| /* |
| * Cryptographic API. |
| * |
| * SHA-3, as specified in |
| * http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf |
| * |
| * SHA-3 code by Jeff Garzik <jeff@garzik.org> |
| * Ard Biesheuvel <ard.biesheuvel@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option)• |
| * any later version. |
| * |
| */ |
| #include <crypto/internal/hash.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <crypto/sha3.h> |
| #include <asm/unaligned.h> |
| |
| /* |
| * On some 32-bit architectures (h8300), GCC ends up using |
| * over 1 KB of stack if we inline the round calculation into the loop |
| * in keccakf(). On the other hand, on 64-bit architectures with plenty |
| * of [64-bit wide] general purpose registers, not inlining it severely |
| * hurts performance. So let's use 64-bitness as a heuristic to decide |
| * whether to inline or not. |
| */ |
| #ifdef CONFIG_64BIT |
| #define SHA3_INLINE inline |
| #else |
| #define SHA3_INLINE noinline |
| #endif |
| |
| #define KECCAK_ROUNDS 24 |
| |
| static const u64 keccakf_rndc[24] = { |
| 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, |
| 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, |
| 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, |
| 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, |
| 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, |
| 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, |
| 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, |
| 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL |
| }; |
| |
| /* update the state with given number of rounds */ |
| |
| static SHA3_INLINE void keccakf_round(u64 st[25]) |
| { |
| u64 t[5], tt, bc[5]; |
| |
| /* Theta */ |
| bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; |
| bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; |
| bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; |
| bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; |
| bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; |
| |
| t[0] = bc[4] ^ rol64(bc[1], 1); |
| t[1] = bc[0] ^ rol64(bc[2], 1); |
| t[2] = bc[1] ^ rol64(bc[3], 1); |
| t[3] = bc[2] ^ rol64(bc[4], 1); |
| t[4] = bc[3] ^ rol64(bc[0], 1); |
| |
| st[0] ^= t[0]; |
| |
| /* Rho Pi */ |
| tt = st[1]; |
| st[ 1] = rol64(st[ 6] ^ t[1], 44); |
| st[ 6] = rol64(st[ 9] ^ t[4], 20); |
| st[ 9] = rol64(st[22] ^ t[2], 61); |
| st[22] = rol64(st[14] ^ t[4], 39); |
| st[14] = rol64(st[20] ^ t[0], 18); |
| st[20] = rol64(st[ 2] ^ t[2], 62); |
| st[ 2] = rol64(st[12] ^ t[2], 43); |
| st[12] = rol64(st[13] ^ t[3], 25); |
| st[13] = rol64(st[19] ^ t[4], 8); |
| st[19] = rol64(st[23] ^ t[3], 56); |
| st[23] = rol64(st[15] ^ t[0], 41); |
| st[15] = rol64(st[ 4] ^ t[4], 27); |
| st[ 4] = rol64(st[24] ^ t[4], 14); |
| st[24] = rol64(st[21] ^ t[1], 2); |
| st[21] = rol64(st[ 8] ^ t[3], 55); |
| st[ 8] = rol64(st[16] ^ t[1], 45); |
| st[16] = rol64(st[ 5] ^ t[0], 36); |
| st[ 5] = rol64(st[ 3] ^ t[3], 28); |
| st[ 3] = rol64(st[18] ^ t[3], 21); |
| st[18] = rol64(st[17] ^ t[2], 15); |
