| /* sched.c - SPU scheduler. |
| * |
| * Copyright (C) IBM 2005 |
| * Author: Mark Nutter <mnutter@us.ibm.com> |
| * |
| * 2006-03-31 NUMA domains added. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/completion.h> |
| #include <linux/vmalloc.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/numa.h> |
| #include <linux/mutex.h> |
| #include <linux/notifier.h> |
| |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/spu.h> |
| #include <asm/spu_csa.h> |
| #include <asm/spu_priv1.h> |
| #include "spufs.h" |
| |
| #define SPU_TIMESLICE (HZ) |
| |
| struct spu_prio_array { |
| DECLARE_BITMAP(bitmap, MAX_PRIO); |
| struct list_head runq[MAX_PRIO]; |
| spinlock_t runq_lock; |
| struct list_head active_list[MAX_NUMNODES]; |
| struct mutex active_mutex[MAX_NUMNODES]; |
| }; |
| |
| static struct spu_prio_array *spu_prio; |
| static struct workqueue_struct *spu_sched_wq; |
| |
| static inline int node_allowed(int node) |
| { |
| cpumask_t mask; |
| |
| if (!nr_cpus_node(node)) |
| return 0; |
| mask = node_to_cpumask(node); |
| if (!cpus_intersects(mask, current->cpus_allowed)) |
| return 0; |
| return 1; |
| } |
| |
| void spu_start_tick(struct spu_context *ctx) |
| { |
| if (ctx->policy == SCHED_RR) { |
| /* |
| * Make sure the exiting bit is cleared. |
| */ |
| clear_bit(SPU_SCHED_EXITING, &ctx->sched_flags); |
| mb(); |
| queue_delayed_work(spu_sched_wq, &ctx->sched_work, SPU_TIMESLICE); |
| } |
| } |
| |
| void spu_stop_tick(struct spu_context *ctx) |
| { |
| if (ctx->policy == SCHED_RR) { |
| /* |
| * While the work can be rearming normally setting this flag |
| * makes sure it does not rearm itself anymore. |
| */ |
| set_bit(SPU_SCHED_EXITING, &ctx->sched_flags); |
| mb(); |
| cancel_delayed_work(&ctx->sched_work); |
| } |
| } |
| |
| void spu_sched_tick(struct work_struct *work) |
| { |
| struct spu_context *ctx = |
| container_of(work, struct spu_context, sched_work.work); |
| struct spu *spu; |
| int preempted = 0; |
| |
| /* |
| * If this context is being stopped avoid rescheduling from the |
| * scheduler tick because we would block on the state_mutex. |
| * The caller will yield the spu later on anyway. |
| */ |
| if (test_bit(SPU_SCHED_EXITING, &ctx->sched_flags)) |
| return; |
| |
| mutex_lock(&ctx->state_mutex); |
| spu = ctx->spu; |
| if (spu) { |
| int best = sched_find_first_bit(spu_prio->bitmap); |
| if (best <= ctx->prio) { |
| spu_deactivate(ctx); |
| preempted = 1; |
| } |
| } |
| mutex_unlock(&ctx->state_mutex); |
| |
| if (preempted) { |
| /* |
| * We need to break out of the wait loop in spu_run manually |
| * to ensure this context gets put on the runqueue again |
| * ASAP. |
| */ |
| wake_up(&ctx->stop_wq); |
| } else |
| spu_start_tick(ctx); |
| } |
| |
| /** |
| * spu_add_to_active_list - add spu to active list |
| * @spu: spu to add to the active list |
| */ |
| static void spu_add_to_active_list(struct spu *spu) |
| { |
| mutex_lock(&spu_prio->active_mutex[spu->node]); |
| list_add_tail(&spu->list, &spu_prio->active_list[spu->node]); |
| mutex_unlock(&spu_prio->active_mutex[spu->node]); |
| } |
| |
| /** |
| * spu_remove_from_active_list - remove spu from active list |
| * @spu: spu to remove from the active list |
| */ |
| static void spu_remove_from_active_list(struct spu *spu) |
| { |
| int node = spu->node; |
| |
