmware: the
* firmware memory address and host buffer must be aligned on 32-bit
* boudaries; the length may be arbitrary. The memory is transferred as
* a raw byte sequence from/to the firmware's memory. If this memory
* contains data structures which contain multi-byte integers, it's the
* caller's responsibility to perform appropriate byte order conversions.
*/
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
u32 len, __be32 *buf, int dir)
{
u32 pos, offset, resid, memoffset;
u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
/* Argument sanity checks ...
*/
if (addr & 0x3)
return -EINVAL;
/* It's convenient to be able to handle lengths which aren't a
* multiple of 32-bits because we often end up transferring files to
* the firmware. So we'll handle that by normalizing the length here
* and then handling any residual transfer at the end.
*/
resid = len & 0x3;
len -= resid;
/* Offset into the region of memory which is being accessed
* MEM_EDC0 = 0
* MEM_EDC1 = 1
* MEM_MC = 2 -- T4
* MEM_MC0 = 2 -- For T5
* MEM_MC1 = 3 -- For T5
*/
edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
if (mtype != MEM_MC1)
memoffset = (mtype * (edc_size * 1024 * 1024));
else {
mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
MA_EXT_MEMORY1_BAR_A));
memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
}
/* Determine the PCIE_MEM_ACCESS_OFFSET */
addr = addr + memoffset;
/* Each PCI-E Memory Window is programmed with a window size -- or
* "aperture" -- which controls the granularity of its mapping onto
* adapter memory. We need to grab that aperture in order to know
* how to use the specified window. The window is also programmed
* with the base address of the Memory Window in BAR0's address
* space. For T4 this is an absolute PCI-E Bus Address. For T5
* the address is relative to BAR0.
*/
mem_reg = t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN,
win));
mem_aperture = 1 << (GET_WINDOW(mem_reg) + 10);
mem_base = GET_PCIEOFST(mem_reg) << 10;
if (is_t4(adap->params.chip))
mem_base -= adap->t4_bar0;
win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
/* Calculate our initial PCI-E Memory Window Position and Offset into
* that Window.
*/
pos = addr & ~(mem_aperture-1);
offset = addr - pos;
/* Set up initial PCI-E Memory Window to cover the start of our
* transfer. (Read it back to ensure that changes propagate before we
* attempt to use the new value.)
*/
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win),
pos | win_pf);
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
/* Transfer data to/from the adapter as long as there's an integral
* number of 32-bit transfers to complete.
*/
while (len > 0) {
if (dir == T4_MEMORY_READ)
*buf++ = (__force __be32) t4_read_reg(adap,
mem_base + offset);
else
t4_write_reg(adap, mem_base + offset,
(__force u32) *buf++);
offset += sizeof(__be32);
len -= sizeof(__be32);
/* If we've reached the end of our current window aperture,
* move the PCI-E Memory Window on to the next. Note that
* doing this here after "len" may be 0 allows us to set up
* the PCI-E Memory Window for a possible final residual
* transfer below ...
*/
if (offset == mem_aperture) {
pos += mem_aperture;
offset = 0;
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
win), pos | win_pf);
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
win));
}
}
/* If the original transfer had a length which wasn't a multiple of
* 32-bits, now's where we need to finish off the transfer of the
* residual amount. The PCI-E Memory Window has already been moved
* above (if necessary) to cover this final transfer.
*/
if (resid) {
union {
__be32 word;
char byte[4];
} last;
unsigned char *bp;
int i;
if (dir == T4_MEMORY_READ) {
last.word = (__force __be32) t4_read_reg(adap,
mem_base + offset);
for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
bp[i] = last.byte[i];
} else {
last.word = *buf;
for (i = resid; i < 4; i++)
last.byte[i] = 0;
t4_write_reg(adap, mem_base + offset,
(__force u32) last.word);
}
}
return 0;
}
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_BASE 0x400
#define VPD_BASE_OLD 0
#define VPD_LEN 1024
#define CHELSIO_VPD_UNIQUE_ID 0x82
/**
* t4_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: whether to enable or disable write protection
*
* Enables or disables write protection on the serial EEPROM.
*/
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
unsigned int v = enable ? 0xc : 0;
int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
return ret < 0 ? ret : 0;
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
u32 cclk_param, cclk_val;
int i, ret, addr;
int ec, sn, pn;
u8 *vpd, csum;
unsigned int vpdr_len, kw_offset, id_len;
vpd = vmalloc(VPD_LEN);
if (!vpd)
return -ENOMEM;
ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
if (ret < 0)
goto out;
/* The VPD shall have a unique identifier specified by the PCI SIG.
* For chelsio adapters, the identifier is 0x82. The first byte of a VPD
* shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
* is expected to automatically put this entry at the
* beginning of the VPD.
*/
addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
if (ret < 0)
goto out;
if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
dev_err(adapter->pdev_dev, "missing VPD ID string\n");
ret = -EINVAL;
goto out;
}
id_len = pci_vpd_lrdt_size(vpd);
if (id_len > ID_LEN)
id_len = ID_LEN;
i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
if (i < 0) {
dev_err(adapter->pdev_dev, "missing VPD-R section\n");
ret = -EINVAL;
goto out;
}
vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
if (vpdr_len + kw_offset > VPD_LEN) {
dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
ret = -EINVAL;
goto out;
}
#define FIND_VPD_KW(var, name) do { \
var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
if (var < 0) { \
dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
ret = -EINVAL; \
goto out; \
} \
var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
dev_err(adapter->pdev_dev,
"corrupted VPD EEPROM, actual csum %u\n", csum);
ret = -EINVAL;
goto out;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
FIND_VPD_KW(pn, "PN");
#undef FIND_VPD_KW
memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
strim(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
strim(p->ec);
i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
strim(p->sn);
i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
memcpy(p->pn, vpd + pn, min(i, PN_LEN));
strim(p->pn);
/*
* Ask firmware for the Core Clock since it knows how to translate the
* Reference Clock ('V2') VPD field into a Core Clock value ...
*/
cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
ret = t4_query_params(adapter, adapter->mbox, 0, 0,
1, &cclk_param, &cclk_val);
out:
vfree(vpd);
if (ret)
return ret;
p->cclk = cclk_val;
return 0;
}
/* serial flash and firmware constants */
enum {
SF_ATTEMPTS = 10, /* max retries for SF operations */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_RD_ID = 0x9f, /* read ID */
SF_ERASE_SECTOR = 0xd8, /* erase sector */
FW_MAX_SIZE = 16 * SF_SEC_SIZE,
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
if (!ret)
*valp = t4_read_reg(adapter, SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
t4_write_reg(adapter, SF_DATA, val);
t4_write_reg(adapter, SF_OP, lock |
cont | BYTECNT(byte_cnt - 1) | OP_WR);
return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t4_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = (__force __u32) (htonl(*data));
}
return 0;
}
/**
* t4_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
*/
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data)
{
int ret;
u32 buf[64];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = sf1_write(adapter, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = flash_wait_op(adapter, 8, 1);
if (ret)
goto unlock;
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (u8 *)buf + offset, n)) {
dev_err(adapter->pdev_dev,
"failed to correctly write the flash page at %#x\n",
addr);
return -EIO;
}
return 0;
unlock:
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FW_START +
offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/**
* t4_get_tp_version - read the TP microcode version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FW_START +
offsetof(struct fw_hdr, tp_microcode_ver),
1, vers, 0);
}
/* Is the given firmware API compatible with the one the driver was compiled
* with?
*/
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
{
/* short circuit if it's the exact same firmware version */
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
return 1;
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
return 1;
#undef SAME_INTF
return 0;
}
/* The firmware in the filesystem is usable, but should it be installed?
* This routine explains itself in detail if it indicates the filesystem
* firmware should be installed.
*/
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
int k, int c)
{
const char *reason;
if (!card_fw_usable) {
reason = "incompatible or unusable";
goto install;
}
if (k > c) {
reason = "older than the version supported with this driver";
goto install;
}
return 0;
install:
dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
"installing firmware %u.%u.%u.%u on card.\n",
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
return 1;
}
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
const u8 *fw_data, unsigned int fw_size,
struct fw_hdr *card_fw, enum dev_state state,
int *reset)
{
int ret, card_fw_usable, fs_fw_usable;
const struct fw_hdr *fs_fw;
const struct fw_hdr *drv_fw;
drv_fw = &fw_info->fw_hdr;
/* Read the header of the firmware on the card */
ret = -t4_read_flash(adap, FLASH_FW_START,
sizeof(*card_fw) / sizeof(uint32_t),
(uint32_t *)card_fw, 1);
if (ret == 0) {
card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
} else {
dev_err(adap->pdev_dev,
"Unable to read card's firmware header: %d\n", ret);
card_fw_usable = 0;
}
if (fw_data != NULL) {
fs_fw = (const void *)fw_data;
fs_fw_usable = fw_compatible(drv_fw, fs_fw);
} else {
fs_fw = NULL;
fs_fw_usable = 0;
}
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
(!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
/* Common case: the firmware on the card is an exact match and
* the filesystem one is an exact match too, or the filesystem
* one is absent/incompatible.