| st[17] = rol64(st[11] ^ t[1], 10); |
| st[11] = rol64(st[ 7] ^ t[2], 6); |
| st[ 7] = rol64(st[10] ^ t[0], 3); |
| st[10] = rol64( tt ^ t[1], 1); |
| |
| /* Chi */ |
| bc[ 0] = ~st[ 1] & st[ 2]; |
| bc[ 1] = ~st[ 2] & st[ 3]; |
| bc[ 2] = ~st[ 3] & st[ 4]; |
| bc[ 3] = ~st[ 4] & st[ 0]; |
| bc[ 4] = ~st[ 0] & st[ 1]; |
| st[ 0] ^= bc[ 0]; |
| st[ 1] ^= bc[ 1]; |
| st[ 2] ^= bc[ 2]; |
| st[ 3] ^= bc[ 3]; |
| st[ 4] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[ 6] & st[ 7]; |
| bc[ 1] = ~st[ 7] & st[ 8]; |
| bc[ 2] = ~st[ 8] & st[ 9]; |
| bc[ 3] = ~st[ 9] & st[ 5]; |
| bc[ 4] = ~st[ 5] & st[ 6]; |
| st[ 5] ^= bc[ 0]; |
| st[ 6] ^= bc[ 1]; |
| st[ 7] ^= bc[ 2]; |
| st[ 8] ^= bc[ 3]; |
| st[ 9] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[11] & st[12]; |
| bc[ 1] = ~st[12] & st[13]; |
| bc[ 2] = ~st[13] & st[14]; |
| bc[ 3] = ~st[14] & st[10]; |
| bc[ 4] = ~st[10] & st[11]; |
| st[10] ^= bc[ 0]; |
| st[11] ^= bc[ 1]; |
| st[12] ^= bc[ 2]; |
| st[13] ^= bc[ 3]; |
| st[14] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[16] & st[17]; |
| bc[ 1] = ~st[17] & st[18]; |
| bc[ 2] = ~st[18] & st[19]; |
| bc[ 3] = ~st[19] & st[15]; |
| bc[ 4] = ~st[15] & st[16]; |
| st[15] ^= bc[ 0]; |
| st[16] ^= bc[ 1]; |
| st[17] ^= bc[ 2]; |
| st[18] ^= bc[ 3]; |
| st[19] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[21] & st[22]; |
| bc[ 1] = ~st[22] & st[23]; |
| bc[ 2] = ~st[23] & st[24]; |
| bc[ 3] = ~st[24] & st[20]; |
| bc[ 4] = ~st[20] & st[21]; |
| st[20] ^= bc[ 0]; |
| st[21] ^= bc[ 1]; |
| st[22] ^= bc[ 2]; |
| st[23] ^= bc[ 3]; |
| st[24] ^= bc[ 4]; |
| } |
| |
| static void keccakf(u64 st[25]) |
| { |
| int round; |
| |
| for (round = 0; round < KECCAK_ROUNDS; round++) { |
| keccakf_round(st); |
| /* Iota */ |
| st[0] ^= keccakf_rndc[round]; |
| } |
| } |
| |
| int crypto_sha3_init(struct shash_desc *desc) |
| { |
| struct sha3_state *sctx = shash_desc_ctx(desc); |
| unsigned int digest_size = crypto_shash_digestsize(desc->tfm); |
| |
| sctx->rsiz = 200 - 2 * digest_size; |
| sctx->rsizw = sctx->rsiz / 8; |
| sctx->partial = 0; |
| |
| memset(sctx->st, 0, sizeof(sctx->st)); |
| return 0; |
| } |
| EXPORT_SYMBOL(crypto_sha3_init); |
| |
| int crypto_sha3_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct sha3_state *sctx = shash_desc_ctx(desc); |
| unsigned int done; |
| const u8 *src; |
| |
| done = 0; |
| src = data; |
| |
| if ((sctx->partial + len) > (sctx->rsiz - 1)) { |
| if (sctx->partial) { |
| done = -sctx->partial; |
| memcpy(sctx->buf + sctx->partial, data, |
| done + sctx->rsiz); |
| src = sctx->buf; |
| } |
| |
| do { |
| unsigned int i; |
| |
| for (i = 0; i < sctx->rsizw; i++) |
| sctx->st[i] ^= get_unaligned_le64(src + 8 * i); |
| keccakf(sctx->st); |
| |
| done += sctx->rsiz; |
| src = data + done; |
| } while (done + (sctx->rsiz - 1) < len); |
| |
| sctx->partial = 0; |
| } |
| memcpy(sctx->buf + sctx->partial, src, len - done); |
| sctx->partial += (len - done); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(crypto_sha3_update); |