| mutex_lock(&spu_prio->active_mutex[node]); |
| list_del_init(&spu->list); |
| mutex_unlock(&spu_prio->active_mutex[node]); |
| } |
| |
| static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier); |
| |
| static void spu_switch_notify(struct spu *spu, struct spu_context *ctx) |
| { |
| blocking_notifier_call_chain(&spu_switch_notifier, |
| ctx ? ctx->object_id : 0, spu); |
| } |
| |
| int spu_switch_event_register(struct notifier_block * n) |
| { |
| return blocking_notifier_chain_register(&spu_switch_notifier, n); |
| } |
| |
| int spu_switch_event_unregister(struct notifier_block * n) |
| { |
| return blocking_notifier_chain_unregister(&spu_switch_notifier, n); |
| } |
| |
| /** |
| * spu_bind_context - bind spu context to physical spu |
| * @spu: physical spu to bind to |
| * @ctx: context to bind |
| */ |
| static void spu_bind_context(struct spu *spu, struct spu_context *ctx) |
| { |
| pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid, |
| spu->number, spu->node); |
| spu->ctx = ctx; |
| spu->flags = 0; |
| ctx->spu = spu; |
| ctx->ops = &spu_hw_ops; |
| spu->pid = current->pid; |
| spu_associate_mm(spu, ctx->owner); |
| spu->ibox_callback = spufs_ibox_callback; |
| spu->wbox_callback = spufs_wbox_callback; |
| spu->stop_callback = spufs_stop_callback; |
| spu->mfc_callback = spufs_mfc_callback; |
| spu->dma_callback = spufs_dma_callback; |
| mb(); |
| spu_unmap_mappings(ctx); |
| spu_restore(&ctx->csa, spu); |
| spu->timestamp = jiffies; |
| spu_cpu_affinity_set(spu, raw_smp_processor_id()); |
| spu_switch_notify(spu, ctx); |
| spu_add_to_active_list(spu); |
| ctx->state = SPU_STATE_RUNNABLE; |
| } |
| |
| /** |
| * spu_unbind_context - unbind spu context from physical spu |
| * @spu: physical spu to unbind from |
| * @ctx: context to unbind |
| */ |
| static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) |
| { |
| pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__, |
| spu->pid, spu->number, spu->node); |
| |
| spu_remove_from_active_list(spu); |
| spu_switch_notify(spu, NULL); |
| spu_unmap_mappings(ctx); |
| spu_save(&ctx->csa, spu); |
| spu->timestamp = jiffies; |
| ctx->state = SPU_STATE_SAVED; |
| spu->ibox_callback = NULL; |
| spu->wbox_callback = NULL; |
| spu->stop_callback = NULL; |
| spu->mfc_callback = NULL; |
| spu->dma_callback = NULL; |
| spu_associate_mm(spu, NULL); |
| spu->pid = 0; |
| ctx->ops = &spu_backing_ops; |
| ctx->spu = NULL; |
| spu->flags = 0; |
| spu->ctx = NULL; |
| } |
| |
| /** |
| * spu_add_to_rq - add a context to the runqueue |
| * @ctx: context to add |
| */ |
| static void __spu_add_to_rq(struct spu_context *ctx) |
| { |
| int prio = ctx->prio; |
| |
| list_add_tail(&ctx->rq, &spu_prio->runq[prio]); |
| set_bit(prio, spu_prio->bitmap); |
| } |
| |
| static void __spu_del_from_rq(struct spu_context *ctx) |
| { |
| int prio = ctx->prio; |
| |
| if (!list_empty(&ctx->rq)) |
| list_del_init(&ctx->rq); |
| if (list_empty(&spu_prio->runq[prio])) |
| clear_bit(prio, spu_prio->bitmap); |
| } |
| |
| static void spu_prio_wait(struct spu_context *ctx) |
| { |
| DEFINE_WAIT(wait); |
| |
| spin_lock(&spu_prio->runq_lock); |
| prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); |
| if (!signal_pending(current)) { |
| __spu_add_to_rq(ctx); |
| spin_unlock(&spu_prio->runq_lock); |
| mutex_unlock(&ctx->state_mutex); |
| schedule(); |