*/
} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
should_install_fs_fw(adap, card_fw_usable,
be32_to_cpu(fs_fw->fw_ver),
be32_to_cpu(card_fw->fw_ver))) {
ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
fw_size, 0);
if (ret != 0) {
dev_err(adap->pdev_dev,
"failed to install firmware: %d\n", ret);
goto bye;
}
/* Installed successfully, update the cached header too. */
memcpy(card_fw, fs_fw, sizeof(*card_fw));
card_fw_usable = 1;
*reset = 0; /* already reset as part of load_fw */
}
if (!card_fw_usable) {
uint32_t d, c, k;
d = be32_to_cpu(drv_fw->fw_ver);
c = be32_to_cpu(card_fw->fw_ver);
k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
"chip state %d, "
"driver compiled with %d.%d.%d.%d, "
"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
state,
FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
ret = EINVAL;
goto bye;
}
/* We're using whatever's on the card and it's known to be good. */
adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
bye:
return ret;
}
/**
* t4_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
int ret = 0;
if (end >= adapter->params.sf_nsec)
return -EINVAL;
while (start <= end) {
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
dev_err(adapter->pdev_dev,
"erase of flash sector %d failed, error %d\n",
start, ret);
break;
}
start++;
}
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_flash_cfg_addr - return the address of the flash configuration file
* @adapter: the adapter
*
* Return the address within the flash where the Firmware Configuration
* File is stored.
*/
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
{
if (adapter->params.sf_size == 0x100000)
return FLASH_FPGA_CFG_START;
else
return FLASH_CFG_START;
}
/**
* t4_load_fw - download firmware
* @adap: the adapter
* @fw_data: the firmware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
u32 csum;
int ret, addr;
unsigned int i;
u8 first_page[SF_PAGE_SIZE];
const __be32 *p = (const __be32 *)fw_data;
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
unsigned int fw_img_start = adap->params.sf_fw_start;
unsigned int fw_start_sec = fw_img_start / sf_sec_size;
if (!size) {
dev_err(adap->pdev_dev, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
dev_err(adap->pdev_dev,
"FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if (ntohs(hdr->len512) * 512 != size) {
dev_err(adap->pdev_dev,
"FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > FW_MAX_SIZE) {
dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
FW_MAX_SIZE);
return -EFBIG;
}
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
dev_err(adap->pdev_dev,
"corrupted firmware image, checksum %#x\n", csum);
return -EINVAL;
}
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
if (ret)
goto out;
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
if (ret)
goto out;
addr = fw_img_start;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
if (ret)
goto out;
}
ret = t4_write_flash(adap,
fw_img_start + offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
if (ret)
dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
ret);
else
ret = t4_get_fw_version(adap, &adap->params.fw_vers);
return ret;
}
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
FW_PORT_CAP_ANEG)
/**
* t4_link_start - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
struct link_config *lc)
{
struct fw_port_cmd c;
unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
lc->link_ok = 0;
if (lc->requested_fc & PAUSE_RX)
fc |= FW_PORT_CAP_FC_RX;
if (lc->requested_fc & PAUSE_TX)
fc |= FW_PORT_CAP_FC_TX;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
if (!(lc->supported & FW_PORT_CAP_ANEG)) {
c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else if (lc->autoneg == AUTONEG_DISABLE) {
c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else
c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_restart_aneg - restart autonegotiation
* @adap: the adapter
* @mbox: mbox to use for the FW command
* @port: the port id
*
* Restarts autonegotiation for the selected port.
*/
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
struct fw_port_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
typedef void (*int_handler_t)(struct adapter *adap);
struct intr_info {
unsigned int mask; /* bits to check in interrupt status */
const char *msg; /* message to print or NULL */
short stat_idx; /* stat counter to increment or -1 */
unsigned short fatal; /* whether the condition reported is fatal */
int_handler_t int_handler; /* platform-specific int handler */
};
/**
* t4_handle_intr_status - table driven interrupt handler
* @adapter: the adapter that generated the interrupt
* @reg: the interrupt status register to process
* @acts: table of interrupt actions
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occurred. The actions include
* optionally emitting a warning or alert message. The table is terminated
* by an entry specifying mask 0. Returns the number of fatal interrupt
* conditions.
*/
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
const struct intr_info *acts)
{
int fatal = 0;
unsigned int mask = 0;
unsigned int status = t4_read_reg(adapter, reg);
for ( ; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
status & acts->mask);
} else if (acts->msg && printk_ratelimit())
dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
status & acts->mask);
if (acts->int_handler)
acts->int_handler(adapter);
mask |= acts->mask;
}
status &= mask;
if (status) /* clear processed interrupts */
t4_write_reg(adapter, reg, status);
return fatal;
}
/*
* Interrupt handler for the PCIE module.
*/
static void pcie_intr_handler(struct adapter *adapter)
{
static const struct intr_info sysbus_intr_info[] = {
{ RNPP, "RXNP array parity error", -1, 1 },
{ RPCP, "RXPC array parity error", -1, 1 },
{ RCIP, "RXCIF array parity error", -1, 1 },
{ RCCP, "Rx completions control array parity error", -1, 1 },
{ RFTP, "RXFT array parity error", -1, 1 },
{ 0 }
};
static const struct intr_info pcie_port_intr_info[] = {
{ TPCP, "TXPC array parity error", -1, 1 },
{ TNPP, "TXNP array parity error", -1, 1 },
{ TFTP, "TXFT array parity error", -1, 1 },
{ TCAP, "TXCA array parity error", -1, 1 },
{ TCIP, "TXCIF array parity error", -1, 1 },
{ RCAP, "RXCA array parity error", -1, 1 },
{ OTDD, "outbound request TLP discarded", -1, 1 },
{ RDPE, "Rx data parity error", -1, 1 },
{ TDUE, "Tx uncorrectable data error", -1, 1 },
{ 0 }
};
static const struct intr_info pcie_intr_info[] = {
{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
{ MSIDATAPERR, "MSI data parity error", -1, 1 },
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ FIDPERR, "PCI FID parity error", -1, 1 },
{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
{ PCIESINT, "PCI core secondary fault", -1, 1 },
{ PCIEPINT, "PCI core primary fault", -1, 1 },
{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
{ 0 }
};
static struct intr_info t5_pcie_intr_info[] = {
{ MSTGRPPERR, "Master Response Read Queue parity error",
-1, 1 },
{ MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
{ MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
-1, 1 },
{ PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
-1, 1 },
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ DREQWRPERR, "PCI DMA channel write request parity error",
-1, 1 },
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ FIDPERR, "PCI FID parity error", -1, 1 },
{ VFIDPERR, "PCI INTx clear parity error", -1, 1 },
{ MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
-1, 1 },
{ IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
{ RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
{ IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
{ TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
{ READRSPERR, "Outbound read error", -1, 0 },
{ 0 }
};
int fat;
if (is_t4(adapter->params.chip))
fat = t4_handle_intr_status(adapter,
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
sysbus_intr_info) +
t4_handle_intr_status(adapter,
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
pcie_port_intr_info) +
t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
pcie_intr_info);
else
fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
t5_pcie_intr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* TP interrupt handler.
*/
static void tp_intr_handler(struct adapter *adapter)
{
static const struct intr_info tp_intr_info[] = {
{ 0x3fffffff, "TP parity error", -1, 1 },
{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
t4_fatal_err(adapter);
}
/*
* SGE interrupt handler.
*/
static void sge_intr_handler(struct adapter *adapter)
{
u64 v;
static const struct intr_info sge_intr_info[] = {
{ ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size", -1, 1 },
{ ERR_INVALID_CIDX_INC,
"SGE GTS CIDX increment too large", -1, 0 },
{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
{ DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
{ DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
{ ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL", -1, 0 },
{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
0 },
{ ERR_ING_CTXT_PRIO,
"SGE too many priority ingress contexts", -1, 0 },
{ ERR_EGR_CTXT_PRIO,
"SGE too many priority egress contexts", -1, 0 },
{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
{ 0 }
};
v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
if (v) {
dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
(unsigned long long)v);
t4_write_reg(adapter, SGE_INT_CAUSE1, v);
t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
}
if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
v != 0)
t4_fatal_err(adapter);
}
/*
* CIM interrupt handler.
