| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/arm_vgic.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_asm.h> |
| |
| #include "vgic.h" |
| |
| void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| cpuif->vgic_hcr |= ICH_HCR_UIE; |
| } |
| |
| static bool lr_signals_eoi_mi(u64 lr_val) |
| { |
| return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && |
| !(lr_val & ICH_LR_HW); |
| } |
| |
| void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| int lr; |
| |
| cpuif->vgic_hcr &= ~ICH_HCR_UIE; |
| |
| for (lr = 0; lr < vgic_cpu->used_lrs; lr++) { |
| u64 val = cpuif->vgic_lr[lr]; |
| u32 intid; |
| struct vgic_irq *irq; |
| |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V3) |
| intid = val & ICH_LR_VIRTUAL_ID_MASK; |
| else |
| intid = val & GICH_LR_VIRTUALID; |
| |
| /* Notify fds when the guest EOI'ed a level-triggered IRQ */ |
| if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) |
| kvm_notify_acked_irq(vcpu->kvm, 0, |
| intid - VGIC_NR_PRIVATE_IRQS); |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid); |
| if (!irq) /* An LPI could have been unmapped. */ |
| continue; |
| |
| spin_lock(&irq->irq_lock); |
| |
| /* Always preserve the active bit */ |
| irq->active = !!(val & ICH_LR_ACTIVE_BIT); |
| |
| /* Edge is the only case where we preserve the pending bit */ |
| if (irq->config == VGIC_CONFIG_EDGE && |
| (val & ICH_LR_PENDING_BIT)) { |
| irq->pending_latch = true; |
| |
| if (vgic_irq_is_sgi(intid) && |
| model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| u32 cpuid = val & GICH_LR_PHYSID_CPUID; |
| |
| cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; |
| irq->source |= (1 << cpuid); |
| } |
| } |
| |
| /* |
| * Clear soft pending state when level irqs have been acked. |
| * Always regenerate the pending state. |
| */ |
| if (irq->config == VGIC_CONFIG_LEVEL) { |
| if (!(val & ICH_LR_PENDING_BIT)) |
| irq->pending_latch = false; |
| } |
| |
| spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| vgic_cpu->used_lrs = 0; |
| } |
| |
| /* Requires the irq to be locked already */ |
| void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) |
| { |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| u64 val = irq->intid; |
| |
| if (irq_is_pending(irq)) { |
| val |= ICH_LR_PENDING_BIT; |
| |
| if (irq->config == VGIC_CONFIG_EDGE) |
| irq->pending_latch = false; |
| |
| if (vgic_irq_is_sgi(irq->intid) && |
| model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| u32 src = ffs(irq->source); |
| |
| BUG_ON(!src); |
| val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; |
| irq->source &= ~(1 << (src - 1)); |
| if (irq->source) |
| irq->pending_latch = true; |
| } |
| } |
| |
| if (irq->active) |
| val |= ICH_LR_ACTIVE_BIT; |
| |
| if (irq->hw) { |
| val |= ICH_LR_HW; |
| val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; |
| } else { |
| if (irq->config == VGIC_CONFIG_LEVEL) |
| val |= ICH_LR_EOI; |
| } |
| |
| /* |
| * We currently only support Group1 interrupts, which is a |
| * known defect. This needs to be addressed at some point. |
| */ |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V3) |
| val |= ICH_LR_GROUP; |
| |
| val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; |
| |
| vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; |
| } |
| |
| void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) |
| { |
| vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; |
| } |
| |
| void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u32 vmcr; |
| |
| /* |
| * Ignore the FIQen bit, because GIC emulation always implies |
| * SRE=1 which means the vFIQEn bit is also RES1. |
| */ |
| vmcr = ((vmcrp->ctlr >> ICC_CTLR_EL1_EOImode_SHIFT) << |
| ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; |
| vmcr |= (vmcrp->ctlr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; |
| vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; |
| vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; |
| vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; |
| vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; |
| vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; |
| |
| cpu_if->vgic_vmcr = vmcr; |
| } |
| |
