| /* bnx2x_main.c: Broadcom Everest network driver. |
| * |
| * Copyright (c) 2007-2013 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Eliezer Tamir |
| * Based on code from Michael Chan's bnx2 driver |
| * UDP CSUM errata workaround by Arik Gendelman |
| * Slowpath and fastpath rework by Vladislav Zolotarov |
| * Statistics and Link management by Yitchak Gertner |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> /* for dev_info() */ |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/bitops.h> |
| #include <linux/irq.h> |
| #include <linux/delay.h> |
| #include <asm/byteorder.h> |
| #include <linux/time.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/if_vlan.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/tcp.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/workqueue.h> |
| #include <linux/crc32.h> |
| #include <linux/crc32c.h> |
| #include <linux/prefetch.h> |
| #include <linux/zlib.h> |
| #include <linux/io.h> |
| #include <linux/semaphore.h> |
| #include <linux/stringify.h> |
| #include <linux/vmalloc.h> |
| |
| #include "bnx2x.h" |
| #include "bnx2x_init.h" |
| #include "bnx2x_init_ops.h" |
| #include "bnx2x_cmn.h" |
| #include "bnx2x_vfpf.h" |
| #include "bnx2x_dcb.h" |
| #include "bnx2x_sp.h" |
| |
| #include <linux/firmware.h> |
| #include "bnx2x_fw_file_hdr.h" |
| /* FW files */ |
| #define FW_FILE_VERSION \ |
| __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ |
| __stringify(BCM_5710_FW_MINOR_VERSION) "." \ |
| __stringify(BCM_5710_FW_REVISION_VERSION) "." \ |
| __stringify(BCM_5710_FW_ENGINEERING_VERSION) |
| #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" |
| #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" |
| #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" |
| |
| /* Time in jiffies before concluding the transmitter is hung */ |
| #define TX_TIMEOUT (5*HZ) |
| |
| static char version[] = |
| "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " |
| DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| MODULE_AUTHOR("Eliezer Tamir"); |
| MODULE_DESCRIPTION("Broadcom NetXtreme II " |
| "BCM57710/57711/57711E/" |
| "57712/57712_MF/57800/57800_MF/57810/57810_MF/" |
| "57840/57840_MF Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| MODULE_FIRMWARE(FW_FILE_NAME_E1); |
| MODULE_FIRMWARE(FW_FILE_NAME_E1H); |
| MODULE_FIRMWARE(FW_FILE_NAME_E2); |
| |
| int num_queues; |
| module_param(num_queues, int, 0); |
| MODULE_PARM_DESC(num_queues, |
| " Set number of queues (default is as a number of CPUs)"); |
| |
| static int disable_tpa; |
| module_param(disable_tpa, int, 0); |
| MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); |
| |
| int int_mode; |
| module_param(int_mode, int, 0); |
| MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " |
| "(1 INT#x; 2 MSI)"); |
| |
| static int dropless_fc; |
| module_param(dropless_fc, int, 0); |
| MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); |
| |
| static int mrrs = -1; |
| module_param(mrrs, int, 0); |
| MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); |
| |
| static int debug; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, " Default debug msglevel"); |
| |
| struct workqueue_struct *bnx2x_wq; |
| |
| struct bnx2x_mac_vals { |
| u32 xmac_addr; |
| u32 xmac_val; |
| u32 emac_addr; |
| u32 emac_val; |
| u32 umac_addr; |
| u32 umac_val; |
| u32 bmac_addr; |
| u32 bmac_val[2]; |
| }; |
| |
| enum bnx2x_board_type { |
| BCM57710 = 0, |
| BCM57711, |
| BCM57711E, |
| BCM57712, |
| BCM57712_MF, |
| BCM57712_VF, |
| BCM57800, |
| BCM57800_MF, |
| BCM57800_VF, |
| BCM57810, |
| BCM57810_MF, |
| BCM57810_VF, |
| BCM57840_4_10, |
| BCM57840_2_20, |
| BCM57840_MF, |
| BCM57840_VF, |
| BCM57811, |
| BCM57811_MF, |
| BCM57840_O, |
| BCM57840_MFO, |
| BCM57811_VF |
| }; |
| |
| /* indexed by board_type, above */ |
| static struct { |
| char *name; |
| } board_info[] = { |
| [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, |
| [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, |
| [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, |
| [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, |
| [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, |
| [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, |
| [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, |
| [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, |
| [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, |
| [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, |
| [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, |
| [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, |
| [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, |
| [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, |
| [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, |
| [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, |
| [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, |
| [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, |
| [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, |
| [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, |
| [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } |
| }; |
| |
| #ifndef PCI_DEVICE_ID_NX2_57710 |
| #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57711 |
| #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57711E |
| #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57712 |
| #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57712_MF |
| #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57712_VF |
| #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57800 |
| #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57800_MF |
| #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57800_VF |
| #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57810 |
| #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57810_MF |
| #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_O |
| #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57810_VF |
| #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_4_10 |
| #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_2_20 |
| #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_MFO |
| #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_MF |
| #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57840_VF |
| #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57811 |
| #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57811_MF |
| #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF |
| #endif |
| #ifndef PCI_DEVICE_ID_NX2_57811_VF |
| #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF |
| #endif |
| |
| static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, |
| { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, |
| { 0 } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); |
| |
| /* Global resources for unloading a previously loaded device */ |
| #define BNX2X_PREV_WAIT_NEEDED 1 |
| static DEFINE_SEMAPHORE(bnx2x_prev_sem); |
| static LIST_HEAD(bnx2x_prev_list); |
| /**************************************************************************** |
| * General service functions |
| ****************************************************************************/ |
| |
| static void __storm_memset_dma_mapping(struct bnx2x *bp, |
| u32 addr, dma_addr_t mapping) |
| { |
| REG_WR(bp, addr, U64_LO(mapping)); |
| REG_WR(bp, addr + 4, U64_HI(mapping)); |
| } |
| |
| static void storm_memset_spq_addr(struct bnx2x *bp, |
| dma_addr_t mapping, u16 abs_fid) |
| { |
| u32 addr = XSEM_REG_FAST_MEMORY + |
| XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); |
| |
| __storm_memset_dma_mapping(bp, addr, mapping); |
| } |
| |
| static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, |
| u16 pf_id) |
| { |
| REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), |
| pf_id); |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), |
| pf_id); |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), |
| pf_id); |
| REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), |
| pf_id); |
| } |
| |
| static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, |
| u8 enable) |
| { |
| REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), |
| enable); |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), |
| enable); |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), |
| enable); |
| REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), |
| enable); |
| } |
| |
| static void storm_memset_eq_data(struct bnx2x *bp, |
| struct event_ring_data *eq_data, |
| u16 pfid) |
| { |
| size_t size = sizeof(struct event_ring_data); |
| |
| u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); |
| |
| __storm_memset_struct(bp, addr, size, (u32 *)eq_data); |
| } |
| |
| static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, |
| u16 pfid) |
| { |
| u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); |
| REG_WR16(bp, addr, eq_prod); |
| } |
| |
| /* used only at init |
| * locking is done by mcp |
| */ |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) |
| { |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, |
| PCICFG_VENDOR_ID_OFFSET); |
| } |
| |
| static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) |
| { |
| u32 val; |
| |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); |
| pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, |
| PCICFG_VENDOR_ID_OFFSET); |
| |
| return val; |
| } |
| |
| #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" |
| #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" |
| #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" |
| #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" |
| #define DMAE_DP_DST_NONE "dst_addr [none]" |
| |
| static void bnx2x_dp_dmae(struct bnx2x *bp, |
| struct dmae_command *dmae, int msglvl) |
| { |
| u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; |
| int i; |
| |
| switch (dmae->opcode & DMAE_COMMAND_DST) { |
| case DMAE_CMD_DST_PCI: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%08x], len [%d*4], dst [%x:%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| case DMAE_CMD_DST_GRC: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->dst_addr_lo >> 2, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%08x], len [%d*4], dst [%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->dst_addr_lo >> 2, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| default: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" |
| "comp_addr [%x:%08x] comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src_addr [%08x] len [%d * 4] dst_addr [none]\n" |
| "comp_addr [%x:%08x] comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| } |
| |
| for (i = 0; i < (sizeof(struct dmae_command)/4); i++) |
| DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", |
| i, *(((u32 *)dmae) + i)); |
| } |
| |
| /* copy command into DMAE command memory and set DMAE command go */ |
| void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) |
| { |
| u32 cmd_offset; |
| int i; |
| |
| cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); |
| for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { |
| REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); |
| } |
| REG_WR(bp, dmae_reg_go_c[idx], 1); |
| } |
| |
| u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) |
| { |
| return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | |
| DMAE_CMD_C_ENABLE); |
| } |
| |
| u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) |
| { |
| return opcode & ~DMAE_CMD_SRC_RESET; |
| } |
| |
| u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, |
| bool with_comp, u8 comp_type) |
| { |
| u32 opcode = 0; |
| |
| opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | |
| (dst_type << DMAE_COMMAND_DST_SHIFT)); |
| |
| opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); |
| |
| opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); |
| opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | |
| (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); |
| opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); |
| |
| #ifdef __BIG_ENDIAN |
| opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; |
| #else |
| opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; |
| #endif |
| if (with_comp) |
| opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); |
| return opcode; |
| } |
| |
| void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, |
| struct dmae_command *dmae, |
| u8 src_type, u8 dst_type) |
| { |
| memset(dmae, 0, sizeof(struct dmae_command)); |
| |
| /* set the opcode */ |
| dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, |
| true, DMAE_COMP_PCI); |
| |
| /* fill in the completion parameters */ |
| dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); |
| dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); |
| dmae->comp_val = DMAE_COMP_VAL; |
| } |
| |
| /* issue a dmae command over the init-channel and wait for completion */ |
| int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae) |
| { |
| u32 *wb_comp = bnx2x_sp(bp, wb_comp); |
| int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; |
| int rc = 0; |
| |
| bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); |
| |
| /* Lock the dmae channel. Disable BHs to prevent a dead-lock |
| * as long as this code is called both from syscall context and |
| * from ndo_set_rx_mode() flow that may be called from BH. |
| */ |
| spin_lock_bh(&bp->dmae_lock); |
| |
| /* reset completion */ |
| *wb_comp = 0; |
| |
| /* post the command on the channel used for initializations */ |
| bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); |
| |
| /* wait for completion */ |
| udelay(5); |
| while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { |
| |
| if (!cnt || |
| (bp->recovery_state != BNX2X_RECOVERY_DONE && |
| bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { |
| BNX2X_ERR("DMAE timeout!\n"); |
| rc = DMAE_TIMEOUT; |
| goto unlock; |
| } |
| cnt--; |
| udelay(50); |
| } |
| if (*wb_comp & DMAE_PCI_ERR_FLAG) { |
| BNX2X_ERR("DMAE PCI error!\n"); |
| rc = DMAE_PCI_ERROR; |
| } |
| |
| unlock: |
| spin_unlock_bh(&bp->dmae_lock); |
| return rc; |
| } |
| |
| void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, |
| u32 len32) |
| { |
| int rc; |
| struct dmae_command dmae; |
| |
| if (!bp->dmae_ready) { |
| u32 *data = bnx2x_sp(bp, wb_data[0]); |
| |
| if (CHIP_IS_E1(bp)) |
| bnx2x_init_ind_wr(bp, dst_addr, data, len32); |
| else |
| bnx2x_init_str_wr(bp, dst_addr, data, len32); |
| return; |
| } |
| |
| /* set opcode and fixed command fields */ |
| bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); |
| |
| /* fill in addresses and len */ |
| dmae.src_addr_lo = U64_LO(dma_addr); |
| dmae.src_addr_hi = U64_HI(dma_addr); |
| dmae.dst_addr_lo = dst_addr >> 2; |
| dmae.dst_addr_hi = 0; |
| dmae.len = len32; |
| |
| /* issue the command and wait for completion */ |
| rc = bnx2x_issue_dmae_with_comp(bp, &dmae); |
| if (rc) { |
| BNX2X_ERR("DMAE returned failure %d\n", rc); |
| bnx2x_panic(); |
| } |
| } |
| |
| void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) |
| { |
| int rc; |
| struct dmae_command dmae; |
| |
| if (!bp->dmae_ready) { |
| u32 *data = bnx2x_sp(bp, wb_data[0]); |
| int i; |
| |
| if (CHIP_IS_E1(bp)) |
| for (i = 0; i < len32; i++) |
| data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); |
| else |
| for (i = 0; i < len32; i++) |
| data[i] = REG_RD(bp, src_addr + i*4); |
| |
| return; |
| } |
| |
| /* set opcode and fixed command fields */ |
| bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); |
| |
| /* fill in addresses and len */ |
| dmae.src_addr_lo = src_addr >> 2; |
| dmae.src_addr_hi = 0; |
| dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); |
| dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); |
| dmae.len = len32; |
| |
| /* issue the command and wait for completion */ |
| rc = bnx2x_issue_dmae_with_comp(bp, &dmae); |
| if (rc) { |
| BNX2X_ERR("DMAE returned failure %d\n", rc); |
| bnx2x_panic(); |
| } |
| } |
| |
| static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, |
| u32 addr, u32 len) |
| { |
| int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); |
| int offset = 0; |
| |
| while (len > dmae_wr_max) { |
| bnx2x_write_dmae(bp, phys_addr + offset, |
| addr + offset, dmae_wr_max); |
| offset += dmae_wr_max * 4; |
| len -= dmae_wr_max; |
| } |
| |
| bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); |
| } |
| |
| static int bnx2x_mc_assert(struct bnx2x *bp) |
| { |
| char last_idx; |
| int i, rc = 0; |
| u32 row0, row1, row2, row3; |
| |
| /* XSTORM */ |
| last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) |
| BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| |
| /* print the asserts */ |
| for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* TSTORM */ |
| last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) |
| BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| |
| /* print the asserts */ |
| for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* CSTORM */ |
| last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) |
| BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| |
| /* print the asserts */ |
| for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* USTORM */ |
| last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + |
| USTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) |
| BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| |
| /* print the asserts */ |
| for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(bp, BAR_USTRORM_INTMEM + |
| USTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(bp, BAR_USTRORM_INTMEM + |
| USTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(bp, BAR_USTRORM_INTMEM + |
| USTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(bp, BAR_USTRORM_INTMEM + |
| USTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| return rc; |
| } |
| |
| void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) |
| { |
| u32 addr, val; |
| u32 mark, offset; |
| __be32 data[9]; |
| int word; |
| u32 trace_shmem_base; |
| if (BP_NOMCP(bp)) { |
| BNX2X_ERR("NO MCP - can not dump\n"); |
| return; |
| } |
| netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", |
| (bp->common.bc_ver & 0xff0000) >> 16, |
| (bp->common.bc_ver & 0xff00) >> 8, |
| (bp->common.bc_ver & 0xff)); |
| |
| val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); |
| if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) |
| BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); |
| |
| if (BP_PATH(bp) == 0) |
| trace_shmem_base = bp->common.shmem_base; |
| else |
| trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); |
| addr = trace_shmem_base - 0x800; |
| |
| /* validate TRCB signature */ |
| mark = REG_RD(bp, addr); |
| if (mark != MFW_TRACE_SIGNATURE) { |
| BNX2X_ERR("Trace buffer signature is missing."); |
| return ; |
| } |
| |
| /* read cyclic buffer pointer */ |
| addr += 4; |
| mark = REG_RD(bp, addr); |
| mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) |
| + ((mark + 0x3) & ~0x3) - 0x08000000; |
| printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); |
| |
| printk("%s", lvl); |
| |
| /* dump buffer after the mark */ |
| for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) { |
| for (word = 0; word < 8; word++) |
| data[word] = htonl(REG_RD(bp, offset + 4*word)); |
| data[8] = 0x0; |
| pr_cont("%s", (char *)data); |
| } |
| |
| /* dump buffer before the mark */ |
| for (offset = addr + 4; offset <= mark; offset += 0x8*4) { |
| for (word = 0; word < 8; word++) |
| data[word] = htonl(REG_RD(bp, offset + 4*word)); |
| data[8] = 0x0; |
| pr_cont("%s", (char *)data); |
| } |
| printk("%s" "end of fw dump\n", lvl); |
| } |
| |
| static void bnx2x_fw_dump(struct bnx2x *bp) |
| { |
| bnx2x_fw_dump_lvl(bp, KERN_ERR); |
| } |
| |
| static void bnx2x_hc_int_disable(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; |
| u32 val = REG_RD(bp, addr); |
| |
| /* in E1 we must use only PCI configuration space to disable |
| * MSI/MSIX capability |
| * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block |
| */ |
| if (CHIP_IS_E1(bp)) { |
| /* Since IGU_PF_CONF_MSI_MSIX_EN still always on |
| * Use mask register to prevent from HC sending interrupts |
| * after we exit the function |
| */ |
| REG_WR(bp, HC_REG_INT_MASK + port*4, 0); |
| |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| } else |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| |
| DP(NETIF_MSG_IFDOWN, |
| "write %x to HC %d (addr 0x%x)\n", |
| val, port, addr); |
| |
| /* flush all outstanding writes */ |
| mmiowb(); |
| |
| REG_WR(bp, addr, val); |
| if (REG_RD(bp, addr) != val) |
| BNX2X_ERR("BUG! Proper val not read from IGU!\n"); |
| } |
| |
| static void bnx2x_igu_int_disable(struct bnx2x *bp) |
| { |
| u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); |
| |
| val &= ~(IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_ATTN_BIT_EN); |
| |
| DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); |
| |
| /* flush all outstanding writes */ |
| mmiowb(); |
| |
| REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); |
| if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) |
| BNX2X_ERR("BUG! Proper val not read from IGU!\n"); |
| } |
| |
| static void bnx2x_int_disable(struct bnx2x *bp) |
| { |
| if (bp->common.int_block == INT_BLOCK_HC) |
| bnx2x_hc_int_disable(bp); |
| else |
| bnx2x_igu_int_disable(bp); |
| } |
| |
| void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) |
| { |
| int i; |
| u16 j; |
| struct hc_sp_status_block_data sp_sb_data; |
| int func = BP_FUNC(bp); |
| #ifdef BNX2X_STOP_ON_ERROR |
| u16 start = 0, end = 0; |
| u8 cos; |
| #endif |
| if (disable_int) |
| bnx2x_int_disable(bp); |
| |
| bp->stats_state = STATS_STATE_DISABLED; |
| bp->eth_stats.unrecoverable_error++; |
| DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); |
| |
| BNX2X_ERR("begin crash dump -----------------\n"); |
| |
| /* Indices */ |
| /* Common */ |
| BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", |
| bp->def_idx, bp->def_att_idx, bp->attn_state, |
| bp->spq_prod_idx, bp->stats_counter); |
| BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", |
| bp->def_status_blk->atten_status_block.attn_bits, |
| bp->def_status_blk->atten_status_block.attn_bits_ack, |
| bp->def_status_blk->atten_status_block.status_block_id, |
| bp->def_status_blk->atten_status_block.attn_bits_index); |
| BNX2X_ERR(" def ("); |
| for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) |
| pr_cont("0x%x%s", |
| bp->def_status_blk->sp_sb.index_values[i], |
| (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); |
| |
| for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) |
| *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + |
| i*sizeof(u32)); |
| |
| pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", |
| sp_sb_data.igu_sb_id, |
| sp_sb_data.igu_seg_id, |
| sp_sb_data.p_func.pf_id, |
| sp_sb_data.p_func.vnic_id, |
| sp_sb_data.p_func.vf_id, |
| sp_sb_data.p_func.vf_valid, |
| sp_sb_data.state); |
| |
| for_each_eth_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| int loop; |
| struct hc_status_block_data_e2 sb_data_e2; |
| struct hc_status_block_data_e1x sb_data_e1x; |
| struct hc_status_block_sm *hc_sm_p = |
| CHIP_IS_E1x(bp) ? |
| sb_data_e1x.common.state_machine : |
| sb_data_e2.common.state_machine; |
| struct hc_index_data *hc_index_p = |
| CHIP_IS_E1x(bp) ? |
| sb_data_e1x.index_data : |
| sb_data_e2.index_data; |
| u8 data_size, cos; |
| u32 *sb_data_p; |
| struct bnx2x_fp_txdata txdata; |
| |
| /* Rx */ |
| BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", |
| i, fp->rx_bd_prod, fp->rx_bd_cons, |
| fp->rx_comp_prod, |
| fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); |
| BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", |
| fp->rx_sge_prod, fp->last_max_sge, |
| le16_to_cpu(fp->fp_hc_idx)); |
| |
| /* Tx */ |
| for_each_cos_in_tx_queue(fp, cos) |
| { |
| txdata = *fp->txdata_ptr[cos]; |
| BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", |
| i, txdata.tx_pkt_prod, |
| txdata.tx_pkt_cons, txdata.tx_bd_prod, |
| txdata.tx_bd_cons, |
| le16_to_cpu(*txdata.tx_cons_sb)); |
| } |
| |
| loop = CHIP_IS_E1x(bp) ? |
| HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; |
| |
| /* host sb data */ |
| |
| if (IS_FCOE_FP(fp)) |
| continue; |
| |
| BNX2X_ERR(" run indexes ("); |
| for (j = 0; j < HC_SB_MAX_SM; j++) |
| pr_cont("0x%x%s", |
| fp->sb_running_index[j], |
| (j == HC_SB_MAX_SM - 1) ? ")" : " "); |
| |
| BNX2X_ERR(" indexes ("); |
| for (j = 0; j < loop; j++) |
| pr_cont("0x%x%s", |
| fp->sb_index_values[j], |
| (j == loop - 1) ? ")" : " "); |
| /* fw sb data */ |
| data_size = CHIP_IS_E1x(bp) ? |
| sizeof(struct hc_status_block_data_e1x) : |
| sizeof(struct hc_status_block_data_e2); |
| data_size /= sizeof(u32); |
| sb_data_p = CHIP_IS_E1x(bp) ? |
| (u32 *)&sb_data_e1x : |
| (u32 *)&sb_data_e2; |
| /* copy sb data in here */ |
| for (j = 0; j < data_size; j++) |
| *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + |
| j * sizeof(u32)); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", |
| sb_data_e2.common.p_func.pf_id, |
| sb_data_e2.common.p_func.vf_id, |
| sb_data_e2.common.p_func.vf_valid, |
| sb_data_e2.common.p_func.vnic_id, |
| sb_data_e2.common.same_igu_sb_1b, |
| sb_data_e2.common.state); |
| } else { |
| pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", |
| sb_data_e1x.common.p_func.pf_id, |
| sb_data_e1x.common.p_func.vf_id, |
| sb_data_e1x.common.p_func.vf_valid, |
| sb_data_e1x.common.p_func.vnic_id, |
| sb_data_e1x.common.same_igu_sb_1b, |
| sb_data_e1x.common.state); |
| } |
| |
| /* SB_SMs data */ |
| for (j = 0; j < HC_SB_MAX_SM; j++) { |
| pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", |
| j, hc_sm_p[j].__flags, |
| hc_sm_p[j].igu_sb_id, |
| hc_sm_p[j].igu_seg_id, |
| hc_sm_p[j].time_to_expire, |
| hc_sm_p[j].timer_value); |
| } |
| |
| /* Indices data */ |
| for (j = 0; j < loop; j++) { |
| pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, |
| hc_index_p[j].flags, |
| hc_index_p[j].timeout); |
| } |
| } |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| |
| /* event queue */ |
| BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); |
| for (i = 0; i < NUM_EQ_DESC; i++) { |
| u32 *data = (u32 *)&bp->eq_ring[i].message.data; |
| |
| BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", |
| i, bp->eq_ring[i].message.opcode, |
| bp->eq_ring[i].message.error); |
| BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]); |
| } |
| |
| /* Rings */ |
| /* Rx */ |
| for_each_valid_rx_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| |
| start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); |
| end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); |
| for (j = start; j != end; j = RX_BD(j + 1)) { |
| u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; |
| struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; |
| |
| BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", |
| i, j, rx_bd[1], rx_bd[0], sw_bd->data); |
| } |
| |
| start = RX_SGE(fp->rx_sge_prod); |
| end = RX_SGE(fp->last_max_sge); |
| for (j = start; j != end; j = RX_SGE(j + 1)) { |
| u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; |
| struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; |
| |
| BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", |
| i, j, rx_sge[1], rx_sge[0], sw_page->page); |
| } |
| |
| start = RCQ_BD(fp->rx_comp_cons - 10); |
| end = RCQ_BD(fp->rx_comp_cons + 503); |
| for (j = start; j != end; j = RCQ_BD(j + 1)) { |
| u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; |
| |
| BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", |
| i, j, cqe[0], cqe[1], cqe[2], cqe[3]); |
| } |
| } |
| |
| /* Tx */ |
| for_each_valid_tx_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| for_each_cos_in_tx_queue(fp, cos) { |
| struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; |
| |
| start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); |
| end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); |
| for (j = start; j != end; j = TX_BD(j + 1)) { |
| struct sw_tx_bd *sw_bd = |
| &txdata->tx_buf_ring[j]; |
| |
| BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", |
| i, cos, j, sw_bd->skb, |
| sw_bd->first_bd); |
| } |
| |
| start = TX_BD(txdata->tx_bd_cons - 10); |
| end = TX_BD(txdata->tx_bd_cons + 254); |
| for (j = start; j != end; j = TX_BD(j + 1)) { |
| u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; |
| |
| BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", |
| i, cos, j, tx_bd[0], tx_bd[1], |
| tx_bd[2], tx_bd[3]); |
| } |
| } |
| } |
| #endif |
| bnx2x_fw_dump(bp); |
| bnx2x_mc_assert(bp); |
| BNX2X_ERR("end crash dump -----------------\n"); |
| } |
| |
| /* |
| * FLR Support for E2 |
| * |
| * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW |
| * initialization. |
| */ |
| #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ |
| #define FLR_WAIT_INTERVAL 50 /* usec */ |
| #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ |
| |
| struct pbf_pN_buf_regs { |
| int pN; |
| u32 init_crd; |
| u32 crd; |
| u32 crd_freed; |
| }; |
| |
| struct pbf_pN_cmd_regs { |
| int pN; |
| u32 lines_occup; |
| u32 lines_freed; |
| }; |
| |
| static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, |
| struct pbf_pN_buf_regs *regs, |
| u32 poll_count) |
| { |
| u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; |
| u32 cur_cnt = poll_count; |
| |
| crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); |
| crd = crd_start = REG_RD(bp, regs->crd); |
| init_crd = REG_RD(bp, regs->init_crd); |
| |
| DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); |
| DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); |
| DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); |
| |
| while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < |
| (init_crd - crd_start))) { |
| if (cur_cnt--) { |
| udelay(FLR_WAIT_INTERVAL); |
| crd = REG_RD(bp, regs->crd); |
| crd_freed = REG_RD(bp, regs->crd_freed); |
| } else { |
| DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", |
| regs->pN); |
| DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", |
| regs->pN, crd); |
| DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", |
| regs->pN, crd_freed); |
| break; |
| } |
| } |
| DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", |
| poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); |
| } |
| |
| static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, |
| struct pbf_pN_cmd_regs *regs, |
| u32 poll_count) |
| { |
| u32 occup, to_free, freed, freed_start; |
| u32 cur_cnt = poll_count; |
| |
| occup = to_free = REG_RD(bp, regs->lines_occup); |
| freed = freed_start = REG_RD(bp, regs->lines_freed); |
| |
| DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); |
| DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); |
| |
| while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { |
| if (cur_cnt--) { |
| udelay(FLR_WAIT_INTERVAL); |
| occup = REG_RD(bp, regs->lines_occup); |
| freed = REG_RD(bp, regs->lines_freed); |
| } else { |
| DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", |
| regs->pN); |
| DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", |
| regs->pN, occup); |
| DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", |
| regs->pN, freed); |
| break; |
| } |
| } |
| DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", |
| poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); |
| } |
| |
| static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, |
| u32 expected, u32 poll_count) |
| { |
| u32 cur_cnt = poll_count; |
| u32 val; |
| |
| while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) |
| udelay(FLR_WAIT_INTERVAL); |
| |
| return val; |
| } |
| |
| int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, |
| char *msg, u32 poll_cnt) |
| { |
| u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); |
| if (val != 0) { |
| BNX2X_ERR("%s usage count=%d\n", msg, val); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Common routines with VF FLR cleanup */ |
| u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) |
| { |
| /* adjust polling timeout */ |
| if (CHIP_REV_IS_EMUL(bp)) |
| return FLR_POLL_CNT * 2000; |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| return FLR_POLL_CNT * 120; |
| |
| return FLR_POLL_CNT; |
| } |
| |
| void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) |
| { |
| struct pbf_pN_cmd_regs cmd_regs[] = { |
| {0, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_OCCUPANCY_Q0 : |
| PBF_REG_P0_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_Q0 : |
| PBF_REG_P0_TQ_LINES_FREED_CNT}, |
| {1, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_OCCUPANCY_Q1 : |
| PBF_REG_P1_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_Q1 : |
| PBF_REG_P1_TQ_LINES_FREED_CNT}, |
| {4, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_OCCUPANCY_LB_Q : |
| PBF_REG_P4_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_LB_Q : |
| PBF_REG_P4_TQ_LINES_FREED_CNT} |
| }; |
| |
| struct pbf_pN_buf_regs buf_regs[] = { |
| {0, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INIT_CRD_Q0 : |
| PBF_REG_P0_INIT_CRD , |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_CREDIT_Q0 : |
| PBF_REG_P0_CREDIT, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : |
| PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, |
| {1, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INIT_CRD_Q1 : |
| PBF_REG_P1_INIT_CRD, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_CREDIT_Q1 : |
| PBF_REG_P1_CREDIT, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : |
| PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, |
| {4, (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INIT_CRD_LB_Q : |
| PBF_REG_P4_INIT_CRD, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_CREDIT_LB_Q : |
| PBF_REG_P4_CREDIT, |
| (CHIP_IS_E3B0(bp)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : |
| PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, |
| }; |
| |
| int i; |
| |
| /* Verify the command queues are flushed P0, P1, P4 */ |
| for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) |
| bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); |
| |
| /* Verify the transmission buffers are flushed P0, P1, P4 */ |
| for (i = 0; i < ARRAY_SIZE(buf_regs); i++) |
| bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); |
| } |
| |
| #define OP_GEN_PARAM(param) \ |
| (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) |
| |
| #define OP_GEN_TYPE(type) \ |
| (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) |
| |
| #define OP_GEN_AGG_VECT(index) \ |
| (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) |
| |
| int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) |
| { |
| u32 op_gen_command = 0; |
| u32 comp_addr = BAR_CSTRORM_INTMEM + |
| CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); |
| int ret = 0; |
| |
| if (REG_RD(bp, comp_addr)) { |
| BNX2X_ERR("Cleanup complete was not 0 before sending\n"); |
| return 1; |
| } |
| |
| op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); |
| op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); |
| op_gen_command |= OP_GEN_AGG_VECT(clnup_func); |
| op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; |
| |
| DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); |
| REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); |
| |
| if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { |
| BNX2X_ERR("FW final cleanup did not succeed\n"); |
| DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", |
| (REG_RD(bp, comp_addr))); |
| bnx2x_panic(); |
| return 1; |
| } |
| /* Zero completion for next FLR */ |
| REG_WR(bp, comp_addr, 0); |
| |
| return ret; |
| } |
| |
| u8 bnx2x_is_pcie_pending(struct pci_dev *dev) |
| { |
| u16 status; |
| |
| pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); |
| return status & PCI_EXP_DEVSTA_TRPND; |
| } |
| |
| /* PF FLR specific routines |
| */ |
| static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) |
| { |
| /* wait for CFC PF usage-counter to zero (includes all the VFs) */ |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| CFC_REG_NUM_LCIDS_INSIDE_PF, |
| "CFC PF usage counter timed out", |
| poll_cnt)) |
| return 1; |
| |
| /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| DORQ_REG_PF_USAGE_CNT, |
| "DQ PF usage counter timed out", |
| poll_cnt)) |
| return 1; |
| |
| /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), |
| "QM PF usage counter timed out", |
| poll_cnt)) |
| return 1; |
| |
| /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), |
| "Timers VNIC usage counter timed out", |
| poll_cnt)) |
| return 1; |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), |
| "Timers NUM_SCANS usage counter timed out", |
| poll_cnt)) |
| return 1; |
| |
| /* Wait DMAE PF usage counter to zero */ |
| if (bnx2x_flr_clnup_poll_hw_counter(bp, |
| dmae_reg_go_c[INIT_DMAE_C(bp)], |
| "DMAE command register timed out", |
| poll_cnt)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void bnx2x_hw_enable_status(struct bnx2x *bp) |
| { |
| u32 val; |
| |
| val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); |
| DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); |
| |
| val = REG_RD(bp, PBF_REG_DISABLE_PF); |
| DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); |
| |
| val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); |
| DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); |
| |
| val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); |
| DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); |
| |
| val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); |
| DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); |
| |
| val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); |
| DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); |
| |
| val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); |
| DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); |
| |
| val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); |
| DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", |
| val); |
| } |
| |
| static int bnx2x_pf_flr_clnup(struct bnx2x *bp) |
| { |
| u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); |
| |
| DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); |
| |
| /* Re-enable PF target read access */ |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| |
| /* Poll HW usage counters */ |
| DP(BNX2X_MSG_SP, "Polling usage counters\n"); |
| if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) |
| return -EBUSY; |
| |
| /* Zero the igu 'trailing edge' and 'leading edge' */ |
| |
| /* Send the FW cleanup command */ |
| if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) |
| return -EBUSY; |
| |
| /* ATC cleanup */ |
| |
| /* Verify TX hw is flushed */ |
| bnx2x_tx_hw_flushed(bp, poll_cnt); |
| |
| /* Wait 100ms (not adjusted according to platform) */ |
| msleep(100); |
| |
| /* Verify no pending pci transactions */ |
| if (bnx2x_is_pcie_pending(bp->pdev)) |
| BNX2X_ERR("PCIE Transactions still pending\n"); |
| |
| /* Debug */ |
| bnx2x_hw_enable_status(bp); |
| |
| /* |
| * Master enable - Due to WB DMAE writes performed before this |
| * register is re-initialized as part of the regular function init |
| */ |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| |
| return 0; |
| } |
| |
| static void bnx2x_hc_int_enable(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; |
| u32 val = REG_RD(bp, addr); |
| bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; |
| bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; |
| bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; |
| |
| if (msix) { |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0); |
| val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| if (single_msix) |
| val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; |
| } else if (msi) { |
| val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; |
| val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| } else { |
| val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| |
| if (!CHIP_IS_E1(bp)) { |
| DP(NETIF_MSG_IFUP, |
| "write %x to HC %d (addr 0x%x)\n", val, port, addr); |
| |
| REG_WR(bp, addr, val); |
| |
| val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; |
| } |
| } |
| |
| if (CHIP_IS_E1(bp)) |
| REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); |
| |
| DP(NETIF_MSG_IFUP, |
| "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, |
| (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); |
| |
| REG_WR(bp, addr, val); |
| /* |
| * Ensure that HC_CONFIG is written before leading/trailing edge config |
| */ |
| mmiowb(); |
| barrier(); |
| |
| if (!CHIP_IS_E1(bp)) { |
| /* init leading/trailing edge */ |
| if (IS_MF(bp)) { |
| val = (0xee0f | (1 << (BP_VN(bp) + 4))); |
| if (bp->port.pmf) |
| /* enable nig and gpio3 attention */ |
| val |= 0x1100; |
| } else |
| val = 0xffff; |
| |
| REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); |
| REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); |
| } |
| |
| /* Make sure that interrupts are indeed enabled from here on */ |
| mmiowb(); |
| } |
| |
| static void bnx2x_igu_int_enable(struct bnx2x *bp) |
| { |
| u32 val; |
| bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; |
| bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; |
| bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; |
| |
| val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); |
| |
| if (msix) { |
| val &= ~(IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| val |= (IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_ATTN_BIT_EN); |
| |
| if (single_msix) |
| val |= IGU_PF_CONF_SINGLE_ISR_EN; |
| } else if (msi) { |
| val &= ~IGU_PF_CONF_INT_LINE_EN; |
| val |= (IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_ATTN_BIT_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| } else { |
| val &= ~IGU_PF_CONF_MSI_MSIX_EN; |
| val |= (IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_ATTN_BIT_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| } |
| |
| /* Clean previous status - need to configure igu prior to ack*/ |
| if ((!msix) || single_msix) { |
| REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); |
| bnx2x_ack_int(bp); |
| } |
| |
| val |= IGU_PF_CONF_FUNC_EN; |
| |
| DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", |
| val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); |
| |
| REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); |
| |
| if (val & IGU_PF_CONF_INT_LINE_EN) |
| pci_intx(bp->pdev, true); |
| |
| barrier(); |
| |
| /* init leading/trailing edge */ |
| if (IS_MF(bp)) { |
| val = (0xee0f | (1 << (BP_VN(bp) + 4))); |
| if (bp->port.pmf) |
| /* enable nig and gpio3 attention */ |
| val |= 0x1100; |
| } else |
| val = 0xffff; |
| |
| REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); |
| REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); |
| |
| /* Make sure that interrupts are indeed enabled from here on */ |
| mmiowb(); |
| } |
| |
| void bnx2x_int_enable(struct bnx2x *bp) |
| { |
| if (bp->common.int_block == INT_BLOCK_HC) |
| bnx2x_hc_int_enable(bp); |
| else |
| bnx2x_igu_int_enable(bp); |
| } |
| |
| void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) |
| { |
| int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; |
| int i, offset; |
| |
| if (disable_hw) |
| /* prevent the HW from sending interrupts */ |
| bnx2x_int_disable(bp); |
| |
| /* make sure all ISRs are done */ |
| if (msix) { |
| synchronize_irq(bp->msix_table[0].vector); |
| offset = 1; |
| if (CNIC_SUPPORT(bp)) |
| offset++; |
| for_each_eth_queue(bp, i) |
| synchronize_irq(bp->msix_table[offset++].vector); |
| } else |
| synchronize_irq(bp->pdev->irq); |
| |
| /* make sure sp_task is not running */ |
| cancel_delayed_work(&bp->sp_task); |
| cancel_delayed_work(&bp->period_task); |
| flush_workqueue(bnx2x_wq); |
| } |
| |
| /* fast path */ |
| |
| /* |
| * General service functions |
| */ |
| |
| /* Return true if succeeded to acquire the lock */ |
| static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) |
| { |
| u32 lock_status; |
| u32 resource_bit = (1 << resource); |
| int func = BP_FUNC(bp); |
| u32 hw_lock_control_reg; |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, |
| "Trying to take a lock on resource %d\n", resource); |
| |
| /* Validating that the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, |
| "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", |
| resource, HW_LOCK_MAX_RESOURCE_VALUE); |
| return false; |
| } |
| |
| if (func <= 5) |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); |
| else |
| hw_lock_control_reg = |
| (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); |
| |
| /* Try to acquire the lock */ |
| REG_WR(bp, hw_lock_control_reg + 4, resource_bit); |
| lock_status = REG_RD(bp, hw_lock_control_reg); |
| if (lock_status & resource_bit) |
| return true; |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, |
| "Failed to get a lock on resource %d\n", resource); |
| return false; |
| } |
| |
| /** |
| * bnx2x_get_leader_lock_resource - get the recovery leader resource id |
| * |
| * @bp: driver handle |
| * |
| * Returns the recovery leader resource id according to the engine this function |
| * belongs to. Currently only only 2 engines is supported. |
| */ |
| static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) |
| { |
| if (BP_PATH(bp)) |
| return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; |
| else |
| return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; |
| } |
| |
| /** |
| * bnx2x_trylock_leader_lock- try to acquire a leader lock. |
| * |
| * @bp: driver handle |
| * |
| * Tries to acquire a leader lock for current engine. |
| */ |
| static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) |
| { |
| return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); |
| } |
| |
| static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); |
| |
| /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ |
| static int bnx2x_schedule_sp_task(struct bnx2x *bp) |
| { |
| /* Set the interrupt occurred bit for the sp-task to recognize it |
| * must ack the interrupt and transition according to the IGU |
| * state machine. |
| */ |
| atomic_set(&bp->interrupt_occurred, 1); |
| |
| /* The sp_task must execute only after this bit |
| * is set, otherwise we will get out of sync and miss all |
| * further interrupts. Hence, the barrier. |
| */ |
| smp_wmb(); |
| |
| /* schedule sp_task to workqueue */ |
| return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); |
| } |
| |
| void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) |
| { |
| struct bnx2x *bp = fp->bp; |
| int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); |
| int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); |
| enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; |
| struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; |
| |
| DP(BNX2X_MSG_SP, |
| "fp %d cid %d got ramrod #%d state is %x type is %d\n", |
| fp->index, cid, command, bp->state, |
| rr_cqe->ramrod_cqe.ramrod_type); |
| |
| /* If cid is within VF range, replace the slowpath object with the |
| * one corresponding to this VF |
| */ |
| if (cid >= BNX2X_FIRST_VF_CID && |
| cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) |
| bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); |
| |
| switch (command) { |
| case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): |
| DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); |
| drv_cmd = BNX2X_Q_CMD_UPDATE; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): |
| DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); |
| drv_cmd = BNX2X_Q_CMD_SETUP; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): |
| DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); |
| drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_HALT): |
| DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); |
| drv_cmd = BNX2X_Q_CMD_HALT; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_TERMINATE): |
| DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); |
| drv_cmd = BNX2X_Q_CMD_TERMINATE; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_EMPTY): |
| DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); |
| drv_cmd = BNX2X_Q_CMD_EMPTY; |
| break; |
| |
| default: |
| BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", |
| command, fp->index); |
| return; |
| } |
| |
| if ((drv_cmd != BNX2X_Q_CMD_MAX) && |
| q_obj->complete_cmd(bp, q_obj, drv_cmd)) |
| /* q_obj->complete_cmd() failure means that this was |
| * an unexpected completion. |
| * |
| * In this case we don't want to increase the bp->spq_left |
| * because apparently we haven't sent this command the first |
| * place. |
| */ |
| #ifdef BNX2X_STOP_ON_ERROR |
| bnx2x_panic(); |
| #else |
| return; |
| #endif |
| /* SRIOV: reschedule any 'in_progress' operations */ |
| bnx2x_iov_sp_event(bp, cid, true); |
| |
| smp_mb__before_atomic_inc(); |
| atomic_inc(&bp->cq_spq_left); |
| /* push the change in bp->spq_left and towards the memory */ |
| smp_mb__after_atomic_inc(); |
| |
| DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); |
| |
| if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && |
| (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { |
| /* if Q update ramrod is completed for last Q in AFEX vif set |
| * flow, then ACK MCP at the end |
| * |
| * mark pending ACK to MCP bit. |
| * prevent case that both bits are cleared. |
| * At the end of load/unload driver checks that |
| * sp_state is cleared, and this order prevents |
| * races |
| */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); |
| wmb(); |
| clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); |
| smp_mb__after_clear_bit(); |
| |
| /* schedule the sp task as mcp ack is required */ |
| bnx2x_schedule_sp_task(bp); |
| } |
| |
| return; |
| } |
| |
| irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) |
| { |
| struct bnx2x *bp = netdev_priv(dev_instance); |
| u16 status = bnx2x_ack_int(bp); |
| u16 mask; |
| int i; |
| u8 cos; |
| |
| /* Return here if interrupt is shared and it's not for us */ |
| if (unlikely(status == 0)) { |
| DP(NETIF_MSG_INTR, "not our interrupt!\n"); |
| return IRQ_NONE; |
| } |
| DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return IRQ_HANDLED; |
| #endif |
| |
| for_each_eth_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| |
| mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); |
| if (status & mask) { |
| /* Handle Rx or Tx according to SB id */ |
| for_each_cos_in_tx_queue(fp, cos) |
| prefetch(fp->txdata_ptr[cos]->tx_cons_sb); |
| prefetch(&fp->sb_running_index[SM_RX_ID]); |
| napi_schedule(&bnx2x_fp(bp, fp->index, napi)); |
| status &= ~mask; |
| } |
| } |
| |
| if (CNIC_SUPPORT(bp)) { |
| mask = 0x2; |
| if (status & (mask | 0x1)) { |
| struct cnic_ops *c_ops = NULL; |
| |
| rcu_read_lock(); |
| c_ops = rcu_dereference(bp->cnic_ops); |
| if (c_ops && (bp->cnic_eth_dev.drv_state & |
| CNIC_DRV_STATE_HANDLES_IRQ)) |
| c_ops->cnic_handler(bp->cnic_data, NULL); |
| rcu_read_unlock(); |
| |
| status &= ~mask; |
| } |
| } |
| |
| if (unlikely(status & 0x1)) { |
| |
| /* schedule sp task to perform default status block work, ack |
| * attentions and enable interrupts. |
| */ |
| bnx2x_schedule_sp_task(bp); |
| |
| status &= ~0x1; |
| if (!status) |
| return IRQ_HANDLED; |
| } |
| |
| if (unlikely(status)) |
| DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", |
| status); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Link */ |
| |
| /* |
| * General service functions |
| */ |
| |
| int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) |
| { |
| u32 lock_status; |
| u32 resource_bit = (1 << resource); |
| int func = BP_FUNC(bp); |
| u32 hw_lock_control_reg; |
| int cnt; |
| |
| /* Validating that the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", |
| resource, HW_LOCK_MAX_RESOURCE_VALUE); |
| return -EINVAL; |
| } |
| |
| if (func <= 5) { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); |
| } else { |
| hw_lock_control_reg = |
| (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); |
| } |
| |
| /* Validating that the resource is not already taken */ |
| lock_status = REG_RD(bp, hw_lock_control_reg); |
| if (lock_status & resource_bit) { |
| BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", |
| lock_status, resource_bit); |
| return -EEXIST; |
| } |
| |
| /* Try for 5 second every 5ms */ |
| for (cnt = 0; cnt < 1000; cnt++) { |
| /* Try to acquire the lock */ |
| REG_WR(bp, hw_lock_control_reg + 4, resource_bit); |
| lock_status = REG_RD(bp, hw_lock_control_reg); |
| if (lock_status & resource_bit) |
| return 0; |
| |
| usleep_range(5000, 10000); |
| } |
| BNX2X_ERR("Timeout\n"); |
| return -EAGAIN; |
| } |
| |
| int bnx2x_release_leader_lock(struct bnx2x *bp) |
| { |
| return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); |
| } |
| |
| int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) |
| { |
| u32 lock_status; |
| u32 resource_bit = (1 << resource); |
| int func = BP_FUNC(bp); |
| u32 hw_lock_control_reg; |
| |
| /* Validating that the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", |
| resource, HW_LOCK_MAX_RESOURCE_VALUE); |
| return -EINVAL; |
| } |
| |
| if (func <= 5) { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); |
| } else { |
| hw_lock_control_reg = |
| (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); |
| } |
| |
| /* Validating that the resource is currently taken */ |
| lock_status = REG_RD(bp, hw_lock_control_reg); |
| if (!(lock_status & resource_bit)) { |
| BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", |
| lock_status, resource_bit); |
| return -EFAULT; |
| } |
| |
| REG_WR(bp, hw_lock_control_reg, resource_bit); |
| return 0; |
| } |
| |
| int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && |
| REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; |
| int gpio_shift = gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); |
| u32 gpio_mask = (1 << gpio_shift); |
| u32 gpio_reg; |
| int value; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BNX2X_ERR("Invalid GPIO %d\n", gpio_num); |
| return -EINVAL; |
| } |
| |
| /* read GPIO value */ |
| gpio_reg = REG_RD(bp, MISC_REG_GPIO); |
| |
| /* get the requested pin value */ |
| if ((gpio_reg & gpio_mask) == gpio_mask) |
| value = 1; |
| else |
| value = 0; |
| |
| DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value); |
| |
| return value; |
| } |
| |
| int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && |
| REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; |
| int gpio_shift = gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); |
| u32 gpio_mask = (1 << gpio_shift); |
| u32 gpio_reg; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BNX2X_ERR("Invalid GPIO %d\n", gpio_num); |
| return -EINVAL; |
| } |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| /* read GPIO and mask except the float bits */ |
| gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_OUTPUT_LOW: |
| DP(NETIF_MSG_LINK, |
| "Set GPIO %d (shift %d) -> output low\n", |
| gpio_num, gpio_shift); |
| /* clear FLOAT and set CLR */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_OUTPUT_HIGH: |
| DP(NETIF_MSG_LINK, |
| "Set GPIO %d (shift %d) -> output high\n", |
| gpio_num, gpio_shift); |
| /* clear FLOAT and set SET */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INPUT_HI_Z: |
| DP(NETIF_MSG_LINK, |
| "Set GPIO %d (shift %d) -> input\n", |
| gpio_num, gpio_shift); |
| /* set FLOAT */ |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(bp, MISC_REG_GPIO, gpio_reg); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| |
| return 0; |
| } |
| |
| int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) |
| { |
| u32 gpio_reg = 0; |
| int rc = 0; |
| |
| /* Any port swapping should be handled by caller. */ |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| /* read GPIO and mask except the float bits */ |
| gpio_reg = REG_RD(bp, MISC_REG_GPIO); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_OUTPUT_LOW: |
| DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); |
| /* set CLR */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_OUTPUT_HIGH: |
| DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); |
| /* set SET */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INPUT_HI_Z: |
| DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); |
| /* set FLOAT */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); |
| break; |
| |
| default: |
| BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); |
| rc = -EINVAL; |
| break; |
| } |
| |
| if (rc == 0) |
| REG_WR(bp, MISC_REG_GPIO, gpio_reg); |
| |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| |
| return rc; |
| } |
| |
| int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && |
| REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; |
| int gpio_shift = gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); |
| u32 gpio_mask = (1 << gpio_shift); |
| u32 gpio_reg; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BNX2X_ERR("Invalid GPIO %d\n", gpio_num); |
| return -EINVAL; |
| } |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| /* read GPIO int */ |
| gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: |
| DP(NETIF_MSG_LINK, |
| "Clear GPIO INT %d (shift %d) -> output low\n", |
| gpio_num, gpio_shift); |
| /* clear SET and set CLR */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: |
| DP(NETIF_MSG_LINK, |
| "Set GPIO INT %d (shift %d) -> output high\n", |
| gpio_num, gpio_shift); |
| /* clear CLR and set SET */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); |
| |
| return 0; |
| } |
| |
| static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) |
| { |
| u32 spio_reg; |
| |
| /* Only 2 SPIOs are configurable */ |
| if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { |
| BNX2X_ERR("Invalid SPIO 0x%x\n", spio); |
| return -EINVAL; |
| } |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); |
| /* read SPIO and mask except the float bits */ |
| spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); |
| |
| switch (mode) { |
| case MISC_SPIO_OUTPUT_LOW: |
| DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); |
| /* clear FLOAT and set CLR */ |
| spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); |
| spio_reg |= (spio << MISC_SPIO_CLR_POS); |
| break; |
| |
| case MISC_SPIO_OUTPUT_HIGH: |
| DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); |
| /* clear FLOAT and set SET */ |
| spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); |
| spio_reg |= (spio << MISC_SPIO_SET_POS); |
| break; |
| |
| case MISC_SPIO_INPUT_HI_Z: |
| DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); |
| /* set FLOAT */ |
| spio_reg |= (spio << MISC_SPIO_FLOAT_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(bp, MISC_REG_SPIO, spio_reg); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); |
| |
| return 0; |
| } |
| |
| void bnx2x_calc_fc_adv(struct bnx2x *bp) |
| { |
| u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); |
| switch (bp->link_vars.ieee_fc & |
| MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: |
| bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | |
| ADVERTISED_Pause); |
| break; |
| |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: |
| bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | |
| ADVERTISED_Pause); |
| break; |
| |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: |
| bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; |
| break; |
| |
| default: |
| bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | |
| ADVERTISED_Pause); |
| break; |
| } |
| } |
| |
| static void bnx2x_set_requested_fc(struct bnx2x *bp) |
| { |
| /* Initialize link parameters structure variables |
| * It is recommended to turn off RX FC for jumbo frames |
| * for better performance |
| */ |
| if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) |
| bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; |
| else |
| bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; |
| } |
| |
| static void bnx2x_init_dropless_fc(struct bnx2x *bp) |
| { |
| u32 pause_enabled = 0; |
| |
| if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { |
| if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) |
| pause_enabled = 1; |
| |
| REG_WR(bp, BAR_USTRORM_INTMEM + |
| USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), |
| pause_enabled); |
| } |
| |
| DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", |
| pause_enabled ? "enabled" : "disabled"); |
| } |
| |
| int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) |
| { |
| int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); |
| u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; |
| |
| if (!BP_NOMCP(bp)) { |
| bnx2x_set_requested_fc(bp); |
| bnx2x_acquire_phy_lock(bp); |
| |
| if (load_mode == LOAD_DIAG) { |
| struct link_params *lp = &bp->link_params; |
| lp->loopback_mode = LOOPBACK_XGXS; |
| /* do PHY loopback at 10G speed, if possible */ |
| if (lp->req_line_speed[cfx_idx] < SPEED_10000) { |
| if (lp->speed_cap_mask[cfx_idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) |
| lp->req_line_speed[cfx_idx] = |
| SPEED_10000; |
| else |
| lp->req_line_speed[cfx_idx] = |
| SPEED_1000; |
| } |
| } |
| |
| if (load_mode == LOAD_LOOPBACK_EXT) { |
| struct link_params *lp = &bp->link_params; |
| lp->loopback_mode = LOOPBACK_EXT; |
| } |
| |
| rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); |
| |
| bnx2x_release_phy_lock(bp); |
| |
| bnx2x_init_dropless_fc(bp); |
| |
| bnx2x_calc_fc_adv(bp); |
| |
| if (bp->link_vars.link_up) { |
| bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); |
| bnx2x_link_report(bp); |
| } |
| queue_delayed_work(bnx2x_wq, &bp->period_task, 0); |
| bp->link_params.req_line_speed[cfx_idx] = req_line_speed; |
| return rc; |
| } |
| BNX2X_ERR("Bootcode is missing - can not initialize link\n"); |
| return -EINVAL; |
| } |
| |
| void bnx2x_link_set(struct bnx2x *bp) |
| { |
| if (!BP_NOMCP(bp)) { |
| bnx2x_acquire_phy_lock(bp); |
| bnx2x_phy_init(&bp->link_params, &bp->link_vars); |
| bnx2x_release_phy_lock(bp); |
| |
| bnx2x_init_dropless_fc(bp); |
| |
| bnx2x_calc_fc_adv(bp); |
| } else |
| BNX2X_ERR("Bootcode is missing - can not set link\n"); |
| } |
| |
| static void bnx2x__link_reset(struct bnx2x *bp) |
| { |
| if (!BP_NOMCP(bp)) { |
| bnx2x_acquire_phy_lock(bp); |
| bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); |
| bnx2x_release_phy_lock(bp); |
| } else |
| BNX2X_ERR("Bootcode is missing - can not reset link\n"); |
| } |
| |
| void bnx2x_force_link_reset(struct bnx2x *bp) |
| { |
| bnx2x_acquire_phy_lock(bp); |
| bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); |
| bnx2x_release_phy_lock(bp); |
| } |
| |
| u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) |
| { |
| u8 rc = 0; |
| |
| if (!BP_NOMCP(bp)) { |
| bnx2x_acquire_phy_lock(bp); |
| rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, |
| is_serdes); |
| bnx2x_release_phy_lock(bp); |
| } else |
| BNX2X_ERR("Bootcode is missing - can not test link\n"); |
| |
| return rc; |
| } |
| |
| /* Calculates the sum of vn_min_rates. |
| It's needed for further normalizing of the min_rates. |
| Returns: |
| sum of vn_min_rates. |
| or |
| 0 - if all the min_rates are 0. |
| In the later case fairness algorithm should be deactivated. |
| If not all min_rates are zero then those that are zeroes will be set to 1. |
| */ |
| static void bnx2x_calc_vn_min(struct bnx2x *bp, |
| struct cmng_init_input *input) |
| { |
| int all_zero = 1; |
| int vn; |
| |
| for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { |
| u32 vn_cfg = bp->mf_config[vn]; |
| u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> |
| FUNC_MF_CFG_MIN_BW_SHIFT) * 100; |
| |
| /* Skip hidden vns */ |
| if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) |
| vn_min_rate = 0; |
| /* If min rate is zero - set it to 1 */ |
| else if (!vn_min_rate) |
| vn_min_rate = DEF_MIN_RATE; |
| else |
| all_zero = 0; |
| |
| input->vnic_min_rate[vn] = vn_min_rate; |
| } |
| |
| /* if ETS or all min rates are zeros - disable fairness */ |
| if (BNX2X_IS_ETS_ENABLED(bp)) { |
| input->flags.cmng_enables &= |
| ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); |
| } else if (all_zero) { |
| input->flags.cmng_enables &= |
| ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| DP(NETIF_MSG_IFUP, |
| "All MIN values are zeroes fairness will be disabled\n"); |
| } else |
| input->flags.cmng_enables |= |
| CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| } |
| |
| static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, |
| struct cmng_init_input *input) |
| { |
| u16 vn_max_rate; |
| u32 vn_cfg = bp->mf_config[vn]; |
| |
| if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) |
| vn_max_rate = 0; |
| else { |
| u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); |
| |
| if (IS_MF_SI(bp)) { |
| /* maxCfg in percents of linkspeed */ |
| vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; |
| } else /* SD modes */ |
| /* maxCfg is absolute in 100Mb units */ |
| vn_max_rate = maxCfg * 100; |
| } |
| |
| DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); |
| |
| input->vnic_max_rate[vn] = vn_max_rate; |
| } |
| |
| static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) |
| { |
| if (CHIP_REV_IS_SLOW(bp)) |
| return CMNG_FNS_NONE; |
| if (IS_MF(bp)) |
| return CMNG_FNS_MINMAX; |
| |
| return CMNG_FNS_NONE; |
| } |
| |
| void bnx2x_read_mf_cfg(struct bnx2x *bp) |
| { |
| int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); |
| |
| if (BP_NOMCP(bp)) |
| return; /* what should be the default value in this case */ |
| |
| /* For 2 port configuration the absolute function number formula |
| * is: |
| * abs_func = 2 * vn + BP_PORT + BP_PATH |
| * |
| * and there are 4 functions per port |
| * |
| * For 4 port configuration it is |
| * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH |
| * |
| * and there are 2 functions per port |
| */ |
| for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { |
| int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); |
| |
| if (func >= E1H_FUNC_MAX) |
| break; |
| |
| bp->mf_config[vn] = |
| MF_CFG_RD(bp, func_mf_config[func].config); |
| } |
| if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { |
| DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); |
| bp->flags |= MF_FUNC_DIS; |
| } else { |
| DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); |
| bp->flags &= ~MF_FUNC_DIS; |
| } |
| } |
| |
| static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) |
| { |
| struct cmng_init_input input; |
| memset(&input, 0, sizeof(struct cmng_init_input)); |
| |
| input.port_rate = bp->link_vars.line_speed; |
| |
| if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { |
| int vn; |
| |
| /* read mf conf from shmem */ |
| if (read_cfg) |
| bnx2x_read_mf_cfg(bp); |
| |
| /* vn_weight_sum and enable fairness if not 0 */ |
| bnx2x_calc_vn_min(bp, &input); |
| |
| /* calculate and set min-max rate for each vn */ |
| if (bp->port.pmf) |
| for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) |
| bnx2x_calc_vn_max(bp, vn, &input); |
| |
| /* always enable rate shaping and fairness */ |
| input.flags.cmng_enables |= |
| CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; |
| |
| bnx2x_init_cmng(&input, &bp->cmng); |
| return; |
| } |
| |
| /* rate shaping and fairness are disabled */ |
| DP(NETIF_MSG_IFUP, |
| "rate shaping and fairness are disabled\n"); |
| } |
| |
| static void storm_memset_cmng(struct bnx2x *bp, |
| struct cmng_init *cmng, |
| u8 port) |
| { |
| int vn; |
| size_t size = sizeof(struct cmng_struct_per_port); |
| |
| u32 addr = BAR_XSTRORM_INTMEM + |
| XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); |
| |
| __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); |
| |
| for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { |
| int func = func_by_vn(bp, vn); |
| |
| addr = BAR_XSTRORM_INTMEM + |
| XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); |
| size = sizeof(struct rate_shaping_vars_per_vn); |
| __storm_memset_struct(bp, addr, size, |
| (u32 *)&cmng->vnic.vnic_max_rate[vn]); |