*/
static void cim_intr_handler(struct adapter *adapter)
{
static const struct intr_info cim_intr_info[] = {
{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
{ OBQPARERR, "CIM OBQ parity error", -1, 1 },
{ IBQPARERR, "CIM IBQ parity error", -1, 1 },
{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
{ 0 }
};
static const struct intr_info cim_upintr_info[] = {
{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
{ ILLWRINT, "CIM illegal write", -1, 1 },
{ ILLRDINT, "CIM illegal read", -1, 1 },
{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
{ 0 }
};
int fat;
if (t4_read_reg(adapter, MA_PCIE_FW) & PCIE_FW_ERR)
t4_report_fw_error(adapter);
fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
cim_intr_info) +
t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
cim_upintr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* ULP RX interrupt handler.
*/
static void ulprx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulprx_intr_info[] = {
{ 0x1800000, "ULPRX context error", -1, 1 },
{ 0x7fffff, "ULPRX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
t4_fatal_err(adapter);
}
/*
* ULP TX interrupt handler.
*/
static void ulptx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulptx_intr_info[] = {
{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
0 },
{ 0xfffffff, "ULPTX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM TX interrupt handler.
*/
static void pmtx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmtx_intr_info[] = {
{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
{ PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM RX interrupt handler.
*/
static void pmrx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmrx_intr_info[] = {
{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
{ PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
t4_fatal_err(adapter);
}
/*
* CPL switch interrupt handler.
*/
static void cplsw_intr_handler(struct adapter *adapter)
{
static const struct intr_info cplsw_intr_info[] = {
{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
t4_fatal_err(adapter);
}
/*
* LE interrupt handler.
*/
static void le_intr_handler(struct adapter *adap)
{
static const struct intr_info le_intr_info[] = {
{ LIPMISS, "LE LIP miss", -1, 0 },
{ LIP0, "LE 0 LIP error", -1, 0 },
{ PARITYERR, "LE parity error", -1, 1 },
{ UNKNOWNCMD, "LE unknown command", -1, 1 },
{ REQQPARERR, "LE request queue parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
t4_fatal_err(adap);
}
/*
* MPS interrupt handler.
*/
static void mps_intr_handler(struct adapter *adapter)
{
static const struct intr_info mps_rx_intr_info[] = {
{ 0xffffff, "MPS Rx parity error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_tx_intr_info[] = {
{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
{ BUBBLE, "MPS Tx underflow", -1, 1 },
{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
{ FRMERR, "MPS Tx framing error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_trc_intr_info[] = {
{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_stat_sram_intr_info[] = {
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_stat_tx_intr_info[] = {
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_stat_rx_intr_info[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
{ 0 }
};
static const struct intr_info mps_cls_intr_info[] = {
{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
mps_rx_intr_info) +
t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
mps_tx_intr_info) +
t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
mps_trc_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
mps_stat_sram_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
mps_stat_tx_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
mps_stat_rx_intr_info) +
t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
mps_cls_intr_info);
t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
RXINT | TXINT | STATINT);
t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
if (fat)
t4_fatal_err(adapter);
}
#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
/*
* EDC/MC interrupt handler.
*/
static void mem_intr_handler(struct adapter *adapter, int idx)
{
static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
unsigned int addr, cnt_addr, v;
if (idx <= MEM_EDC1) {
addr = EDC_REG(EDC_INT_CAUSE, idx);
cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
} else if (idx == MEM_MC) {
if (is_t4(adapter->params.chip)) {
addr = MC_INT_CAUSE;
cnt_addr = MC_ECC_STATUS;
} else {
addr = MC_P_INT_CAUSE;
cnt_addr = MC_P_ECC_STATUS;
}
} else {
addr = MC_REG(MC_P_INT_CAUSE, 1);
cnt_addr = MC_REG(MC_P_ECC_STATUS, 1);
}
v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
if (v & PERR_INT_CAUSE)
dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
name[idx]);
if (v & ECC_CE_INT_CAUSE) {
u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
if (printk_ratelimit())
dev_warn(adapter->pdev_dev,
"%u %s correctable ECC data error%s\n",
cnt, name[idx], cnt > 1 ? "s" : "");
}
if (v & ECC_UE_INT_CAUSE)
dev_alert(adapter->pdev_dev,
"%s uncorrectable ECC data error\n", name[idx]);
t4_write_reg(adapter, addr, v);
if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
t4_fatal_err(adapter);
}
/*
* MA interrupt handler.
*/
static void ma_intr_handler(struct adapter *adap)
{
u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
if (status & MEM_PERR_INT_CAUSE) {
dev_alert(adap->pdev_dev,
"MA parity error, parity status %#x\n",
t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
if (is_t5(adap->params.chip))
dev_alert(adap->pdev_dev,
"MA parity error, parity status %#x\n",
t4_read_reg(adap,
MA_PARITY_ERROR_STATUS2));
}
if (status & MEM_WRAP_INT_CAUSE) {
v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
dev_alert(adap->pdev_dev, "MA address wrap-around error by "
"client %u to address %#x\n",
MEM_WRAP_CLIENT_NUM_GET(v),
MEM_WRAP_ADDRESS_GET(v) << 4);
}
t4_write_reg(adap, MA_INT_CAUSE, status);
t4_fatal_err(adap);
}
/*
* SMB interrupt handler.
*/
static void smb_intr_handler(struct adapter *adap)
{
static const struct intr_info smb_intr_info[] = {
{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
t4_fatal_err(adap);
}
/*
* NC-SI interrupt handler.
*/
static void ncsi_intr_handler(struct adapter *adap)
{
static const struct intr_info ncsi_intr_info[] = {
{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
t4_fatal_err(adap);
}
/*
* XGMAC interrupt handler.
*/
static void xgmac_intr_handler(struct adapter *adap, int port)
{
u32 v, int_cause_reg;
if (is_t4(adap->params.chip))
int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
else
int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
v = t4_read_reg(adap, int_cause_reg);
v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
if (!v)
return;
if (v & TXFIFO_PRTY_ERR)
dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
port);
if (v & RXFIFO_PRTY_ERR)
dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
port);
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
t4_fatal_err(adap);
}
/*
* PL interrupt handler.
*/
static void pl_intr_handler(struct adapter *adap)
{
static const struct intr_info pl_intr_info[] = {
{ FATALPERR, "T4 fatal parity error", -1, 1 },
{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
t4_fatal_err(adap);
}
#define PF_INTR_MASK (PFSW)
#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
CPL_SWITCH | SGE | ULP_TX)
/**
* t4_slow_intr_handler - control path interrupt handler
* @adapter: the adapter
*
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int t4_slow_intr_handler(struct adapter *adapter)
{
u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
if (!(cause & GLBL_INTR_MASK))
return 0;
if (cause & CIM)
cim_intr_handler(adapter);
if (cause & MPS)
mps_intr_handler(adapter);
if (cause & NCSI)
ncsi_intr_handler(adapter);
if (cause & PL)
pl_intr_handler(adapter);
if (cause & SMB)
smb_intr_handler(adapter);
if (cause & XGMAC0)
xgmac_intr_handler(adapter, 0);
if (cause & XGMAC1)
xgmac_intr_handler(adapter, 1);
if (cause & XGMAC_KR0)
xgmac_intr_handler(adapter, 2);
if (cause & XGMAC_KR1)
xgmac_intr_handler(adapter, 3);
if (cause & PCIE)
pcie_intr_handler(adapter);
if (cause & MC)
mem_intr_handler(adapter, MEM_MC);
if (!is_t4(adapter->params.chip) && (cause & MC1))
mem_intr_handler(adapter, MEM_MC1);
if (cause & EDC0)
mem_intr_handler(adapter, MEM_EDC0);
if (cause & EDC1)
mem_intr_handler(adapter, MEM_EDC1);
if (cause & LE)
le_intr_handler(adapter);
if (cause & TP)
tp_intr_handler(adapter);
if (cause & MA)
ma_intr_handler(adapter);
if (cause & PM_TX)
pmtx_intr_handler(adapter);
if (cause & PM_RX)
pmrx_intr_handler(adapter);
if (cause & ULP_RX)
ulprx_intr_handler(adapter);
if (cause & CPL_SWITCH)
cplsw_intr_handler(adapter);
if (cause & SGE)
sge_intr_handler(adapter);
if (cause & ULP_TX)
ulptx_intr_handler(adapter);
/* Clear the interrupts just processed for which we are the master. */
t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
return 1;
}
/**
* t4_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable PF-specific interrupts for the calling function and the top-level
* interrupt concentrator for global interrupts. Interrupts are already
* enabled at each module, here we just enable the roots of the interrupt
* hierarchies.