| |
| int crypto_sha3_final(struct shash_desc *desc, u8 *out) |
| { |
| struct sha3_state *sctx = shash_desc_ctx(desc); |
| unsigned int i, inlen = sctx->partial; |
| unsigned int digest_size = crypto_shash_digestsize(desc->tfm); |
| __le64 *digest = (__le64 *)out; |
| |
| sctx->buf[inlen++] = 0x06; |
| memset(sctx->buf + inlen, 0, sctx->rsiz - inlen); |
| sctx->buf[sctx->rsiz - 1] |= 0x80; |
| |
| for (i = 0; i < sctx->rsizw; i++) |
| sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i); |
| |
| keccakf(sctx->st); |
| |
| for (i = 0; i < digest_size / 8; i++) |
| put_unaligned_le64(sctx->st[i], digest++); |
| |
| if (digest_size & 4) |
| put_unaligned_le32(sctx->st[i], (__le32 *)digest); |
| |
| memset(sctx, 0, sizeof(*sctx)); |
| return 0; |
| } |
| EXPORT_SYMBOL(crypto_sha3_final); |
| |
| static struct shash_alg algs[] = { { |
| .digestsize = SHA3_224_DIGEST_SIZE, |
| .init = crypto_sha3_init, |
| .update = crypto_sha3_update, |
| .final = crypto_sha3_final, |
| .descsize = sizeof(struct sha3_state), |
| .base.cra_name = "sha3-224", |
| .base.cra_driver_name = "sha3-224-generic", |
| .base.cra_blocksize = SHA3_224_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| }, { |
| .digestsize = SHA3_256_DIGEST_SIZE, |
| .init = crypto_sha3_init, |
| .update = crypto_sha3_update, |
| .final = crypto_sha3_final, |
| .descsize = sizeof(struct sha3_state), |
| .base.cra_name = "sha3-256", |
| .base.cra_driver_name = "sha3-256-generic", |
| .base.cra_blocksize = SHA3_256_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| }, { |
| .digestsize = SHA3_384_DIGEST_SIZE, |
| .init = crypto_sha3_init, |
| .update = crypto_sha3_update, |
| .final = crypto_sha3_final, |
| .descsize = sizeof(struct sha3_state), |
| .base.cra_name = "sha3-384", |
| .base.cra_driver_name = "sha3-384-generic", |
| .base.cra_blocksize = SHA3_384_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| }, { |
| .digestsize = SHA3_512_DIGEST_SIZE, |
| .init = crypto_sha3_init, |
| .update = crypto_sha3_update, |
| .final = crypto_sha3_final, |
| .descsize = sizeof(struct sha3_state), |
| .base.cra_name = "sha3-512", |
| .base.cra_driver_name = "sha3-512-generic", |
| .base.cra_blocksize = SHA3_512_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| } }; |
| |
| static int __init sha3_generic_mod_init(void) |
| { |
| return crypto_register_shashes(algs, ARRAY_SIZE(algs)); |
| } |
| |
| static void __exit sha3_generic_mod_fini(void) |
| { |
| crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); |
| } |
| |
| subsys_initcall(sha3_generic_mod_init); |
| module_exit(sha3_generic_mod_fini); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm"); |
| |
| MODULE_ALIAS_CRYPTO("sha3-224"); |
| MODULE_ALIAS_CRYPTO("sha3-224-generic"); |
| MODULE_ALIAS_CRYPTO("sha3-256"); |
| MODULE_ALIAS_CRYPTO("sha3-256-generic"); |
| MODULE_ALIAS_CRYPTO("sha3-384"); |
| MODULE_ALIAS_CRYPTO("sha3-384-generic"); |
| MODULE_ALIAS_CRYPTO("sha3-512"); |
| MODULE_ALIAS_CRYPTO("sha3-512-generic"); |