| |
| addr = BAR_XSTRORM_INTMEM + |
| XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); |
| size = sizeof(struct fairness_vars_per_vn); |
| __storm_memset_struct(bp, addr, size, |
| (u32 *)&cmng->vnic.vnic_min_rate[vn]); |
| } |
| } |
| |
| /* init cmng mode in HW according to local configuration */ |
| void bnx2x_set_local_cmng(struct bnx2x *bp) |
| { |
| int cmng_fns = bnx2x_get_cmng_fns_mode(bp); |
| |
| if (cmng_fns != CMNG_FNS_NONE) { |
| bnx2x_cmng_fns_init(bp, false, cmng_fns); |
| storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); |
| } else { |
| /* rate shaping and fairness are disabled */ |
| DP(NETIF_MSG_IFUP, |
| "single function mode without fairness\n"); |
| } |
| } |
| |
| /* This function is called upon link interrupt */ |
| static void bnx2x_link_attn(struct bnx2x *bp) |
| { |
| /* Make sure that we are synced with the current statistics */ |
| bnx2x_stats_handle(bp, STATS_EVENT_STOP); |
| |
| bnx2x_link_update(&bp->link_params, &bp->link_vars); |
| |
| bnx2x_init_dropless_fc(bp); |
| |
| if (bp->link_vars.link_up) { |
| |
| if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { |
| struct host_port_stats *pstats; |
| |
| pstats = bnx2x_sp(bp, port_stats); |
| /* reset old mac stats */ |
| memset(&(pstats->mac_stx[0]), 0, |
| sizeof(struct mac_stx)); |
| } |
| if (bp->state == BNX2X_STATE_OPEN) |
| bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); |
| } |
| |
| if (bp->link_vars.link_up && bp->link_vars.line_speed) |
| bnx2x_set_local_cmng(bp); |
| |
| __bnx2x_link_report(bp); |
| |
| if (IS_MF(bp)) |
| bnx2x_link_sync_notify(bp); |
| } |
| |
| void bnx2x__link_status_update(struct bnx2x *bp) |
| { |
| if (bp->state != BNX2X_STATE_OPEN) |
| return; |
| |
| /* read updated dcb configuration */ |
| if (IS_PF(bp)) { |
| bnx2x_dcbx_pmf_update(bp); |
| bnx2x_link_status_update(&bp->link_params, &bp->link_vars); |
| if (bp->link_vars.link_up) |
| bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); |
| else |
| bnx2x_stats_handle(bp, STATS_EVENT_STOP); |
| /* indicate link status */ |
| bnx2x_link_report(bp); |
| |
| } else { /* VF */ |
| bp->port.supported[0] |= (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_2500baseX_Full | |
| SUPPORTED_10000baseT_Full | |
| SUPPORTED_TP | |
| SUPPORTED_FIBRE | |
| SUPPORTED_Autoneg | |
| SUPPORTED_Pause | |
| SUPPORTED_Asym_Pause); |
| bp->port.advertising[0] = bp->port.supported[0]; |
| |
| bp->link_params.bp = bp; |
| bp->link_params.port = BP_PORT(bp); |
| bp->link_params.req_duplex[0] = DUPLEX_FULL; |
| bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; |
| bp->link_params.req_line_speed[0] = SPEED_10000; |
| bp->link_params.speed_cap_mask[0] = 0x7f0000; |
| bp->link_params.switch_cfg = SWITCH_CFG_10G; |
| bp->link_vars.mac_type = MAC_TYPE_BMAC; |
| bp->link_vars.line_speed = SPEED_10000; |
| bp->link_vars.link_status = |
| (LINK_STATUS_LINK_UP | |
| LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); |
| bp->link_vars.link_up = 1; |
| bp->link_vars.duplex = DUPLEX_FULL; |
| bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; |
| __bnx2x_link_report(bp); |
| bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); |
| } |
| } |
| |
| static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, |
| u16 vlan_val, u8 allowed_prio) |
| { |
| struct bnx2x_func_state_params func_params = {NULL}; |
| struct bnx2x_func_afex_update_params *f_update_params = |
| &func_params.params.afex_update; |
| |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; |
| |
| /* no need to wait for RAMROD completion, so don't |
| * set RAMROD_COMP_WAIT flag |
| */ |
| |
| f_update_params->vif_id = vifid; |
| f_update_params->afex_default_vlan = vlan_val; |
| f_update_params->allowed_priorities = allowed_prio; |
| |
| /* if ramrod can not be sent, response to MCP immediately */ |
| if (bnx2x_func_state_change(bp, &func_params) < 0) |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); |
| |
| return 0; |
| } |
| |
| static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, |
| u16 vif_index, u8 func_bit_map) |
| { |
| struct bnx2x_func_state_params func_params = {NULL}; |
| struct bnx2x_func_afex_viflists_params *update_params = |
| &func_params.params.afex_viflists; |
| int rc; |
| u32 drv_msg_code; |
| |
| /* validate only LIST_SET and LIST_GET are received from switch */ |
| if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) |
| BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", |
| cmd_type); |
| |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; |
| |
| /* set parameters according to cmd_type */ |
| update_params->afex_vif_list_command = cmd_type; |
| update_params->vif_list_index = vif_index; |
| update_params->func_bit_map = |
| (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; |
| update_params->func_to_clear = 0; |
| drv_msg_code = |
| (cmd_type == VIF_LIST_RULE_GET) ? |
| DRV_MSG_CODE_AFEX_LISTGET_ACK : |
| DRV_MSG_CODE_AFEX_LISTSET_ACK; |
| |
| /* if ramrod can not be sent, respond to MCP immediately for |
| * SET and GET requests (other are not triggered from MCP) |
| */ |
| rc = bnx2x_func_state_change(bp, &func_params); |
| if (rc < 0) |
| bnx2x_fw_command(bp, drv_msg_code, 0); |
| |
| return 0; |
| } |
| |
| static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) |
| { |
| struct afex_stats afex_stats; |
| u32 func = BP_ABS_FUNC(bp); |
| u32 mf_config; |
| u16 vlan_val; |
| u32 vlan_prio; |
| u16 vif_id; |
| u8 allowed_prio; |
| u8 vlan_mode; |
| u32 addr_to_write, vifid, addrs, stats_type, i; |
| |
| if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { |
| vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); |
| DP(BNX2X_MSG_MCP, |
| "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); |
| bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); |
| } |
| |
| if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { |
| vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); |
| addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); |
| DP(BNX2X_MSG_MCP, |
| "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", |
| vifid, addrs); |
| bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, |
| addrs); |
| } |
| |
| if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { |
| addr_to_write = SHMEM2_RD(bp, |
| afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); |
| stats_type = SHMEM2_RD(bp, |
| afex_param1_to_driver[BP_FW_MB_IDX(bp)]); |
| |
| DP(BNX2X_MSG_MCP, |
| "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", |
| addr_to_write); |
| |
| bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); |
| |
| /* write response to scratchpad, for MCP */ |
| for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) |
| REG_WR(bp, addr_to_write + i*sizeof(u32), |
| *(((u32 *)(&afex_stats))+i)); |
| |
| /* send ack message to MCP */ |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); |
| } |
| |
| if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { |
| mf_config = MF_CFG_RD(bp, func_mf_config[func].config); |
| bp->mf_config[BP_VN(bp)] = mf_config; |
| DP(BNX2X_MSG_MCP, |
| "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", |
| mf_config); |
| |
| /* if VIF_SET is "enabled" */ |
| if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { |
| /* set rate limit directly to internal RAM */ |
| struct cmng_init_input cmng_input; |
| struct rate_shaping_vars_per_vn m_rs_vn; |
| size_t size = sizeof(struct rate_shaping_vars_per_vn); |
| u32 addr = BAR_XSTRORM_INTMEM + |
| XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); |
| |
| bp->mf_config[BP_VN(bp)] = mf_config; |
| |
| bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); |
| m_rs_vn.vn_counter.rate = |
| cmng_input.vnic_max_rate[BP_VN(bp)]; |
| m_rs_vn.vn_counter.quota = |
| (m_rs_vn.vn_counter.rate * |
| RS_PERIODIC_TIMEOUT_USEC) / 8; |
| |
| __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); |
| |
| /* read relevant values from mf_cfg struct in shmem */ |
| vif_id = |
| (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & |
| FUNC_MF_CFG_E1HOV_TAG_MASK) >> |
| FUNC_MF_CFG_E1HOV_TAG_SHIFT; |
| vlan_val = |
| (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & |
| FUNC_MF_CFG_AFEX_VLAN_MASK) >> |
| FUNC_MF_CFG_AFEX_VLAN_SHIFT; |
| vlan_prio = (mf_config & |
| FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> |
| FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; |
| vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); |
| vlan_mode = |
| (MF_CFG_RD(bp, |
| func_mf_config[func].afex_config) & |
| FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> |
| FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; |
| allowed_prio = |
| (MF_CFG_RD(bp, |
| func_mf_config[func].afex_config) & |
| FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> |
| FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; |
| |
| /* send ramrod to FW, return in case of failure */ |
| if (bnx2x_afex_func_update(bp, vif_id, vlan_val, |
| allowed_prio)) |
| return; |
| |
| bp->afex_def_vlan_tag = vlan_val; |
| bp->afex_vlan_mode = vlan_mode; |
| } else { |
| /* notify link down because BP->flags is disabled */ |
| bnx2x_link_report(bp); |
| |
| /* send INVALID VIF ramrod to FW */ |
| bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); |
| |
| /* Reset the default afex VLAN */ |
| bp->afex_def_vlan_tag = -1; |
| } |
| } |
| } |
| |
| static void bnx2x_pmf_update(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 val; |
| |
| bp->port.pmf = 1; |
| DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); |
| |
| /* |
| * We need the mb() to ensure the ordering between the writing to |
| * bp->port.pmf here and reading it from the bnx2x_periodic_task(). |
| */ |
| smp_mb(); |
| |
| /* queue a periodic task */ |
| queue_delayed_work(bnx2x_wq, &bp->period_task, 0); |
| |
| bnx2x_dcbx_pmf_update(bp); |
| |
| /* enable nig attention */ |
| val = (0xff0f | (1 << (BP_VN(bp) + 4))); |
| if (bp->common.int_block == INT_BLOCK_HC) { |
| REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); |
| REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); |
| } else if (!CHIP_IS_E1x(bp)) { |
| REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); |
| REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); |
| } |
| |
| bnx2x_stats_handle(bp, STATS_EVENT_PMF); |
| } |
| |
| /* end of Link */ |
| |
| /* slow path */ |
| |
| /* |
| * General service functions |
| */ |
| |
| /* send the MCP a request, block until there is a reply */ |
| u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) |
| { |
| int mb_idx = BP_FW_MB_IDX(bp); |
| u32 seq; |
| u32 rc = 0; |
| u32 cnt = 1; |
| u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; |
| |
| mutex_lock(&bp->fw_mb_mutex); |
| seq = ++bp->fw_seq; |
| SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); |
| SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); |
| |
| DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", |
| (command | seq), param); |
| |
| do { |
| /* let the FW do it's magic ... */ |
| msleep(delay); |
| |
| rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); |
| |
| /* Give the FW up to 5 second (500*10ms) */ |
| } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); |
| |
| DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", |
| cnt*delay, rc, seq); |
| |
| /* is this a reply to our command? */ |
| if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) |
| rc &= FW_MSG_CODE_MASK; |
| else { |
| /* FW BUG! */ |
| BNX2X_ERR("FW failed to respond!\n"); |
| bnx2x_fw_dump(bp); |
| rc = 0; |
| } |
| mutex_unlock(&bp->fw_mb_mutex); |
| |
| return rc; |
| } |
| |
| static void storm_memset_func_cfg(struct bnx2x *bp, |
| struct tstorm_eth_function_common_config *tcfg, |
| u16 abs_fid) |
| { |
| size_t size = sizeof(struct tstorm_eth_function_common_config); |
| |
| u32 addr = BAR_TSTRORM_INTMEM + |
| TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); |
| |
| __storm_memset_struct(bp, addr, size, (u32 *)tcfg); |
| } |
| |
| void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) |
| { |
| if (CHIP_IS_E1x(bp)) { |
| struct tstorm_eth_function_common_config tcfg = {0}; |
| |
| storm_memset_func_cfg(bp, &tcfg, p->func_id); |
| } |
| |
| /* Enable the function in the FW */ |
| storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); |
| storm_memset_func_en(bp, p->func_id, 1); |
| |
| /* spq */ |
| if (p->func_flgs & FUNC_FLG_SPQ) { |
| storm_memset_spq_addr(bp, p->spq_map, p->func_id); |
| REG_WR(bp, XSEM_REG_FAST_MEMORY + |
| XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); |
| } |
| } |
| |
| /** |
| * bnx2x_get_common_flags - Return common flags |
| * |
| * @bp device handle |
| * @fp queue handle |
| * @zero_stats TRUE if statistics zeroing is needed |
| * |
| * Return the flags that are common for the Tx-only and not normal connections. |
| */ |
| static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, |
| bool zero_stats) |
| { |
| unsigned long flags = 0; |
| |
| /* PF driver will always initialize the Queue to an ACTIVE state */ |
| __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); |
| |
| /* tx only connections collect statistics (on the same index as the |
| * parent connection). The statistics are zeroed when the parent |
| * connection is initialized. |
| */ |
| |
| __set_bit(BNX2X_Q_FLG_STATS, &flags); |
| if (zero_stats) |
| __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); |
| |
| __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); |
| __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); |
| #endif |
| |
| return flags; |
| } |
| |
| static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, |
| bool leading) |
| { |
| unsigned long flags = 0; |
| |
| /* calculate other queue flags */ |
| if (IS_MF_SD(bp)) |
| __set_bit(BNX2X_Q_FLG_OV, &flags); |
| |
| if (IS_FCOE_FP(fp)) { |
| __set_bit(BNX2X_Q_FLG_FCOE, &flags); |
| /* For FCoE - force usage of default priority (for afex) */ |
| __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); |
| } |
| |
| if (!fp->disable_tpa) { |
| __set_bit(BNX2X_Q_FLG_TPA, &flags); |
| __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); |
| if (fp->mode == TPA_MODE_GRO) |
| __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); |
| } |
| |
| if (leading) { |
| __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); |
| __set_bit(BNX2X_Q_FLG_MCAST, &flags); |
| } |
| |
| /* Always set HW VLAN stripping */ |
| __set_bit(BNX2X_Q_FLG_VLAN, &flags); |
| |
| /* configure silent vlan removal */ |
| if (IS_MF_AFEX(bp)) |
| __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); |
| |
| return flags | bnx2x_get_common_flags(bp, fp, true); |
| } |
| |
| static void bnx2x_pf_q_prep_general(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, |
| u8 cos) |
| { |
| gen_init->stat_id = bnx2x_stats_id(fp); |
| gen_init->spcl_id = fp->cl_id; |
| |
| /* Always use mini-jumbo MTU for FCoE L2 ring */ |
| if (IS_FCOE_FP(fp)) |
| gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; |
| else |
| gen_init->mtu = bp->dev->mtu; |
| |
| gen_init->cos = cos; |
| } |
| |
| static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, |
| struct bnx2x_rxq_setup_params *rxq_init) |
| { |
| u8 max_sge = 0; |
| u16 sge_sz = 0; |
| u16 tpa_agg_size = 0; |
| |
| if (!fp->disable_tpa) { |
| pause->sge_th_lo = SGE_TH_LO(bp); |
| pause->sge_th_hi = SGE_TH_HI(bp); |
| |
| /* validate SGE ring has enough to cross high threshold */ |
| WARN_ON(bp->dropless_fc && |
| pause->sge_th_hi + FW_PREFETCH_CNT > |
| MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); |
| |
| tpa_agg_size = TPA_AGG_SIZE; |
| max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> |
| SGE_PAGE_SHIFT; |
| max_sge = ((max_sge + PAGES_PER_SGE - 1) & |
| (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; |
| sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); |
| } |
| |
| /* pause - not for e1 */ |
| if (!CHIP_IS_E1(bp)) { |
| pause->bd_th_lo = BD_TH_LO(bp); |
| pause->bd_th_hi = BD_TH_HI(bp); |
| |
| pause->rcq_th_lo = RCQ_TH_LO(bp); |
| pause->rcq_th_hi = RCQ_TH_HI(bp); |
| /* |
| * validate that rings have enough entries to cross |
| * high thresholds |
| */ |
| WARN_ON(bp->dropless_fc && |
| pause->bd_th_hi + FW_PREFETCH_CNT > |
| bp->rx_ring_size); |
| WARN_ON(bp->dropless_fc && |
| pause->rcq_th_hi + FW_PREFETCH_CNT > |
| NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); |
| |
| pause->pri_map = 1; |
| } |
| |
| /* rxq setup */ |
| rxq_init->dscr_map = fp->rx_desc_mapping; |
| rxq_init->sge_map = fp->rx_sge_mapping; |
| rxq_init->rcq_map = fp->rx_comp_mapping; |
| rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; |
| |
| /* This should be a maximum number of data bytes that may be |
| * placed on the BD (not including paddings). |
| */ |
| rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - |
| BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; |
| |
| rxq_init->cl_qzone_id = fp->cl_qzone_id; |
| rxq_init->tpa_agg_sz = tpa_agg_size; |
| rxq_init->sge_buf_sz = sge_sz; |
| rxq_init->max_sges_pkt = max_sge; |
| rxq_init->rss_engine_id = BP_FUNC(bp); |
| rxq_init->mcast_engine_id = BP_FUNC(bp); |
| |
| /* Maximum number or simultaneous TPA aggregation for this Queue. |
| * |
| * For PF Clients it should be the maximum available number. |
| * VF driver(s) may want to define it to a smaller value. |
| */ |
| rxq_init->max_tpa_queues = MAX_AGG_QS(bp); |
| |
| rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; |
| rxq_init->fw_sb_id = fp->fw_sb_id; |
| |
| if (IS_FCOE_FP(fp)) |
| rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; |
| else |
| rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; |
| /* configure silent vlan removal |
| * if multi function mode is afex, then mask default vlan |
| */ |
| if (IS_MF_AFEX(bp)) { |
| rxq_init->silent_removal_value = bp->afex_def_vlan_tag; |
| rxq_init->silent_removal_mask = VLAN_VID_MASK; |
| } |
| } |
| |
| static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, |
| u8 cos) |
| { |
| txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; |
| txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; |
| txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; |
| txq_init->fw_sb_id = fp->fw_sb_id; |
| |
| /* |
| * set the tss leading client id for TX classification == |
| * leading RSS client id |
| */ |
| txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); |
| |
| if (IS_FCOE_FP(fp)) { |
| txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; |
| txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; |
| } |
| } |
| |
| static void bnx2x_pf_init(struct bnx2x *bp) |
| { |
| struct bnx2x_func_init_params func_init = {0}; |
| struct event_ring_data eq_data = { {0} }; |
| u16 flags; |
| |
| if (!CHIP_IS_E1x(bp)) { |
| /* reset IGU PF statistics: MSIX + ATTN */ |
| /* PF */ |
| REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + |
| BNX2X_IGU_STAS_MSG_VF_CNT*4 + |
| (CHIP_MODE_IS_4_PORT(bp) ? |
| BP_FUNC(bp) : BP_VN(bp))*4, 0); |
| /* ATTN */ |
| REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + |
| BNX2X_IGU_STAS_MSG_VF_CNT*4 + |
| BNX2X_IGU_STAS_MSG_PF_CNT*4 + |
| (CHIP_MODE_IS_4_PORT(bp) ? |
| BP_FUNC(bp) : BP_VN(bp))*4, 0); |
| } |
| |
| /* function setup flags */ |
| flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); |
| |
| /* This flag is relevant for E1x only. |
| * E2 doesn't have a TPA configuration in a function level. |
| */ |
| flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; |
| |
| func_init.func_flgs = flags; |
| func_init.pf_id = BP_FUNC(bp); |
| func_init.func_id = BP_FUNC(bp); |
| func_init.spq_map = bp->spq_mapping; |
| func_init.spq_prod = bp->spq_prod_idx; |
| |
| bnx2x_func_init(bp, &func_init); |
| |
| memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); |
| |
| /* |
| * Congestion management values depend on the link rate |
| * There is no active link so initial link rate is set to 10 Gbps. |
| * When the link comes up The congestion management values are |
| * re-calculated according to the actual link rate. |
| */ |
| bp->link_vars.line_speed = SPEED_10000; |
| bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); |
| |
| /* Only the PMF sets the HW */ |
| if (bp->port.pmf) |
| storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); |
| |
| /* init Event Queue - PCI bus guarantees correct endianity*/ |
| eq_data.base_addr.hi = U64_HI(bp->eq_mapping); |
| eq_data.base_addr.lo = U64_LO(bp->eq_mapping); |
| eq_data.producer = bp->eq_prod; |
| eq_data.index_id = HC_SP_INDEX_EQ_CONS; |
| eq_data.sb_id = DEF_SB_ID; |
| storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); |
| } |
| |
| static void bnx2x_e1h_disable(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| |
| bnx2x_tx_disable(bp); |
| |
| REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); |
| } |
| |
| static void bnx2x_e1h_enable(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| |
| REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); |
| |
| /* Tx queue should be only re-enabled */ |
| netif_tx_wake_all_queues(bp->dev); |
| |
| /* |
| * Should not call netif_carrier_on since it will be called if the link |
| * is up when checking for link state |
| */ |
| } |
| |
| #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 |
| |
| static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) |
| { |
| struct eth_stats_info *ether_stat = |
| &bp->slowpath->drv_info_to_mcp.ether_stat; |
| struct bnx2x_vlan_mac_obj *mac_obj = |
| &bp->sp_objs->mac_obj; |
| int i; |
| |
| strlcpy(ether_stat->version, DRV_MODULE_VERSION, |
| ETH_STAT_INFO_VERSION_LEN); |
| |
| /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the |
| * mac_local field in ether_stat struct. The base address is offset by 2 |
| * bytes to account for the field being 8 bytes but a mac address is |
| * only 6 bytes. Likewise, the stride for the get_n_elements function is |
| * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes |
| * allocated by the ether_stat struct, so the macs will land in their |
| * proper positions. |
| */ |
| for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) |
| memset(ether_stat->mac_local + i, 0, |
| sizeof(ether_stat->mac_local[0])); |
| mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, |
| DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, |
| ether_stat->mac_local + MAC_PAD, MAC_PAD, |
| ETH_ALEN); |
| ether_stat->mtu_size = bp->dev->mtu; |
| if (bp->dev->features & NETIF_F_RXCSUM) |
| ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; |
| if (bp->dev->features & NETIF_F_TSO) |
| ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; |
| ether_stat->feature_flags |= bp->common.boot_mode; |
| |
| ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; |
| |
| ether_stat->txq_size = bp->tx_ring_size; |
| ether_stat->rxq_size = bp->rx_ring_size; |
| } |
| |
| static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) |
| { |
| struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; |
| struct fcoe_stats_info *fcoe_stat = |
| &bp->slowpath->drv_info_to_mcp.fcoe_stat; |
| |
| if (!CNIC_LOADED(bp)) |
| return; |
| |
| memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); |
| |
| fcoe_stat->qos_priority = |
| app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; |
| |
| /* insert FCoE stats from ramrod response */ |
| if (!NO_FCOE(bp)) { |
| struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = |
| &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. |
| tstorm_queue_statistics; |
| |
| struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = |
| &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. |
| xstorm_queue_statistics; |
| |
| struct fcoe_statistics_params *fw_fcoe_stat = |
| &bp->fw_stats_data->fcoe; |
| |
| ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, |
| fcoe_stat->rx_bytes_lo, |
| fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); |
| |
| ADD_64_LE(fcoe_stat->rx_bytes_hi, |
| fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, |
| fcoe_stat->rx_bytes_lo, |
| fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); |
| |
| ADD_64_LE(fcoe_stat->rx_bytes_hi, |
| fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, |
| fcoe_stat->rx_bytes_lo, |
| fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); |
| |
| ADD_64_LE(fcoe_stat->rx_bytes_hi, |
| fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, |
| fcoe_stat->rx_bytes_lo, |
| fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); |
| |
| ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, |
| fcoe_stat->rx_frames_lo, |
| fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); |
| |
| ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, |
| fcoe_stat->rx_frames_lo, |
| fcoe_q_tstorm_stats->rcv_ucast_pkts); |
| |
| ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, |
| fcoe_stat->rx_frames_lo, |
| fcoe_q_tstorm_stats->rcv_bcast_pkts); |
| |
| ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, |
| fcoe_stat->rx_frames_lo, |
| fcoe_q_tstorm_stats->rcv_mcast_pkts); |
| |
| ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, |
| fcoe_stat->tx_bytes_lo, |
| fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); |
| |
| ADD_64_LE(fcoe_stat->tx_bytes_hi, |
| fcoe_q_xstorm_stats->ucast_bytes_sent.hi, |
| fcoe_stat->tx_bytes_lo, |
| fcoe_q_xstorm_stats->ucast_bytes_sent.lo); |
| |
| ADD_64_LE(fcoe_stat->tx_bytes_hi, |
| fcoe_q_xstorm_stats->bcast_bytes_sent.hi, |
| fcoe_stat->tx_bytes_lo, |
| fcoe_q_xstorm_stats->bcast_bytes_sent.lo); |
| |
| ADD_64_LE(fcoe_stat->tx_bytes_hi, |
| fcoe_q_xstorm_stats->mcast_bytes_sent.hi, |
| fcoe_stat->tx_bytes_lo, |
| fcoe_q_xstorm_stats->mcast_bytes_sent.lo); |
| |
| ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, |
| fcoe_stat->tx_frames_lo, |
| fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); |
| |
| ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, |
| fcoe_stat->tx_frames_lo, |
| fcoe_q_xstorm_stats->ucast_pkts_sent); |
| |
| ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, |
| fcoe_stat->tx_frames_lo, |
| fcoe_q_xstorm_stats->bcast_pkts_sent); |
| |
| ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, |
| fcoe_stat->tx_frames_lo, |
| fcoe_q_xstorm_stats->mcast_pkts_sent); |
| } |
| |
| /* ask L5 driver to add data to the struct */ |
| bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); |
| } |
| |
| static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) |
| { |
| struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; |
| struct iscsi_stats_info *iscsi_stat = |
| &bp->slowpath->drv_info_to_mcp.iscsi_stat; |
| |
| if (!CNIC_LOADED(bp)) |
| return; |
| |
| memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, |
| ETH_ALEN); |
| |
| iscsi_stat->qos_priority = |
| app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; |
| |
| /* ask L5 driver to add data to the struct */ |
| bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); |
| } |
| |
| /* called due to MCP event (on pmf): |
| * reread new bandwidth configuration |
| * configure FW |
| * notify others function about the change |
| */ |
| static void bnx2x_config_mf_bw(struct bnx2x *bp) |
| { |
| if (bp->link_vars.link_up) { |
| bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); |
| bnx2x_link_sync_notify(bp); |
| } |
| storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); |
| } |
| |
| static void bnx2x_set_mf_bw(struct bnx2x *bp) |
| { |
| bnx2x_config_mf_bw(bp); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); |
| } |
| |
| static void bnx2x_handle_eee_event(struct bnx2x *bp) |
| { |
| DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); |
| } |
| |
| static void bnx2x_handle_drv_info_req(struct bnx2x *bp) |
| { |
| enum drv_info_opcode op_code; |
| u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); |
| |
| /* if drv_info version supported by MFW doesn't match - send NACK */ |
| if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { |
| bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); |
| return; |
| } |
| |
| op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> |
| DRV_INFO_CONTROL_OP_CODE_SHIFT; |
| |
| memset(&bp->slowpath->drv_info_to_mcp, 0, |
| sizeof(union drv_info_to_mcp)); |
| |
| switch (op_code) { |
| case ETH_STATS_OPCODE: |
| bnx2x_drv_info_ether_stat(bp); |
| break; |
| case FCOE_STATS_OPCODE: |
| bnx2x_drv_info_fcoe_stat(bp); |
| break; |
| case ISCSI_STATS_OPCODE: |
| bnx2x_drv_info_iscsi_stat(bp); |
| break; |
| default: |
| /* if op code isn't supported - send NACK */ |
| bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); |
| return; |
| } |
| |
| /* if we got drv_info attn from MFW then these fields are defined in |
| * shmem2 for sure |
| */ |
| SHMEM2_WR(bp, drv_info_host_addr_lo, |
| U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); |
| SHMEM2_WR(bp, drv_info_host_addr_hi, |
| U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); |
| |
| bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); |
| } |
| |
| static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) |
| { |
| DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); |
| |
| if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { |
| |
| /* |
| * This is the only place besides the function initialization |
| * where the bp->flags can change so it is done without any |
| * locks |
| */ |
| if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { |
| DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); |
| bp->flags |= MF_FUNC_DIS; |
| |
| bnx2x_e1h_disable(bp); |
| } else { |
| DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); |
| bp->flags &= ~MF_FUNC_DIS; |
| |
| bnx2x_e1h_enable(bp); |
| } |
| dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; |
| } |
| if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { |
| bnx2x_config_mf_bw(bp); |
| dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; |
| } |
| |
| /* Report results to MCP */ |
| if (dcc_event) |
| bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); |
| else |
| bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); |
| } |
| |
| /* must be called under the spq lock */ |
| static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) |
| { |
| struct eth_spe *next_spe = bp->spq_prod_bd; |
| |
| if (bp->spq_prod_bd == bp->spq_last_bd) { |
| bp->spq_prod_bd = bp->spq; |
| bp->spq_prod_idx = 0; |
| DP(BNX2X_MSG_SP, "end of spq\n"); |
| } else { |
| bp->spq_prod_bd++; |
| bp->spq_prod_idx++; |
| } |
| return next_spe; |
| } |
| |
| /* must be called under the spq lock */ |
| static void bnx2x_sp_prod_update(struct bnx2x *bp) |
| { |
| int func = BP_FUNC(bp); |
| |
| /* |
| * Make sure that BD data is updated before writing the producer: |
| * BD data is written to the memory, the producer is read from the |
| * memory, thus we need a full memory barrier to ensure the ordering. |
| */ |
| mb(); |
| |
| REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), |
| bp->spq_prod_idx); |
| mmiowb(); |
| } |
| |
| /** |
| * bnx2x_is_contextless_ramrod - check if the current command ends on EQ |
| * |
| * @cmd: command to check |
| * @cmd_type: command type |
| */ |
| static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) |
| { |
| if ((cmd_type == NONE_CONNECTION_TYPE) || |
| (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || |
| (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || |
| (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) |
| return true; |
| else |
| return false; |
| } |
| |
| /** |
| * bnx2x_sp_post - place a single command on an SP ring |
| * |
| * @bp: driver handle |
| * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) |
| * @cid: SW CID the command is related to |
| * @data_hi: command private data address (high 32 bits) |
| * @data_lo: command private data address (low 32 bits) |
| * @cmd_type: command type (e.g. NONE, ETH) |
| * |
| * SP data is handled as if it's always an address pair, thus data fields are |
| * not swapped to little endian in upper functions. Instead this function swaps |
| * data as if it's two u32 fields. |
| */ |
| int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, |
| u32 data_hi, u32 data_lo, int cmd_type) |
| { |
| struct eth_spe *spe; |
| u16 type; |
| bool common = bnx2x_is_contextless_ramrod(command, cmd_type); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) { |
| BNX2X_ERR("Can't post SP when there is panic\n"); |
| return -EIO; |
| } |
| #endif |
| |
| spin_lock_bh(&bp->spq_lock); |
| |
| if (common) { |
| if (!atomic_read(&bp->eq_spq_left)) { |
| BNX2X_ERR("BUG! EQ ring full!\n"); |
| spin_unlock_bh(&bp->spq_lock); |
| bnx2x_panic(); |
| return -EBUSY; |
| } |
| } else if (!atomic_read(&bp->cq_spq_left)) { |
| BNX2X_ERR("BUG! SPQ ring full!\n"); |
| spin_unlock_bh(&bp->spq_lock); |
| bnx2x_panic(); |
| return -EBUSY; |
| } |
| |
| spe = bnx2x_sp_get_next(bp); |
| |
| /* CID needs port number to be encoded int it */ |
| spe->hdr.conn_and_cmd_data = |
| cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | |
| HW_CID(bp, cid)); |
| |
| type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; |
| |
| type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & |
| SPE_HDR_FUNCTION_ID); |
| |
| spe->hdr.type = cpu_to_le16(type); |
| |
| spe->data.update_data_addr.hi = cpu_to_le32(data_hi); |
| spe->data.update_data_addr.lo = cpu_to_le32(data_lo); |
| |
| /* |
| * It's ok if the actual decrement is issued towards the memory |
| * somewhere between the spin_lock and spin_unlock. Thus no |
| * more explicit memory barrier is needed. |
| */ |
| if (common) |
| atomic_dec(&bp->eq_spq_left); |
| else |
| atomic_dec(&bp->cq_spq_left); |
| |
| DP(BNX2X_MSG_SP, |
| "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", |
| bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), |
| (u32)(U64_LO(bp->spq_mapping) + |
| (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, |
| HW_CID(bp, cid), data_hi, data_lo, type, |
| atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); |
| |
| bnx2x_sp_prod_update(bp); |
| spin_unlock_bh(&bp->spq_lock); |
| return 0; |
| } |
| |
| /* acquire split MCP access lock register */ |
| static int bnx2x_acquire_alr(struct bnx2x *bp) |
| { |
| u32 j, val; |
| int rc = 0; |