| mutex_lock(&ctx->state_mutex); |
| spin_lock(&spu_prio->runq_lock); |
| __spu_del_from_rq(ctx); |
| } |
| spin_unlock(&spu_prio->runq_lock); |
| __set_current_state(TASK_RUNNING); |
| remove_wait_queue(&ctx->stop_wq, &wait); |
| } |
| |
| /** |
| * spu_reschedule - try to find a runnable context for a spu |
| * @spu: spu available |
| * |
| * This function is called whenever a spu becomes idle. It looks for the |
| * most suitable runnable spu context and schedules it for execution. |
| */ |
| static void spu_reschedule(struct spu *spu) |
| { |
| int best; |
| |
| spu_free(spu); |
| |
| spin_lock(&spu_prio->runq_lock); |
| best = sched_find_first_bit(spu_prio->bitmap); |
| if (best < MAX_PRIO) { |
| struct list_head *rq = &spu_prio->runq[best]; |
| struct spu_context *ctx; |
| |
| BUG_ON(list_empty(rq)); |
| |
| ctx = list_entry(rq->next, struct spu_context, rq); |
| __spu_del_from_rq(ctx); |
| wake_up(&ctx->stop_wq); |
| } |
| spin_unlock(&spu_prio->runq_lock); |
| } |
| |
| static struct spu *spu_get_idle(struct spu_context *ctx) |
| { |
| struct spu *spu = NULL; |
| int node = cpu_to_node(raw_smp_processor_id()); |
| int n; |
| |
| for (n = 0; n < MAX_NUMNODES; n++, node++) { |
| node = (node < MAX_NUMNODES) ? node : 0; |
| if (!node_allowed(node)) |
| continue; |
| spu = spu_alloc_node(node); |
| if (spu) |
| break; |
| } |
| return spu; |
| } |
| |
| /** |
| * find_victim - find a lower priority context to preempt |
| * @ctx: canidate context for running |
| * |
| * Returns the freed physical spu to run the new context on. |
| */ |
| static struct spu *find_victim(struct spu_context *ctx) |
| { |
| struct spu_context *victim = NULL; |
| struct spu *spu; |
| int node, n; |
| |
| /* |
| * Look for a possible preemption candidate on the local node first. |
| * If there is no candidate look at the other nodes. This isn't |
| * exactly fair, but so far the whole spu schedule tries to keep |
| * a strong node affinity. We might want to fine-tune this in |
| * the future. |
| */ |
| restart: |
| node = cpu_to_node(raw_smp_processor_id()); |
| for (n = 0; n < MAX_NUMNODES; n++, node++) { |
| node = (node < MAX_NUMNODES) ? node : 0; |
| if (!node_allowed(node)) |
| continue; |
| |
| mutex_lock(&spu_prio->active_mutex[node]); |
| list_for_each_entry(spu, &spu_prio->active_list[node], list) { |
| struct spu_context *tmp = spu->ctx; |
| |
| if (tmp->rt_priority < ctx->rt_priority && |
| (!victim || tmp->rt_priority < victim->rt_priority)) |
| victim = spu->ctx; |
| } |
| mutex_unlock(&spu_prio->active_mutex[node]); |
| |
| if (victim) { |
| /* |
| * This nests ctx->state_mutex, but we always lock |
| * higher priority contexts before lower priority |
| * ones, so this is safe until we introduce |
| * priority inheritance schemes. |
| */ |
| if (!mutex_trylock(&victim->state_mutex)) { |
| victim = NULL; |
| goto restart; |
| } |
| |
| spu = victim->spu; |
| if (!spu) { |
| /* |
| * This race can happen because we've dropped |
| * the active list mutex. No a problem, just |
| * restart the search. |
| */ |
| mutex_unlock(&victim->state_mutex); |
| victim = NULL; |
| goto restart; |
| } |
| spu_unbind_context(spu, victim); |
| mutex_unlock(&victim->state_mutex); |
| /* |
| * We need to break out of the wait loop in spu_run |
| * manually to ensure this context gets put on the |