| void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u32 vmcr; |
| |
| vmcr = cpu_if->vgic_vmcr; |
| |
| /* |
| * Ignore the FIQen bit, because GIC emulation always implies |
| * SRE=1 which means the vFIQEn bit is also RES1. |
| */ |
| vmcrp->ctlr = ((vmcr >> ICH_VMCR_EOIM_SHIFT) << |
| ICC_CTLR_EL1_EOImode_SHIFT) & ICC_CTLR_EL1_EOImode_MASK; |
| vmcrp->ctlr |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; |
| vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; |
| vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; |
| vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; |
| vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; |
| vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; |
| } |
| |
| #define INITIAL_PENDBASER_VALUE \ |
| (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ |
| GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ |
| GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) |
| |
| void vgic_v3_enable(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| /* |
| * By forcing VMCR to zero, the GIC will restore the binary |
| * points to their reset values. Anything else resets to zero |
| * anyway. |
| */ |
| vgic_v3->vgic_vmcr = 0; |
| vgic_v3->vgic_elrsr = ~0; |
| |
| /* |
| * If we are emulating a GICv3, we do it in an non-GICv2-compatible |
| * way, so we force SRE to 1 to demonstrate this to the guest. |
| * Also, we don't support any form of IRQ/FIQ bypass. |
| * This goes with the spec allowing the value to be RAO/WI. |
| */ |
| if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | |
| ICC_SRE_EL1_DFB | |
| ICC_SRE_EL1_SRE); |
| vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; |
| } else { |
| vgic_v3->vgic_sre = 0; |
| } |
| |
| vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & |
| ICH_VTR_ID_BITS_MASK) >> |
| ICH_VTR_ID_BITS_SHIFT; |
| vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & |
| ICH_VTR_PRI_BITS_MASK) >> |
| ICH_VTR_PRI_BITS_SHIFT) + 1; |
| |
| /* Get the show on the road... */ |
| vgic_v3->vgic_hcr = ICH_HCR_EN; |
| } |
| |
| int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) |
| { |
| struct kvm_vcpu *vcpu; |
| int byte_offset, bit_nr; |
| gpa_t pendbase, ptr; |
| bool status; |
| u8 val; |
| int ret; |
| |
| retry: |
| vcpu = irq->target_vcpu; |
| if (!vcpu) |
| return 0; |
| |
| pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| |
| byte_offset = irq->intid / BITS_PER_BYTE; |
| bit_nr = irq->intid % BITS_PER_BYTE; |
| ptr = pendbase + byte_offset; |
| |
| ret = kvm_read_guest(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| |
| status = val & (1 << bit_nr); |
| |
| spin_lock(&irq->irq_lock); |
| if (irq->target_vcpu != vcpu) { |
| spin_unlock(&irq->irq_lock); |
| goto retry; |
| } |
| irq->pending_latch = status; |
| vgic_queue_irq_unlock(vcpu->kvm, irq); |
| |
| if (status) { |
| /* clear consumed data */ |
| val &= ~(1 << bit_nr); |
| ret = kvm_write_guest(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * vgic_its_save_pending_tables - Save the pending tables into guest RAM |
| * kvm lock and all vcpu lock must be held |
| */ |
| int vgic_v3_save_pending_tables(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int last_byte_offset = -1; |
| struct vgic_irq *irq; |
| int ret; |
| |
| list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { |
| int byte_offset, bit_nr; |
| struct kvm_vcpu *vcpu; |
| gpa_t pendbase, ptr; |
| bool stored; |
| u8 val; |
| |
| vcpu = irq->target_vcpu; |
| if (!vcpu) |
| continue; |
| |
| pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| |
| byte_offset = irq->intid / BITS_PER_BYTE; |
| bit_nr = irq->intid % BITS_PER_BYTE; |
| ptr = pendbase + byte_offset; |
| |
| if (byte_offset != last_byte_offset) { |
| ret = kvm_read_guest(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| last_byte_offset = byte_offset; |
| } |
| |
| stored = val & (1U << bit_nr); |
| if (stored == irq->pending_latch) |
| continue; |
| |
| if (irq->pending_latch) |
| val |= 1 << bit_nr; |
| else |
| val &= ~(1 << bit_nr); |
| |
| ret = kvm_write_guest(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* check for overlapping regions and for regions crossing the end of memory */ |
| static bool vgic_v3_check_base(struct kvm *kvm) |
| { |