| |
| might_sleep(); |
| for (j = 0; j < 1000; j++) { |
| REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); |
| val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); |
| if (val & MCPR_ACCESS_LOCK_LOCK) |
| break; |
| |
| usleep_range(5000, 10000); |
| } |
| if (!(val & MCPR_ACCESS_LOCK_LOCK)) { |
| BNX2X_ERR("Cannot acquire MCP access lock register\n"); |
| rc = -EBUSY; |
| } |
| |
| return rc; |
| } |
| |
| /* release split MCP access lock register */ |
| static void bnx2x_release_alr(struct bnx2x *bp) |
| { |
| REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); |
| } |
| |
| #define BNX2X_DEF_SB_ATT_IDX 0x0001 |
| #define BNX2X_DEF_SB_IDX 0x0002 |
| |
| static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) |
| { |
| struct host_sp_status_block *def_sb = bp->def_status_blk; |
| u16 rc = 0; |
| |
| barrier(); /* status block is written to by the chip */ |
| if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { |
| bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; |
| rc |= BNX2X_DEF_SB_ATT_IDX; |
| } |
| |
| if (bp->def_idx != def_sb->sp_sb.running_index) { |
| bp->def_idx = def_sb->sp_sb.running_index; |
| rc |= BNX2X_DEF_SB_IDX; |
| } |
| |
| /* Do not reorder: indices reading should complete before handling */ |
| barrier(); |
| return rc; |
| } |
| |
| /* |
| * slow path service functions |
| */ |
| |
| static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) |
| { |
| int port = BP_PORT(bp); |
| u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : |
| NIG_REG_MASK_INTERRUPT_PORT0; |
| u32 aeu_mask; |
| u32 nig_mask = 0; |
| u32 reg_addr; |
| |
| if (bp->attn_state & asserted) |
| BNX2X_ERR("IGU ERROR\n"); |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| aeu_mask = REG_RD(bp, aeu_addr); |
| |
| DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", |
| aeu_mask, asserted); |
| aeu_mask &= ~(asserted & 0x3ff); |
| DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); |
| |
| REG_WR(bp, aeu_addr, aeu_mask); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); |
| bp->attn_state |= asserted; |
| DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); |
| |
| if (asserted & ATTN_HARD_WIRED_MASK) { |
| if (asserted & ATTN_NIG_FOR_FUNC) { |
| |
| bnx2x_acquire_phy_lock(bp); |
| |
| /* save nig interrupt mask */ |
| nig_mask = REG_RD(bp, nig_int_mask_addr); |
| |
| /* If nig_mask is not set, no need to call the update |
| * function. |
| */ |
| if (nig_mask) { |
| REG_WR(bp, nig_int_mask_addr, 0); |
| |
| bnx2x_link_attn(bp); |
| } |
| |
| /* handle unicore attn? */ |
| } |
| if (asserted & ATTN_SW_TIMER_4_FUNC) |
| DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); |
| |
| if (asserted & GPIO_2_FUNC) |
| DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); |
| |
| if (asserted & GPIO_3_FUNC) |
| DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); |
| |
| if (asserted & GPIO_4_FUNC) |
| DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); |
| |
| if (port == 0) { |
| if (asserted & ATTN_GENERAL_ATTN_1) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_2) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_3) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); |
| } |
| } else { |
| if (asserted & ATTN_GENERAL_ATTN_4) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_5) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_6) { |
| DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); |
| } |
| } |
| |
| } /* if hardwired */ |
| |
| if (bp->common.int_block == INT_BLOCK_HC) |
| reg_addr = (HC_REG_COMMAND_REG + port*32 + |
| COMMAND_REG_ATTN_BITS_SET); |
| else |
| reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); |
| |
| DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, |
| (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); |
| REG_WR(bp, reg_addr, asserted); |
| |
| /* now set back the mask */ |
| if (asserted & ATTN_NIG_FOR_FUNC) { |
| /* Verify that IGU ack through BAR was written before restoring |
| * NIG mask. This loop should exit after 2-3 iterations max. |
| */ |
| if (bp->common.int_block != INT_BLOCK_HC) { |
| u32 cnt = 0, igu_acked; |
| do { |
| igu_acked = REG_RD(bp, |
| IGU_REG_ATTENTION_ACK_BITS); |
| } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && |
| (++cnt < MAX_IGU_ATTN_ACK_TO)); |
| if (!igu_acked) |
| DP(NETIF_MSG_HW, |
| "Failed to verify IGU ack on time\n"); |
| barrier(); |
| } |
| REG_WR(bp, nig_int_mask_addr, nig_mask); |
| bnx2x_release_phy_lock(bp); |
| } |
| } |
| |
| static void bnx2x_fan_failure(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 ext_phy_config; |
| /* mark the failure */ |
| ext_phy_config = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].external_phy_config); |
| |
| ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; |
| ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; |
| SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, |
| ext_phy_config); |
| |
| /* log the failure */ |
| netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" |
| "Please contact OEM Support for assistance\n"); |
| |
| /* Schedule device reset (unload) |
| * This is due to some boards consuming sufficient power when driver is |
| * up to overheat if fan fails. |
| */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); |
| smp_mb__after_clear_bit(); |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| } |
| |
| static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) |
| { |
| int port = BP_PORT(bp); |
| int reg_offset; |
| u32 val; |
| |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { |
| |
| val = REG_RD(bp, reg_offset); |
| val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; |
| REG_WR(bp, reg_offset, val); |
| |
| BNX2X_ERR("SPIO5 hw attention\n"); |
| |
| /* Fan failure attention */ |
| bnx2x_hw_reset_phy(&bp->link_params); |
| bnx2x_fan_failure(bp); |
| } |
| |
| if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { |
| bnx2x_acquire_phy_lock(bp); |
| bnx2x_handle_module_detect_int(&bp->link_params); |
| bnx2x_release_phy_lock(bp); |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_0) { |
| |
| val = REG_RD(bp, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); |
| REG_WR(bp, reg_offset, val); |
| |
| BNX2X_ERR("FATAL HW block attention set0 0x%x\n", |
| (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); |
| bnx2x_panic(); |
| } |
| } |
| |
| static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) |
| { |
| u32 val; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { |
| |
| val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); |
| BNX2X_ERR("DB hw attention 0x%x\n", val); |
| /* DORQ discard attention */ |
| if (val & 0x2) |
| BNX2X_ERR("FATAL error from DORQ\n"); |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_1) { |
| |
| int port = BP_PORT(bp); |
| int reg_offset; |
| |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); |
| |
| val = REG_RD(bp, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); |
| REG_WR(bp, reg_offset, val); |
| |
| BNX2X_ERR("FATAL HW block attention set1 0x%x\n", |
| (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); |
| bnx2x_panic(); |
| } |
| } |
| |
| static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) |
| { |
| u32 val; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { |
| |
| val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); |
| BNX2X_ERR("CFC hw attention 0x%x\n", val); |
| /* CFC error attention */ |
| if (val & 0x2) |
| BNX2X_ERR("FATAL error from CFC\n"); |
| } |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { |
| val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); |
| BNX2X_ERR("PXP hw attention-0 0x%x\n", val); |
| /* RQ_USDMDP_FIFO_OVERFLOW */ |
| if (val & 0x18000) |
| BNX2X_ERR("FATAL error from PXP\n"); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); |
| BNX2X_ERR("PXP hw attention-1 0x%x\n", val); |
| } |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_2) { |
| |
| int port = BP_PORT(bp); |
| int reg_offset; |
| |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); |
| |
| val = REG_RD(bp, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); |
| REG_WR(bp, reg_offset, val); |
| |
| BNX2X_ERR("FATAL HW block attention set2 0x%x\n", |
| (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); |
| bnx2x_panic(); |
| } |
| } |
| |
| static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) |
| { |
| u32 val; |
| |
| if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { |
| |
| if (attn & BNX2X_PMF_LINK_ASSERT) { |
| int func = BP_FUNC(bp); |
| |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| bnx2x_read_mf_cfg(bp); |
| bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, |
| func_mf_config[BP_ABS_FUNC(bp)].config); |
| val = SHMEM_RD(bp, |
| func_mb[BP_FW_MB_IDX(bp)].drv_status); |
| if (val & DRV_STATUS_DCC_EVENT_MASK) |
| bnx2x_dcc_event(bp, |
| (val & DRV_STATUS_DCC_EVENT_MASK)); |
| |
| if (val & DRV_STATUS_SET_MF_BW) |
| bnx2x_set_mf_bw(bp); |
| |
| if (val & DRV_STATUS_DRV_INFO_REQ) |
| bnx2x_handle_drv_info_req(bp); |
| |
| if (val & DRV_STATUS_VF_DISABLED) |
| bnx2x_vf_handle_flr_event(bp); |
| |
| if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) |
| bnx2x_pmf_update(bp); |
| |
| if (bp->port.pmf && |
| (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && |
| bp->dcbx_enabled > 0) |
| /* start dcbx state machine */ |
| bnx2x_dcbx_set_params(bp, |
| BNX2X_DCBX_STATE_NEG_RECEIVED); |
| if (val & DRV_STATUS_AFEX_EVENT_MASK) |
| bnx2x_handle_afex_cmd(bp, |
| val & DRV_STATUS_AFEX_EVENT_MASK); |
| if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) |
| bnx2x_handle_eee_event(bp); |
| if (bp->link_vars.periodic_flags & |
| PERIODIC_FLAGS_LINK_EVENT) { |
| /* sync with link */ |
| bnx2x_acquire_phy_lock(bp); |
| bp->link_vars.periodic_flags &= |
| ~PERIODIC_FLAGS_LINK_EVENT; |
| bnx2x_release_phy_lock(bp); |
| if (IS_MF(bp)) |
| bnx2x_link_sync_notify(bp); |
| bnx2x_link_report(bp); |
| } |
| /* Always call it here: bnx2x_link_report() will |
| * prevent the link indication duplication. |
| */ |
| bnx2x__link_status_update(bp); |
| } else if (attn & BNX2X_MC_ASSERT_BITS) { |
| |
| BNX2X_ERR("MC assert!\n"); |
| bnx2x_mc_assert(bp); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); |
| bnx2x_panic(); |
| |
| } else if (attn & BNX2X_MCP_ASSERT) { |
| |
| BNX2X_ERR("MCP assert!\n"); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); |
| bnx2x_fw_dump(bp); |
| |
| } else |
| BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); |
| } |
| |
| if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { |
| BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); |
| if (attn & BNX2X_GRC_TIMEOUT) { |
| val = CHIP_IS_E1(bp) ? 0 : |
| REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); |
| BNX2X_ERR("GRC time-out 0x%08x\n", val); |
| } |
| if (attn & BNX2X_GRC_RSV) { |
| val = CHIP_IS_E1(bp) ? 0 : |
| REG_RD(bp, MISC_REG_GRC_RSV_ATTN); |
| BNX2X_ERR("GRC reserved 0x%08x\n", val); |
| } |
| REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); |
| } |
| } |
| |
| /* |
| * Bits map: |
| * 0-7 - Engine0 load counter. |
| * 8-15 - Engine1 load counter. |
| * 16 - Engine0 RESET_IN_PROGRESS bit. |
| * 17 - Engine1 RESET_IN_PROGRESS bit. |
| * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function |
| * on the engine |
| * 19 - Engine1 ONE_IS_LOADED. |
| * 20 - Chip reset flow bit. When set none-leader must wait for both engines |
| * leader to complete (check for both RESET_IN_PROGRESS bits and not for |
| * just the one belonging to its engine). |
| * |
| */ |
| #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 |
| |
| #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff |
| #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 |
| #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 |
| #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 |
| #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 |
| #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 |
| #define BNX2X_GLOBAL_RESET_BIT 0x00040000 |
| |
| /* |
| * Set the GLOBAL_RESET bit. |
| * |
| * Should be run under rtnl lock |
| */ |
| void bnx2x_set_reset_global(struct bnx2x *bp) |
| { |
| u32 val; |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* |
| * Clear the GLOBAL_RESET bit. |
| * |
| * Should be run under rtnl lock |
| */ |
| static void bnx2x_clear_reset_global(struct bnx2x *bp) |
| { |
| u32 val; |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* |
| * Checks the GLOBAL_RESET bit. |
| * |
| * should be run under rtnl lock |
| */ |
| static bool bnx2x_reset_is_global(struct bnx2x *bp) |
| { |
| u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| |
| DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); |
| return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; |
| } |
| |
| /* |
| * Clear RESET_IN_PROGRESS bit for the current engine. |
| * |
| * Should be run under rtnl lock |
| */ |
| static void bnx2x_set_reset_done(struct bnx2x *bp) |
| { |
| u32 val; |
| u32 bit = BP_PATH(bp) ? |
| BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| |
| /* Clear the bit */ |
| val &= ~bit; |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); |
| |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* |
| * Set RESET_IN_PROGRESS for the current engine. |
| * |
| * should be run under rtnl lock |
| */ |
| void bnx2x_set_reset_in_progress(struct bnx2x *bp) |
| { |
| u32 val; |
| u32 bit = BP_PATH(bp) ? |
| BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| |
| /* Set the bit */ |
| val |= bit; |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* |
| * Checks the RESET_IN_PROGRESS bit for the given engine. |
| * should be run under rtnl lock |
| */ |
| bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) |
| { |
| u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| u32 bit = engine ? |
| BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; |
| |
| /* return false if bit is set */ |
| return (val & bit) ? false : true; |
| } |
| |
| /* |
| * set pf load for the current pf. |
| * |
| * should be run under rtnl lock |
| */ |
| void bnx2x_set_pf_load(struct bnx2x *bp) |
| { |
| u32 val1, val; |
| u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : |
| BNX2X_PATH0_LOAD_CNT_MASK; |
| u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : |
| BNX2X_PATH0_LOAD_CNT_SHIFT; |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| |
| DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); |
| |
| /* get the current counter value */ |
| val1 = (val & mask) >> shift; |
| |
| /* set bit of that PF */ |
| val1 |= (1 << bp->pf_num); |
| |
| /* clear the old value */ |
| val &= ~mask; |
| |
| /* set the new one */ |
| val |= ((val1 << shift) & mask); |
| |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /** |
| * bnx2x_clear_pf_load - clear pf load mark |
| * |
| * @bp: driver handle |
| * |
| * Should be run under rtnl lock. |
| * Decrements the load counter for the current engine. Returns |
| * whether other functions are still loaded |
| */ |
| bool bnx2x_clear_pf_load(struct bnx2x *bp) |
| { |
| u32 val1, val; |
| u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : |
| BNX2X_PATH0_LOAD_CNT_MASK; |
| u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : |
| BNX2X_PATH0_LOAD_CNT_SHIFT; |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); |
| |
| /* get the current counter value */ |
| val1 = (val & mask) >> shift; |
| |
| /* clear bit of that PF */ |
| val1 &= ~(1 << bp->pf_num); |
| |
| /* clear the old value */ |
| val &= ~mask; |
| |
| /* set the new one */ |
| val |= ((val1 << shift) & mask); |
| |
| REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); |
| return val1 != 0; |
| } |
| |
| /* |
| * Read the load status for the current engine. |
| * |
| * should be run under rtnl lock |
| */ |
| static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) |
| { |
| u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : |
| BNX2X_PATH0_LOAD_CNT_MASK); |
| u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : |
| BNX2X_PATH0_LOAD_CNT_SHIFT); |
| u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); |
| |
| val = (val & mask) >> shift; |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", |
| engine, val); |
| |
| return val != 0; |
| } |
| |
| static void _print_parity(struct bnx2x *bp, u32 reg) |
| { |
| pr_cont(" [0x%08x] ", REG_RD(bp, reg)); |
| } |
| |
| static void _print_next_block(int idx, const char *blk) |
| { |
| pr_cont("%s%s", idx ? ", " : "", blk); |
| } |
| |
| static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, |
| int par_num, bool print) |
| { |
| int i = 0; |
| u32 cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((u32)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "BRB"); |
| _print_parity(bp, |
| BRB1_REG_BRB1_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "PARSER"); |
| _print_parity(bp, PRS_REG_PRS_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "TSDM"); |
| _print_parity(bp, |
| TSDM_REG_TSDM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, |
| "SEARCHER"); |
| _print_parity(bp, SRC_REG_SRC_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "TCM"); |
| _print_parity(bp, |
| TCM_REG_TCM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "TSEMI"); |
| _print_parity(bp, |
| TSEM_REG_TSEM_PRTY_STS_0); |
| _print_parity(bp, |
| TSEM_REG_TSEM_PRTY_STS_1); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "XPB"); |
| _print_parity(bp, GRCBASE_XPB + |
| PB_REG_PB_PRTY_STS); |
| } |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return par_num; |
| } |
| |
| static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, |
| int par_num, bool *global, |
| bool print) |
| { |
| int i = 0; |
| u32 cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((u32)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "PBF"); |
| _print_parity(bp, PBF_REG_PBF_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "QM"); |
| _print_parity(bp, QM_REG_QM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "TM"); |
| _print_parity(bp, TM_REG_TM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "XSDM"); |
| _print_parity(bp, |
| XSDM_REG_XSDM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "XCM"); |
| _print_parity(bp, XCM_REG_XCM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "XSEMI"); |
| _print_parity(bp, |
| XSEM_REG_XSEM_PRTY_STS_0); |
| _print_parity(bp, |
| XSEM_REG_XSEM_PRTY_STS_1); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, |
| "DOORBELLQ"); |
| _print_parity(bp, |
| DORQ_REG_DORQ_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "NIG"); |
| if (CHIP_IS_E1x(bp)) { |
| _print_parity(bp, |
| NIG_REG_NIG_PRTY_STS); |
| } else { |
| _print_parity(bp, |
| NIG_REG_NIG_PRTY_STS_0); |
| _print_parity(bp, |
| NIG_REG_NIG_PRTY_STS_1); |
| } |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: |
| if (print) |
| _print_next_block(par_num++, |
| "VAUX PCI CORE"); |
| *global = true; |
| break; |
| case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "DEBUG"); |
| _print_parity(bp, DBG_REG_DBG_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "USDM"); |
| _print_parity(bp, |
| USDM_REG_USDM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "UCM"); |
| _print_parity(bp, UCM_REG_UCM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "USEMI"); |
| _print_parity(bp, |
| USEM_REG_USEM_PRTY_STS_0); |
| _print_parity(bp, |
| USEM_REG_USEM_PRTY_STS_1); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "UPB"); |
| _print_parity(bp, GRCBASE_UPB + |
| PB_REG_PB_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "CSDM"); |
| _print_parity(bp, |
| CSDM_REG_CSDM_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "CCM"); |
| _print_parity(bp, CCM_REG_CCM_PRTY_STS); |
| } |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return par_num; |
| } |
| |
| static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, |
| int par_num, bool print) |
| { |
| int i = 0; |
| u32 cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((u32)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "CSEMI"); |
| _print_parity(bp, |
| CSEM_REG_CSEM_PRTY_STS_0); |
| _print_parity(bp, |
| CSEM_REG_CSEM_PRTY_STS_1); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "PXP"); |
| _print_parity(bp, PXP_REG_PXP_PRTY_STS); |
| _print_parity(bp, |
| PXP2_REG_PXP2_PRTY_STS_0); |
| _print_parity(bp, |
| PXP2_REG_PXP2_PRTY_STS_1); |
| } |
| break; |
| case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: |
| if (print) |
| _print_next_block(par_num++, |
| "PXPPCICLOCKCLIENT"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "CFC"); |
| _print_parity(bp, |
| CFC_REG_CFC_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "CDU"); |
| _print_parity(bp, CDU_REG_CDU_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "DMAE"); |
| _print_parity(bp, |
| DMAE_REG_DMAE_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "IGU"); |
| if (CHIP_IS_E1x(bp)) |
| _print_parity(bp, |
| HC_REG_HC_PRTY_STS); |
| else |
| _print_parity(bp, |
| IGU_REG_IGU_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "MISC"); |
| _print_parity(bp, |
| MISC_REG_MISC_PRTY_STS); |
| } |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return par_num; |
| } |
| |
| static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num, |
| bool *global, bool print) |
| { |
| int i = 0; |
| u32 cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((u32)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: |
| if (print) |
| _print_next_block(par_num++, "MCP ROM"); |
| *global = true; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: |
| if (print) |
| _print_next_block(par_num++, |
| "MCP UMP RX"); |
| *global = true; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: |
| if (print) |
| _print_next_block(par_num++, |
| "MCP UMP TX"); |
| *global = true; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: |
| if (print) |
| _print_next_block(par_num++, |
| "MCP SCPAD"); |
| *global = true; |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return par_num; |
| } |
| |
| static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, |
| int par_num, bool print) |
| { |
| int i = 0; |
| u32 cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((u32)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "PGLUE_B"); |
| _print_parity(bp, |
| PGLUE_B_REG_PGLUE_B_PRTY_STS); |
| } |
| break; |
| case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: |
| if (print) { |
| _print_next_block(par_num++, "ATC"); |
| _print_parity(bp, |
| ATC_REG_ATC_PRTY_STS); |
| } |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return par_num; |
| } |
| |
| static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, |
| u32 *sig) |
| { |
| if ((sig[0] & HW_PRTY_ASSERT_SET_0) || |
| (sig[1] & HW_PRTY_ASSERT_SET_1) || |
| (sig[2] & HW_PRTY_ASSERT_SET_2) || |
| (sig[3] & HW_PRTY_ASSERT_SET_3) || |
| (sig[4] & HW_PRTY_ASSERT_SET_4)) { |
| int par_num = 0; |
| DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" |
| "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", |
| sig[0] & HW_PRTY_ASSERT_SET_0, |
| sig[1] & HW_PRTY_ASSERT_SET_1, |
| sig[2] & HW_PRTY_ASSERT_SET_2, |
| sig[3] & HW_PRTY_ASSERT_SET_3, |
| sig[4] & HW_PRTY_ASSERT_SET_4); |
| if (print) |
| netdev_err(bp->dev, |
| "Parity errors detected in blocks: "); |
| par_num = bnx2x_check_blocks_with_parity0(bp, |
| sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); |
| par_num = bnx2x_check_blocks_with_parity1(bp, |
| sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); |
| par_num = bnx2x_check_blocks_with_parity2(bp, |
| sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); |
| par_num = bnx2x_check_blocks_with_parity3( |
| sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); |
| par_num = bnx2x_check_blocks_with_parity4(bp, |
| sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); |
| |
| if (print) |
| pr_cont("\n"); |
| |
| return true; |
| } else |
| return false; |
| } |
| |
| /** |
| * bnx2x_chk_parity_attn - checks for parity attentions. |
| * |
| * @bp: driver handle |
| * @global: true if there was a global attention |
| * @print: show parity attention in syslog |
| */ |
| bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) |
| { |
| struct attn_route attn = { {0} }; |
| int port = BP_PORT(bp); |
| |
| attn.sig[0] = REG_RD(bp, |
| MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + |
| port*4); |
| attn.sig[1] = REG_RD(bp, |
| MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + |
| port*4); |
| attn.sig[2] = REG_RD(bp, |
| MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + |
| port*4); |
| attn.sig[3] = REG_RD(bp, |
| MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + |
| port*4); |
| |
| if (!CHIP_IS_E1x(bp)) |
| attn.sig[4] = REG_RD(bp, |
| MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + |
| port*4); |
| |
| return bnx2x_parity_attn(bp, global, print, attn.sig); |
| } |
| |
| static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) |
| { |
| u32 val; |
| if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { |
| |
| val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); |
| BNX2X_ERR("PGLUE hw attention 0x%x\n", val); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); |
| if (val & |
| PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); |
| if (val & |
| PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) |
| BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); |
| } |
| if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { |
| val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); |
| BNX2X_ERR("ATC hw attention 0x%x\n", val); |
| if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) |
| BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); |
| } |
| |
| if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | |
| AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { |
| BNX2X_ERR("FATAL parity attention set4 0x%x\n", |
| (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | |
| AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); |
| } |
| } |
| |
| static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) |
| { |
| struct attn_route attn, *group_mask; |
| int port = BP_PORT(bp); |
| int index; |
| u32 reg_addr; |
| u32 val; |
| u32 aeu_mask; |
| bool global = false; |
| |
| /* need to take HW lock because MCP or other port might also |
| try to handle this event */ |
| bnx2x_acquire_alr(bp); |
| |
| if (bnx2x_chk_parity_attn(bp, &global, true)) { |
| #ifndef BNX2X_STOP_ON_ERROR |
| bp->recovery_state = BNX2X_RECOVERY_INIT; |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| /* Disable HW interrupts */ |
| bnx2x_int_disable(bp); |
| /* In case of parity errors don't handle attentions so that |
| * other function would "see" parity errors. |
| */ |
| #else |
| bnx2x_panic(); |
| #endif |
| bnx2x_release_alr(bp); |
| return; |
| } |
| |
| attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); |
| attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); |
| attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); |
| attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); |
| if (!CHIP_IS_E1x(bp)) |
| attn.sig[4] = |
| REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); |
| else |
| attn.sig[4] = 0; |
| |
| DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", |
| attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); |
| |
| for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { |
| if (deasserted & (1 << index)) { |
| group_mask = &bp->attn_group[index]; |
| |
| DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", |
| index, |
| group_mask->sig[0], group_mask->sig[1], |
| group_mask->sig[2], group_mask->sig[3], |
| group_mask->sig[4]); |
| |
| bnx2x_attn_int_deasserted4(bp, |
| attn.sig[4] & group_mask->sig[4]); |
| bnx2x_attn_int_deasserted3(bp, |
| attn.sig[3] & group_mask->sig[3]); |
| bnx2x_attn_int_deasserted1(bp, |
| attn.sig[1] & group_mask->sig[1]); |
| bnx2x_attn_int_deasserted2(bp, |
| attn.sig[2] & group_mask->sig[2]); |
| bnx2x_attn_int_deasserted0(bp, |
| attn.sig[0] & group_mask->sig[0]); |
| } |
| } |
| |
| bnx2x_release_alr(bp); |
| |
| if (bp->common.int_block == INT_BLOCK_HC) |
| reg_addr = (HC_REG_COMMAND_REG + port*32 + |
| COMMAND_REG_ATTN_BITS_CLR); |
| else |
| reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); |
| |
| val = ~deasserted; |
| DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, |
| (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); |
| REG_WR(bp, reg_addr, val); |
| |
| if (~bp->attn_state & deasserted) |
| BNX2X_ERR("IGU ERROR\n"); |
| |
| reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| aeu_mask = REG_RD(bp, reg_addr); |
| |
| DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", |
| aeu_mask, deasserted); |
| aeu_mask |= (deasserted & 0x3ff); |
| DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); |
| |
| REG_WR(bp, reg_addr, aeu_mask); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); |
| bp->attn_state &= ~deasserted; |
| DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); |
| } |
| |
| static void bnx2x_attn_int(struct bnx2x *bp) |
| { |
| /* read local copy of bits */ |
| u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. |
| attn_bits); |
| u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. |
| attn_bits_ack); |
| u32 attn_state = bp->attn_state; |
| |
| /* look for changed bits */ |
| u32 asserted = attn_bits & ~attn_ack & ~attn_state; |
| u32 deasserted = ~attn_bits & attn_ack & attn_state; |
| |
| DP(NETIF_MSG_HW, |
| "attn_bits %x attn_ack %x asserted %x deasserted %x\n", |
| attn_bits, attn_ack, asserted, deasserted); |
| |
| if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) |
| BNX2X_ERR("BAD attention state\n"); |
| |
| /* handle bits that were raised */ |
| if (asserted) |
| bnx2x_attn_int_asserted(bp, asserted); |
| |
| if (deasserted) |
| bnx2x_attn_int_deasserted(bp, deasserted); |
| } |
| |
| void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, |
| u16 index, u8 op, u8 update) |
| { |
| u32 igu_addr = bp->igu_base_addr; |
| igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; |
| bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, |
| igu_addr); |
| } |
| |
| static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) |
| { |
| /* No memory barriers */ |
| storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); |
| mmiowb(); /* keep prod updates ordered */ |
| } |
| |
| static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, |
| union event_ring_elem *elem) |
| { |
| u8 err = elem->message.error; |
| |
| if (!bp->cnic_eth_dev.starting_cid || |
| (cid < bp->cnic_eth_dev.starting_cid && |
| cid != bp->cnic_eth_dev.iscsi_l2_cid)) |
| return 1; |
| |
| DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); |
| |
| if (unlikely(err)) { |
| |
| BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", |
| cid); |
| bnx2x_panic_dump(bp, false); |
| } |
| bnx2x_cnic_cfc_comp(bp, cid, err); |
| return 0; |
| } |
| |
| static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) |
| { |
| struct bnx2x_mcast_ramrod_params rparam; |
| int rc; |
| |
| memset(&rparam, 0, sizeof(rparam)); |
| |
| rparam.mcast_obj = &bp->mcast_obj; |
| |
| netif_addr_lock_bh(bp->dev); |
| |
| /* Clear pending state for the last command */ |
| bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); |
| |
| /* If there are pending mcast commands - send them */ |
| if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); |
| if (rc < 0) |
| BNX2X_ERR("Failed to send pending mcast commands: %d\n", |
| rc); |
| } |
| |
| netif_addr_unlock_bh(bp->dev); |
| } |
| |
| static void bnx2x_handle_classification_eqe(struct bnx2x *bp, |
| union event_ring_elem *elem) |
| { |
| unsigned long ramrod_flags = 0; |
| int rc = 0; |
| u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; |
| struct bnx2x_vlan_mac_obj *vlan_mac_obj; |
| |
| /* Always push next commands out, don't wait here */ |
| __set_bit(RAMROD_CONT, &ramrod_flags); |
| |
| switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) |
| >> BNX2X_SWCID_SHIFT) { |
| case BNX2X_FILTER_MAC_PENDING: |
| DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); |
| if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) |
| vlan_mac_obj = &bp->iscsi_l2_mac_obj; |
| else |
| vlan_mac_obj = &bp->sp_objs[cid].mac_obj; |
| |
| break; |
| case BNX2X_FILTER_MCAST_PENDING: |
| DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); |
| /* This is only relevant for 57710 where multicast MACs are |
| * configured as unicast MACs using the same ramrod. |
| */ |
| bnx2x_handle_mcast_eqe(bp); |
| return; |
| default: |
| BNX2X_ERR("Unsupported classification command: %d\n", |
| elem->message.data.eth_event.echo); |
| return; |
| } |
| |
| rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); |
| |
| if (rc < 0) |
| BNX2X_ERR("Failed to schedule new commands: %d\n", rc); |
| else if (rc > 0) |
| DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); |
| } |
| |
| static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); |
| |
| static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) |
| { |
| netif_addr_lock_bh(bp->dev); |
| |
| clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); |
| |
| /* Send rx_mode command again if was requested */ |
| if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) |
| bnx2x_set_storm_rx_mode(bp); |
| else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, |
| &bp->sp_state)) |
| bnx2x_set_iscsi_eth_rx_mode(bp, true); |
| else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, |
| &bp->sp_state)) |
| bnx2x_set_iscsi_eth_rx_mode(bp, false); |
| |
| netif_addr_unlock_bh(bp->dev); |
| } |
| |
| static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, |
| union event_ring_elem *elem) |
| { |
| if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { |
| DP(BNX2X_MSG_SP, |
| "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", |
| elem->message.data.vif_list_event.func_bit_map); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, |
| elem->message.data.vif_list_event.func_bit_map); |
| } else if (elem->message.data.vif_list_event.echo == |
| VIF_LIST_RULE_SET) { |
| DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); |
| } |
| } |
| |
| /* called with rtnl_lock */ |
| static void bnx2x_after_function_update(struct bnx2x *bp) |
| { |
| int q, rc; |
| struct bnx2x_fastpath *fp; |
| struct bnx2x_queue_state_params queue_params = {NULL}; |
| struct bnx2x_queue_update_params *q_update_params = |
| &queue_params.params.update; |
| |
| /* Send Q update command with afex vlan removal values for all Qs */ |
| queue_params.cmd = BNX2X_Q_CMD_UPDATE; |
| |
| /* set silent vlan removal values according to vlan mode */ |
| __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, |
| &q_update_params->update_flags); |
| __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, |
| &q_update_params->update_flags); |
| __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); |
| |
| /* in access mode mark mask and value are 0 to strip all vlans */ |
| if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { |
| q_update_params->silent_removal_value = 0; |
| q_update_params->silent_removal_mask = 0; |
| } else { |
| q_update_params->silent_removal_value = |
| (bp->afex_def_vlan_tag & VLAN_VID_MASK); |
| q_update_params->silent_removal_mask = VLAN_VID_MASK; |
| } |
| |
| for_each_eth_queue(bp, q) { |
| /* Set the appropriate Queue object */ |
| fp = &bp->fp[q]; |
| queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; |
| |
| /* send the ramrod */ |
| rc = bnx2x_queue_state_change(bp, &queue_params); |
| if (rc < 0) |
| BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", |
| q); |
| } |
| |
| if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { |
| fp = &bp->fp[FCOE_IDX(bp)]; |
| queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; |
| |
| /* clear pending completion bit */ |
| __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); |
| |
| /* mark latest Q bit */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); |
| smp_mb__after_clear_bit(); |
| |
| /* send Q update ramrod for FCoE Q */ |
| rc = bnx2x_queue_state_change(bp, &queue_params); |
| if (rc < 0) |
| BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", |
| q); |
| } else { |
| /* If no FCoE ring - ACK MCP now */ |
| bnx2x_link_report(bp); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); |
| } |
| } |
| |
| static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( |
| struct bnx2x *bp, u32 cid) |
| { |
| DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); |
| |
| if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) |
| return &bnx2x_fcoe_sp_obj(bp, q_obj); |
| else |
| return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; |
| } |
| |
| static void bnx2x_eq_int(struct bnx2x *bp) |
| { |
| u16 hw_cons, sw_cons, sw_prod; |
| union event_ring_elem *elem; |
| u8 echo; |
| u32 cid; |
| u8 opcode; |
| int rc, spqe_cnt = 0; |
| struct bnx2x_queue_sp_obj *q_obj; |
| struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; |
| struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; |
| |
| hw_cons = le16_to_cpu(*bp->eq_cons_sb); |
| |
| /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. |
| * when we get the next-page we need to adjust so the loop |
| * condition below will be met. The next element is the size of a |
| * regular element and hence incrementing by 1 |
| */ |
| if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) |
| hw_cons++; |
| |
| /* This function may never run in parallel with itself for a |
| * specific bp, thus there is no need in "paired" read memory |
| * barrier here. |
| */ |
| sw_cons = bp->eq_cons; |
| sw_prod = bp->eq_prod; |
| |
| DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", |
| hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); |
| |
| for (; sw_cons != hw_cons; |
| sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { |
| |
| elem = &bp->eq_ring[EQ_DESC(sw_cons)]; |
| |
| rc = bnx2x_iov_eq_sp_event(bp, elem); |
| if (!rc) { |
| DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", |
| rc); |
| goto next_spqe; |
| } |
| |
| /* elem CID originates from FW; actually LE */ |
| cid = SW_CID((__force __le32) |
| elem->message.data.cfc_del_event.cid); |
| opcode = elem->message.opcode; |
| |
| /* handle eq element */ |
| switch (opcode) { |
| case EVENT_RING_OPCODE_VF_PF_CHANNEL: |
| DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n"); |
| bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event); |
| continue; |
| |
| case EVENT_RING_OPCODE_STAT_QUERY: |
| DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, |
| "got statistics comp event %d\n", |
| bp->stats_comp++); |
| /* nothing to do with stats comp */ |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_CFC_DEL: |
| /* handle according to cid range */ |
| /* |
| * we may want to verify here that the bp state is |
| * HALTING |
| */ |
| DP(BNX2X_MSG_SP, |
| "got delete ramrod for MULTI[%d]\n", cid); |
| |
| if (CNIC_LOADED(bp) && |
| !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) |
| goto next_spqe; |
| |
| q_obj = bnx2x_cid_to_q_obj(bp, cid); |
| |
| if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) |
| break; |
| |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_STOP_TRAFFIC: |
| DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); |
| if (f_obj->complete_cmd(bp, f_obj, |
| BNX2X_F_CMD_TX_STOP)) |
| break; |
| bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_START_TRAFFIC: |
| DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); |
| if (f_obj->complete_cmd(bp, f_obj, |
| BNX2X_F_CMD_TX_START)) |
| break; |
| bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_FUNCTION_UPDATE: |
| echo = elem->message.data.function_update_event.echo; |
| if (echo == SWITCH_UPDATE) { |
| DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, |
| "got FUNC_SWITCH_UPDATE ramrod\n"); |
| if (f_obj->complete_cmd( |
| bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) |
| break; |
| |
| } else { |
| DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, |
| "AFEX: ramrod completed FUNCTION_UPDATE\n"); |
| f_obj->complete_cmd(bp, f_obj, |
| BNX2X_F_CMD_AFEX_UPDATE); |
| |
| /* We will perform the Queues update from |
| * sp_rtnl task as all Queue SP operations |
| * should run under rtnl_lock. |
| */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, |
| &bp->sp_rtnl_state); |
| smp_mb__after_clear_bit(); |
| |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| } |
| |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_AFEX_VIF_LISTS: |
| f_obj->complete_cmd(bp, f_obj, |
| BNX2X_F_CMD_AFEX_VIFLISTS); |
| bnx2x_after_afex_vif_lists(bp, elem); |
| goto next_spqe; |
| case EVENT_RING_OPCODE_FUNCTION_START: |
| DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, |
| "got FUNC_START ramrod\n"); |
| if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) |
| break; |
| |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_FUNCTION_STOP: |
| DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, |
| "got FUNC_STOP ramrod\n"); |
| if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) |
| break; |
| |
| goto next_spqe; |
| } |
| |
| switch (opcode | bp->state) { |
| case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | |
| BNX2X_STATE_OPEN): |
| case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | |
| BNX2X_STATE_OPENING_WAIT4_PORT): |
| cid = elem->message.data.eth_event.echo & |
| BNX2X_SWCID_MASK; |
| DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", |
| cid); |
| rss_raw->clear_pending(rss_raw); |
| break; |
| |
| case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): |
| case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): |
| case (EVENT_RING_OPCODE_SET_MAC | |
| BNX2X_STATE_CLOSING_WAIT4_HALT): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | |
| BNX2X_STATE_OPEN): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | |
| BNX2X_STATE_DIAG): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | |
| BNX2X_STATE_CLOSING_WAIT4_HALT): |
| DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); |
| bnx2x_handle_classification_eqe(bp, elem); |
| break; |
| |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | |
| BNX2X_STATE_OPEN): |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | |
| BNX2X_STATE_DIAG): |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | |
| BNX2X_STATE_CLOSING_WAIT4_HALT): |
| DP(BNX2X_MSG_SP, "got mcast ramrod\n"); |
| bnx2x_handle_mcast_eqe(bp); |
| break; |
| |
| case (EVENT_RING_OPCODE_FILTERS_RULES | |
| BNX2X_STATE_OPEN): |
| case (EVENT_RING_OPCODE_FILTERS_RULES | |
| BNX2X_STATE_DIAG): |
| case (EVENT_RING_OPCODE_FILTERS_RULES | |
| BNX2X_STATE_CLOSING_WAIT4_HALT): |
| DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); |
| bnx2x_handle_rx_mode_eqe(bp); |
| break; |
| default: |
| /* unknown event log error and continue */ |
| BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", |
| elem->message.opcode, bp->state); |
| } |
| next_spqe: |
| spqe_cnt++; |
| } /* for */ |
| |
| smp_mb__before_atomic_inc(); |
| atomic_add(spqe_cnt, &bp->eq_spq_left); |
| |
| bp->eq_cons = sw_cons; |
| bp->eq_prod = sw_prod; |
| /* Make sure that above mem writes were issued towards the memory */ |
| smp_wmb(); |
| |
| /* update producer */ |
| bnx2x_update_eq_prod(bp, bp->eq_prod); |
| } |
| |
| static void bnx2x_sp_task(struct work_struct *work) |
| { |
| struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); |
| |
| DP(BNX2X_MSG_SP, "sp task invoked\n"); |
| |
| /* make sure the atomic interrupt_occurred has been written */ |
| smp_rmb(); |
| if (atomic_read(&bp->interrupt_occurred)) { |
| |
| /* what work needs to be performed? */ |
| u16 status = bnx2x_update_dsb_idx(bp); |
| |
| DP(BNX2X_MSG_SP, "status %x\n", status); |
| DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); |
| atomic_set(&bp->interrupt_occurred, 0); |
| |
| /* HW attentions */ |
| if (status & BNX2X_DEF_SB_ATT_IDX) { |
| bnx2x_attn_int(bp); |
| status &= ~BNX2X_DEF_SB_ATT_IDX; |
| } |
| |
| /* SP events: STAT_QUERY and others */ |
| if (status & BNX2X_DEF_SB_IDX) { |
| struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); |
| |
| if (FCOE_INIT(bp) && |
| (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { |
| /* Prevent local bottom-halves from running as |
| * we are going to change the local NAPI list. |
| */ |
| local_bh_disable(); |
| napi_schedule(&bnx2x_fcoe(bp, napi)); |
| local_bh_enable(); |
| } |
| |
| /* Handle EQ completions */ |
| bnx2x_eq_int(bp); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, |
| le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); |
| |
| status &= ~BNX2X_DEF_SB_IDX; |
| } |
| |
| /* if status is non zero then perhaps something went wrong */ |
| if (unlikely(status)) |
| DP(BNX2X_MSG_SP, |
| "got an unknown interrupt! (status 0x%x)\n", status); |
| |
| /* ack status block only if something was actually handled */ |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, |
| le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); |
| } |
| |
| /* must be called after the EQ processing (since eq leads to sriov |
| * ramrod completion flows). |
| * This flow may have been scheduled by the arrival of a ramrod |
| * completion, or by the sriov code rescheduling itself. |
| */ |
| bnx2x_iov_sp_task(bp); |
| |
| /* afex - poll to check if VIFSET_ACK should be sent to MFW */ |
| if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, |
| &bp->sp_state)) { |
| bnx2x_link_report(bp); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); |
| } |
| } |
| |
| irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, |
| IGU_INT_DISABLE, 0); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return IRQ_HANDLED; |
| #endif |
| |
| if (CNIC_LOADED(bp)) { |
| struct cnic_ops *c_ops; |
| |
| rcu_read_lock(); |
| c_ops = rcu_dereference(bp->cnic_ops); |
| if (c_ops) |
| c_ops->cnic_handler(bp->cnic_data, NULL); |
| rcu_read_unlock(); |
| } |
| |
| /* schedule sp task to perform default status block work, ack |
| * attentions and enable interrupts. |
| */ |
| bnx2x_schedule_sp_task(bp); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* end of slow path */ |
| |
| void bnx2x_drv_pulse(struct bnx2x *bp) |
| { |
| SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, |
| bp->fw_drv_pulse_wr_seq); |
| } |
| |
| static void bnx2x_timer(unsigned long data) |
| { |
| struct bnx2x *bp = (struct bnx2x *) data; |
| |
| if (!netif_running(bp->dev)) |
| return; |
| |
| if (IS_PF(bp) && |
| !BP_NOMCP(bp)) { |
| int mb_idx = BP_FW_MB_IDX(bp); |
| u32 drv_pulse; |
| u32 mcp_pulse; |
| |
| ++bp->fw_drv_pulse_wr_seq; |
| bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; |
| /* TBD - add SYSTEM_TIME */ |
| drv_pulse = bp->fw_drv_pulse_wr_seq; |
| bnx2x_drv_pulse(bp); |
| |
| mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & |
| MCP_PULSE_SEQ_MASK); |
| /* The delta between driver pulse and mcp response |
| * should be 1 (before mcp response) or 0 (after mcp response) |
| */ |
| if ((drv_pulse != mcp_pulse) && |
| (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { |
| /* someone lost a heartbeat... */ |
| BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n", |
| drv_pulse, mcp_pulse); |
| } |
| } |
| |
| if (bp->state == BNX2X_STATE_OPEN) |
| bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); |
| |
| /* sample pf vf bulletin board for new posts from pf */ |
| if (IS_VF(bp)) |
| bnx2x_timer_sriov(bp); |
| |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| |
| /* end of Statistics */ |
| |
| /* nic init */ |
| |
| /* |
| * nic init service functions |
| */ |
| |
| static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) |
| { |
| u32 i; |
| if (!(len%4) && !(addr%4)) |
| for (i = 0; i < len; i += 4) |
| REG_WR(bp, addr + i, fill); |
| else |
| for (i = 0; i < len; i++) |
| REG_WR8(bp, addr + i, fill); |
| } |
| |
| /* helper: writes FP SP data to FW - data_size in dwords */ |
| static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, |
| int fw_sb_id, |
| u32 *sb_data_p, |
| u32 data_size) |
| { |
| int index; |
| for (index = 0; index < data_size; index++) |
| REG_WR(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + |
| sizeof(u32)*index, |
| *(sb_data_p + index)); |
| } |
| |
| static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) |
| { |
| u32 *sb_data_p; |
| u32 data_size = 0; |
| struct hc_status_block_data_e2 sb_data_e2; |
| struct hc_status_block_data_e1x sb_data_e1x; |
| |
| /* disable the function first */ |
| if (!CHIP_IS_E1x(bp)) { |
| memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); |
| sb_data_e2.common.state = SB_DISABLED; |
| sb_data_e2.common.p_func.vf_valid = false; |
| sb_data_p = (u32 *)&sb_data_e2; |
| data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); |
| } else { |
| memset(&sb_data_e1x, 0, |
| sizeof(struct hc_status_block_data_e1x)); |
| sb_data_e1x.common.state = SB_DISABLED; |
| sb_data_e1x.common.p_func.vf_valid = false; |
| sb_data_p = (u32 *)&sb_data_e1x; |
| data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); |
| } |
| bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); |
| |
| bnx2x_fill(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, |
| CSTORM_STATUS_BLOCK_SIZE); |
| bnx2x_fill(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, |
| CSTORM_SYNC_BLOCK_SIZE); |
| } |
| |
| /* helper: writes SP SB data to FW */ |
| static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, |
| struct hc_sp_status_block_data *sp_sb_data) |
| { |
| int func = BP_FUNC(bp); |
| int i; |
| for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) |
| REG_WR(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + |
| i*sizeof(u32), |
| *((u32 *)sp_sb_data + i)); |
| } |
| |
| static void bnx2x_zero_sp_sb(struct bnx2x *bp) |
| { |
| int func = BP_FUNC(bp); |
| struct hc_sp_status_block_data sp_sb_data; |
| memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); |
| |
| sp_sb_data.state = SB_DISABLED; |
| sp_sb_data.p_func.vf_valid = false; |
| |
| bnx2x_wr_sp_sb_data(bp, &sp_sb_data); |
| |
| bnx2x_fill(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, |
| CSTORM_SP_STATUS_BLOCK_SIZE); |
| bnx2x_fill(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, |
| CSTORM_SP_SYNC_BLOCK_SIZE); |
| } |
| |
| static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, |
| int igu_sb_id, int igu_seg_id) |
| { |
| hc_sm->igu_sb_id = igu_sb_id; |
| hc_sm->igu_seg_id = igu_seg_id; |
| hc_sm->timer_value = 0xFF; |
| hc_sm->time_to_expire = 0xFFFFFFFF; |
| } |
| |
| /* allocates state machine ids. */ |
| static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) |
| { |
| /* zero out state machine indices */ |
| /* rx indices */ |
| index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; |
| |
| /* tx indices */ |
| index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; |
| |
| /* map indices */ |
| /* rx indices */ |
| index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= |
| SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; |
| |
| /* tx indices */ |
| index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= |
| SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= |
| SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= |
| SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= |
| SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; |
| } |
| |
| void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, |
| u8 vf_valid, int fw_sb_id, int igu_sb_id) |
| { |
| int igu_seg_id; |
| |
| struct hc_status_block_data_e2 sb_data_e2; |
| struct hc_status_block_data_e1x sb_data_e1x; |
| struct hc_status_block_sm *hc_sm_p; |
| int data_size; |
| u32 *sb_data_p; |
| |
| if (CHIP_INT_MODE_IS_BC(bp)) |
| igu_seg_id = HC_SEG_ACCESS_NORM; |
| else |
| igu_seg_id = IGU_SEG_ACCESS_NORM; |
| |
| bnx2x_zero_fp_sb(bp, fw_sb_id); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); |
| sb_data_e2.common.state = SB_ENABLED; |
| sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); |
| sb_data_e2.common.p_func.vf_id = vfid; |
| sb_data_e2.common.p_func.vf_valid = vf_valid; |
| sb_data_e2.common.p_func.vnic_id = BP_VN(bp); |
| sb_data_e2.common.same_igu_sb_1b = true; |
| sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); |
| sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); |
| hc_sm_p = sb_data_e2.common.state_machine; |
| sb_data_p = (u32 *)&sb_data_e2; |
| data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); |
| bnx2x_map_sb_state_machines(sb_data_e2.index_data); |
| } else { |
| memset(&sb_data_e1x, 0, |
| sizeof(struct hc_status_block_data_e1x)); |
| sb_data_e1x.common.state = SB_ENABLED; |
| sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); |
| sb_data_e1x.common.p_func.vf_id = 0xff; |
| sb_data_e1x.common.p_func.vf_valid = false; |
| sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); |
| sb_data_e1x.common.same_igu_sb_1b = true; |
| sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); |
| sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); |
| hc_sm_p = sb_data_e1x.common.state_machine; |
| sb_data_p = (u32 *)&sb_data_e1x; |
| data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); |
| bnx2x_map_sb_state_machines(sb_data_e1x.index_data); |
| } |
| |
| bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], |
| igu_sb_id, igu_seg_id); |
| bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], |
| igu_sb_id, igu_seg_id); |
| |
| DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); |
| |
| /* write indices to HW - PCI guarantees endianity of regpairs */ |
| bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); |
| } |
| |
| static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, |
| u16 tx_usec, u16 rx_usec) |
| { |
| bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, |
| false, rx_usec); |
| bnx2x_update_coalesce_sb_index(bp, fw_sb_id, |
| HC_INDEX_ETH_TX_CQ_CONS_COS0, false, |
| tx_usec); |
| bnx2x_update_coalesce_sb_index(bp, fw_sb_id, |
| HC_INDEX_ETH_TX_CQ_CONS_COS1, false, |
| tx_usec); |
| bnx2x_update_coalesce_sb_index(bp, fw_sb_id, |
| HC_INDEX_ETH_TX_CQ_CONS_COS2, false, |
| tx_usec); |
| } |
| |
| static void bnx2x_init_def_sb(struct bnx2x *bp) |
| { |
| struct host_sp_status_block *def_sb = bp->def_status_blk; |
| dma_addr_t mapping = bp->def_status_blk_mapping; |
| int igu_sp_sb_index; |
| int igu_seg_id; |
| int port = BP_PORT(bp); |
| int func = BP_FUNC(bp); |
| int reg_offset, reg_offset_en5; |
| u64 section; |
| int index; |
| struct hc_sp_status_block_data sp_sb_data; |
| memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); |
| |
| if (CHIP_INT_MODE_IS_BC(bp)) { |
| igu_sp_sb_index = DEF_SB_IGU_ID; |
| igu_seg_id = HC_SEG_ACCESS_DEF; |
| } else { |
| igu_sp_sb_index = bp->igu_dsb_id; |
| igu_seg_id = IGU_SEG_ACCESS_DEF; |
| } |
| |
| /* ATTN */ |
| section = ((u64)mapping) + offsetof(struct host_sp_status_block, |
| atten_status_block); |
| def_sb->atten_status_block.status_block_id = igu_sp_sb_index; |
| |
| bp->attn_state = 0; |
| |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); |
| reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); |
| for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { |
| int sindex; |
| /* take care of sig[0]..sig[4] */ |
| for (sindex = 0; sindex < 4; sindex++) |
| bp->attn_group[index].sig[sindex] = |
| REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); |
| |
| if (!CHIP_IS_E1x(bp)) |
| /* |
| * enable5 is separate from the rest of the registers, |
| * and therefore the address skip is 4 |
| * and not 16 between the different groups |
| */ |
| bp->attn_group[index].sig[4] = REG_RD(bp, |
| reg_offset_en5 + 0x4*index); |
| else |
| bp->attn_group[index].sig[4] = 0; |
| } |
| |
| if (bp->common.int_block == INT_BLOCK_HC) { |
| reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : |
| HC_REG_ATTN_MSG0_ADDR_L); |
| |
| REG_WR(bp, reg_offset, U64_LO(section)); |
| REG_WR(bp, reg_offset + 4, U64_HI(section)); |
| } else if (!CHIP_IS_E1x(bp)) { |
| REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); |
| REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); |
| } |
| |
| section = ((u64)mapping) + offsetof(struct host_sp_status_block, |
| sp_sb); |
| |
| bnx2x_zero_sp_sb(bp); |
| |
| /* PCI guarantees endianity of regpairs */ |
| sp_sb_data.state = SB_ENABLED; |
| sp_sb_data.host_sb_addr.lo = U64_LO(section); |
| sp_sb_data.host_sb_addr.hi = U64_HI(section); |
| sp_sb_data.igu_sb_id = igu_sp_sb_index; |
| sp_sb_data.igu_seg_id = igu_seg_id; |
| sp_sb_data.p_func.pf_id = func; |
| sp_sb_data.p_func.vnic_id = BP_VN(bp); |
| sp_sb_data.p_func.vf_id = 0xff; |
| |
| bnx2x_wr_sp_sb_data(bp, &sp_sb_data); |
| |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); |
| } |
| |
| void bnx2x_update_coalesce(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_eth_queue(bp, i) |
| bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, |
| bp->tx_ticks, bp->rx_ticks); |
| } |
| |
| static void bnx2x_init_sp_ring(struct bnx2x *bp) |
| { |
| spin_lock_init(&bp->spq_lock); |
| atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); |
| |
| bp->spq_prod_idx = 0; |
| bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; |
| bp->spq_prod_bd = bp->spq; |
| bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; |
| } |
| |
| static void bnx2x_init_eq_ring(struct bnx2x *bp) |
| { |
| int i; |
| for (i = 1; i <= NUM_EQ_PAGES; i++) { |
| union event_ring_elem *elem = |
| &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; |
| |
| elem->next_page.addr.hi = |
| cpu_to_le32(U64_HI(bp->eq_mapping + |
| BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); |
| elem->next_page.addr.lo = |
| cpu_to_le32(U64_LO(bp->eq_mapping + |
| BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); |
| } |
| bp->eq_cons = 0; |
| bp->eq_prod = NUM_EQ_DESC; |
| bp->eq_cons_sb = BNX2X_EQ_INDEX; |
| /* we want a warning message before it gets wrought... */ |
| atomic_set(&bp->eq_spq_left, |
| min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); |
| } |
| |
| /* called with netif_addr_lock_bh() */ |
| int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, |
| unsigned long rx_mode_flags, |
| unsigned long rx_accept_flags, |
| unsigned long tx_accept_flags, |
| unsigned long ramrod_flags) |
| { |
| struct bnx2x_rx_mode_ramrod_params ramrod_param; |
| int rc; |
| |
| memset(&ramrod_param, 0, sizeof(ramrod_param)); |
| |
| /* Prepare ramrod parameters */ |
| ramrod_param.cid = 0; |
| ramrod_param.cl_id = cl_id; |
| ramrod_param.rx_mode_obj = &bp->rx_mode_obj; |
| ramrod_param.func_id = BP_FUNC(bp); |
| |
| ramrod_param.pstate = &bp->sp_state; |
| ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; |
| |
| ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); |
| ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); |
| |
| set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); |
| |
| ramrod_param.ramrod_flags = ramrod_flags; |
| ramrod_param.rx_mode_flags = rx_mode_flags; |
| |
| ramrod_param.rx_accept_flags = rx_accept_flags; |
| ramrod_param.tx_accept_flags = tx_accept_flags; |
| |
| rc = bnx2x_config_rx_mode(bp, &ramrod_param); |
| if (rc < 0) { |
| BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, |
| unsigned long *rx_accept_flags, |
| unsigned long *tx_accept_flags) |
| { |
| /* Clear the flags first */ |
| *rx_accept_flags = 0; |
| *tx_accept_flags = 0; |
| |
| switch (rx_mode) { |
| case BNX2X_RX_MODE_NONE: |
| /* |
| * 'drop all' supersedes any accept flags that may have been |
| * passed to the function. |
| */ |
| break; |
| case BNX2X_RX_MODE_NORMAL: |
| __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| break; |
| case BNX2X_RX_MODE_ALLMULTI: |
| __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| break; |
| case BNX2X_RX_MODE_PROMISC: |
| /* According to definition of SI mode, iface in promisc mode |
| * should receive matched and unmatched (in resolution of port) |
| * unicast packets. |
| */ |
| __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| if (IS_MF_SI(bp)) |
| __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); |
| else |
| __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); |
| |
| break; |
| default: |
| BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); |
| return -EINVAL; |
| } |
| |
| /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ |
| if (bp->rx_mode != BNX2X_RX_MODE_NONE) { |
| __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); |
| __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); |
| } |
| |
| return 0; |
| } |
| |
| /* called with netif_addr_lock_bh() */ |
| int bnx2x_set_storm_rx_mode(struct bnx2x *bp) |
| { |
| unsigned long rx_mode_flags = 0, ramrod_flags = 0; |
| unsigned long rx_accept_flags = 0, tx_accept_flags = 0; |
| int rc; |
| |
| if (!NO_FCOE(bp)) |
| /* Configure rx_mode of FCoE Queue */ |
| __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); |
| |
| rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, |
| &tx_accept_flags); |
| if (rc) |
| return rc; |
| |
| __set_bit(RAMROD_RX, &ramrod_flags); |
| __set_bit(RAMROD_TX, &ramrod_flags); |
| |
| return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, |
| rx_accept_flags, tx_accept_flags, |
| ramrod_flags); |
| } |
| |
| static void bnx2x_init_internal_common(struct bnx2x *bp) |
| { |
| int i; |
| |
| if (IS_MF_SI(bp)) |
| /* |
| * In switch independent mode, the TSTORM needs to accept |
| * packets that failed classification, since approximate match |
| * mac addresses aren't written to NIG LLH |
| */ |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); |
| else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); |
| |
| /* Zero this manually as its initialization is |
| currently missing in the initTool */ |
| for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) |
| REG_WR(bp, BAR_USTRORM_INTMEM + |
| USTORM_AGG_DATA_OFFSET + i * 4, 0); |
| if (!CHIP_IS_E1x(bp)) { |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, |
| CHIP_INT_MODE_IS_BC(bp) ? |
| HC_IGU_BC_MODE : HC_IGU_NBC_MODE); |
| } |
| } |
| |
| static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) |
| { |
| switch (load_code) { |
| case FW_MSG_CODE_DRV_LOAD_COMMON: |
| case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: |
| bnx2x_init_internal_common(bp); |
| /* no break */ |
| |
| case FW_MSG_CODE_DRV_LOAD_PORT: |
| /* nothing to do */ |
| /* no break */ |
| |
| case FW_MSG_CODE_DRV_LOAD_FUNCTION: |
| /* internal memory per function is |
| initialized inside bnx2x_pf_init */ |
| break; |
| |
| default: |
| BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); |
| break; |
| } |
| } |
| |
| static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) |
| { |
| return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); |
| } |
| |
| static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) |
| { |
| return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); |
| } |
| |
| static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) |
| { |
| if (CHIP_IS_E1x(fp->bp)) |
| return BP_L_ID(fp->bp) + fp->index; |
| else /* We want Client ID to be the same as IGU SB ID for 57712 */ |
| return bnx2x_fp_igu_sb_id(fp); |
| } |
| |
| static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) |
| { |
| struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; |
| u8 cos; |
| unsigned long q_type = 0; |
| u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; |
| fp->rx_queue = fp_idx; |
| fp->cid = fp_idx; |
| fp->cl_id = bnx2x_fp_cl_id(fp); |
| fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); |
| fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); |
| /* qZone id equals to FW (per path) client id */ |
| fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); |
| |
| /* init shortcut */ |
| fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); |
| |
| /* Setup SB indices */ |
| fp->rx_cons_sb = BNX2X_RX_SB_INDEX; |
| |
| /* Configure Queue State object */ |
| __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); |
| __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); |
| |
| BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); |
| |
| /* init tx data */ |
| for_each_cos_in_tx_queue(fp, cos) { |
| bnx2x_init_txdata(bp, fp->txdata_ptr[cos], |
| CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), |
| FP_COS_TO_TXQ(fp, cos, bp), |
| BNX2X_TX_SB_INDEX_BASE + cos, fp); |
| cids[cos] = fp->txdata_ptr[cos]->cid; |
| } |
| |
| /* nothing more for vf to do here */ |
| if (IS_VF(bp)) |
| return; |
| |
| bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, |
| fp->fw_sb_id, fp->igu_sb_id); |
| bnx2x_update_fpsb_idx(fp); |
| bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, |
| fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), |
| bnx2x_sp_mapping(bp, q_rdata), q_type); |
| |
| /** |
| * Configure classification DBs: Always enable Tx switching |
| */ |
| bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); |
| |
| DP(NETIF_MSG_IFUP, |
| "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", |
| fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, |
| fp->igu_sb_id); |
| } |
| |
| static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) |
| { |
| int i; |
| |
| for (i = 1; i <= NUM_TX_RINGS; i++) { |
| struct eth_tx_next_bd *tx_next_bd = |
| &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; |
| |
| tx_next_bd->addr_hi = |
| cpu_to_le32(U64_HI(txdata->tx_desc_mapping + |
| BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); |
| tx_next_bd->addr_lo = |
| cpu_to_le32(U64_LO(txdata->tx_desc_mapping + |
| BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); |
| } |
| |
| *txdata->tx_cons_sb = cpu_to_le16(0); |
| |
| SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); |
| txdata->tx_db.data.zero_fill1 = 0; |
| txdata->tx_db.data.prod = 0; |
| |
| txdata->tx_pkt_prod = 0; |
| txdata->tx_pkt_cons = 0; |
| txdata->tx_bd_prod = 0; |
| txdata->tx_bd_cons = 0; |
| txdata->tx_pkt = 0; |
| } |
| |
| static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_tx_queue_cnic(bp, i) |
| bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); |
| } |
| |
| static void bnx2x_init_tx_rings(struct bnx2x *bp) |
| { |
| int i; |
| u8 cos; |
| |
| for_each_eth_queue(bp, i) |
| for_each_cos_in_tx_queue(&bp->fp[i], cos) |
| bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); |
| } |
| |
| void bnx2x_nic_init_cnic(struct bnx2x *bp) |
| { |
| if (!NO_FCOE(bp)) |
| bnx2x_init_fcoe_fp(bp); |
| |
| bnx2x_init_sb(bp, bp->cnic_sb_mapping, |
| BNX2X_VF_ID_INVALID, false, |
| bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); |
| |
| /* ensure status block indices were read */ |
| rmb(); |
| bnx2x_init_rx_rings_cnic(bp); |
| bnx2x_init_tx_rings_cnic(bp); |
| |
| /* flush all */ |
| mb(); |
| mmiowb(); |
| } |
| |
| void bnx2x_pre_irq_nic_init(struct bnx2x *bp) |
| { |
| int i; |
| |
| /* Setup NIC internals and enable interrupts */ |
| for_each_eth_queue(bp, i) |
| bnx2x_init_eth_fp(bp, i); |
| |
| /* ensure status block indices were read */ |
| rmb(); |
| bnx2x_init_rx_rings(bp); |
| bnx2x_init_tx_rings(bp); |
| |
| if (IS_PF(bp)) { |
| /* Initialize MOD_ABS interrupts */ |
| bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, |
| bp->common.shmem_base, |
| bp->common.shmem2_base, BP_PORT(bp)); |
| |
| /* initialize the default status block and sp ring */ |
| bnx2x_init_def_sb(bp); |
| bnx2x_update_dsb_idx(bp); |
| bnx2x_init_sp_ring(bp); |
| } else { |
| bnx2x_memset_stats(bp); |
| } |
| } |
| |
| void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) |
| { |
| bnx2x_init_eq_ring(bp); |
| bnx2x_init_internal(bp, load_code); |
| bnx2x_pf_init(bp); |
| bnx2x_stats_init(bp); |
| |
| /* flush all before enabling interrupts */ |
| mb(); |
| mmiowb(); |
| |
| bnx2x_int_enable(bp); |
| |
| /* Check for SPIO5 */ |
| bnx2x_attn_int_deasserted0(bp, |
| REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & |
| AEU_INPUTS_ATTN_BITS_SPIO5); |
| } |
| |
| /* gzip service functions */ |
| static int bnx2x_gunzip_init(struct bnx2x *bp) |
| { |
| bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, |
| &bp->gunzip_mapping, GFP_KERNEL); |
| if (bp->gunzip_buf == NULL) |
| goto gunzip_nomem1; |
| |
| bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); |
| if (bp->strm == NULL) |
| goto gunzip_nomem2; |
| |
| bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); |
| if (bp->strm->workspace == NULL) |
| goto gunzip_nomem3; |
| |
| return 0; |
| |
| gunzip_nomem3: |
| kfree(bp->strm); |
| bp->strm = NULL; |
| |
| gunzip_nomem2: |
| dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, |
| bp->gunzip_mapping); |
| bp->gunzip_buf = NULL; |
| |
| gunzip_nomem1: |
| BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); |
| return -ENOMEM; |
| } |
| |
| static void bnx2x_gunzip_end(struct bnx2x *bp) |
| { |
| if (bp->strm) { |
| vfree(bp->strm->workspace); |
| kfree(bp->strm); |
| bp->strm = NULL; |
| } |
| |
| if (bp->gunzip_buf) { |
| dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, |
| bp->gunzip_mapping); |
| bp->gunzip_buf = NULL; |
| } |
| } |
| |
| static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) |
| { |
| int n, rc; |
| |
| /* check gzip header */ |
| if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { |
| BNX2X_ERR("Bad gzip header\n"); |
| return -EINVAL; |
| } |
| |
| n = 10; |
| |
| #define FNAME 0x8 |
| |
| if (zbuf[3] & FNAME) |
| while ((zbuf[n++] != 0) && (n < len)); |
| |
| bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; |
| bp->strm->avail_in = len - n; |
| bp->strm->next_out = bp->gunzip_buf; |
| bp->strm->avail_out = FW_BUF_SIZE; |
| |
| rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); |
| if (rc != Z_OK) |
| return rc; |
| |
| rc = zlib_inflate(bp->strm, Z_FINISH); |
| if ((rc != Z_OK) && (rc != Z_STREAM_END)) |
| netdev_err(bp->dev, "Firmware decompression error: %s\n", |
| bp->strm->msg); |
| |
| bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); |
| if (bp->gunzip_outlen & 0x3) |
| netdev_err(bp->dev, |
| "Firmware decompression error: gunzip_outlen (%d) not aligned\n", |
| bp->gunzip_outlen); |
| bp->gunzip_outlen >>= 2; |
| |
| zlib_inflateEnd(bp->strm); |
| |
| if (rc == Z_STREAM_END) |
| return 0; |
| |
| return rc; |
| } |
| |
| /* nic load/unload */ |
| |
| /* |
| * General service functions |
| */ |
| |
| /* send a NIG loopback debug packet */ |
| static void bnx2x_lb_pckt(struct bnx2x *bp) |
| { |
| u32 wb_write[3]; |
| |
| /* Ethernet source and destination addresses */ |
| wb_write[0] = 0x55555555; |
| wb_write[1] = 0x55555555; |
| wb_write[2] = 0x20; /* SOP */ |
| REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); |
| |
| /* NON-IP protocol */ |
| wb_write[0] = 0x09000000; |
| wb_write[1] = 0x55555555; |
| wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ |
| REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); |
| } |
| |
| /* some of the internal memories |
| * are not directly readable from the driver |
| * to test them we send debug packets |
| */ |
| static int bnx2x_int_mem_test(struct bnx2x *bp) |
| { |
| int factor; |
| int count, i; |
| u32 val = 0; |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| factor = 120; |
| else if (CHIP_REV_IS_EMUL(bp)) |
| factor = 200; |
| else |
| factor = 1; |
| |
| /* Disable inputs of parser neighbor blocks */ |
| REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); |
| REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); |
| REG_WR(bp, CFC_REG_DEBUG0, 0x1); |
| REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); |
| |
| /* Write 0 to parser credits for CFC search request */ |
| REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); |
| |
| /* send Ethernet packet */ |
| bnx2x_lb_pckt(bp); |
| |
| /* TODO do i reset NIG statistic? */ |
| /* Wait until NIG register shows 1 packet of size 0x10 */ |
| count = 1000 * factor; |
| while (count) { |
| |
| bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *bnx2x_sp(bp, wb_data[0]); |
| if (val == 0x10) |
| break; |
| |
| usleep_range(10000, 20000); |
| count--; |
| } |
| if (val != 0x10) { |
| BNX2X_ERR("NIG timeout val = 0x%x\n", val); |
| return -1; |
| } |
| |
| /* Wait until PRS register shows 1 packet */ |
| count = 1000 * factor; |
| while (count) { |
| val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); |
| if (val == 1) |
| break; |
| |
| usleep_range(10000, 20000); |
| count--; |
| } |
| if (val != 0x1) { |
| BNX2X_ERR("PRS timeout val = 0x%x\n", val); |
| return -2; |
| } |
| |
| /* Reset and init BRB, PRS */ |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); |
| msleep(50); |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); |
| msleep(50); |
| bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); |
| |
| DP(NETIF_MSG_HW, "part2\n"); |
| |
| /* Disable inputs of parser neighbor blocks */ |
| REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); |
| REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); |
| REG_WR(bp, CFC_REG_DEBUG0, 0x1); |
| REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); |
| |
| /* Write 0 to parser credits for CFC search request */ |
| REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); |
| |
| /* send 10 Ethernet packets */ |
| for (i = 0; i < 10; i++) |
| bnx2x_lb_pckt(bp); |
| |
| /* Wait until NIG register shows 10 + 1 |
| packets of size 11*0x10 = 0xb0 */ |
| count = 1000 * factor; |
| while (count) { |
| |
| bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *bnx2x_sp(bp, wb_data[0]); |
| if (val == 0xb0) |
| break; |
| |
| usleep_range(10000, 20000); |
| count--; |
| } |
| if (val != 0xb0) { |
| BNX2X_ERR("NIG timeout val = 0x%x\n", val); |
| return -3; |
| } |
| |
| /* Wait until PRS register shows 2 packets */ |
| val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); |
| if (val != 2) |
| BNX2X_ERR("PRS timeout val = 0x%x\n", val); |
| |
| /* Write 1 to parser credits for CFC search request */ |
| REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); |
| |
| /* Wait until PRS register shows 3 packets */ |
| msleep(10 * factor); |
| /* Wait until NIG register shows 1 packet of size 0x10 */ |
| val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); |
| if (val != 3) |
| BNX2X_ERR("PRS timeout val = 0x%x\n", val); |
| |
| /* clear NIG EOP FIFO */ |
| for (i = 0; i < 11; i++) |
| REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); |
| val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); |
| if (val != 1) { |
| BNX2X_ERR("clear of NIG failed\n"); |
| return -4; |
| } |
| |
| /* Reset and init BRB, PRS, NIG */ |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); |
| msleep(50); |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); |
| msleep(50); |
| bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); |
| if (!CNIC_SUPPORT(bp)) |
| /* set NIC mode */ |
| REG_WR(bp, PRS_REG_NIC_MODE, 1); |
| |
| /* Enable inputs of parser neighbor blocks */ |
| REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); |
| REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); |
| REG_WR(bp, CFC_REG_DEBUG0, 0x0); |
| REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); |
| |
| DP(NETIF_MSG_HW, "done\n"); |
| |
| return 0; /* OK */ |
| } |
| |
| static void bnx2x_enable_blocks_attention(struct bnx2x *bp) |
| { |
| u32 val; |
| |
| REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); |
| else |
| REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); |
| REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); |
| REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); |
| /* |
| * mask read length error interrupts in brb for parser |
| * (parsing unit and 'checksum and crc' unit) |
| * these errors are legal (PU reads fixed length and CAC can cause |
| * read length error on truncated packets) |
| */ |
| REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); |
| REG_WR(bp, QM_REG_QM_INT_MASK, 0); |
| REG_WR(bp, TM_REG_TM_INT_MASK, 0); |
| REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); |
| REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); |
| REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); |
| /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ |
| /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ |
| REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); |
| REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); |
| REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); |
| /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ |
| /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ |
| REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); |
| REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); |
| REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); |
| REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); |
| /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ |
| /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ |
| |
| val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; |
| if (!CHIP_IS_E1x(bp)) |
| val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; |
| REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); |
| |
| REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); |
| REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); |
| REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); |
| /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ |
| |
| if (!CHIP_IS_E1x(bp)) |
| /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ |
| REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); |
| |
| REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); |
| REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); |
| /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ |
| REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ |
| } |
| |
| static void bnx2x_reset_common(struct bnx2x *bp) |
| { |
| u32 val = 0x1400; |
| |
| /* reset_common */ |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, |
| 0xd3ffff7f); |
| |
| if (CHIP_IS_E3(bp)) { |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; |
| } |
| |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); |
| } |
| |
| static void bnx2x_setup_dmae(struct bnx2x *bp) |
| { |
| bp->dmae_ready = 0; |
| spin_lock_init(&bp->dmae_lock); |
| } |
| |
| static void bnx2x_init_pxp(struct bnx2x *bp) |
| { |
| u16 devctl; |
| int r_order, w_order; |
| |
| pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); |
| DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); |
| w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| if (bp->mrrs == -1) |
| r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| else { |
| DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); |
| r_order = bp->mrrs; |
| } |
| |
| bnx2x_init_pxp_arb(bp, r_order, w_order); |
| } |
| |
| static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) |
| { |
| int is_required; |
| u32 val; |
| int port; |
| |
| if (BP_NOMCP(bp)) |
| return; |
| |
| is_required = 0; |
| val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & |
| SHARED_HW_CFG_FAN_FAILURE_MASK; |
| |
| if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) |
| is_required = 1; |
| |
| /* |
| * The fan failure mechanism is usually related to the PHY type since |
| * the power consumption of the board is affected by the PHY. Currently, |
| * fan is required for most designs with SFX7101, BCM8727 and BCM8481. |
| */ |
| else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) |
| for (port = PORT_0; port < PORT_MAX; port++) { |
| is_required |= |
| bnx2x_fan_failure_det_req( |
| bp, |
| bp->common.shmem_base, |
| bp->common.shmem2_base, |
| port); |
| } |
| |
| DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); |
| |
| if (is_required == 0) |
| return; |
| |
| /* Fan failure is indicated by SPIO 5 */ |
| bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); |
| |
| /* set to active low mode */ |
| val = REG_RD(bp, MISC_REG_SPIO_INT); |
| val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); |
| REG_WR(bp, MISC_REG_SPIO_INT, val); |
| |
| /* enable interrupt to signal the IGU */ |
| val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); |
| val |= MISC_SPIO_SPIO5; |
| REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); |
| } |
| |
| void bnx2x_pf_disable(struct bnx2x *bp) |
| { |
| u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); |
| val &= ~IGU_PF_CONF_FUNC_EN; |
| |
| REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); |
| REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); |
| } |
| |
| static void bnx2x__common_init_phy(struct bnx2x *bp) |
| { |
| u32 shmem_base[2], shmem2_base[2]; |
| /* Avoid common init in case MFW supports LFA */ |
| if (SHMEM2_RD(bp, size) > |
| (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) |
| return; |
| shmem_base[0] = bp->common.shmem_base; |
| shmem2_base[0] = bp->common.shmem2_base; |
| if (!CHIP_IS_E1x(bp)) { |
| shmem_base[1] = |
| SHMEM2_RD(bp, other_shmem_base_addr); |
| shmem2_base[1] = |
| SHMEM2_RD(bp, other_shmem2_base_addr); |
| } |
| bnx2x_acquire_phy_lock(bp); |
| bnx2x_common_init_phy(bp, shmem_base, shmem2_base, |
| bp->common.chip_id); |
| bnx2x_release_phy_lock(bp); |
| } |
| |
| /** |
| * bnx2x_init_hw_common - initialize the HW at the COMMON phase. |
| * |
| * @bp: driver handle |
| */ |
| static int bnx2x_init_hw_common(struct bnx2x *bp) |
| { |
| u32 val; |
| |
| DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); |
| |
| /* |
| * take the RESET lock to protect undi_unload flow from accessing |
| * registers while we're resetting the chip |
| */ |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); |
| |
| bnx2x_reset_common(bp); |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); |
| |
| val = 0xfffc; |
| if (CHIP_IS_E3(bp)) { |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; |
| } |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); |
| |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); |
| |
| bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| u8 abs_func_id; |
| |
| /** |
| * 4-port mode or 2-port mode we need to turn of master-enable |
| * for everyone, after that, turn it back on for self. |
| * so, we disregard multi-function or not, and always disable |
| * for all functions on the given path, this means 0,2,4,6 for |
| * path 0 and 1,3,5,7 for path 1 |
| */ |
| for (abs_func_id = BP_PATH(bp); |
| abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { |
| if (abs_func_id == BP_ABS_FUNC(bp)) { |
| REG_WR(bp, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, |
| 1); |
| continue; |
| } |
| |
| bnx2x_pretend_func(bp, abs_func_id); |
| /* clear pf enable */ |
| bnx2x_pf_disable(bp); |
| bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); |
| } |
| } |
| |
| bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); |
| if (CHIP_IS_E1(bp)) { |
| /* enable HW interrupt from PXP on USDM overflow |
| bit 16 on INT_MASK_0 */ |
| REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); |
| bnx2x_init_pxp(bp); |
| |
| #ifdef __BIG_ENDIAN |
| REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); |
| REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); |
| REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); |
| REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); |
| REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); |
| /* make sure this value is 0 */ |
| REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); |
| |
| /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ |
| REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); |
| REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); |
| REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); |
| REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); |
| #endif |
| |
| bnx2x_ilt_init_page_size(bp, INITOP_SET); |
| |
| if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) |
| REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); |
| |
| /* let the HW do it's magic ... */ |
| msleep(100); |
| /* finish PXP init */ |
| val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); |
| if (val != 1) { |
| BNX2X_ERR("PXP2 CFG failed\n"); |
| return -EBUSY; |
| } |
| val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); |
| if (val != 1) { |
| BNX2X_ERR("PXP2 RD_INIT failed\n"); |
| return -EBUSY; |
| } |
| |
| /* Timers bug workaround E2 only. We need to set the entire ILT to |
| * have entries with value "0" and valid bit on. |
| * This needs to be done by the first PF that is loaded in a path |
| * (i.e. common phase) |
| */ |
| if (!CHIP_IS_E1x(bp)) { |
| /* In E2 there is a bug in the timers block that can cause function 6 / 7 |
| * (i.e. vnic3) to start even if it is marked as "scan-off". |
| * This occurs when a different function (func2,3) is being marked |
| * as "scan-off". Real-life scenario for example: if a driver is being |
| * load-unloaded while func6,7 are down. This will cause the timer to access |
| * the ilt, translate to a logical address and send a request to read/write. |
| * Since the ilt for the function that is down is not valid, this will cause |
| * a translation error which is unrecoverable. |
| * The Workaround is intended to make sure that when this happens nothing fatal |
| * will occur. The workaround: |
| * 1. First PF driver which loads on a path will: |
| * a. After taking the chip out of reset, by using pretend, |
| * it will write "0" to the following registers of |
| * the other vnics. |
| * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); |
| * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); |
| * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); |
| * And for itself it will write '1' to |
| * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable |
| * dmae-operations (writing to pram for example.) |
| * note: can be done for only function 6,7 but cleaner this |
| * way. |
| * b. Write zero+valid to the entire ILT. |
| * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of |
| * VNIC3 (of that port). The range allocated will be the |
| * entire ILT. This is needed to prevent ILT range error. |
| * 2. Any PF driver load flow: |
| * a. ILT update with the physical addresses of the allocated |
| * logical pages. |
| * b. Wait 20msec. - note that this timeout is needed to make |
| * sure there are no requests in one of the PXP internal |
| * queues with "old" ILT addresses. |
| * c. PF enable in the PGLC. |
| * d. Clear the was_error of the PF in the PGLC. (could have |
| * occurred while driver was down) |
| * e. PF enable in the CFC (WEAK + STRONG) |
| * f. Timers scan enable |
| * 3. PF driver unload flow: |
| * a. Clear the Timers scan_en. |
| * b. Polling for scan_on=0 for that PF. |
| * c. Clear the PF enable bit in the PXP. |
| * d. Clear the PF enable in the CFC (WEAK + STRONG) |
| * e. Write zero+valid to all ILT entries (The valid bit must |
| * stay set) |
| * f. If this is VNIC 3 of a port then also init |
| * first_timers_ilt_entry to zero and last_timers_ilt_entry |
| * to the last entry in the ILT. |
| * |
| * Notes: |
| * Currently the PF error in the PGLC is non recoverable. |
| * In the future the there will be a recovery routine for this error. |
| * Currently attention is masked. |
| * Having an MCP lock on the load/unload process does not guarantee that |
| * there is no Timer disable during Func6/7 enable. This is because the |
| * Timers scan is currently being cleared by the MCP on FLR. |
| * Step 2.d can be done only for PF6/7 and the driver can also check if |
| * there is error before clearing it. But the flow above is simpler and |
| * more general. |
| * All ILT entries are written by zero+valid and not just PF6/7 |
| * ILT entries since in the future the ILT entries allocation for |
| * PF-s might be dynamic. |
| */ |
| struct ilt_client_info ilt_cli; |
| struct bnx2x_ilt ilt; |
| memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); |
| memset(&ilt, 0, sizeof(struct bnx2x_ilt)); |
| |
| /* initialize dummy TM client */ |
| ilt_cli.start = 0; |
| ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; |
| ilt_cli.client_num = ILT_CLIENT_TM; |
| |
| /* Step 1: set zeroes to all ilt page entries with valid bit on |
| * Step 2: set the timers first/last ilt entry to point |
| * to the entire range to prevent ILT range error for 3rd/4th |
| * vnic (this code assumes existence of the vnic) |
| * |
| * both steps performed by call to bnx2x_ilt_client_init_op() |
| * with dummy TM client |
| * |
| * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT |
| * and his brother are split registers |
| */ |
| bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); |
| bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); |
| bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); |
| |
| REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); |
| REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); |
| REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); |
| } |
| |
| REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); |
| REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : |
| (CHIP_REV_IS_FPGA(bp) ? 400 : 0); |
| bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); |
| |
| /* let the HW do it's magic ... */ |
| do { |
| msleep(200); |
| val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); |
| } while (factor-- && (val != 1)); |
| |
| if (val != 1) { |
| BNX2X_ERR("ATC_INIT failed\n"); |
| return -EBUSY; |
| } |
| } |
| |
| bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); |
| |
| bnx2x_iov_init_dmae(bp); |
| |
| /* clean the DMAE memory */ |
| bp->dmae_ready = 1; |
| bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); |
| |
| bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); |
| |
| bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); |
| bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); |
| bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); |
| bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); |
| |
| bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); |
| |
| /* QM queues pointers table */ |
| bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); |
| |
| /* soft reset pulse */ |
| REG_WR(bp, QM_REG_SOFT_RESET, 1); |
| REG_WR(bp, QM_REG_SOFT_RESET, 0); |
| |
| if (CNIC_SUPPORT(bp)) |
| bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); |
| REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT); |
| if (!CHIP_REV_IS_SLOW(bp)) |
| /* enable hw interrupt from doorbell Q */ |
| REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); |
| |
| bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); |
| |
| bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); |
| REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); |
| |
| if (!CHIP_IS_E1(bp)) |
| REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); |
| |
| if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { |
| if (IS_MF_AFEX(bp)) { |
| /* configure that VNTag and VLAN headers must be |
| * received in afex mode |
| */ |
| REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); |
| REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); |
| REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); |
| REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); |
| REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); |
| } else { |
| /* Bit-map indicating which L2 hdrs may appear |
| * after the basic Ethernet header |
| */ |
| REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, |
| bp->path_has_ovlan ? 7 : 6); |
| } |
| } |
| |
| bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| /* reset VFC memories */ |
| REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, |
| VFC_MEMORIES_RST_REG_CAM_RST | |
| VFC_MEMORIES_RST_REG_RAM_RST); |
| REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, |
| VFC_MEMORIES_RST_REG_CAM_RST | |
| VFC_MEMORIES_RST_REG_RAM_RST); |
| |
| msleep(20); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); |
| |
| /* sync semi rtc */ |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, |
| 0x80000000); |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, |
| 0x80000000); |
| |
| bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| if (IS_MF_AFEX(bp)) { |
| /* configure that VNTag and VLAN headers must be |
| * sent in afex mode |
| */ |
| REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); |
| REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); |
| REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); |
| REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); |
| REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); |
| } else { |
| REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, |
| bp->path_has_ovlan ? 7 : 6); |
| } |
| } |
| |
| REG_WR(bp, SRC_REG_SOFT_RST, 1); |
| |
| bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); |
| |
| if (CNIC_SUPPORT(bp)) { |
| REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); |
| REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); |
| REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); |
| REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); |
| REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); |
| REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); |
| REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); |
| REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); |
| REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); |
| REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); |
| } |
| REG_WR(bp, SRC_REG_SOFT_RST, 0); |
| |
| if (sizeof(union cdu_context) != 1024) |
| /* we currently assume that a context is 1024 bytes */ |
| dev_alert(&bp->pdev->dev, |
| "please adjust the size of cdu_context(%ld)\n", |
| (long)sizeof(union cdu_context)); |
| |
| bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); |
| val = (4 << 24) + (0 << 12) + 1024; |
| REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); |
| |
| bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); |
| REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); |
| /* enable context validation interrupt from CFC */ |
| REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); |
| |
| /* set the thresholds to prevent CFC/CDU race */ |
| REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); |
| |
| bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) |
| REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); |
| |
| bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); |
| bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); |
| |
| /* Reset PCIE errors for debug */ |
| REG_WR(bp, 0x2814, 0xffffffff); |
| REG_WR(bp, 0x3820, 0xffffffff); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, |
| (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | |
| PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); |
| REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, |
| (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | |
| PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | |
| PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); |
| REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, |
| (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | |
| PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | |
| PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); |
| if (!CHIP_IS_E1(bp)) { |
| /* in E3 this done in per-port section */ |
| if (!CHIP_IS_E3(bp)) |
| REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); |
| } |
| if (CHIP_IS_E1H(bp)) |
| /* not applicable for E2 (and above ...) */ |
| REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); |
| |
| if (CHIP_REV_IS_SLOW(bp)) |
| msleep(200); |
| |
| /* finish CFC init */ |
| val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BNX2X_ERR("CFC LL_INIT failed\n"); |
| return -EBUSY; |
| } |
| val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BNX2X_ERR("CFC AC_INIT failed\n"); |
| return -EBUSY; |
| } |
| val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BNX2X_ERR("CFC CAM_INIT failed\n"); |
| return -EBUSY; |
| } |
| REG_WR(bp, CFC_REG_DEBUG0, 0); |
| |
| if (CHIP_IS_E1(bp)) { |
| /* read NIG statistic |
| to see if this is our first up since powerup */ |
| bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *bnx2x_sp(bp, wb_data[0]); |
| |
| /* do internal memory self test */ |
| if ((val == 0) && bnx2x_int_mem_test(bp)) { |
| BNX2X_ERR("internal mem self test failed\n"); |
| return -EBUSY; |
| } |
| } |
| |
| bnx2x_setup_fan_failure_detection(bp); |
| |
| /* clear PXP2 attentions */ |
| REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); |
| |
| bnx2x_enable_blocks_attention(bp); |
| bnx2x_enable_blocks_parity(bp); |
| |
| if (!BP_NOMCP(bp)) { |
| if (CHIP_IS_E1x(bp)) |
| bnx2x__common_init_phy(bp); |
| } else |
| BNX2X_ERR("Bootcode is missing - can not initialize link\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. |
| * |
| * @bp: driver handle |
| */ |
| static int bnx2x_init_hw_common_chip(struct bnx2x *bp) |
| { |
| int rc = bnx2x_init_hw_common(bp); |
| |
| if (rc) |
| return rc; |
| |
| /* In E2 2-PORT mode, same ext phy is used for the two paths */ |
| if (!BP_NOMCP(bp)) |
| bnx2x__common_init_phy(bp); |
| |
| return 0; |
| } |
| |
| static int bnx2x_init_hw_port(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; |
| u32 low, high; |
| u32 val; |
| |
| DP(NETIF_MSG_HW, "starting port init port %d\n", port); |
| |
| REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); |
| |
| bnx2x_init_block(bp, BLOCK_MISC, init_phase); |
| bnx2x_init_block(bp, BLOCK_PXP, init_phase); |
| bnx2x_init_block(bp, BLOCK_PXP2, init_phase); |
| |
| /* Timers bug workaround: disables the pf_master bit in pglue at |
| * common phase, we need to enable it here before any dmae access are |
| * attempted. Therefore we manually added the enable-master to the |
| * port phase (it also happens in the function phase) |
| */ |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| |
| bnx2x_init_block(bp, BLOCK_ATC, init_phase); |
| bnx2x_init_block(bp, BLOCK_DMAE, init_phase); |
| bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); |
| bnx2x_init_block(bp, BLOCK_QM, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_TCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_UCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XCM, init_phase); |
| |
| /* QM cid (connection) count */ |
| bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); |
| |
| if (CNIC_SUPPORT(bp)) { |
| bnx2x_init_block(bp, BLOCK_TM, init_phase); |
| REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); |
| REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_DORQ, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_BRB1, init_phase); |
| |
| if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { |
| |
| if (IS_MF(bp)) |
| low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); |
| else if (bp->dev->mtu > 4096) { |
| if (bp->flags & ONE_PORT_FLAG) |
| low = 160; |
| else { |
| val = bp->dev->mtu; |
| /* (24*1024 + val*4)/256 */ |
| low = 96 + (val/64) + |
| ((val % 64) ? 1 : 0); |
| } |
| } else |
| low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); |
| high = low + 56; /* 14*1024/256 */ |
| REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); |
| REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); |
| } |
| |
| if (CHIP_MODE_IS_4_PORT(bp)) |
| REG_WR(bp, (BP_PORT(bp) ? |
| BRB1_REG_MAC_GUARANTIED_1 : |
| BRB1_REG_MAC_GUARANTIED_0), 40); |
| |
| bnx2x_init_block(bp, BLOCK_PRS, init_phase); |
| if (CHIP_IS_E3B0(bp)) { |
| if (IS_MF_AFEX(bp)) { |
| /* configure headers for AFEX mode */ |
| REG_WR(bp, BP_PORT(bp) ? |
| PRS_REG_HDRS_AFTER_BASIC_PORT_1 : |
| PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); |
| REG_WR(bp, BP_PORT(bp) ? |
| PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : |
| PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); |
| REG_WR(bp, BP_PORT(bp) ? |
| PRS_REG_MUST_HAVE_HDRS_PORT_1 : |
| PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); |
| } else { |
| /* Ovlan exists only if we are in multi-function + |
| * switch-dependent mode, in switch-independent there |
| * is no ovlan headers |
| */ |
| REG_WR(bp, BP_PORT(bp) ? |
| PRS_REG_HDRS_AFTER_BASIC_PORT_1 : |
| PRS_REG_HDRS_AFTER_BASIC_PORT_0, |
| (bp->path_has_ovlan ? 7 : 6)); |
| } |
| } |
| |
| bnx2x_init_block(bp, BLOCK_TSDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CSDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_USDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XSDM, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_TSEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_USEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CSEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XSEM, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_UPB, init_phase); |
| bnx2x_init_block(bp, BLOCK_XPB, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_PBF, init_phase); |
| |
| if (CHIP_IS_E1x(bp)) { |
| /* configure PBF to work without PAUSE mtu 9000 */ |
| REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); |
| |
| /* update threshold */ |
| REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); |
| /* update init credit */ |
| REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); |
| |
| /* probe changes */ |
| REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); |
| udelay(50); |
| REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); |
| } |
| |
| if (CNIC_SUPPORT(bp)) |
| bnx2x_init_block(bp, BLOCK_SRC, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_CDU, init_phase); |
| bnx2x_init_block(bp, BLOCK_CFC, init_phase); |
| |
| if (CHIP_IS_E1(bp)) { |
| REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } |
| bnx2x_init_block(bp, BLOCK_HC, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_IGU, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); |
| /* init aeu_mask_attn_func_0/1: |
| * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use |
| * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF |
| * bits 4-7 are used for "per vn group attention" */ |
| val = IS_MF(bp) ? 0xF7 : 0x7; |
| /* Enable DCBX attention for all but E1 */ |
| val |= CHIP_IS_E1(bp) ? 0 : 0x10; |
| REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); |
| |
| bnx2x_init_block(bp, BLOCK_NIG, init_phase); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| /* Bit-map indicating which L2 hdrs may appear after the |
| * basic Ethernet header |
| */ |
| if (IS_MF_AFEX(bp)) |
| REG_WR(bp, BP_PORT(bp) ? |