| * runqueue again ASAP. |
| */ |
| wake_up(&victim->stop_wq); |
| return spu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * spu_activate - find a free spu for a context and execute it |
| * @ctx: spu context to schedule |
| * @flags: flags (currently ignored) |
| * |
| * Tries to find a free spu to run @ctx. If no free spu is available |
| * add the context to the runqueue so it gets woken up once an spu |
| * is available. |
| */ |
| int spu_activate(struct spu_context *ctx, unsigned long flags) |
| { |
| |
| if (ctx->spu) |
| return 0; |
| |
| do { |
| struct spu *spu; |
| |
| spu = spu_get_idle(ctx); |
| /* |
| * If this is a realtime thread we try to get it running by |
| * preempting a lower priority thread. |
| */ |
| if (!spu && ctx->rt_priority) |
| spu = find_victim(ctx); |
| if (spu) { |
| spu_bind_context(spu, ctx); |
| return 0; |
| } |
| |
| spu_prio_wait(ctx); |
| } while (!signal_pending(current)); |
| |
| return -ERESTARTSYS; |
| } |
| |
| /** |
| * spu_deactivate - unbind a context from it's physical spu |
| * @ctx: spu context to unbind |
| * |
| * Unbind @ctx from the physical spu it is running on and schedule |
| * the highest priority context to run on the freed physical spu. |
| */ |
| void spu_deactivate(struct spu_context *ctx) |
| { |
| struct spu *spu = ctx->spu; |
| |
| if (spu) { |
| spu_unbind_context(spu, ctx); |
| spu_reschedule(spu); |
| } |
| } |
| |
| /** |
| * spu_yield - yield a physical spu if others are waiting |
| * @ctx: spu context to yield |
| * |
| * Check if there is a higher priority context waiting and if yes |
| * unbind @ctx from the physical spu and schedule the highest |
| * priority context to run on the freed physical spu instead. |
| */ |
| void spu_yield(struct spu_context *ctx) |
| { |
| struct spu *spu; |
| |
| if (mutex_trylock(&ctx->state_mutex)) { |
| if ((spu = ctx->spu) != NULL) { |
| int best = sched_find_first_bit(spu_prio->bitmap); |
| if (best < MAX_PRIO) { |
| pr_debug("%s: yielding SPU %d NODE %d\n", |
| __FUNCTION__, spu->number, spu->node); |
| spu_deactivate(ctx); |
| } |
| } |
| mutex_unlock(&ctx->state_mutex); |
| } |
| } |
| |
| int __init spu_sched_init(void) |
| { |
| int i; |
| |
| spu_sched_wq = create_singlethread_workqueue("spusched"); |
| if (!spu_sched_wq) |
| return 1; |
| |
| spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); |
| if (!spu_prio) { |
| printk(KERN_WARNING "%s: Unable to allocate priority queue.\n", |
| __FUNCTION__); |
| destroy_workqueue(spu_sched_wq); |
| return 1; |
| } |
| for (i = 0; i < MAX_PRIO; i++) { |
| INIT_LIST_HEAD(&spu_prio->runq[i]); |
| __clear_bit(i, spu_prio->bitmap); |
| } |
| __set_bit(MAX_PRIO, spu_prio->bitmap); |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| mutex_init(&spu_prio->active_mutex[i]); |
| INIT_LIST_HEAD(&spu_prio->active_list[i]); |
| } |
| spin_lock_init(&spu_prio->runq_lock); |
| return 0; |
| } |
| |
| void __exit spu_sched_exit(void) |
| { |
| struct spu *spu, *tmp; |
| int node; |
| |
| for (node = 0; node < MAX_NUMNODES; node++) { |
| mutex_lock(&spu_prio->active_mutex[node]); |
| list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node], |
| list) { |
| list_del_init(&spu->list); |
| spu_free(spu); |
| } |
| mutex_unlock(&spu_prio->active_mutex[node]); |
| } |
| kfree(spu_prio); |
| destroy_workqueue(spu_sched_wq); |
| } |