| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef BLK_INTERNAL_H |
| #define BLK_INTERNAL_H |
| |
| #include <linux/idr.h> |
| #include <linux/blk-mq.h> |
| #include <xen/xen.h> |
| #include "blk-mq.h" |
| |
| /* Amount of time in which a process may batch requests */ |
| #define BLK_BATCH_TIME (HZ/50UL) |
| |
| /* Number of requests a "batching" process may submit */ |
| #define BLK_BATCH_REQ 32 |
| |
| /* Max future timer expiry for timeouts */ |
| #define BLK_MAX_TIMEOUT (5 * HZ) |
| |
| #ifdef CONFIG_DEBUG_FS |
| extern struct dentry *blk_debugfs_root; |
| #endif |
| |
| struct blk_flush_queue { |
| unsigned int flush_queue_delayed:1; |
| unsigned int flush_pending_idx:1; |
| unsigned int flush_running_idx:1; |
| unsigned long flush_pending_since; |
| struct list_head flush_queue[2]; |
| struct list_head flush_data_in_flight; |
| struct request *flush_rq; |
| |
| /* |
| * flush_rq shares tag with this rq, both can't be active |
| * at the same time |
| */ |
| struct request *orig_rq; |
| spinlock_t mq_flush_lock; |
| }; |
| |
| extern struct kmem_cache *blk_requestq_cachep; |
| extern struct kmem_cache *request_cachep; |
| extern struct kobj_type blk_queue_ktype; |
| extern struct ida blk_queue_ida; |
| |
| /* |
| * @q->queue_lock is set while a queue is being initialized. Since we know |
| * that no other threads access the queue object before @q->queue_lock has |
| * been set, it is safe to manipulate queue flags without holding the |
| * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and |
| * blk_init_allocated_queue(). |
| */ |
| static inline void queue_lockdep_assert_held(struct request_queue *q) |
| { |
| if (q->queue_lock) |
| lockdep_assert_held(q->queue_lock); |
| } |
| |
| static inline void queue_flag_set_unlocked(unsigned int flag, |
| struct request_queue *q) |
| { |
| if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) && |
| kref_read(&q->kobj.kref)) |
| lockdep_assert_held(q->queue_lock); |
| __set_bit(flag, &q->queue_flags); |
| } |
| |
| static inline void queue_flag_clear_unlocked(unsigned int flag, |
| struct request_queue *q) |
| { |
| if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) && |
| kref_read(&q->kobj.kref)) |
| lockdep_assert_held(q->queue_lock); |
| __clear_bit(flag, &q->queue_flags); |
| } |
| |
| static inline int queue_flag_test_and_clear(unsigned int flag, |
| struct request_queue *q) |
| { |
| queue_lockdep_assert_held(q); |
| |
| if (test_bit(flag, &q->queue_flags)) { |
| __clear_bit(flag, &q->queue_flags); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline int queue_flag_test_and_set(unsigned int flag, |
| struct request_queue *q) |
| { |
| queue_lockdep_assert_held(q); |
| |
| if (!test_bit(flag, &q->queue_flags)) { |
| __set_bit(flag, &q->queue_flags); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static inline void queue_flag_set(unsigned int flag, struct request_queue *q) |
| { |
| queue_lockdep_assert_held(q); |
| __set_bit(flag, &q->queue_flags); |
| } |
| |
| static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) |
| { |
| queue_lockdep_assert_held(q); |
| __clear_bit(flag, &q->queue_flags); |
| } |
| |
| static inline struct blk_flush_queue *blk_get_flush_queue( |
| struct request_queue *q, struct blk_mq_ctx *ctx) |
| { |
| if (q->mq_ops) |
| return blk_mq_map_queue(q, ctx->cpu)->fq; |
| return q->fq; |
| } |
| |
| static inline void __blk_get_queue(struct request_queue *q) |
| { |
| kobject_get(&q->kobj); |
| } |
| |
| struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, |
| int node, int cmd_size, gfp_t flags); |
| void blk_free_flush_queue(struct blk_flush_queue *q); |
| |
| int blk_init_rl(struct request_list *rl, struct request_queue *q, |
| gfp_t gfp_mask); |
| void blk_exit_rl(struct request_queue *q, struct request_list *rl); |
| void blk_exit_queue(struct request_queue *q); |
| void blk_rq_bio_prep(struct request_queue *q, struct request *rq, |