| NIG_REG_P1_HDRS_AFTER_BASIC : |
| NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); |
| else |
| REG_WR(bp, BP_PORT(bp) ? |
| NIG_REG_P1_HDRS_AFTER_BASIC : |
| NIG_REG_P0_HDRS_AFTER_BASIC, |
| IS_MF_SD(bp) ? 7 : 6); |
| |
| if (CHIP_IS_E3(bp)) |
| REG_WR(bp, BP_PORT(bp) ? |
| NIG_REG_LLH1_MF_MODE : |
| NIG_REG_LLH_MF_MODE, IS_MF(bp)); |
| } |
| if (!CHIP_IS_E3(bp)) |
| REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); |
| |
| if (!CHIP_IS_E1(bp)) { |
| /* 0x2 disable mf_ov, 0x1 enable */ |
| REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, |
| (IS_MF_SD(bp) ? 0x1 : 0x2)); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| val = 0; |
| switch (bp->mf_mode) { |
| case MULTI_FUNCTION_SD: |
| val = 1; |
| break; |
| case MULTI_FUNCTION_SI: |
| case MULTI_FUNCTION_AFEX: |
| val = 2; |
| break; |
| } |
| |
| REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : |
| NIG_REG_LLH0_CLS_TYPE), val); |
| } |
| { |
| REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); |
| REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); |
| REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); |
| } |
| } |
| |
| /* If SPIO5 is set to generate interrupts, enable it for this port */ |
| val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); |
| if (val & MISC_SPIO_SPIO5) { |
| u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); |
| val = REG_RD(bp, reg_addr); |
| val |= AEU_INPUTS_ATTN_BITS_SPIO5; |
| REG_WR(bp, reg_addr, val); |
| } |
| |
| return 0; |
| } |
| |
| static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) |
| { |
| int reg; |
| u32 wb_write[2]; |
| |
| if (CHIP_IS_E1(bp)) |
| reg = PXP2_REG_RQ_ONCHIP_AT + index*8; |
| else |
| reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; |
| |
| wb_write[0] = ONCHIP_ADDR1(addr); |
| wb_write[1] = ONCHIP_ADDR2(addr); |
| REG_WR_DMAE(bp, reg, wb_write, 2); |
| } |
| |
| void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) |
| { |
| u32 data, ctl, cnt = 100; |
| u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; |
| u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; |
| u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; |
| u32 sb_bit = 1 << (idu_sb_id%32); |
| u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; |
| u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; |
| |
| /* Not supported in BC mode */ |
| if (CHIP_INT_MODE_IS_BC(bp)) |
| return; |
| |
| data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup |
| << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | |
| IGU_REGULAR_CLEANUP_SET | |
| IGU_REGULAR_BCLEANUP; |
| |
| ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | |
| func_encode << IGU_CTRL_REG_FID_SHIFT | |
| IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; |
| |
| DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", |
| data, igu_addr_data); |
| REG_WR(bp, igu_addr_data, data); |
| mmiowb(); |
| barrier(); |
| DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", |
| ctl, igu_addr_ctl); |
| REG_WR(bp, igu_addr_ctl, ctl); |
| mmiowb(); |
| barrier(); |
| |
| /* wait for clean up to finish */ |
| while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) |
| msleep(20); |
| |
| if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { |
| DP(NETIF_MSG_HW, |
| "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", |
| idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); |
| } |
| } |
| |
| static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) |
| { |
| bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); |
| } |
| |
| static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) |
| { |
| u32 i, base = FUNC_ILT_BASE(func); |
| for (i = base; i < base + ILT_PER_FUNC; i++) |
| bnx2x_ilt_wr(bp, i, 0); |
| } |
| |
| static void bnx2x_init_searcher(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); |
| /* T1 hash bits value determines the T1 number of entries */ |
| REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); |
| } |
| |
| static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) |
| { |
| int rc; |
| struct bnx2x_func_state_params func_params = {NULL}; |
| struct bnx2x_func_switch_update_params *switch_update_params = |
| &func_params.params.switch_update; |
| |
| /* Prepare parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; |
| |
| /* Function parameters */ |
| switch_update_params->suspend = suspend; |
| |
| rc = bnx2x_func_state_change(bp, &func_params); |
| |
| return rc; |
| } |
| |
| static int bnx2x_reset_nic_mode(struct bnx2x *bp) |
| { |
| int rc, i, port = BP_PORT(bp); |
| int vlan_en = 0, mac_en[NUM_MACS]; |
| |
| /* Close input from network */ |
| if (bp->mf_mode == SINGLE_FUNCTION) { |
| bnx2x_set_rx_filter(&bp->link_params, 0); |
| } else { |
| vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : |
| NIG_REG_LLH0_FUNC_EN); |
| REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : |
| NIG_REG_LLH0_FUNC_EN, 0); |
| for (i = 0; i < NUM_MACS; i++) { |
| mac_en[i] = REG_RD(bp, port ? |
| (NIG_REG_LLH1_FUNC_MEM_ENABLE + |
| 4 * i) : |
| (NIG_REG_LLH0_FUNC_MEM_ENABLE + |
| 4 * i)); |
| REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + |
| 4 * i) : |
| (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); |
| } |
| } |
| |
| /* Close BMC to host */ |
| REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : |
| NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); |
| |
| /* Suspend Tx switching to the PF. Completion of this ramrod |
| * further guarantees that all the packets of that PF / child |
| * VFs in BRB were processed by the Parser, so it is safe to |
| * change the NIC_MODE register. |
| */ |
| rc = bnx2x_func_switch_update(bp, 1); |
| if (rc) { |
| BNX2X_ERR("Can't suspend tx-switching!\n"); |
| return rc; |
| } |
| |
| /* Change NIC_MODE register */ |
| REG_WR(bp, PRS_REG_NIC_MODE, 0); |
| |
| /* Open input from network */ |
| if (bp->mf_mode == SINGLE_FUNCTION) { |
| bnx2x_set_rx_filter(&bp->link_params, 1); |
| } else { |
| REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : |
| NIG_REG_LLH0_FUNC_EN, vlan_en); |
| for (i = 0; i < NUM_MACS; i++) { |
| REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + |
| 4 * i) : |
| (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), |
| mac_en[i]); |
| } |
| } |
| |
| /* Enable BMC to host */ |
| REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : |
| NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); |
| |
| /* Resume Tx switching to the PF */ |
| rc = bnx2x_func_switch_update(bp, 0); |
| if (rc) { |
| BNX2X_ERR("Can't resume tx-switching!\n"); |
| return rc; |
| } |
| |
| DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); |
| return 0; |
| } |
| |
| int bnx2x_init_hw_func_cnic(struct bnx2x *bp) |
| { |
| int rc; |
| |
| bnx2x_ilt_init_op_cnic(bp, INITOP_SET); |
| |
| if (CONFIGURE_NIC_MODE(bp)) { |
| /* Configure searcher as part of function hw init */ |
| bnx2x_init_searcher(bp); |
| |
| /* Reset NIC mode */ |
| rc = bnx2x_reset_nic_mode(bp); |
| if (rc) |
| BNX2X_ERR("Can't change NIC mode!\n"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int bnx2x_init_hw_func(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| int func = BP_FUNC(bp); |
| int init_phase = PHASE_PF0 + func; |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| u16 cdu_ilt_start; |
| u32 addr, val; |
| u32 main_mem_base, main_mem_size, main_mem_prty_clr; |
| int i, main_mem_width, rc; |
| |
| DP(NETIF_MSG_HW, "starting func init func %d\n", func); |
| |
| /* FLR cleanup - hmmm */ |
| if (!CHIP_IS_E1x(bp)) { |
| rc = bnx2x_pf_flr_clnup(bp); |
| if (rc) { |
| bnx2x_fw_dump(bp); |
| return rc; |
| } |
| } |
| |
| /* set MSI reconfigure capability */ |
| if (bp->common.int_block == INT_BLOCK_HC) { |
| addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); |
| val = REG_RD(bp, addr); |
| val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; |
| REG_WR(bp, addr, val); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_PXP, init_phase); |
| bnx2x_init_block(bp, BLOCK_PXP2, init_phase); |
| |
| ilt = BP_ILT(bp); |
| cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; |
| |
| if (IS_SRIOV(bp)) |
| cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; |
| cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); |
| |
| /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes |
| * those of the VFs, so start line should be reset |
| */ |
| cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; |
| for (i = 0; i < L2_ILT_LINES(bp); i++) { |
| ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; |
| ilt->lines[cdu_ilt_start + i].page_mapping = |
| bp->context[i].cxt_mapping; |
| ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; |
| } |
| |
| bnx2x_ilt_init_op(bp, INITOP_SET); |
| |
| if (!CONFIGURE_NIC_MODE(bp)) { |
| bnx2x_init_searcher(bp); |
| REG_WR(bp, PRS_REG_NIC_MODE, 0); |
| DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); |
| } else { |
| /* Set NIC mode */ |
| REG_WR(bp, PRS_REG_NIC_MODE, 1); |
| DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); |
| } |
| |
| if (!CHIP_IS_E1x(bp)) { |
| u32 pf_conf = IGU_PF_CONF_FUNC_EN; |
| |
| /* Turn on a single ISR mode in IGU if driver is going to use |
| * INT#x or MSI |
| */ |
| if (!(bp->flags & USING_MSIX_FLAG)) |
| pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; |
| /* |
| * Timers workaround bug: function init part. |
| * Need to wait 20msec after initializing ILT, |
| * needed to make sure there are no requests in |
| * one of the PXP internal queues with "old" ILT addresses |
| */ |
| msleep(20); |
| /* |
| * Master enable - Due to WB DMAE writes performed before this |
| * register is re-initialized as part of the regular function |
| * init |
| */ |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| /* Enable the function in IGU */ |
| REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); |
| } |
| |
| bp->dmae_ready = 1; |
| |
| bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); |
| |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); |
| |
| bnx2x_init_block(bp, BLOCK_ATC, init_phase); |
| bnx2x_init_block(bp, BLOCK_DMAE, init_phase); |
| bnx2x_init_block(bp, BLOCK_NIG, init_phase); |
| bnx2x_init_block(bp, BLOCK_SRC, init_phase); |
| bnx2x_init_block(bp, BLOCK_MISC, init_phase); |
| bnx2x_init_block(bp, BLOCK_TCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_UCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XCM, init_phase); |
| bnx2x_init_block(bp, BLOCK_TSEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_USEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CSEM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XSEM, init_phase); |
| |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, QM_REG_PF_EN, 1); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); |
| REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); |
| REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); |
| REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); |
| } |
| bnx2x_init_block(bp, BLOCK_QM, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_TM, init_phase); |
| bnx2x_init_block(bp, BLOCK_DORQ, init_phase); |
| |
| bnx2x_iov_init_dq(bp); |
| |
| bnx2x_init_block(bp, BLOCK_BRB1, init_phase); |
| bnx2x_init_block(bp, BLOCK_PRS, init_phase); |
| bnx2x_init_block(bp, BLOCK_TSDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_CSDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_USDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_XSDM, init_phase); |
| bnx2x_init_block(bp, BLOCK_UPB, init_phase); |
| bnx2x_init_block(bp, BLOCK_XPB, init_phase); |
| bnx2x_init_block(bp, BLOCK_PBF, init_phase); |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, PBF_REG_DISABLE_PF, 0); |
| |
| bnx2x_init_block(bp, BLOCK_CDU, init_phase); |
| |
| bnx2x_init_block(bp, BLOCK_CFC, init_phase); |
| |
| if (!CHIP_IS_E1x(bp)) |
| REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); |
| |
| if (IS_MF(bp)) { |
| REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); |
| REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); |
| |
| /* HC init per function */ |
| if (bp->common.int_block == INT_BLOCK_HC) { |
| if (CHIP_IS_E1H(bp)) { |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| |
| REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } |
| bnx2x_init_block(bp, BLOCK_HC, init_phase); |
| |
| } else { |
| int num_segs, sb_idx, prod_offset; |
| |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); |
| REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| } |
| |
| bnx2x_init_block(bp, BLOCK_IGU, init_phase); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| int dsb_idx = 0; |
| /** |
| * Producer memory: |
| * E2 mode: address 0-135 match to the mapping memory; |
| * 136 - PF0 default prod; 137 - PF1 default prod; |
| * 138 - PF2 default prod; 139 - PF3 default prod; |
| * 140 - PF0 attn prod; 141 - PF1 attn prod; |
| * 142 - PF2 attn prod; 143 - PF3 attn prod; |
| * 144-147 reserved. |
| * |
| * E1.5 mode - In backward compatible mode; |
| * for non default SB; each even line in the memory |
| * holds the U producer and each odd line hold |
| * the C producer. The first 128 producers are for |
| * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 |
| * producers are for the DSB for each PF. |
| * Each PF has five segments: (the order inside each |
| * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; |
| * 132-135 C prods; 136-139 X prods; 140-143 T prods; |
| * 144-147 attn prods; |
| */ |
| /* non-default-status-blocks */ |
| num_segs = CHIP_INT_MODE_IS_BC(bp) ? |
| IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; |
| for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { |
| prod_offset = (bp->igu_base_sb + sb_idx) * |
| num_segs; |
| |
| for (i = 0; i < num_segs; i++) { |
| addr = IGU_REG_PROD_CONS_MEMORY + |
| (prod_offset + i) * 4; |
| REG_WR(bp, addr, 0); |
| } |
| /* send consumer update with value 0 */ |
| bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_igu_clear_sb(bp, |
| bp->igu_base_sb + sb_idx); |
| } |
| |
| /* default-status-blocks */ |
| num_segs = CHIP_INT_MODE_IS_BC(bp) ? |
| IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; |
| |
| if (CHIP_MODE_IS_4_PORT(bp)) |
| dsb_idx = BP_FUNC(bp); |
| else |
| dsb_idx = BP_VN(bp); |
| |
| prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? |
| IGU_BC_BASE_DSB_PROD + dsb_idx : |
| IGU_NORM_BASE_DSB_PROD + dsb_idx); |
| |
| /* |
| * igu prods come in chunks of E1HVN_MAX (4) - |
| * does not matters what is the current chip mode |
| */ |
| for (i = 0; i < (num_segs * E1HVN_MAX); |
| i += E1HVN_MAX) { |
| addr = IGU_REG_PROD_CONS_MEMORY + |
| (prod_offset + i)*4; |
| REG_WR(bp, addr, 0); |
| } |
| /* send consumer update with 0 */ |
| if (CHIP_INT_MODE_IS_BC(bp)) { |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| CSTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| XSTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| TSTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| ATTENTION_ID, 0, IGU_INT_NOP, 1); |
| } else { |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bnx2x_ack_sb(bp, bp->igu_dsb_id, |
| ATTENTION_ID, 0, IGU_INT_NOP, 1); |
| } |
| bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); |
| |
| /* !!! These should become driver const once |
| rf-tool supports split-68 const */ |
| REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); |
| REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); |
| REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); |
| REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); |
| REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); |
| REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); |
| } |
| } |
| |
| /* Reset PCIE errors for debug */ |
| REG_WR(bp, 0x2114, 0xffffffff); |
| REG_WR(bp, 0x2120, 0xffffffff); |
| |
| if (CHIP_IS_E1x(bp)) { |
| main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ |
| main_mem_base = HC_REG_MAIN_MEMORY + |
| BP_PORT(bp) * (main_mem_size * 4); |
| main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; |
| main_mem_width = 8; |
| |
| val = REG_RD(bp, main_mem_prty_clr); |
| if (val) |
| DP(NETIF_MSG_HW, |
| "Hmmm... Parity errors in HC block during function init (0x%x)!\n", |
| val); |
| |
| /* Clear "false" parity errors in MSI-X table */ |
| for (i = main_mem_base; |
| i < main_mem_base + main_mem_size * 4; |
| i += main_mem_width) { |
| bnx2x_read_dmae(bp, i, main_mem_width / 4); |
| bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), |
| i, main_mem_width / 4); |
| } |
| /* Clear HC parity attention */ |
| REG_RD(bp, main_mem_prty_clr); |
| } |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| /* Enable STORMs SP logging */ |
| REG_WR8(bp, BAR_USTRORM_INTMEM + |
| USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + |
| TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); |
| REG_WR8(bp, BAR_XSTRORM_INTMEM + |
| XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); |
| #endif |
| |
| bnx2x_phy_probe(&bp->link_params); |
| |
| return 0; |
| } |
| |
| void bnx2x_free_mem_cnic(struct bnx2x *bp) |
| { |
| bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); |
| |
| if (!CHIP_IS_E1x(bp)) |
| BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, |
| sizeof(struct host_hc_status_block_e2)); |
| else |
| BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, |
| sizeof(struct host_hc_status_block_e1x)); |
| |
| BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); |
| } |
| |
| void bnx2x_free_mem(struct bnx2x *bp) |
| { |
| int i; |
| |
| BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, |
| sizeof(struct host_sp_status_block)); |
| |
| BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, |
| bp->fw_stats_data_sz + bp->fw_stats_req_sz); |
| |
| BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, |
| sizeof(struct bnx2x_slowpath)); |
| |
| for (i = 0; i < L2_ILT_LINES(bp); i++) |
| BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, |
| bp->context[i].size); |
| bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); |
| |
| BNX2X_FREE(bp->ilt->lines); |
| |
| BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); |
| |
| BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, |
| BCM_PAGE_SIZE * NUM_EQ_PAGES); |
| |
| BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); |
| |
| bnx2x_iov_free_mem(bp); |
| } |
| |
| int bnx2x_alloc_mem_cnic(struct bnx2x *bp) |
| { |
| if (!CHIP_IS_E1x(bp)) |
| /* size = the status block + ramrod buffers */ |
| BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, |
| sizeof(struct host_hc_status_block_e2)); |
| else |
| BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, |
| &bp->cnic_sb_mapping, |
| sizeof(struct |
| host_hc_status_block_e1x)); |
| |
| if (CONFIGURE_NIC_MODE(bp) && !bp->t2) |
| /* allocate searcher T2 table, as it wasn't allocated before */ |
| BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); |
| |
| /* write address to which L5 should insert its values */ |
| bp->cnic_eth_dev.addr_drv_info_to_mcp = |
| &bp->slowpath->drv_info_to_mcp; |
| |
| if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) |
| goto alloc_mem_err; |
| |
| return 0; |
| |
| alloc_mem_err: |
| bnx2x_free_mem_cnic(bp); |
| BNX2X_ERR("Can't allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| int bnx2x_alloc_mem(struct bnx2x *bp) |
| { |
| int i, allocated, context_size; |
| |
| if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) |
| /* allocate searcher T2 table */ |
| BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); |
| |
| BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, |
| sizeof(struct host_sp_status_block)); |
| |
| BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, |
| sizeof(struct bnx2x_slowpath)); |
| |
| /* Allocate memory for CDU context: |
| * This memory is allocated separately and not in the generic ILT |
| * functions because CDU differs in few aspects: |
| * 1. There are multiple entities allocating memory for context - |
| * 'regular' driver, CNIC and SRIOV driver. Each separately controls |
| * its own ILT lines. |
| * 2. Since CDU page-size is not a single 4KB page (which is the case |
| * for the other ILT clients), to be efficient we want to support |
| * allocation of sub-page-size in the last entry. |
| * 3. Context pointers are used by the driver to pass to FW / update |
| * the context (for the other ILT clients the pointers are used just to |
| * free the memory during unload). |
| */ |
| context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); |
| |
| for (i = 0, allocated = 0; allocated < context_size; i++) { |
| bp->context[i].size = min(CDU_ILT_PAGE_SZ, |
| (context_size - allocated)); |
| BNX2X_PCI_ALLOC(bp->context[i].vcxt, |
| &bp->context[i].cxt_mapping, |
| bp->context[i].size); |
| allocated += bp->context[i].size; |
| } |
| BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); |
| |
| if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) |
| goto alloc_mem_err; |
| |
| if (bnx2x_iov_alloc_mem(bp)) |
| goto alloc_mem_err; |
| |
| /* Slow path ring */ |
| BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); |
| |
| /* EQ */ |
| BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, |
| BCM_PAGE_SIZE * NUM_EQ_PAGES); |
| |
| return 0; |
| |
| alloc_mem_err: |
| bnx2x_free_mem(bp); |
| BNX2X_ERR("Can't allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Init service functions |
| */ |
| |
| int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, |
| struct bnx2x_vlan_mac_obj *obj, bool set, |
| int mac_type, unsigned long *ramrod_flags) |
| { |
| int rc; |
| struct bnx2x_vlan_mac_ramrod_params ramrod_param; |
| |
| memset(&ramrod_param, 0, sizeof(ramrod_param)); |
| |
| /* Fill general parameters */ |
| ramrod_param.vlan_mac_obj = obj; |
| ramrod_param.ramrod_flags = *ramrod_flags; |
| |
| /* Fill a user request section if needed */ |
| if (!test_bit(RAMROD_CONT, ramrod_flags)) { |
| memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); |
| |
| __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); |
| |
| /* Set the command: ADD or DEL */ |
| if (set) |
| ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; |
| else |
| ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; |
| } |
| |
| rc = bnx2x_config_vlan_mac(bp, &ramrod_param); |
| |
| if (rc == -EEXIST) { |
| DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); |
| /* do not treat adding same MAC as error */ |
| rc = 0; |
| } else if (rc < 0) |
| BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); |
| |
| return rc; |
| } |
| |
| int bnx2x_del_all_macs(struct bnx2x *bp, |
| struct bnx2x_vlan_mac_obj *mac_obj, |
| int mac_type, bool wait_for_comp) |
| { |
| int rc; |
| unsigned long ramrod_flags = 0, vlan_mac_flags = 0; |
| |
| /* Wait for completion of requested */ |
| if (wait_for_comp) |
| __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| |
| /* Set the mac type of addresses we want to clear */ |
| __set_bit(mac_type, &vlan_mac_flags); |
| |
| rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); |
| if (rc < 0) |
| BNX2X_ERR("Failed to delete MACs: %d\n", rc); |
| |
| return rc; |
| } |
| |
| int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) |
| { |
| if (is_zero_ether_addr(bp->dev->dev_addr) && |
| (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { |
| DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, |
| "Ignoring Zero MAC for STORAGE SD mode\n"); |
| return 0; |
| } |
| |
| if (IS_PF(bp)) { |
| unsigned long ramrod_flags = 0; |
| |
| DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); |
| __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| return bnx2x_set_mac_one(bp, bp->dev->dev_addr, |
| &bp->sp_objs->mac_obj, set, |
| BNX2X_ETH_MAC, &ramrod_flags); |
| } else { /* vf */ |
| return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, |
| bp->fp->index, true); |
| } |
| } |
| |
| int bnx2x_setup_leading(struct bnx2x *bp) |
| { |
| return bnx2x_setup_queue(bp, &bp->fp[0], 1); |
| } |
| |
| /** |
| * bnx2x_set_int_mode - configure interrupt mode |
| * |
| * @bp: driver handle |
| * |
| * In case of MSI-X it will also try to enable MSI-X. |
| */ |
| int bnx2x_set_int_mode(struct bnx2x *bp) |
| { |
| int rc = 0; |
| |
| if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) |
| return -EINVAL; |
| |
| switch (int_mode) { |
| case BNX2X_INT_MODE_MSIX: |
| /* attempt to enable msix */ |
| rc = bnx2x_enable_msix(bp); |
| |
| /* msix attained */ |
| if (!rc) |
| return 0; |
| |
| /* vfs use only msix */ |
| if (rc && IS_VF(bp)) |
| return rc; |
| |
| /* failed to enable multiple MSI-X */ |
| BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", |
| bp->num_queues, |
| 1 + bp->num_cnic_queues); |
| |
| /* falling through... */ |
| case BNX2X_INT_MODE_MSI: |
| bnx2x_enable_msi(bp); |
| |
| /* falling through... */ |
| case BNX2X_INT_MODE_INTX: |
| bp->num_ethernet_queues = 1; |
| bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; |
| BNX2X_DEV_INFO("set number of queues to 1\n"); |
| break; |
| default: |
| BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* must be called prior to any HW initializations */ |
| static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) |
| { |
| if (IS_SRIOV(bp)) |
| return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; |
| return L2_ILT_LINES(bp); |
| } |
| |
| void bnx2x_ilt_set_info(struct bnx2x *bp) |
| { |
| struct ilt_client_info *ilt_client; |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| u16 line = 0; |
| |
| ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); |
| DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); |
| |
| /* CDU */ |
| ilt_client = &ilt->clients[ILT_CLIENT_CDU]; |
| ilt_client->client_num = ILT_CLIENT_CDU; |
| ilt_client->page_size = CDU_ILT_PAGE_SZ; |
| ilt_client->flags = ILT_CLIENT_SKIP_MEM; |
| ilt_client->start = line; |
| line += bnx2x_cid_ilt_lines(bp); |
| |
| if (CNIC_SUPPORT(bp)) |
| line += CNIC_ILT_LINES; |
| ilt_client->end = line - 1; |
| |
| DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, |
| ilt_client->end, |
| ilt_client->page_size, |
| ilt_client->flags, |
| ilog2(ilt_client->page_size >> 12)); |
| |
| /* QM */ |
| if (QM_INIT(bp->qm_cid_count)) { |
| ilt_client = &ilt->clients[ILT_CLIENT_QM]; |
| ilt_client->client_num = ILT_CLIENT_QM; |
| ilt_client->page_size = QM_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| |
| /* 4 bytes for each cid */ |
| line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, |
| QM_ILT_PAGE_SZ); |
| |
| ilt_client->end = line - 1; |
| |
| DP(NETIF_MSG_IFUP, |
| "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, |
| ilt_client->end, |
| ilt_client->page_size, |
| ilt_client->flags, |
| ilog2(ilt_client->page_size >> 12)); |
| } |
| |
| if (CNIC_SUPPORT(bp)) { |
| /* SRC */ |
| ilt_client = &ilt->clients[ILT_CLIENT_SRC]; |
| ilt_client->client_num = ILT_CLIENT_SRC; |
| ilt_client->page_size = SRC_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| line += SRC_ILT_LINES; |
| ilt_client->end = line - 1; |
| |
| DP(NETIF_MSG_IFUP, |
| "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, |
| ilt_client->end, |
| ilt_client->page_size, |
| ilt_client->flags, |
| ilog2(ilt_client->page_size >> 12)); |
| |
| /* TM */ |
| ilt_client = &ilt->clients[ILT_CLIENT_TM]; |
| ilt_client->client_num = ILT_CLIENT_TM; |
| ilt_client->page_size = TM_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| line += TM_ILT_LINES; |
| ilt_client->end = line - 1; |
| |
| DP(NETIF_MSG_IFUP, |
| "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, |
| ilt_client->end, |
| ilt_client->page_size, |
| ilt_client->flags, |
| ilog2(ilt_client->page_size >> 12)); |
| } |
| |
| BUG_ON(line > ILT_MAX_LINES); |
| } |
| |
| /** |
| * bnx2x_pf_q_prep_init - prepare INIT transition parameters |
| * |
| * @bp: driver handle |
| * @fp: pointer to fastpath |
| * @init_params: pointer to parameters structure |
| * |
| * parameters configured: |
| * - HC configuration |
| * - Queue's CDU context |
| */ |
| static void bnx2x_pf_q_prep_init(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) |
| { |
| u8 cos; |
| int cxt_index, cxt_offset; |
| |
| /* FCoE Queue uses Default SB, thus has no HC capabilities */ |
| if (!IS_FCOE_FP(fp)) { |
| __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); |
| __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); |
| |
| /* If HC is supported, enable host coalescing in the transition |
| * to INIT state. |
| */ |
| __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); |
| __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); |
| |
| /* HC rate */ |
| init_params->rx.hc_rate = bp->rx_ticks ? |
| (1000000 / bp->rx_ticks) : 0; |
| init_params->tx.hc_rate = bp->tx_ticks ? |
| (1000000 / bp->tx_ticks) : 0; |
| |
| /* FW SB ID */ |
| init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = |
| fp->fw_sb_id; |
| |
| /* |
| * CQ index among the SB indices: FCoE clients uses the default |
| * SB, therefore it's different. |
| */ |
| init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; |
| init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; |
| } |
| |
| /* set maximum number of COSs supported by this queue */ |
| init_params->max_cos = fp->max_cos; |
| |
| DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", |
| fp->index, init_params->max_cos); |
| |
| /* set the context pointers queue object */ |
| for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { |
| cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; |
| cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * |
| ILT_PAGE_CIDS); |
| init_params->cxts[cos] = |
| &bp->context[cxt_index].vcxt[cxt_offset].eth; |
| } |
| } |
| |
| static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| struct bnx2x_queue_state_params *q_params, |
| struct bnx2x_queue_setup_tx_only_params *tx_only_params, |
| int tx_index, bool leading) |
| { |
| memset(tx_only_params, 0, sizeof(*tx_only_params)); |
| |
| /* Set the command */ |
| q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; |
| |
| /* Set tx-only QUEUE flags: don't zero statistics */ |
| tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); |
| |
| /* choose the index of the cid to send the slow path on */ |
| tx_only_params->cid_index = tx_index; |
| |
| /* Set general TX_ONLY_SETUP parameters */ |
| bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); |
| |
| /* Set Tx TX_ONLY_SETUP parameters */ |
| bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); |
| |
| DP(NETIF_MSG_IFUP, |
| "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", |
| tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], |
| q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, |
| tx_only_params->gen_params.spcl_id, tx_only_params->flags); |
| |
| /* send the ramrod */ |
| return bnx2x_queue_state_change(bp, q_params); |
| } |
| |
| /** |
| * bnx2x_setup_queue - setup queue |
| * |
| * @bp: driver handle |
| * @fp: pointer to fastpath |
| * @leading: is leading |
| * |
| * This function performs 2 steps in a Queue state machine |
| * actually: 1) RESET->INIT 2) INIT->SETUP |
| */ |
| |
| int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| bool leading) |
| { |
| struct bnx2x_queue_state_params q_params = {NULL}; |
| struct bnx2x_queue_setup_params *setup_params = |
| &q_params.params.setup; |
| struct bnx2x_queue_setup_tx_only_params *tx_only_params = |
| &q_params.params.tx_only; |
| int rc; |
| u8 tx_index; |
| |
| DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); |
| |
| /* reset IGU state skip FCoE L2 queue */ |
| if (!IS_FCOE_FP(fp)) |
| bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, |
| IGU_INT_ENABLE, 0); |
| |
| q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; |
| /* We want to wait for completion in this context */ |
| __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); |
| |
| /* Prepare the INIT parameters */ |
| bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); |
| |
| /* Set the command */ |
| q_params.cmd = BNX2X_Q_CMD_INIT; |
| |
| /* Change the state to INIT */ |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) { |
| BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); |
| return rc; |
| } |
| |
| DP(NETIF_MSG_IFUP, "init complete\n"); |
| |
| /* Now move the Queue to the SETUP state... */ |
| memset(setup_params, 0, sizeof(*setup_params)); |
| |
| /* Set QUEUE flags */ |
| setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); |
| |
| /* Set general SETUP parameters */ |
| bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, |
| FIRST_TX_COS_INDEX); |
| |
| bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, |
| &setup_params->rxq_params); |
| |
| bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, |
| FIRST_TX_COS_INDEX); |
| |
| /* Set the command */ |
| q_params.cmd = BNX2X_Q_CMD_SETUP; |
| |
| if (IS_FCOE_FP(fp)) |
| bp->fcoe_init = true; |
| |
| /* Change the state to SETUP */ |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) { |
| BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); |
| return rc; |
| } |
| |
| /* loop through the relevant tx-only indices */ |
| for (tx_index = FIRST_TX_ONLY_COS_INDEX; |
| tx_index < fp->max_cos; |
| tx_index++) { |
| |
| /* prepare and send tx-only ramrod*/ |
| rc = bnx2x_setup_tx_only(bp, fp, &q_params, |
| tx_only_params, tx_index, leading); |
| if (rc) { |
| BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", |
| fp->index, tx_index); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int bnx2x_stop_queue(struct bnx2x *bp, int index) |
| { |
| struct bnx2x_fastpath *fp = &bp->fp[index]; |
| struct bnx2x_fp_txdata *txdata; |
| struct bnx2x_queue_state_params q_params = {NULL}; |
| int rc, tx_index; |
| |
| DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); |
| |
| q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; |
| /* We want to wait for completion in this context */ |
| __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); |
| |
| /* close tx-only connections */ |
| for (tx_index = FIRST_TX_ONLY_COS_INDEX; |
| tx_index < fp->max_cos; |
| tx_index++){ |
| |
| /* ascertain this is a normal queue*/ |