| struct vgic_dist *d = &kvm->arch.vgic; |
| gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE; |
| |
| redist_size *= atomic_read(&kvm->online_vcpus); |
| |
| if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) |
| return false; |
| if (d->vgic_redist_base + redist_size < d->vgic_redist_base) |
| return false; |
| |
| if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base) |
| return true; |
| if (d->vgic_redist_base + redist_size <= d->vgic_dist_base) |
| return true; |
| |
| return false; |
| } |
| |
| int vgic_v3_map_resources(struct kvm *kvm) |
| { |
| int ret = 0; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| if (vgic_ready(kvm)) |
| goto out; |
| |
| if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || |
| IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { |
| kvm_err("Need to set vgic distributor addresses first\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| if (!vgic_v3_check_base(kvm)) { |
| kvm_err("VGIC redist and dist frames overlap\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * For a VGICv3 we require the userland to explicitly initialize |
| * the VGIC before we need to use it. |
| */ |
| if (!vgic_initialized(kvm)) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); |
| if (ret) { |
| kvm_err("Unable to register VGICv3 dist MMIO regions\n"); |
| goto out; |
| } |
| |
| ret = vgic_register_redist_iodevs(kvm); |
| if (ret) { |
| kvm_err("Unable to register VGICv3 redist MMIO regions\n"); |
| goto out; |
| } |
| |
| if (vgic_has_its(kvm)) { |
| ret = vgic_register_its_iodevs(kvm); |
| if (ret) { |
| kvm_err("Unable to register VGIC ITS MMIO regions\n"); |
| goto out; |
| } |
| } |
| |
| dist->ready = true; |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT |
| * @node: pointer to the DT node |
| * |
| * Returns 0 if a GICv3 has been found, returns an error code otherwise |
| */ |
| int vgic_v3_probe(const struct gic_kvm_info *info) |
| { |
| u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2); |
| int ret; |
| |
| /* |
| * The ListRegs field is 5 bits, but there is a architectural |
| * maximum of 16 list registers. Just ignore bit 4... |
| */ |
| kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; |
| kvm_vgic_global_state.can_emulate_gicv2 = false; |
| kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; |
| |
| if (!info->vcpu.start) { |
| kvm_info("GICv3: no GICV resource entry\n"); |
| kvm_vgic_global_state.vcpu_base = 0; |
| } else if (!PAGE_ALIGNED(info->vcpu.start)) { |
| pr_warn("GICV physical address 0x%llx not page aligned\n", |
| (unsigned long long)info->vcpu.start); |
| kvm_vgic_global_state.vcpu_base = 0; |
| } else if (!PAGE_ALIGNED(resource_size(&info->vcpu))) { |
| pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n", |
| (unsigned long long)resource_size(&info->vcpu), |
| PAGE_SIZE); |
| kvm_vgic_global_state.vcpu_base = 0; |
| } else { |
| kvm_vgic_global_state.vcpu_base = info->vcpu.start; |
| kvm_vgic_global_state.can_emulate_gicv2 = true; |
| ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); |
| if (ret) { |
| kvm_err("Cannot register GICv2 KVM device.\n"); |
| return ret; |
| } |
| kvm_info("vgic-v2@%llx\n", info->vcpu.start); |
| } |
| ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); |
| if (ret) { |
| kvm_err("Cannot register GICv3 KVM device.\n"); |
| kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); |
| return ret; |
| } |
| |
| if (kvm_vgic_global_state.vcpu_base == 0) |
| kvm_info("disabling GICv2 emulation\n"); |
| |
| kvm_vgic_global_state.vctrl_base = NULL; |
| kvm_vgic_global_state.type = VGIC_V3; |
| kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; |
| |
| return 0; |
| } |
| |
| void vgic_v3_load(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| /* |
| * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen |
| * is dependent on ICC_SRE_EL1.SRE, and we have to perform the |
| * VMCR_EL2 save/restore in the world switch. |
| */ |
| if (likely(cpu_if->vgic_sre)) |
| kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); |
| } |
| |
| void vgic_v3_put(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| if (likely(cpu_if->vgic_sre)) |
| cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr); |
| } |