*
* Note: this function should be called only when the driver manages
* non PF-specific interrupts from the various HW modules. Only one PCI
* function at a time should be doing this.
*/
void t4_intr_enable(struct adapter *adapter)
{
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
DBFIFO_HP_INT | DBFIFO_LP_INT |
EGRESS_SIZE_ERR);
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
}
/**
* t4_intr_disable - disable interrupts
* @adapter: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrators. The caller must be a PCI function managing global
* interrupts.
*/
void t4_intr_disable(struct adapter *adapter)
{
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
}
/**
* hash_mac_addr - return the hash value of a MAC address
* @addr: the 48-bit Ethernet MAC address
*
* Hashes a MAC address according to the hash function used by HW inexact
* (hash) address matching.
*/
static int hash_mac_addr(const u8 *addr)
{
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
a ^= b;
a ^= (a >> 12);
a ^= (a >> 6);
return a & 0x3f;
}
/**
* t4_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: virtual interface whose RSS subtable is to be written
* @start: start entry in the table to write
* @n: how many table entries to write
* @rspq: values for the response queue lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range allowed for
* @viid.
*/
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
int start, int n, const u16 *rspq, unsigned int nrspq)
{
int ret;
const u16 *rsp = rspq;
const u16 *rsp_end = rspq + nrspq;
struct fw_rss_ind_tbl_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
FW_RSS_IND_TBL_CMD_VIID_V(viid));
cmd.retval_len16 = htonl(FW_LEN16(cmd));
/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
while (n > 0) {
int nq = min(n, 32);
__be32 *qp = &cmd.iq0_to_iq2;
cmd.niqid = htons(nq);
cmd.startidx = htons(start);
start += nq;
n -= nq;
while (nq > 0) {
unsigned int v;
v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
*qp++ = htonl(v);
nq -= 3;
}
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4_config_glbl_rss - configure the global RSS mode
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @mode: global RSS mode
* @flags: mode-specific flags
*
* Sets the global RSS mode.
*/
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
unsigned int flags)
{
struct fw_rss_glb_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
c.retval_len16 = htonl(FW_LEN16(c));
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
c.u.basicvirtual.mode_pkd =
htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
} else
return -EINVAL;
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/**
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
* @adap: the adapter
* @v4: holds the TCP/IP counter values
* @v6: holds the TCP/IPv6 counter values
*
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
*/
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
struct tp_tcp_stats *v6)
{
u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
#define STAT(x) val[STAT_IDX(x)]
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
if (v4) {
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
v4->tcpOutRsts = STAT(OUT_RST);
v4->tcpInSegs = STAT64(IN_SEG);
v4->tcpOutSegs = STAT64(OUT_SEG);
v4->tcpRetransSegs = STAT64(RXT_SEG);
}
if (v6) {
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
v6->tcpOutRsts = STAT(OUT_RST);
v6->tcpInSegs = STAT64(IN_SEG);
v6->tcpOutSegs = STAT64(OUT_SEG);
v6->tcpRetransSegs = STAT64(RXT_SEG);
}
#undef STAT64
#undef STAT
#undef STAT_IDX
}
/**
* t4_read_mtu_tbl - returns the values in the HW path MTU table
* @adap: the adapter
* @mtus: where to store the MTU values
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
*
* Reads the HW path MTU table.
*/
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
u32 v;
int i;
for (i = 0; i < NMTUS; ++i) {
t4_write_reg(adap, TP_MTU_TABLE,
MTUINDEX(0xff) | MTUVALUE(i));
v = t4_read_reg(adap, TP_MTU_TABLE);
mtus[i] = MTUVALUE_GET(v);
if (mtu_log)
mtu_log[i] = MTUWIDTH_GET(v);
}
}
/**
* t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
* @adap: the adapter
* @addr: the indirect TP register address
* @mask: specifies the field within the register to modify
* @val: new value for the field
*
* Sets a field of an indirect TP register to the given value.
*/
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
unsigned int mask, unsigned int val)
{
t4_write_reg(adap, TP_PIO_ADDR, addr);
val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
t4_write_reg(adap, TP_PIO_DATA, val);
}
/**
* init_cong_ctrl - initialize congestion control parameters
* @a: the alpha values for congestion control
* @b: the beta values for congestion control
*
* Initialize the congestion control parameters.
*/
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t4_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the values for the MTU table
* @alpha: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
*
* Write the HW MTU table with the supplied MTUs and the high-speed
* congestion control table with the supplied alpha, beta, and MTUs.
* We write the two tables together because the additive increments
* depend on the MTUs.
*/
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
const unsigned short *alpha, const unsigned short *beta)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = mtus[i];
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
MTUWIDTH(log2) | MTUVALUE(mtu));
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* get_mps_bg_map - return the buffer groups associated with a port
* @adap: the adapter
* @idx: the port index
*
* Returns a bitmap indicating which MPS buffer groups are associated
* with the given port. Bit i is set if buffer group i is used by the
* port.
*/
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
if (n == 0)
return idx == 0 ? 0xf : 0;
if (n == 1)
return idx < 2 ? (3 << (2 * idx)) : 0;
return 1 << idx;
}
/**
* t4_get_port_type_description - return Port Type string description
* @port_type: firmware Port Type enumeration
*/
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
static const char *const port_type_description[] = {
"R XFI",
"R XAUI",
"T SGMII",
"T XFI",
"T XAUI",
"KX4",
"CX4",
"KX",
"KR",
"R SFP+",
"KR/KX",
"KR/KX/KX4",
"R QSFP_10G",
"",
"R QSFP",
"R BP40_BA",
};
if (port_type < ARRAY_SIZE(port_type_description))
return port_type_description[port_type];
return "UNKNOWN";
}
/**
* t4_get_port_stats - collect port statistics
* @adap: the adapter
* @idx: the port index
* @p: the stats structure to fill
*
* Collect statistics related to the given port from HW.
*/
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
u32 bgmap = get_mps_bg_map(adap, idx);
#define GET_STAT(name) \
t4_read_reg64(adap, \
(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
p->tx_octets = GET_STAT(TX_PORT_BYTES);
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
p->tx_drop = GET_STAT(TX_PORT_DROP);
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
p->rx_octets = GET_STAT(RX_PORT_BYTES);
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_wol_magic_enable - enable/disable magic packet WoL
* @adap: the adapter
* @port: the physical port index
* @addr: MAC address expected in magic packets, %NULL to disable
*
* Enables/disables magic packet wake-on-LAN for the selected port.
*/
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
const u8 *addr)
{
u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
if (is_t4(adap->params.chip)) {
mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
} else {
mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
}
if (addr) {
t4_write_reg(adap, mag_id_reg_l,
(addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | addr[5]);
t4_write_reg(adap, mag_id_reg_h,
(addr[0] << 8) | addr[1]);
}
t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
addr ? MAGICEN : 0);
}
/**
* t4_wol_pat_enable - enable/disable pattern-based WoL
* @adap: the adapter
* @port: the physical port index
* @map: bitmap of which HW pattern filters to set
* @mask0: byte mask for bytes 0-63 of a packet
* @mask1: byte mask for bytes 64-127 of a packet
* @crc: Ethernet CRC for selected bytes
* @enable: enable/disable switch
*
* Sets the pattern filters indicated in @map to mask out the bytes
* specified in @mask0/@mask1 in received packets and compare the CRC of
* the resulting packet against @crc. If @enable is %true pattern-based
* WoL is enabled, otherwise disabled.
*/
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
int i;
u32 port_cfg_reg;
if (is_t4(adap->params.chip))
port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
else
port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
if (!enable) {
t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
return 0;
}
if (map > 0xff)
return -EINVAL;
#define EPIO_REG(name) \
(is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
T5_PORT_REG(port, MAC_PORT_EPIO_##name))
t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
t4_write_reg(adap, EPIO_REG(DATA2), mask1);
t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
if (!(map & 1))
continue;
/* write byte masks */
t4_write_reg(adap, EPIO_REG(DATA0), mask0);
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
return -ETIMEDOUT;
/* write CRC */
t4_write_reg(adap, EPIO_REG(DATA0), crc);
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
return -ETIMEDOUT;
}
#undef EPIO_REG
t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
return 0;
}
/* t4_mk_filtdelwr - create a delete filter WR
* @ftid: the filter ID
* @wr: the filter work request to populate
* @qid: ingress queue to receive the delete notification
*
* Creates a filter work request to delete the supplied filter. If @qid is
* negative the delete notification is suppressed.