| struct bio *bio); |
| void blk_queue_bypass_start(struct request_queue *q); |
| void blk_queue_bypass_end(struct request_queue *q); |
| void __blk_queue_free_tags(struct request_queue *q); |
| void blk_freeze_queue(struct request_queue *q); |
| |
| static inline void blk_queue_enter_live(struct request_queue *q) |
| { |
| /* |
| * Given that running in generic_make_request() context |
| * guarantees that a live reference against q_usage_counter has |
| * been established, further references under that same context |
| * need not check that the queue has been frozen (marked dead). |
| */ |
| percpu_ref_get(&q->q_usage_counter); |
| } |
| |
| static inline bool biovec_phys_mergeable(struct request_queue *q, |
| struct bio_vec *vec1, struct bio_vec *vec2) |
| { |
| unsigned long mask = queue_segment_boundary(q); |
| phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; |
| phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; |
| |
| if (addr1 + vec1->bv_len != addr2) |
| return false; |
| if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2)) |
| return false; |
| if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) |
| return false; |
| return true; |
| } |
| |
| static inline bool __bvec_gap_to_prev(struct request_queue *q, |
| struct bio_vec *bprv, unsigned int offset) |
| { |
| return offset || |
| ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); |
| } |
| |
| /* |
| * Check if adding a bio_vec after bprv with offset would create a gap in |
| * the SG list. Most drivers don't care about this, but some do. |
| */ |
| static inline bool bvec_gap_to_prev(struct request_queue *q, |
| struct bio_vec *bprv, unsigned int offset) |
| { |
| if (!queue_virt_boundary(q)) |
| return false; |
| return __bvec_gap_to_prev(q, bprv, offset); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| void blk_flush_integrity(void); |
| bool __bio_integrity_endio(struct bio *); |
| static inline bool bio_integrity_endio(struct bio *bio) |
| { |
| if (bio_integrity(bio)) |
| return __bio_integrity_endio(bio); |
| return true; |
| } |
| |
| static inline bool integrity_req_gap_back_merge(struct request *req, |
| struct bio *next) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(req->bio); |
| struct bio_integrity_payload *bip_next = bio_integrity(next); |
| |
| return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], |
| bip_next->bip_vec[0].bv_offset); |
| } |
| |
| static inline bool integrity_req_gap_front_merge(struct request *req, |
| struct bio *bio) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| struct bio_integrity_payload *bip_next = bio_integrity(req->bio); |
| |
| return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], |
| bip_next->bip_vec[0].bv_offset); |
| } |
| #else /* CONFIG_BLK_DEV_INTEGRITY */ |
| static inline bool integrity_req_gap_back_merge(struct request *req, |
| struct bio *next) |
| { |
| return false; |
| } |
| static inline bool integrity_req_gap_front_merge(struct request *req, |
| struct bio *bio) |
| { |
| return false; |
| } |
| |
| static inline void blk_flush_integrity(void) |
| { |
| } |
| static inline bool bio_integrity_endio(struct bio *bio) |
| { |
| return true; |
| } |
| #endif /* CONFIG_BLK_DEV_INTEGRITY */ |
| |
| void blk_timeout_work(struct work_struct *work); |
| unsigned long blk_rq_timeout(unsigned long timeout); |
| void blk_add_timer(struct request *req); |
| void blk_delete_timer(struct request *); |
| |
| |
| bool bio_attempt_front_merge(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| bool bio_attempt_back_merge(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, |
| unsigned int *request_count, |
| struct request **same_queue_rq); |
| unsigned int blk_plug_queued_count(struct request_queue *q); |
| |
| void blk_account_io_start(struct request *req, bool new_io); |
| void blk_account_io_completion(struct request *req, unsigned int bytes); |
