| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* XDP user-space ring structure |
| * Copyright(c) 2018 Intel Corporation. |
| */ |
| |
| #ifndef _LINUX_XSK_QUEUE_H |
| #define _LINUX_XSK_QUEUE_H |
| |
| #include <linux/types.h> |
| #include <linux/if_xdp.h> |
| #include <net/xdp_sock.h> |
| |
| #define RX_BATCH_SIZE 16 |
| #define LAZY_UPDATE_THRESHOLD 128 |
| |
| struct xdp_ring { |
| u32 producer ____cacheline_aligned_in_smp; |
| u32 consumer ____cacheline_aligned_in_smp; |
| }; |
| |
| /* Used for the RX and TX queues for packets */ |
| struct xdp_rxtx_ring { |
| struct xdp_ring ptrs; |
| struct xdp_desc desc[0] ____cacheline_aligned_in_smp; |
| }; |
| |
| /* Used for the fill and completion queues for buffers */ |
| struct xdp_umem_ring { |
| struct xdp_ring ptrs; |
| u64 desc[0] ____cacheline_aligned_in_smp; |
| }; |
| |
| struct xsk_queue { |
| u64 chunk_mask; |
| u64 size; |
| u32 ring_mask; |
| u32 nentries; |
| u32 prod_head; |
| u32 prod_tail; |
| u32 cons_head; |
| u32 cons_tail; |
| struct xdp_ring *ring; |
| u64 invalid_descs; |
| }; |
| |
| /* The structure of the shared state of the rings are the same as the |
| * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion |
| * ring, the kernel is the producer and user space is the consumer. For |
| * the Tx and fill rings, the kernel is the consumer and user space is |
| * the producer. |
| * |
| * producer consumer |
| * |
| * if (LOAD ->consumer) { LOAD ->producer |
| * (A) smp_rmb() (C) |
| * STORE $data LOAD $data |
| * smp_wmb() (B) smp_mb() (D) |
| * STORE ->producer STORE ->consumer |
| * } |
| * |
| * (A) pairs with (D), and (B) pairs with (C). |
| * |
| * Starting with (B), it protects the data from being written after |
| * the producer pointer. If this barrier was missing, the consumer |
| * could observe the producer pointer being set and thus load the data |
| * before the producer has written the new data. The consumer would in |
| * this case load the old data. |
| * |
| * (C) protects the consumer from speculatively loading the data before |
| * the producer pointer actually has been read. If we do not have this |
| * barrier, some architectures could load old data as speculative loads |
| * are not discarded as the CPU does not know there is a dependency |
| * between ->producer and data. |
| * |
| * (A) is a control dependency that separates the load of ->consumer |
| * from the stores of $data. In case ->consumer indicates there is no |
| * room in the buffer to store $data we do not. So no barrier is needed. |
| * |
| * (D) protects the load of the data to be observed to happen after the |
| * store of the consumer pointer. If we did not have this memory |
| * barrier, the producer could observe the consumer pointer being set |
| * and overwrite the data with a new value before the consumer got the |
| * chance to read the old value. The consumer would thus miss reading |
| * the old entry and very likely read the new entry twice, once right |
| * now and again after circling through the ring. |
| */ |
| |
| /* Common functions operating for both RXTX and umem queues */ |
| |
| static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) |
| { |
| return q ? q->invalid_descs : 0; |
| } |
| |
| static inline u32 xskq_nb_avail(struct xsk_queue *q, u32 dcnt) |
| { |
| u32 entries = q->prod_tail - q->cons_tail; |
| |
| if (entries == 0) { |
| /* Refresh the local pointer */ |
| q->prod_tail = READ_ONCE(q->ring->producer); |
| entries = q->prod_tail - q->cons_tail; |
| } |
| |
| return (entries > dcnt) ? dcnt : entries; |
| } |
| |
| static inline u32 xskq_nb_free(struct xsk_queue *q, u32 producer, u32 dcnt) |
| { |
| u32 free_entries = q->nentries - (producer - q->cons_tail); |
| |
| if (free_entries >= dcnt) |
| return free_entries; |
| |
| /* Refresh the local tail pointer */ |
| q->cons_tail = READ_ONCE(q->ring->consumer); |
| return q->nentries - (producer - q->cons_tail); |
| } |
| |
| /* UMEM queue */ |
| |
| static inline bool xskq_is_valid_addr(struct xsk_queue *q, u64 addr) |
| { |
| if (addr >= q->size) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline u64 *xskq_validate_addr(struct xsk_queue *q, u64 *addr) |
| { |
| while (q->cons_tail != q->cons_head) { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| unsigned int idx = q->cons_tail & q->ring_mask; |
| |