*/
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
memset(wr, 0, sizeof(*wr));
wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
FW_FILTER_WR_NOREPLY_V(qid < 0));
wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
if (qid >= 0)
wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
}
#define INIT_CMD(var, cmd, rd_wr) do { \
(var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
u32 addr, u32 val)
{
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.addrval.addr = htonl(addr);
c.u.addrval.val = htonl(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_mdio_rd - read a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to read
* @valp: where to store the value
*
* Issues a FW command through the given mailbox to read a PHY register.
*/
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, u16 *valp)
{
int ret;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
FW_LDST_CMD_MMD_V(mmd));
c.u.mdio.raddr = htons(reg);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
*valp = ntohs(c.u.mdio.rval);
return ret;
}
/**
* t4_mdio_wr - write a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to write
* @valp: value to write
*
* Issues a FW command through the given mailbox to write a PHY register.
*/
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, u16 val)
{
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
FW_LDST_CMD_MMD_V(mmd));
c.u.mdio.raddr = htons(reg);
c.u.mdio.rval = htons(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_sge_decode_idma_state - decode the idma state
* @adap: the adapter
* @state: the state idma is stuck in
*/
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
static const char * const t4_decode[] = {
"IDMA_IDLE",
"IDMA_PUSH_MORE_CPL_FIFO",
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
"Not used",
"IDMA_PHYSADDR_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
"IDMA_PHYSADDR_SEND_PAYLOAD",
"IDMA_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATA_FL_PREP",
"IDMA_FL_REQ_DATA_FL",
"IDMA_FL_DROP",
"IDMA_FL_H_REQ_HEADER_FL",
"IDMA_FL_H_SEND_PCIEHDR",
"IDMA_FL_H_PUSH_CPL_FIFO",
"IDMA_FL_H_SEND_CPL",
"IDMA_FL_H_SEND_IP_HDR_FIRST",
"IDMA_FL_H_SEND_IP_HDR",
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
"IDMA_FL_H_SEND_IP_HDR_PADDING",
"IDMA_FL_D_SEND_PCIEHDR",
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
"IDMA_FL_D_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_PCIEHDR",
"IDMA_FL_PUSH_CPL_FIFO",
"IDMA_FL_SEND_CPL",
"IDMA_FL_SEND_PAYLOAD_FIRST",
"IDMA_FL_SEND_PAYLOAD",
"IDMA_FL_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_NEXT_PCIEHDR",
"IDMA_FL_SEND_PADDING",
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
"IDMA_FL_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATAFL_DONE",
"IDMA_FL_REQ_HEADERFL_DONE",
};
static const char * const t5_decode[] = {
"IDMA_IDLE",
"IDMA_ALMOST_IDLE",
"IDMA_PUSH_MORE_CPL_FIFO",
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
"IDMA_PHYSADDR_SEND_PAYLOAD",
"IDMA_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATA_FL",
"IDMA_FL_DROP",
"IDMA_FL_DROP_SEND_INC",
"IDMA_FL_H_REQ_HEADER_FL",
"IDMA_FL_H_SEND_PCIEHDR",
"IDMA_FL_H_PUSH_CPL_FIFO",
"IDMA_FL_H_SEND_CPL",
"IDMA_FL_H_SEND_IP_HDR_FIRST",
"IDMA_FL_H_SEND_IP_HDR",
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
"IDMA_FL_H_SEND_IP_HDR_PADDING",
"IDMA_FL_D_SEND_PCIEHDR",
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
"IDMA_FL_D_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_PCIEHDR",
"IDMA_FL_PUSH_CPL_FIFO",
"IDMA_FL_SEND_CPL",
"IDMA_FL_SEND_PAYLOAD_FIRST",
"IDMA_FL_SEND_PAYLOAD",
"IDMA_FL_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_NEXT_PCIEHDR",
"IDMA_FL_SEND_PADDING",
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
};
static const u32 sge_regs[] = {
SGE_DEBUG_DATA_LOW_INDEX_2,
SGE_DEBUG_DATA_LOW_INDEX_3,
SGE_DEBUG_DATA_HIGH_INDEX_10,
};
const char **sge_idma_decode;
int sge_idma_decode_nstates;
int i;
if (is_t4(adapter->params.chip)) {
sge_idma_decode = (const char **)t4_decode;
sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
} else {
sge_idma_decode = (const char **)t5_decode;
sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
}
if (state < sge_idma_decode_nstates)
CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
else
CH_WARN(adapter, "idma state %d unknown\n", state);
for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
CH_WARN(adapter, "SGE register %#x value %#x\n",
sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}
/**
* t4_fw_hello - establish communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @evt_mbox: mailbox to receive async FW events
* @master: specifies the caller's willingness to be the device master
* @state: returns the current device state (if non-NULL)
*
* Issues a command to establish communication with FW. Returns either
* an error (negative integer) or the mailbox of the Master PF.
*/
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
enum dev_master master, enum dev_state *state)
{
int ret;
struct fw_hello_cmd c;
u32 v;
unsigned int master_mbox;
int retries = FW_CMD_HELLO_RETRIES;
retry:
memset(&c, 0, sizeof(c));
INIT_CMD(c, HELLO, WRITE);
c.err_to_clearinit = htonl(
FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
FW_HELLO_CMD_MBMASTER_M) |
FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
FW_HELLO_CMD_CLEARINIT_F);
/*
* Issue the HELLO command to the firmware. If it's not successful
* but indicates that we got a "busy" or "timeout" condition, retry
* the HELLO until we exhaust our retry limit. If we do exceed our
* retry limit, check to see if the firmware left us any error
* information and report that if so.
*/
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret < 0) {
if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
goto retry;
if (t4_read_reg(adap, MA_PCIE_FW) & PCIE_FW_ERR)
t4_report_fw_error(adap);
return ret;
}
v = ntohl(c.err_to_clearinit);
master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
if (state) {
if (v & FW_HELLO_CMD_ERR_F)
*state = DEV_STATE_ERR;
else if (v & FW_HELLO_CMD_INIT_F)
*state = DEV_STATE_INIT;
else
*state = DEV_STATE_UNINIT;
}
/*
* If we're not the Master PF then we need to wait around for the
* Master PF Driver to finish setting up the adapter.
*
* Note that we also do this wait if we're a non-Master-capable PF and
* there is no current Master PF; a Master PF may show up momentarily
* and we wouldn't want to fail pointlessly. (This can happen when an
* OS loads lots of different drivers rapidly at the same time). In
* this case, the Master PF returned by the firmware will be
* PCIE_FW_MASTER_M so the test below will work ...
*/
if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
master_mbox != mbox) {
int waiting = FW_CMD_HELLO_TIMEOUT;
/*
* Wait for the firmware to either indicate an error or
* initialized state. If we see either of these we bail out
* and report the issue to the caller. If we exhaust the
* "hello timeout" and we haven't exhausted our retries, try
* again. Otherwise bail with a timeout error.
*/
for (;;) {
u32 pcie_fw;
msleep(50);
waiting -= 50;
/*
* If neither Error nor Initialialized are indicated
* by the firmware keep waiting till we exaust our
* timeout ... and then retry if we haven't exhausted
* our retries ...
*/
pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
if (waiting <= 0) {
if (retries-- > 0)
goto retry;
return -ETIMEDOUT;
}
continue;
}
/*
* We either have an Error or Initialized condition
* report errors preferentially.
*/
if (state) {
if (pcie_fw & PCIE_FW_ERR)
*state = DEV_STATE_ERR;
else if (pcie_fw & PCIE_FW_INIT)
*state = DEV_STATE_INIT;
}
/*
* If we arrived before a Master PF was selected and
* there's not a valid Master PF, grab its identity
* for our caller.
*/
if (master_mbox == PCIE_FW_MASTER_M &&
(pcie_fw & PCIE_FW_MASTER_VLD))
master_mbox = PCIE_FW_MASTER_G(pcie_fw);
break;
}
}
return master_mbox;
}
/**
* t4_fw_bye - end communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to terminate communication with FW.
*/
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
struct fw_bye_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, BYE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_init_cmd - ask FW to initialize the device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to FW to partially initialize the device. This
* performs initialization that generally doesn't depend on user input.
*/
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
struct fw_initialize_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, INITIALIZE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_reset - issue a reset to FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @reset: specifies the type of reset to perform
*
* Issues a reset command of the specified type to FW.
*/
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = htonl(reset);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_halt - issue a reset/halt to FW and put uP into RESET
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @force: force uP into RESET even if FW RESET command fails
*
* Issues a RESET command to firmware (if desired) with a HALT indication
* and then puts the microprocessor into RESET state. The RESET command
* will only be issued if a legitimate mailbox is provided (mbox <=
* PCIE_FW_MASTER_M).