| void blk_account_io_done(struct request *req, u64 now); |
| |
| /* |
| * EH timer and IO completion will both attempt to 'grab' the request, make |
| * sure that only one of them succeeds. Steal the bottom bit of the |
| * __deadline field for this. |
| */ |
| static inline int blk_mark_rq_complete(struct request *rq) |
| { |
| return test_and_set_bit(0, &rq->__deadline); |
| } |
| |
| static inline void blk_clear_rq_complete(struct request *rq) |
| { |
| clear_bit(0, &rq->__deadline); |
| } |
| |
| static inline bool blk_rq_is_complete(struct request *rq) |
| { |
| return test_bit(0, &rq->__deadline); |
| } |
| |
| /* |
| * Internal elevator interface |
| */ |
| #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) |
| |
| void blk_insert_flush(struct request *rq); |
| |
| static inline void elv_activate_rq(struct request_queue *q, struct request *rq) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (e->type->ops.sq.elevator_activate_req_fn) |
| e->type->ops.sq.elevator_activate_req_fn(q, rq); |
| } |
| |
| static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (e->type->ops.sq.elevator_deactivate_req_fn) |
| e->type->ops.sq.elevator_deactivate_req_fn(q, rq); |
| } |
| |
| int elevator_init(struct request_queue *); |
| int elevator_init_mq(struct request_queue *q); |
| int elevator_switch_mq(struct request_queue *q, |
| struct elevator_type *new_e); |
| void elevator_exit(struct request_queue *, struct elevator_queue *); |
| int elv_register_queue(struct request_queue *q); |
| void elv_unregister_queue(struct request_queue *q); |
| |
| struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); |
| |
| #ifdef CONFIG_FAIL_IO_TIMEOUT |
| int blk_should_fake_timeout(struct request_queue *); |
| ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); |
| ssize_t part_timeout_store(struct device *, struct device_attribute *, |
| const char *, size_t); |
| #else |
| static inline int blk_should_fake_timeout(struct request_queue *q) |
| { |
| return 0; |
| } |
| #endif |
| |
| int ll_back_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| int ll_front_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| struct request *attempt_back_merge(struct request_queue *q, struct request *rq); |
| struct request *attempt_front_merge(struct request_queue *q, struct request *rq); |
| int blk_attempt_req_merge(struct request_queue *q, struct request *rq, |
| struct request *next); |
| void blk_recalc_rq_segments(struct request *rq); |
| void blk_rq_set_mixed_merge(struct request *rq); |
| bool blk_rq_merge_ok(struct request *rq, struct bio *bio); |
| enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); |
| |
| void blk_queue_congestion_threshold(struct request_queue *q); |
| |
| int blk_dev_init(void); |
| |
| |
| /* |
| * Return the threshold (number of used requests) at which the queue is |
| * considered to be congested. It include a little hysteresis to keep the |
| * context switch rate down. |
| */ |
| static inline int queue_congestion_on_threshold(struct request_queue *q) |
| { |
| return q->nr_congestion_on; |
| } |
| |
| /* |
| * The threshold at which a queue is considered to be uncongested |
| */ |
| static inline int queue_congestion_off_threshold(struct request_queue *q) |
| { |
| return q->nr_congestion_off; |
| } |
| |
| extern int blk_update_nr_requests(struct request_queue *, unsigned int); |
| |
| /* |
| * Contribute to IO statistics IFF: |
| * |
| * a) it's attached to a gendisk, and |
| * b) the queue had IO stats enabled when this request was started, and |
| * c) it's a file system request |
| */ |
| static inline bool blk_do_io_stat(struct request *rq) |
| { |
| return rq->rq_disk && |
| (rq->rq_flags & RQF_IO_STAT) && |
| !blk_rq_is_passthrough(rq); |
| } |
| |
| static inline void req_set_nomerge(struct request_queue *q, struct request *req) |
| { |
| req->cmd_flags |= REQ_NOMERGE; |
| if (req == q->last_merge) |