| *addr = READ_ONCE(ring->desc[idx]) & q->chunk_mask; |
| if (xskq_is_valid_addr(q, *addr)) |
| return addr; |
| |
| q->cons_tail++; |
| } |
| |
| return NULL; |
| } |
| |
| static inline u64 *xskq_peek_addr(struct xsk_queue *q, u64 *addr) |
| { |
| if (q->cons_tail == q->cons_head) { |
| smp_mb(); /* D, matches A */ |
| WRITE_ONCE(q->ring->consumer, q->cons_tail); |
| q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE); |
| |
| /* Order consumer and data */ |
| smp_rmb(); |
| } |
| |
| return xskq_validate_addr(q, addr); |
| } |
| |
| static inline void xskq_discard_addr(struct xsk_queue *q) |
| { |
| q->cons_tail++; |
| } |
| |
| static inline int xskq_produce_addr(struct xsk_queue *q, u64 addr) |
| { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| |
| if (xskq_nb_free(q, q->prod_tail, 1) == 0) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| ring->desc[q->prod_tail++ & q->ring_mask] = addr; |
| |
| /* Order producer and data */ |
| smp_wmb(); /* B, matches C */ |
| |
| WRITE_ONCE(q->ring->producer, q->prod_tail); |
| return 0; |
| } |
| |
| static inline int xskq_produce_addr_lazy(struct xsk_queue *q, u64 addr) |
| { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| |
| if (xskq_nb_free(q, q->prod_head, LAZY_UPDATE_THRESHOLD) == 0) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| ring->desc[q->prod_head++ & q->ring_mask] = addr; |
| return 0; |
| } |
| |
| static inline void xskq_produce_flush_addr_n(struct xsk_queue *q, |
| u32 nb_entries) |
| { |
| /* Order producer and data */ |
| smp_wmb(); /* B, matches C */ |
| |
| q->prod_tail += nb_entries; |
| WRITE_ONCE(q->ring->producer, q->prod_tail); |
| } |
| |
| static inline int xskq_reserve_addr(struct xsk_queue *q) |
| { |
| if (xskq_nb_free(q, q->prod_head, 1) == 0) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| q->prod_head++; |
| return 0; |
| } |
| |
| /* Rx/Tx queue */ |
| |
| static inline bool xskq_is_valid_desc(struct xsk_queue *q, struct xdp_desc *d) |
| { |
| if (!xskq_is_valid_addr(q, d->addr)) |
| return false; |
| |
| if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) || |
| d->options) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline struct xdp_desc *xskq_validate_desc(struct xsk_queue *q, |
| struct xdp_desc *desc) |
| { |
| while (q->cons_tail != q->cons_head) { |
| struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; |
| unsigned int idx = q->cons_tail & q->ring_mask; |
| |
| *desc = READ_ONCE(ring->desc[idx]); |
| if (xskq_is_valid_desc(q, desc)) |
| return desc; |
| |
| q->cons_tail++; |
| } |
| |
| return NULL; |
| } |
| |
| static inline struct xdp_desc *xskq_peek_desc(struct xsk_queue *q, |
| struct xdp_desc *desc) |
| { |
| if (q->cons_tail == q->cons_head) { |
| smp_mb(); /* D, matches A */ |
| WRITE_ONCE(q->ring->consumer, q->cons_tail); |
| q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE); |
| |
| /* Order consumer and data */ |
| smp_rmb(); /* C, matches B */ |
| } |
| |
| return xskq_validate_desc(q, desc); |
| } |
| |
| static inline void xskq_discard_desc(struct xsk_queue *q) |
| { |
| q->cons_tail++; |
| } |
| |
| static inline int xskq_produce_batch_desc(struct xsk_queue *q, |
| u64 addr, u32 len) |
| { |
| struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; |
| unsigned int idx; |
| |
| if (xskq_nb_free(q, q->prod_head, 1) == 0) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| idx = (q->prod_head++) & q->ring_mask; |
| ring->desc[idx].addr = addr; |
| ring->desc[idx].len = len; |
| |
| return 0; |
| } |
| |
| static inline void xskq_produce_flush_desc(struct xsk_queue *q) |
| { |
| /* Order producer and data */ |
| smp_wmb(); /* B, matches C */ |
| |
| q->prod_tail = q->prod_head, |
| WRITE_ONCE(q->ring->producer, q->prod_tail); |
| } |
| |
| static inline bool xskq_full_desc(struct xsk_queue *q) |
| { |
| return xskq_nb_avail(q, q->nentries) == q->nentries; |
| } |
| |
| static inline bool xskq_empty_desc(struct xsk_queue *q) |
| { |
| return xskq_nb_free(q, q->prod_tail, q->nentries) == q->nentries; |
| } |
| |
| void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask); |
| struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); |
| void xskq_destroy(struct xsk_queue *q_ops); |
| |
| /* Executed by the core when the entire UMEM gets freed */ |
| void xsk_reuseq_destroy(struct xdp_umem *umem); |
| |
| #endif /* _LINUX_XSK_QUEUE_H */ |