*
* This is generally used in order for the host to safely manipulate the
* adapter without fear of conflicting with whatever the firmware might
* be doing. The only way out of this state is to RESTART the firmware
* ...
*/
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
{
int ret = 0;
/*
* If a legitimate mailbox is provided, issue a RESET command
* with a HALT indication.
*/
if (mbox <= PCIE_FW_MASTER_M) {
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = htonl(PIORST | PIORSTMODE);
c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/*
* Normally we won't complete the operation if the firmware RESET
* command fails but if our caller insists we'll go ahead and put the
* uP into RESET. This can be useful if the firmware is hung or even
* missing ... We'll have to take the risk of putting the uP into
* RESET without the cooperation of firmware in that case.
*
* We also force the firmware's HALT flag to be on in case we bypassed
* the firmware RESET command above or we're dealing with old firmware
* which doesn't have the HALT capability. This will serve as a flag
* for the incoming firmware to know that it's coming out of a HALT
* rather than a RESET ... if it's new enough to understand that ...
*/
if (ret == 0 || force) {
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F,
PCIE_FW_HALT_F);
}
/*
* And we always return the result of the firmware RESET command
* even when we force the uP into RESET ...
*/
return ret;
}
/**
* t4_fw_restart - restart the firmware by taking the uP out of RESET
* @adap: the adapter
* @reset: if we want to do a RESET to restart things
*
* Restart firmware previously halted by t4_fw_halt(). On successful
* return the previous PF Master remains as the new PF Master and there
* is no need to issue a new HELLO command, etc.
*
* We do this in two ways:
*
* 1. If we're dealing with newer firmware we'll simply want to take
* the chip's microprocessor out of RESET. This will cause the
* firmware to start up from its start vector. And then we'll loop
* until the firmware indicates it's started again (PCIE_FW.HALT
* reset to 0) or we timeout.
*
* 2. If we're dealing with older firmware then we'll need to RESET
* the chip since older firmware won't recognize the PCIE_FW.HALT
* flag and automatically RESET itself on startup.
*/
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
{
if (reset) {
/*
* Since we're directing the RESET instead of the firmware
* doing it automatically, we need to clear the PCIE_FW.HALT
* bit.
*/
t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F, 0);
/*
* If we've been given a valid mailbox, first try to get the
* firmware to do the RESET. If that works, great and we can
* return success. Otherwise, if we haven't been given a
* valid mailbox or the RESET command failed, fall back to
* hitting the chip with a hammer.
*/
if (mbox <= PCIE_FW_MASTER_M) {
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
msleep(100);
if (t4_fw_reset(adap, mbox,
PIORST | PIORSTMODE) == 0)
return 0;
}
t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
msleep(2000);
} else {
int ms;
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
if (!(t4_read_reg(adap, PCIE_FW) & PCIE_FW_HALT_F))
return 0;
msleep(100);
ms += 100;
}
return -ETIMEDOUT;
}
return 0;
}
/**
* t4_fw_upgrade - perform all of the steps necessary to upgrade FW
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @fw_data: the firmware image to write
* @size: image size
* @force: force upgrade even if firmware doesn't cooperate
*
* Perform all of the steps necessary for upgrading an adapter's
* firmware image. Normally this requires the cooperation of the
* existing firmware in order to halt all existing activities
* but if an invalid mailbox token is passed in we skip that step
* (though we'll still put the adapter microprocessor into RESET in
* that case).
*
* On successful return the new firmware will have been loaded and
* the adapter will have been fully RESET losing all previous setup
* state. On unsuccessful return the adapter may be completely hosed ...
* positive errno indicates that the adapter is ~probably~ intact, a
* negative errno indicates that things are looking bad ...
*/
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
const u8 *fw_data, unsigned int size, int force)
{
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
int reset, ret;
ret = t4_fw_halt(adap, mbox, force);
if (ret < 0 && !force)
return ret;
ret = t4_load_fw(adap, fw_data, size);
if (ret < 0)
return ret;
/*
* Older versions of the firmware don't understand the new
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
* restart. So for newly loaded older firmware we'll have to do the
* RESET for it so it starts up on a clean slate. We can tell if
* the newly loaded firmware will handle this right by checking
* its header flags to see if it advertises the capability.
*/
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
return t4_fw_restart(adap, mbox, reset);
}
/**
* t4_fixup_host_params - fix up host-dependent parameters
* @adap: the adapter
* @page_size: the host's Base Page Size
* @cache_line_size: the host's Cache Line Size
*
* Various registers in T4 contain values which are dependent on the
* host's Base Page and Cache Line Sizes. This function will fix all of
* those registers with the appropriate values as passed in ...
*/
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
unsigned int cache_line_size)
{
unsigned int page_shift = fls(page_size) - 1;
unsigned int sge_hps = page_shift - 10;
unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
unsigned int fl_align_log = fls(fl_align) - 1;
t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
HOSTPAGESIZEPF0(sge_hps) |
HOSTPAGESIZEPF1(sge_hps) |
HOSTPAGESIZEPF2(sge_hps) |
HOSTPAGESIZEPF3(sge_hps) |
HOSTPAGESIZEPF4(sge_hps) |
HOSTPAGESIZEPF5(sge_hps) |
HOSTPAGESIZEPF6(sge_hps) |
HOSTPAGESIZEPF7(sge_hps));
if (is_t4(adap->params.chip)) {
t4_set_reg_field(adap, SGE_CONTROL,
INGPADBOUNDARY_MASK |
EGRSTATUSPAGESIZE_MASK,
INGPADBOUNDARY(fl_align_log - 5) |
EGRSTATUSPAGESIZE(stat_len != 64));
} else {
/* T5 introduced the separation of the Free List Padding and
* Packing Boundaries. Thus, we can select a smaller Padding
* Boundary to avoid uselessly chewing up PCIe Link and Memory
* Bandwidth, and use a Packing Boundary which is large enough
* to avoid false sharing between CPUs, etc.
*
* For the PCI Link, the smaller the Padding Boundary the
* better. For the Memory Controller, a smaller Padding
* Boundary is better until we cross under the Memory Line
* Size (the minimum unit of transfer to/from Memory). If we
* have a Padding Boundary which is smaller than the Memory
* Line Size, that'll involve a Read-Modify-Write cycle on the
* Memory Controller which is never good. For T5 the smallest
* Padding Boundary which we can select is 32 bytes which is
* larger than any known Memory Controller Line Size so we'll
* use that.
*
* T5 has a different interpretation of the "0" value for the
* Packing Boundary. This corresponds to 16 bytes instead of
* the expected 32 bytes. We never have a Packing Boundary
* less than 32 bytes so we can't use that special value but
* on the other hand, if we wanted 32 bytes, the best we can
* really do is 64 bytes.
*/
if (fl_align <= 32) {
fl_align = 64;
fl_align_log = 6;
}
t4_set_reg_field(adap, SGE_CONTROL,
INGPADBOUNDARY_MASK |
EGRSTATUSPAGESIZE_MASK,
INGPADBOUNDARY(INGPCIEBOUNDARY_32B_X) |
EGRSTATUSPAGESIZE(stat_len != 64));
t4_set_reg_field(adap, SGE_CONTROL2_A,
INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
INGPACKBOUNDARY_V(fl_align_log -
INGPACKBOUNDARY_SHIFT_X));
}
/*
* Adjust various SGE Free List Host Buffer Sizes.
*
* This is something of a crock since we're using fixed indices into
* the array which are also known by the sge.c code and the T4
* Firmware Configuration File. We need to come up with a much better
* approach to managing this array. For now, the first four entries
* are:
*
* 0: Host Page Size
* 1: 64KB
* 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
* 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
*
* For the single-MTU buffers in unpacked mode we need to include
* space for the SGE Control Packet Shift, 14 byte Ethernet header,
* possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
* Padding boundry. All of these are accommodated in the Factory
* Default Firmware Configuration File but we need to adjust it for
* this host's cache line size.
*/
t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
& ~(fl_align-1));
t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
& ~(fl_align-1));
t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
return 0;
}
/**
* t4_fw_initialize - ask FW to initialize the device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to FW to partially initialize the device. This
* performs initialization that generally doesn't depend on user input.
*/
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
struct fw_initialize_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, INITIALIZE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_query_params - query FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Reads the value of FW or device parameters. Up to 7 parameters can be
* queried at once.