| q->last_merge = NULL; |
| } |
| |
| /* |
| * Steal a bit from this field for legacy IO path atomic IO marking. Note that |
| * setting the deadline clears the bottom bit, potentially clearing the |
| * completed bit. The user has to be OK with this (current ones are fine). |
| */ |
| static inline void blk_rq_set_deadline(struct request *rq, unsigned long time) |
| { |
| rq->__deadline = time & ~0x1UL; |
| } |
| |
| static inline unsigned long blk_rq_deadline(struct request *rq) |
| { |
| return rq->__deadline & ~0x1UL; |
| } |
| |
| /* |
| * Internal io_context interface |
| */ |
| void get_io_context(struct io_context *ioc); |
| struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); |
| struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, |
| gfp_t gfp_mask); |
| void ioc_clear_queue(struct request_queue *q); |
| |
| int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); |
| |
| /** |
| * rq_ioc - determine io_context for request allocation |
| * @bio: request being allocated is for this bio (can be %NULL) |
| * |
| * Determine io_context to use for request allocation for @bio. May return |
| * %NULL if %current->io_context doesn't exist. |
| */ |
| static inline struct io_context *rq_ioc(struct bio *bio) |
| { |
| #ifdef CONFIG_BLK_CGROUP |
| if (bio && bio->bi_ioc) |
| return bio->bi_ioc; |
| #endif |
| return current->io_context; |
| } |
| |
| /** |
| * create_io_context - try to create task->io_context |
| * @gfp_mask: allocation mask |
| * @node: allocation node |
| * |
| * If %current->io_context is %NULL, allocate a new io_context and install |
| * it. Returns the current %current->io_context which may be %NULL if |
| * allocation failed. |
| * |
| * Note that this function can't be called with IRQ disabled because |
| * task_lock which protects %current->io_context is IRQ-unsafe. |
| */ |
| static inline struct io_context *create_io_context(gfp_t gfp_mask, int node) |
| { |
| WARN_ON_ONCE(irqs_disabled()); |
| if (unlikely(!current->io_context)) |
| create_task_io_context(current, gfp_mask, node); |
| return current->io_context; |
| } |
| |
| /* |
| * Internal throttling interface |
| */ |
| #ifdef CONFIG_BLK_DEV_THROTTLING |
| extern void blk_throtl_drain(struct request_queue *q); |
| extern int blk_throtl_init(struct request_queue *q); |
| extern void blk_throtl_exit(struct request_queue *q); |
| extern void blk_throtl_register_queue(struct request_queue *q); |
| #else /* CONFIG_BLK_DEV_THROTTLING */ |
| static inline void blk_throtl_drain(struct request_queue *q) { } |
| static inline int blk_throtl_init(struct request_queue *q) { return 0; } |
| static inline void blk_throtl_exit(struct request_queue *q) { } |
| static inline void blk_throtl_register_queue(struct request_queue *q) { } |
| #endif /* CONFIG_BLK_DEV_THROTTLING */ |
| #ifdef CONFIG_BLK_DEV_THROTTLING_LOW |
| extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); |
| extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, |
| const char *page, size_t count); |
| extern void blk_throtl_bio_endio(struct bio *bio); |
| extern void blk_throtl_stat_add(struct request *rq, u64 time); |
| #else |
| static inline void blk_throtl_bio_endio(struct bio *bio) { } |
| static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } |
| #endif |
| |
| #ifdef CONFIG_BOUNCE |
| extern int init_emergency_isa_pool(void); |
| extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); |
| #else |
| static inline int init_emergency_isa_pool(void) |
| { |
| return 0; |
| } |
| static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) |
| { |
| } |
| #endif /* CONFIG_BOUNCE */ |
| |
| extern void blk_drain_queue(struct request_queue *q); |
| |
| #ifdef CONFIG_BLK_CGROUP_IOLATENCY |
| extern int blk_iolatency_init(struct request_queue *q); |
| #else |
| static inline int blk_iolatency_init(struct request_queue *q) { return 0; } |
| #endif |
| |
| #endif /* BLK_INTERNAL_H */ |