*/
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
u32 *val)
{
int i, ret;
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
FW_PARAMS_CMD_VFN_V(vf));
c.retval_len16 = htonl(FW_LEN16(c));
for (i = 0; i < nparams; i++, p += 2)
*p = htonl(*params++);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
*val++ = ntohl(*p);
return ret;
}
/**
* t4_set_params_nosleep - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Does not ever sleep
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
unsigned int pf, unsigned int vf,
unsigned int nparams, const u32 *params,
const u32 *val)
{
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
FW_PARAMS_CMD_PFN_V(pf) |
FW_PARAMS_CMD_VFN_V(vf));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
while (nparams--) {
*p++ = cpu_to_be32(*params++);
*p++ = cpu_to_be32(*val++);
}
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_set_params - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
const u32 *val)
{
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
FW_PARAMS_CMD_VFN_V(vf));
c.retval_len16 = htonl(FW_LEN16(c));
while (nparams--) {
*p++ = htonl(*params++);
*p++ = htonl(*val++);
}
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_cfg_pfvf - configure PF/VF resource limits
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF being configured
* @vf: the VF being configured
* @txq: the max number of egress queues
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
* @rxqi: the max number of interrupt-capable ingress queues
* @rxq: the max number of interruptless ingress queues
* @tc: the PCI traffic class
* @vi: the max number of virtual interfaces
* @cmask: the channel access rights mask for the PF/VF
* @pmask: the port access rights mask for the PF/VF
* @nexact: the maximum number of exact MPS filters
* @rcaps: read capabilities
* @wxcaps: write/execute capabilities
*
* Configures resource limits and capabilities for a physical or virtual
* function.
*/
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
unsigned int rxqi, unsigned int rxq, unsigned int tc,
unsigned int vi, unsigned int cmask, unsigned int pmask,
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
struct fw_pfvf_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
FW_PFVF_CMD_VFN_V(vf));
c.retval_len16 = htonl(FW_LEN16(c));
c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
FW_PFVF_CMD_NIQ_V(rxq));
c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
FW_PFVF_CMD_PMASK_V(pmask) |
FW_PFVF_CMD_NEQ_V(txq));
c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
FW_PFVF_CMD_NEXACTF_V(nexact));
c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_alloc_vi - allocate a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
*
* Allocates a virtual interface for the given physical port. If @mac is
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
* @mac should be large enough to hold @nmac Ethernet addresses, they are
* stored consecutively so the space needed is @nmac * 6 bytes.
* Returns a negative error number or the non-negative VI id.
*/
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
unsigned int *rss_size)
{
int ret;
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
c.portid_pkd = FW_VI_CMD_PORTID_V(port);
c.nmac = nmac - 1;
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
if (mac) {
memcpy(mac, c.mac, sizeof(c.mac));
switch (nmac) {
case 5:
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
case 4:
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
case 3:
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
case 2:
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
}
}
if (rss_size)
*rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
}
/**
* t4_set_rxmode - set Rx properties of a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @mtu: the new MTU or -1
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sets Rx properties of a virtual interface.
*/
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd c;
/* convert to FW values */
if (mtu < 0)
mtu = FW_RXMODE_MTU_NO_CHG;
if (promisc < 0)
promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
if (all_multi < 0)
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
if (bcast < 0)
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
if (vlanex < 0)
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
c.retval_len16 = htonl(FW_LEN16(c));
c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool free, unsigned int naddr,
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
int i, ret;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p;
unsigned int max_naddr = is_t4(adap->params.chip) ?
NUM_MPS_CLS_SRAM_L_INSTANCES :
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
if (naddr > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
FW_VI_MAC_CMD_VIID_V(viid));
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
FW_CMD_LEN16_V((naddr + 2) / 2));
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
}
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
if (ret)
return ret;
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
if (idx)
idx[i] = index >= max_naddr ? 0xffff : index;
if (index < max_naddr)
ret++;
else if (hash)
*hash |= (1ULL << hash_mac_addr(addr[i]));
}
return ret;
}
/**
* t4_change_mac - modifies the exact-match filter for a MAC address
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: whether a new MAC allocation should be persistent
* @add_smt: if true also add the address to the HW SMT
*
* Modifies an exact-match filter and sets it to the new MAC address.
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the one
* being used by the old address value and allocate a new filter for the
* new address value. @idx can be -1 if the address is a new addition.
*
* Returns a negative error number or the index of the filter with the new
* MAC value.
*/
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
int idx, const u8 *addr, bool persist, bool add_smt)
{
int ret, mode;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p = c.u.exact;
unsigned int max_mac_addr = is_t4(adap->params.chip) ?
NUM_MPS_CLS_SRAM_L_INSTANCES :
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
if (idx < 0) /* new allocation */
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
FW_VI_MAC_CMD_IDX_V(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
if (ret >= max_mac_addr)
ret = -ENOMEM;
}
return ret;
}
/**
* t4_set_addr_hash - program the MAC inexact-match hash filter
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
FW_CMD_LEN16_V(1));
c.u.hash.hashvec = cpu_to_be64(vec);
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_enable_vi_params - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
* @dcb_en: 1=enable delivery of Data Center Bridging messages.
*
* Enables/disables a virtual interface. Note that setting DCB Enable
* only makes sense when enabling a Virtual Interface ...
*/
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_enable_vi - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface.
*/
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool rx_en, bool tx_en)
{
return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
}
/**
* t4_identify_port - identify a VI's port by blinking its LED
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
c.blinkdur = htons(nblinks);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_free - free an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqtype: the ingress queue type
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated FLs, if any.
*/
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int iqtype, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
FW_IQ_CMD_VFN_V(vf));
c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
c.iqid = htons(iqid);
c.fl0id = htons(fl0id);
c.fl1id = htons(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_eth_eq_free - free an Ethernet egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees an Ethernet egress queue.
*/
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_eth_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
FW_EQ_ETH_CMD_VFN_V(vf));
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ctrl_eq_free - free a control egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ctrl_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
FW_EQ_CTRL_CMD_VFN_V(vf));
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ofld_eq_free - free an offload egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ofld_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
FW_EQ_OFLD_CMD_VFN_V(vf));
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_handle_fw_rpl - process a FW reply message
* @adap: the adapter
* @rpl: start of the FW message
*
* Processes a FW message, such as link state change messages.
*/
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
if (opcode == FW_PORT_CMD) { /* link/module state change message */
int speed = 0, fc = 0;
const struct fw_port_cmd *p = (void *)rpl;
int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
int port = adap->chan_map[chan];
struct port_info *pi = adap2pinfo(adap, port);
struct link_config *lc = &pi->link_cfg;
u32 stat = ntohl(p->u.info.lstatus_to_modtype);
int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
if (stat & FW_PORT_CMD_RXPAUSE_F)
fc |= PAUSE_RX;
if (stat & FW_PORT_CMD_TXPAUSE_F)
fc |= PAUSE_TX;
if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
speed = 100;
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
speed = 1000;
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
speed = 10000;
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
speed = 40000;
if (link_ok != lc->link_ok || speed != lc->speed ||
fc != lc->fc) { /* something changed */
lc->link_ok = link_ok;
lc->speed = speed;
lc->fc = fc;
lc->supported = be16_to_cpu(p->u.info.pcap);
t4_os_link_changed(adap, port, link_ok);
}
if (mod != pi->mod_type) {
pi->mod_type = mod;
t4_os_portmod_changed(adap, port);
}
}
return 0;
}
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
{
u16 val;
if (pci_is_pcie(adapter->pdev)) {
pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
p->speed = val & PCI_EXP_LNKSTA_CLS;
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
}
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @caps: link capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void init_link_config(struct link_config *lc, unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = 0;
lc->speed = 0;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & FW_PORT_CAP_ANEG) {
lc->advertising = lc->supported & ADVERT_MASK;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
#define CIM_PF_NOACCESS 0xeeeeeeee
int t4_wait_dev_ready(void __iomem *regs)
{
u32 whoami;
whoami = readl(regs + PL_WHOAMI);
if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
return 0;
msleep(500);
whoami = readl(regs + PL_WHOAMI);
return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
}
struct flash_desc {
u32 vendor_and_model_id;
u32 size_mb;
};
static int get_flash_params(struct adapter *adap)
{
/* Table for non-Numonix supported flash parts. Numonix parts are left
* to the preexisting code. All flash parts have 64KB sectors.
*/
static struct flash_desc supported_flash[] = {
{ 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
};
int ret;
u32 info;
ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = sf1_read(adap, 3, 0, 1, &info);
t4_write_reg(adap, SF_OP, 0); /* unlock SF */
if (ret)
return ret;
for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
if (supported_flash[ret].vendor_and_model_id == info) {
adap->params.sf_size = supported_flash[ret].size_mb;
adap->params.sf_nsec =
adap->params.sf_size / SF_SEC_SIZE;
return 0;
}
if ((info & 0xff) != 0x20) /* not a Numonix flash */
return -EINVAL;
info >>= 16; /* log2 of size */
if (info >= 0x14 && info < 0x18)
adap->params.sf_nsec = 1 << (info - 16);
else if (info == 0x18)
adap->params.sf_nsec = 64;
else
return -EINVAL;
adap->params.sf_size = 1 << info;
adap->params.sf_fw_start =
t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
if (adap->params.sf_size < FLASH_MIN_SIZE)
dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
adap->params.sf_size, FLASH_MIN_SIZE);
return 0;
}
/**
* t4_prep_adapter - prepare SW and HW for operation
* @adapter: the adapter
* @reset: if true perform a HW reset
*
* Initialize adapter SW state for the various HW modules, set initial
* values for some adapter tunables, take PHYs out of reset, and
* initialize the MDIO interface.
*/
int t4_prep_adapter(struct adapter *adapter)
{
int ret, ver;
uint16_t device_id;
u32 pl_rev;
get_pci_mode(adapter, &adapter->params.pci);
pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
ret = get_flash_params(adapter);
if (ret < 0) {
dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
return ret;
}
/* Retrieve adapter's device ID
*/
pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
ver = device_id >> 12;
adapter->params.chip = 0;
switch (ver) {
case CHELSIO_T4:
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
break;
case CHELSIO_T5:
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
break;
default:
dev_err(adapter->pdev_dev, "Device %d is not supported\n",
device_id);
return -EINVAL;
}
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
/*
* Default port for debugging in case we can't reach FW.
*/
adapter->params.nports = 1;
adapter->params.portvec = 1;
adapter->params.vpd.cclk = 50000;
return 0;
}
/**
* t4_bar2_sge_qregs - return BAR2 SGE Queue register information
* @adapter: the adapter
* @qid: the Queue ID
* @qtype: the Ingress or Egress type for @qid
* @pbar2_qoffset: BAR2 Queue Offset
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
*
* Returns the BAR2 SGE Queue Registers information associated with the
* indicated Absolute Queue ID. These are passed back in return value
* pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
* and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
*
* This may return an error which indicates that BAR2 SGE Queue
* registers aren't available. If an error is not returned, then the
* following values are returned:
*
* *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
* *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
*
* If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
* require the "Inferred Queue ID" ability may be used. E.g. the
* Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
* then these "Inferred Queue ID" register may not be used.
*/
int t4_bar2_sge_qregs(struct adapter *adapter,
unsigned int qid,
enum t4_bar2_qtype qtype,
u64 *pbar2_qoffset,
unsigned int *pbar2_qid)
{
unsigned int page_shift, page_size, qpp_shift, qpp_mask;
u64 bar2_page_offset, bar2_qoffset;
unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
/* T4 doesn't support BAR2 SGE Queue registers.
*/
if (is_t4(adapter->params.chip))
return -EINVAL;
/* Get our SGE Page Size parameters.
*/
page_shift = adapter->params.sge.hps + 10;
page_size = 1 << page_shift;
/* Get the right Queues per Page parameters for our Queue.
*/
qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
? adapter->params.sge.eq_qpp
: adapter->params.sge.iq_qpp);
qpp_mask = (1 << qpp_shift) - 1;
/* Calculate the basics of the BAR2 SGE Queue register area:
* o The BAR2 page the Queue registers will be in.
* o The BAR2 Queue ID.
* o The BAR2 Queue ID Offset into the BAR2 page.
*/
bar2_page_offset = ((qid >> qpp_shift) << page_shift);
bar2_qid = qid & qpp_mask;
bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
/* If the BAR2 Queue ID Offset is less than the Page Size, then the
* hardware will infer the Absolute Queue ID simply from the writes to
* the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
* BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
* write to the first BAR2 SGE Queue Area within the BAR2 Page with
* the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
* from the BAR2 Page and BAR2 Queue ID.
*
* One important censequence of this is that some BAR2 SGE registers
* have a "Queue ID" field and we can write the BAR2 SGE Queue ID
* there. But other registers synthesize the SGE Queue ID purely
* from the writes to the registers -- the Write Combined Doorbell
* Buffer is a good example. These BAR2 SGE Registers are only
* available for those BAR2 SGE Register areas where the SGE Absolute
* Queue ID can be inferred from simple writes.
*/
bar2_qoffset = bar2_page_offset;
bar2_qinferred = (bar2_qid_offset < page_size);
if (bar2_qinferred) {
bar2_qoffset += bar2_qid_offset;
bar2_qid = 0;
}
*pbar2_qoffset = bar2_qoffset;
*pbar2_qid = bar2_qid;
return 0;
}
/**
* t4_init_sge_params - initialize adap->params.sge
* @adapter: the adapter
*
* Initialize various fields of the adapter's SGE Parameters structure.
*/
int t4_init_sge_params(struct adapter *adapter)
{
struct sge_params *sge_params = &adapter->params.sge;
u32 hps, qpp;
unsigned int s_hps, s_qpp;
/* Extract the SGE Page Size for our PF.
*/
hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE);
s_hps = (HOSTPAGESIZEPF0_S +
(HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
*/
s_qpp = (QUEUESPERPAGEPF0_S +
(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF);
sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK);
qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF);
sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK);
return 0;
}
/**
* t4_init_tp_params - initialize adap->params.tp
* @adap: the adapter
*
* Initialize various fields of the adapter's TP Parameters structure.
*/
int t4_init_tp_params(struct adapter *adap)
{
int chan;
u32 v;
v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
adap->params.tp.tre = TIMERRESOLUTION_GET(v);
adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
for (chan = 0; chan < NCHAN; chan++)
adap->params.tp.tx_modq[chan] = chan;
/* Cache the adapter's Compressed Filter Mode and global Incress
* Configuration.
*/
t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&adap->params.tp.vlan_pri_map, 1,
TP_VLAN_PRI_MAP);
t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
&adap->params.tp.ingress_config, 1,
TP_INGRESS_CONFIG);
/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
* shift positions of several elements of the Compressed Filter Tuple
* for this adapter which we need frequently ...
*/
adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
F_PROTOCOL);
/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
* represents the presense of an Outer VLAN instead of a VNIC ID.
*/
if ((adap->params.tp.ingress_config & F_VNIC) == 0)
adap->params.tp.vnic_shift = -1;
return 0;
}
/**
* t4_filter_field_shift - calculate filter field shift
* @adap: the adapter
* @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
*
* Return the shift position of a filter field within the Compressed
* Filter Tuple. The filter field is specified via its selection bit
* within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
*/
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
unsigned int filter_mode = adap->params.tp.vlan_pri_map;
unsigned int sel;
int field_shift;
if ((filter_mode & filter_sel) == 0)
return -1;
for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
switch (filter_mode & sel) {
case F_FCOE:
field_shift += W_FT_FCOE;
break;
case F_PORT:
field_shift += W_FT_PORT;
break;
case F_VNIC_ID:
field_shift += W_FT_VNIC_ID;
break;
case F_VLAN:
field_shift += W_FT_VLAN;
break;
case F_TOS:
field_shift += W_FT_TOS;
break;
case F_PROTOCOL:
field_shift += W_FT_PROTOCOL;
break;
case F_ETHERTYPE:
field_shift += W_FT_ETHERTYPE;
break;
case F_MACMATCH:
field_shift += W_FT_MACMATCH;
break;
case F_MPSHITTYPE:
field_shift += W_FT_MPSHITTYPE;
break;
case F_FRAGMENTATION:
field_shift += W_FT_FRAGMENTATION;
break;
}
}
return field_shift;
}
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
{
u8 addr[6];
int ret, i, j = 0;
struct fw_port_cmd c;
struct fw_rss_vi_config_cmd rvc;
memset(&c, 0, sizeof(c));
memset(&rvc, 0, sizeof(rvc));
for_each_port(adap, i) {
unsigned int rss_size;
struct port_info *p = adap2pinfo(adap, i);
while ((adap->params.portvec & (1 << j)) == 0)
j++;
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F |
FW_PORT_CMD_PORTID_V(j));
c.action_to_len16 = htonl(
FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
FW_LEN16(c));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
if (ret < 0)
return ret;
p->viid = ret;
p->tx_chan = j;
p->lport = j;
p->rss_size = rss_size;
memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
adap->port[i]->dev_port = j;
ret = ntohl(c.u.info.lstatus_to_modtype);
p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
FW_PORT_CMD_MDIOADDR_G(ret) : -1;
p->port_type = FW_PORT_CMD_PTYPE_G(ret);
p->mod_type = FW_PORT_MOD_TYPE_NA;
rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F |
FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
rvc.retval_len16 = htonl(FW_LEN16(rvc));
ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
if (ret)
return ret;
p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
j++;
}
return 0;
}