| txdata = fp->txdata_ptr[tx_index]; |
| |
| DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", |
| txdata->txq_index); |
| |
| /* send halt terminate on tx-only connection */ |
| q_params.cmd = BNX2X_Q_CMD_TERMINATE; |
| memset(&q_params.params.terminate, 0, |
| sizeof(q_params.params.terminate)); |
| q_params.params.terminate.cid_index = tx_index; |
| |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) |
| return rc; |
| |
| /* send halt terminate on tx-only connection */ |
| q_params.cmd = BNX2X_Q_CMD_CFC_DEL; |
| memset(&q_params.params.cfc_del, 0, |
| sizeof(q_params.params.cfc_del)); |
| q_params.params.cfc_del.cid_index = tx_index; |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) |
| return rc; |
| } |
| /* Stop the primary connection: */ |
| /* ...halt the connection */ |
| q_params.cmd = BNX2X_Q_CMD_HALT; |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) |
| return rc; |
| |
| /* ...terminate the connection */ |
| q_params.cmd = BNX2X_Q_CMD_TERMINATE; |
| memset(&q_params.params.terminate, 0, |
| sizeof(q_params.params.terminate)); |
| q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; |
| rc = bnx2x_queue_state_change(bp, &q_params); |
| if (rc) |
| return rc; |
| /* ...delete cfc entry */ |
| q_params.cmd = BNX2X_Q_CMD_CFC_DEL; |
| memset(&q_params.params.cfc_del, 0, |
| sizeof(q_params.params.cfc_del)); |
| q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; |
| return bnx2x_queue_state_change(bp, &q_params); |
| } |
| |
| static void bnx2x_reset_func(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| int func = BP_FUNC(bp); |
| int i; |
| |
| /* Disable the function in the FW */ |
| REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); |
| |
| /* FP SBs */ |
| for_each_eth_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), |
| SB_DISABLED); |
| } |
| |
| if (CNIC_LOADED(bp)) |
| /* CNIC SB */ |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET |
| (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); |
| |
| /* SP SB */ |
| REG_WR8(bp, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), |
| SB_DISABLED); |
| |
| for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) |
| REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), |
| 0); |
| |
| /* Configure IGU */ |
| if (bp->common.int_block == INT_BLOCK_HC) { |
| REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } else { |
| REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); |
| REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| } |
| |
| if (CNIC_LOADED(bp)) { |
| /* Disable Timer scan */ |
| REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); |
| /* |
| * Wait for at least 10ms and up to 2 second for the timers |
| * scan to complete |
| */ |
| for (i = 0; i < 200; i++) { |
| usleep_range(10000, 20000); |
| if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) |
| break; |
| } |
| } |
| /* Clear ILT */ |
| bnx2x_clear_func_ilt(bp, func); |
| |
| /* Timers workaround bug for E2: if this is vnic-3, |
| * we need to set the entire ilt range for this timers. |
| */ |
| if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { |
| struct ilt_client_info ilt_cli; |
| /* use dummy TM client */ |
| memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); |
| ilt_cli.start = 0; |
| ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; |
| ilt_cli.client_num = ILT_CLIENT_TM; |
| |
| bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); |
| } |
| |
| /* this assumes that reset_port() called before reset_func()*/ |
| if (!CHIP_IS_E1x(bp)) |
| bnx2x_pf_disable(bp); |
| |
| bp->dmae_ready = 0; |
| } |
| |
| static void bnx2x_reset_port(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 val; |
| |
| /* Reset physical Link */ |
| bnx2x__link_reset(bp); |
| |
| REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); |
| |
| /* Do not rcv packets to BRB */ |
| REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); |
| /* Do not direct rcv packets that are not for MCP to the BRB */ |
| REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : |
| NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); |
| |
| /* Configure AEU */ |
| REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); |
| |
| msleep(100); |
| /* Check for BRB port occupancy */ |
| val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); |
| if (val) |
| DP(NETIF_MSG_IFDOWN, |
| "BRB1 is not empty %d blocks are occupied\n", val); |
| |
| /* TODO: Close Doorbell port? */ |
| } |
| |
| static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) |
| { |
| struct bnx2x_func_state_params func_params = {NULL}; |
| |
| /* Prepare parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_HW_RESET; |
| |
| func_params.params.hw_init.load_phase = load_code; |
| |
| return bnx2x_func_state_change(bp, &func_params); |
| } |
| |
| static int bnx2x_func_stop(struct bnx2x *bp) |
| { |
| struct bnx2x_func_state_params func_params = {NULL}; |
| int rc; |
| |
| /* Prepare parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_STOP; |
| |
| /* |
| * Try to stop the function the 'good way'. If fails (in case |
| * of a parity error during bnx2x_chip_cleanup()) and we are |
| * not in a debug mode, perform a state transaction in order to |
| * enable further HW_RESET transaction. |
| */ |
| rc = bnx2x_func_state_change(bp, &func_params); |
| if (rc) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| return rc; |
| #else |
| BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); |
| __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); |
| return bnx2x_func_state_change(bp, &func_params); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * bnx2x_send_unload_req - request unload mode from the MCP. |
| * |
| * @bp: driver handle |
| * @unload_mode: requested function's unload mode |
| * |
| * Return unload mode returned by the MCP: COMMON, PORT or FUNC. |
| */ |
| u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) |
| { |
| u32 reset_code = 0; |
| int port = BP_PORT(bp); |
| |
| /* Select the UNLOAD request mode */ |
| if (unload_mode == UNLOAD_NORMAL) |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; |
| |
| else if (bp->flags & NO_WOL_FLAG) |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; |
| |
| else if (bp->wol) { |
| u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; |
| u8 *mac_addr = bp->dev->dev_addr; |
| u32 val; |
| u16 pmc; |
| |
| /* The mac address is written to entries 1-4 to |
| * preserve entry 0 which is used by the PMF |
| */ |
| u8 entry = (BP_VN(bp) + 1)*8; |
| |
| val = (mac_addr[0] << 8) | mac_addr[1]; |
| EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); |
| |
| val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | |
| (mac_addr[4] << 8) | mac_addr[5]; |
| EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); |
| |
| /* Enable the PME and clear the status */ |
| pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc); |
| pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; |
| pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc); |
| |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; |
| |
| } else |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; |
| |
| /* Send the request to the MCP */ |
| if (!BP_NOMCP(bp)) |
| reset_code = bnx2x_fw_command(bp, reset_code, 0); |
| else { |
| int path = BP_PATH(bp); |
| |
| DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| load_count[path][0]--; |
| load_count[path][1 + port]--; |
| DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| if (load_count[path][0] == 0) |
| reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; |
| else if (load_count[path][1 + port] == 0) |
| reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; |
| else |
| reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; |
| } |
| |
| return reset_code; |
| } |
| |
| /** |
| * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. |
| * |
| * @bp: driver handle |
| * @keep_link: true iff link should be kept up |
| */ |
| void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) |
| { |
| u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; |
| |
| /* Report UNLOAD_DONE to MCP */ |
| if (!BP_NOMCP(bp)) |
| bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); |
| } |
| |
| static int bnx2x_func_wait_started(struct bnx2x *bp) |
| { |
| int tout = 50; |
| int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; |
| |
| if (!bp->port.pmf) |
| return 0; |
| |
| /* |
| * (assumption: No Attention from MCP at this stage) |
| * PMF probably in the middle of TX disable/enable transaction |
| * 1. Sync IRS for default SB |
| * 2. Sync SP queue - this guarantees us that attention handling started |
| * 3. Wait, that TX disable/enable transaction completes |
| * |
| * 1+2 guarantee that if DCBx attention was scheduled it already changed |
| * pending bit of transaction from STARTED-->TX_STOPPED, if we already |
| * received completion for the transaction the state is TX_STOPPED. |
| * State will return to STARTED after completion of TX_STOPPED-->STARTED |
| * transaction. |
| */ |
| |
| /* make sure default SB ISR is done */ |
| if (msix) |
| synchronize_irq(bp->msix_table[0].vector); |
| else |
| synchronize_irq(bp->pdev->irq); |
| |
| flush_workqueue(bnx2x_wq); |
| |
| while (bnx2x_func_get_state(bp, &bp->func_obj) != |
| BNX2X_F_STATE_STARTED && tout--) |
| msleep(20); |
| |
| if (bnx2x_func_get_state(bp, &bp->func_obj) != |
| BNX2X_F_STATE_STARTED) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| BNX2X_ERR("Wrong function state\n"); |
| return -EBUSY; |
| #else |
| /* |
| * Failed to complete the transaction in a "good way" |
| * Force both transactions with CLR bit |
| */ |
| struct bnx2x_func_state_params func_params = {NULL}; |
| |
| DP(NETIF_MSG_IFDOWN, |
| "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); |
| |
| func_params.f_obj = &bp->func_obj; |
| __set_bit(RAMROD_DRV_CLR_ONLY, |
| &func_params.ramrod_flags); |
| |
| /* STARTED-->TX_ST0PPED */ |
| func_params.cmd = BNX2X_F_CMD_TX_STOP; |
| bnx2x_func_state_change(bp, &func_params); |
| |
| /* TX_ST0PPED-->STARTED */ |
| func_params.cmd = BNX2X_F_CMD_TX_START; |
| return bnx2x_func_state_change(bp, &func_params); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) |
| { |
| int port = BP_PORT(bp); |
| int i, rc = 0; |
| u8 cos; |
| struct bnx2x_mcast_ramrod_params rparam = {NULL}; |
| u32 reset_code; |
| |
| /* Wait until tx fastpath tasks complete */ |
| for_each_tx_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| |
| for_each_cos_in_tx_queue(fp, cos) |
| rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (rc) |
| return; |
| #endif |
| } |
| |
| /* Give HW time to discard old tx messages */ |
| usleep_range(1000, 2000); |
| |
| /* Clean all ETH MACs */ |
| rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, |
| false); |
| if (rc < 0) |
| BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); |
| |
| /* Clean up UC list */ |
| rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, |
| true); |
| if (rc < 0) |
| BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", |
| rc); |
| |
| /* Disable LLH */ |
| if (!CHIP_IS_E1(bp)) |
| REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); |
| |
| /* Set "drop all" (stop Rx). |
| * We need to take a netif_addr_lock() here in order to prevent |
| * a race between the completion code and this code. |
| */ |
| netif_addr_lock_bh(bp->dev); |
| /* Schedule the rx_mode command */ |
| if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) |
| set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); |
| else |
| bnx2x_set_storm_rx_mode(bp); |
| |
| /* Cleanup multicast configuration */ |
| rparam.mcast_obj = &bp->mcast_obj; |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); |
| if (rc < 0) |
| BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); |
| |
| netif_addr_unlock_bh(bp->dev); |
| |
| bnx2x_iov_chip_cleanup(bp); |
| |
| /* |
| * Send the UNLOAD_REQUEST to the MCP. This will return if |
| * this function should perform FUNC, PORT or COMMON HW |
| * reset. |
| */ |
| reset_code = bnx2x_send_unload_req(bp, unload_mode); |
| |
| /* |
| * (assumption: No Attention from MCP at this stage) |
| * PMF probably in the middle of TX disable/enable transaction |
| */ |
| rc = bnx2x_func_wait_started(bp); |
| if (rc) { |
| BNX2X_ERR("bnx2x_func_wait_started failed\n"); |
| #ifdef BNX2X_STOP_ON_ERROR |
| return; |
| #endif |
| } |
| |
| /* Close multi and leading connections |
| * Completions for ramrods are collected in a synchronous way |
| */ |
| for_each_eth_queue(bp, i) |
| if (bnx2x_stop_queue(bp, i)) |
| #ifdef BNX2X_STOP_ON_ERROR |
| return; |
| #else |
| goto unload_error; |
| #endif |
| |
| if (CNIC_LOADED(bp)) { |
| for_each_cnic_queue(bp, i) |
| if (bnx2x_stop_queue(bp, i)) |
| #ifdef BNX2X_STOP_ON_ERROR |
| return; |
| #else |
| goto unload_error; |
| #endif |
| } |
| |
| /* If SP settings didn't get completed so far - something |
| * very wrong has happen. |
| */ |
| if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) |
| BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); |
| |
| #ifndef BNX2X_STOP_ON_ERROR |
| unload_error: |
| #endif |
| rc = bnx2x_func_stop(bp); |
| if (rc) { |
| BNX2X_ERR("Function stop failed!\n"); |
| #ifdef BNX2X_STOP_ON_ERROR |
| return; |
| #endif |
| } |
| |
| /* Disable HW interrupts, NAPI */ |
| bnx2x_netif_stop(bp, 1); |
| /* Delete all NAPI objects */ |
| bnx2x_del_all_napi(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_del_all_napi_cnic(bp); |
| |
| /* Release IRQs */ |
| bnx2x_free_irq(bp); |
| |
| /* Reset the chip */ |
| rc = bnx2x_reset_hw(bp, reset_code); |
| if (rc) |
| BNX2X_ERR("HW_RESET failed\n"); |
| |
| /* Report UNLOAD_DONE to MCP */ |
| bnx2x_send_unload_done(bp, keep_link); |
| } |
| |
| void bnx2x_disable_close_the_gate(struct bnx2x *bp) |
| { |
| u32 val; |
| |
| DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); |
| |
| if (CHIP_IS_E1(bp)) { |
| int port = BP_PORT(bp); |
| u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| |
| val = REG_RD(bp, addr); |
| val &= ~(0x300); |
| REG_WR(bp, addr, val); |
| } else { |
| val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); |
| val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | |
| MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); |
| REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); |
| } |
| } |
| |
| /* Close gates #2, #3 and #4: */ |
| static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) |
| { |
| u32 val; |
| |
| /* Gates #2 and #4a are closed/opened for "not E1" only */ |
| if (!CHIP_IS_E1(bp)) { |
| /* #4 */ |
| REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); |
| /* #2 */ |
| REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); |
| } |
| |
| /* #3 */ |
| if (CHIP_IS_E1x(bp)) { |
| /* Prevent interrupts from HC on both ports */ |
| val = REG_RD(bp, HC_REG_CONFIG_1); |
| REG_WR(bp, HC_REG_CONFIG_1, |
| (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : |
| (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); |
| |
| val = REG_RD(bp, HC_REG_CONFIG_0); |
| REG_WR(bp, HC_REG_CONFIG_0, |
| (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : |
| (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); |
| } else { |
| /* Prevent incoming interrupts in IGU */ |
| val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); |
| |
| REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, |
| (!close) ? |
| (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : |
| (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); |
| } |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", |
| close ? "closing" : "opening"); |
| mmiowb(); |
| } |
| |
| #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ |
| |
| static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) |
| { |
| /* Do some magic... */ |
| u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); |
| *magic_val = val & SHARED_MF_CLP_MAGIC; |
| MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); |
| } |
| |
| /** |
| * bnx2x_clp_reset_done - restore the value of the `magic' bit. |
| * |
| * @bp: driver handle |
| * @magic_val: old value of the `magic' bit. |
| */ |
| static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) |
| { |
| /* Restore the `magic' bit value... */ |
| u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); |
| MF_CFG_WR(bp, shared_mf_config.clp_mb, |
| (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); |
| } |
| |
| /** |
| * bnx2x_reset_mcp_prep - prepare for MCP reset. |
| * |
| * @bp: driver handle |
| * @magic_val: old value of 'magic' bit. |
| * |
| * Takes care of CLP configurations. |
| */ |
| static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) |
| { |
| u32 shmem; |
| u32 validity_offset; |
| |
| DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); |
| |
| /* Set `magic' bit in order to save MF config */ |
| if (!CHIP_IS_E1(bp)) |
| bnx2x_clp_reset_prep(bp, magic_val); |
| |
| /* Get shmem offset */ |
| shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); |
| validity_offset = |
| offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); |
| |
| /* Clear validity map flags */ |
| if (shmem > 0) |
| REG_WR(bp, shmem + validity_offset, 0); |
| } |
| |
| #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ |
| #define MCP_ONE_TIMEOUT 100 /* 100 ms */ |
| |
| /** |
| * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT |
| * |
| * @bp: driver handle |
| */ |
| static void bnx2x_mcp_wait_one(struct bnx2x *bp) |
| { |
| /* special handling for emulation and FPGA, |
| wait 10 times longer */ |
| if (CHIP_REV_IS_SLOW(bp)) |
| msleep(MCP_ONE_TIMEOUT*10); |
| else |
| msleep(MCP_ONE_TIMEOUT); |
| } |
| |
| /* |
| * initializes bp->common.shmem_base and waits for validity signature to appear |
| */ |
| static int bnx2x_init_shmem(struct bnx2x *bp) |
| { |
| int cnt = 0; |
| u32 val = 0; |
| |
| do { |
| bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); |
| if (bp->common.shmem_base) { |
| val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); |
| if (val & SHR_MEM_VALIDITY_MB) |
| return 0; |
| } |
| |
| bnx2x_mcp_wait_one(bp); |
| |
| } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); |
| |
| BNX2X_ERR("BAD MCP validity signature\n"); |
| |
| return -ENODEV; |
| } |
| |
| static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) |
| { |
| int rc = bnx2x_init_shmem(bp); |
| |
| /* Restore the `magic' bit value */ |
| if (!CHIP_IS_E1(bp)) |
| bnx2x_clp_reset_done(bp, magic_val); |
| |
| return rc; |
| } |
| |
| static void bnx2x_pxp_prep(struct bnx2x *bp) |
| { |
| if (!CHIP_IS_E1(bp)) { |
| REG_WR(bp, PXP2_REG_RD_START_INIT, 0); |
| REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); |
| mmiowb(); |
| } |
| } |
| |
| /* |
| * Reset the whole chip except for: |
| * - PCIE core |
| * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by |
| * one reset bit) |
| * - IGU |
| * - MISC (including AEU) |
| * - GRC |
| * - RBCN, RBCP |
| */ |
| static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) |
| { |
| u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; |
| u32 global_bits2, stay_reset2; |
| |
| /* |
| * Bits that have to be set in reset_mask2 if we want to reset 'global' |
| * (per chip) blocks. |
| */ |
| global_bits2 = |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; |
| |
| /* Don't reset the following blocks. |
| * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be |
| * reset, as in 4 port device they might still be owned |
| * by the MCP (there is only one leader per path). |
| */ |
| not_reset_mask1 = |
| MISC_REGISTERS_RESET_REG_1_RST_HC | |
| MISC_REGISTERS_RESET_REG_1_RST_PXPV | |
| MISC_REGISTERS_RESET_REG_1_RST_PXP; |
| |
| not_reset_mask2 = |
| MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_RBCN | |
| MISC_REGISTERS_RESET_REG_2_RST_GRC | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | |
| MISC_REGISTERS_RESET_REG_2_RST_ATC | |
| MISC_REGISTERS_RESET_REG_2_PGLC | |
| MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | |
| MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | |
| MISC_REGISTERS_RESET_REG_2_UMAC0 | |
| MISC_REGISTERS_RESET_REG_2_UMAC1; |
| |
| /* |
| * Keep the following blocks in reset: |
| * - all xxMACs are handled by the bnx2x_link code. |
| */ |
| stay_reset2 = |
| MISC_REGISTERS_RESET_REG_2_XMAC | |
| MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; |
| |
| /* Full reset masks according to the chip */ |
| reset_mask1 = 0xffffffff; |
| |
| if (CHIP_IS_E1(bp)) |
| reset_mask2 = 0xffff; |
| else if (CHIP_IS_E1H(bp)) |
| reset_mask2 = 0x1ffff; |
| else if (CHIP_IS_E2(bp)) |
| reset_mask2 = 0xfffff; |
| else /* CHIP_IS_E3 */ |
| reset_mask2 = 0x3ffffff; |
| |
| /* Don't reset global blocks unless we need to */ |
| if (!global) |
| reset_mask2 &= ~global_bits2; |
| |
| /* |
| * In case of attention in the QM, we need to reset PXP |
| * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM |
| * because otherwise QM reset would release 'close the gates' shortly |
| * before resetting the PXP, then the PSWRQ would send a write |
| * request to PGLUE. Then when PXP is reset, PGLUE would try to |
| * read the payload data from PSWWR, but PSWWR would not |
| * respond. The write queue in PGLUE would stuck, dmae commands |
| * would not return. Therefore it's important to reset the second |
| * reset register (containing the |
| * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the |
| * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM |
| * bit). |
| */ |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, |
| reset_mask2 & (~not_reset_mask2)); |
| |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, |
| reset_mask1 & (~not_reset_mask1)); |
| |
| barrier(); |
| mmiowb(); |
| |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, |
| reset_mask2 & (~stay_reset2)); |
| |
| barrier(); |
| mmiowb(); |
| |
| REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); |
| mmiowb(); |
| } |
| |
| /** |
| * bnx2x_er_poll_igu_vq - poll for pending writes bit. |
| * It should get cleared in no more than 1s. |
| * |
| * @bp: driver handle |
| * |
| * It should get cleared in no more than 1s. Returns 0 if |
| * pending writes bit gets cleared. |
| */ |
| static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) |
| { |
| u32 cnt = 1000; |
| u32 pend_bits = 0; |
| |
| do { |
| pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); |
| |
| if (pend_bits == 0) |
| break; |
| |
| usleep_range(1000, 2000); |
| } while (cnt-- > 0); |
| |
| if (cnt <= 0) { |
| BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", |
| pend_bits); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static int bnx2x_process_kill(struct bnx2x *bp, bool global) |
| { |
| int cnt = 1000; |
| u32 val = 0; |
| u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; |
| u32 tags_63_32 = 0; |
| |
| /* Empty the Tetris buffer, wait for 1s */ |
| do { |
| sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); |
| blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); |
| port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); |
| port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); |
| pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); |
| if (CHIP_IS_E3(bp)) |
| tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); |
| |
| if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && |
| ((port_is_idle_0 & 0x1) == 0x1) && |
| ((port_is_idle_1 & 0x1) == 0x1) && |
| (pgl_exp_rom2 == 0xffffffff) && |
| (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) |
| break; |
| usleep_range(1000, 2000); |
| } while (cnt-- > 0); |
| |
| if (cnt <= 0) { |
| BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); |
| BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", |
| sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, |
| pgl_exp_rom2); |
| return -EAGAIN; |
| } |
| |
| barrier(); |
| |
| /* Close gates #2, #3 and #4 */ |
| bnx2x_set_234_gates(bp, true); |
| |
| /* Poll for IGU VQs for 57712 and newer chips */ |
| if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) |
| return -EAGAIN; |
| |
| /* TBD: Indicate that "process kill" is in progress to MCP */ |
| |
| /* Clear "unprepared" bit */ |
| REG_WR(bp, MISC_REG_UNPREPARED, 0); |
| barrier(); |
| |
| /* Make sure all is written to the chip before the reset */ |
| mmiowb(); |
| |
| /* Wait for 1ms to empty GLUE and PCI-E core queues, |
| * PSWHST, GRC and PSWRD Tetris buffer. |
| */ |
| usleep_range(1000, 2000); |
| |
| /* Prepare to chip reset: */ |
| /* MCP */ |
| if (global) |
| bnx2x_reset_mcp_prep(bp, &val); |
| |
| /* PXP */ |
| bnx2x_pxp_prep(bp); |
| barrier(); |
| |
| /* reset the chip */ |
| bnx2x_process_kill_chip_reset(bp, global); |
| barrier(); |
| |
| /* Recover after reset: */ |
| /* MCP */ |
| if (global && bnx2x_reset_mcp_comp(bp, val)) |
| return -EAGAIN; |
| |
| /* TBD: Add resetting the NO_MCP mode DB here */ |
| |
| /* Open the gates #2, #3 and #4 */ |
| bnx2x_set_234_gates(bp, false); |
| |
| /* TBD: IGU/AEU preparation bring back the AEU/IGU to a |
| * reset state, re-enable attentions. */ |
| |
| return 0; |
| } |
| |
| static int bnx2x_leader_reset(struct bnx2x *bp) |
| { |
| int rc = 0; |
| bool global = bnx2x_reset_is_global(bp); |
| u32 load_code; |
| |
| /* if not going to reset MCP - load "fake" driver to reset HW while |
| * driver is owner of the HW |
| */ |
| if (!global && !BP_NOMCP(bp)) { |
| load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, |
| DRV_MSG_CODE_LOAD_REQ_WITH_LFA); |
| if (!load_code) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| rc = -EAGAIN; |
| goto exit_leader_reset; |
| } |
| if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && |
| (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { |
| BNX2X_ERR("MCP unexpected resp, aborting\n"); |
| rc = -EAGAIN; |
| goto exit_leader_reset2; |
| } |
| load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); |
| if (!load_code) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| rc = -EAGAIN; |
| goto exit_leader_reset2; |
| } |
| } |
| |
| /* Try to recover after the failure */ |
| if (bnx2x_process_kill(bp, global)) { |
| BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", |
| BP_PATH(bp)); |
| rc = -EAGAIN; |
| goto exit_leader_reset2; |
| } |
| |
| /* |
| * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver |
| * state. |
| */ |
| bnx2x_set_reset_done(bp); |
| if (global) |
| bnx2x_clear_reset_global(bp); |
| |
| exit_leader_reset2: |
| /* unload "fake driver" if it was loaded */ |
| if (!global && !BP_NOMCP(bp)) { |
| bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); |
| } |
| exit_leader_reset: |
| bp->is_leader = 0; |
| bnx2x_release_leader_lock(bp); |
| smp_mb(); |
| return rc; |
| } |
| |
| static void bnx2x_recovery_failed(struct bnx2x *bp) |
| { |
| netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); |
| |
| /* Disconnect this device */ |
| netif_device_detach(bp->dev); |
| |
| /* |
| * Block ifup for all function on this engine until "process kill" |
| * or power cycle. |
| */ |
| bnx2x_set_reset_in_progress(bp); |
| |
| /* Shut down the power */ |
| bnx2x_set_power_state(bp, PCI_D3hot); |
| |
| bp->recovery_state = BNX2X_RECOVERY_FAILED; |
| |
| smp_mb(); |
| } |
| |
| /* |
| * Assumption: runs under rtnl lock. This together with the fact |
| * that it's called only from bnx2x_sp_rtnl() ensure that it |
| * will never be called when netif_running(bp->dev) is false. |
| */ |
| static void bnx2x_parity_recover(struct bnx2x *bp) |
| { |
| bool global = false; |
| u32 error_recovered, error_unrecovered; |
| bool is_parity; |
| |
| DP(NETIF_MSG_HW, "Handling parity\n"); |
| while (1) { |
| switch (bp->recovery_state) { |
| case BNX2X_RECOVERY_INIT: |
| DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); |
| is_parity = bnx2x_chk_parity_attn(bp, &global, false); |
| WARN_ON(!is_parity); |
| |
| /* Try to get a LEADER_LOCK HW lock */ |
| if (bnx2x_trylock_leader_lock(bp)) { |
| bnx2x_set_reset_in_progress(bp); |
| /* |
| * Check if there is a global attention and if |
| * there was a global attention, set the global |
| * reset bit. |
| */ |
| |
| if (global) |
| bnx2x_set_reset_global(bp); |
| |
| bp->is_leader = 1; |
| } |
| |
| /* Stop the driver */ |
| /* If interface has been removed - break */ |
| if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) |
| return; |
| |
| bp->recovery_state = BNX2X_RECOVERY_WAIT; |
| |
| /* Ensure "is_leader", MCP command sequence and |
| * "recovery_state" update values are seen on other |
| * CPUs. |
| */ |
| smp_mb(); |
| break; |
| |
| case BNX2X_RECOVERY_WAIT: |
| DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); |
| if (bp->is_leader) { |
| int other_engine = BP_PATH(bp) ? 0 : 1; |
| bool other_load_status = |
| bnx2x_get_load_status(bp, other_engine); |
| bool load_status = |
| bnx2x_get_load_status(bp, BP_PATH(bp)); |
| global = bnx2x_reset_is_global(bp); |
| |
| /* |
| * In case of a parity in a global block, let |
| * the first leader that performs a |
| * leader_reset() reset the global blocks in |
| * order to clear global attentions. Otherwise |
| * the gates will remain closed for that |
| * engine. |
| */ |
| if (load_status || |
| (global && other_load_status)) { |
| /* Wait until all other functions get |
| * down. |
| */ |
| schedule_delayed_work(&bp->sp_rtnl_task, |
| HZ/10); |
| return; |
| } else { |
| /* If all other functions got down - |
| * try to bring the chip back to |
| * normal. In any case it's an exit |
| * point for a leader. |
| */ |
| if (bnx2x_leader_reset(bp)) { |
| bnx2x_recovery_failed(bp); |
| return; |
| } |
| |
| /* If we are here, means that the |
| * leader has succeeded and doesn't |
| * want to be a leader any more. Try |
| * to continue as a none-leader. |
| */ |
| break; |
| } |
| } else { /* non-leader */ |
| if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { |
| /* Try to get a LEADER_LOCK HW lock as |
| * long as a former leader may have |
| * been unloaded by the user or |
| * released a leadership by another |
| * reason. |
| */ |
| if (bnx2x_trylock_leader_lock(bp)) { |
| /* I'm a leader now! Restart a |
| * switch case. |
| */ |
| bp->is_leader = 1; |
| break; |
| } |
| |
| schedule_delayed_work(&bp->sp_rtnl_task, |
| HZ/10); |
| return; |
| |
| } else { |
| /* |
| * If there was a global attention, wait |
| * for it to be cleared. |
| */ |
| if (bnx2x_reset_is_global(bp)) { |
| schedule_delayed_work( |
| &bp->sp_rtnl_task, |
| HZ/10); |
| return; |
| } |
| |
| error_recovered = |
| bp->eth_stats.recoverable_error; |
| error_unrecovered = |
| bp->eth_stats.unrecoverable_error; |
| bp->recovery_state = |
| BNX2X_RECOVERY_NIC_LOADING; |
| if (bnx2x_nic_load(bp, LOAD_NORMAL)) { |
| error_unrecovered++; |
| netdev_err(bp->dev, |
| "Recovery failed. Power cycle needed\n"); |
| /* Disconnect this device */ |
| netif_device_detach(bp->dev); |
| /* Shut down the power */ |
| bnx2x_set_power_state( |
| bp, PCI_D3hot); |
| smp_mb(); |
| } else { |
| bp->recovery_state = |
| BNX2X_RECOVERY_DONE; |
| error_recovered++; |
| smp_mb(); |
| } |
| bp->eth_stats.recoverable_error = |
| error_recovered; |
| bp->eth_stats.unrecoverable_error = |
| error_unrecovered; |
| |
| return; |
| } |
| } |
| default: |
| return; |
| } |
| } |
| } |
| |
| static int bnx2x_close(struct net_device *dev); |
| |
| /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is |
| * scheduled on a general queue in order to prevent a dead lock. |
| */ |
| static void bnx2x_sp_rtnl_task(struct work_struct *work) |
| { |
| struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); |
| |
| rtnl_lock(); |
| |
| if (!netif_running(bp->dev)) { |
| rtnl_unlock(); |
| return; |
| } |
| |
| if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" |
| "you will need to reboot when done\n"); |
| goto sp_rtnl_not_reset; |
| #endif |
| /* |
| * Clear all pending SP commands as we are going to reset the |
| * function anyway. |
| */ |
| bp->sp_rtnl_state = 0; |
| smp_mb(); |
| |
| bnx2x_parity_recover(bp); |
| |
| rtnl_unlock(); |
| return; |
| } |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" |
| "you will need to reboot when done\n"); |
| goto sp_rtnl_not_reset; |
| #endif |
| |
| /* |
| * Clear all pending SP commands as we are going to reset the |
| * function anyway. |
| */ |
| bp->sp_rtnl_state = 0; |
| smp_mb(); |
| |
| bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); |
| bnx2x_nic_load(bp, LOAD_NORMAL); |
| |
| rtnl_unlock(); |
| return; |
| } |
| #ifdef BNX2X_STOP_ON_ERROR |
| sp_rtnl_not_reset: |
| #endif |
| if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) |
| bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); |
| if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) |
| bnx2x_after_function_update(bp); |
| /* |
| * in case of fan failure we need to reset id if the "stop on error" |
| * debug flag is set, since we trying to prevent permanent overheating |
| * damage |
| */ |
| if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { |
| DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); |
| netif_device_detach(bp->dev); |
| bnx2x_close(bp->dev); |
| rtnl_unlock(); |
| return; |
| } |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { |
| DP(BNX2X_MSG_SP, |
| "sending set mcast vf pf channel message from rtnl sp-task\n"); |
| bnx2x_vfpf_set_mcast(bp->dev); |
| } |
| if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, |
| &bp->sp_rtnl_state)){ |
| if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { |
| bnx2x_tx_disable(bp); |
| BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); |
| } |
| } |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, |
| &bp->sp_rtnl_state)) { |
| DP(BNX2X_MSG_SP, |
| "sending set storm rx mode vf pf channel message from rtnl sp-task\n"); |
| bnx2x_vfpf_storm_rx_mode(bp); |
| } |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, |
| &bp->sp_rtnl_state)) |
| bnx2x_pf_set_vfs_vlan(bp); |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) |
| bnx2x_dcbx_stop_hw_tx(bp); |
| |
| if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state)) |
| bnx2x_dcbx_resume_hw_tx(bp); |
| |
| /* work which needs rtnl lock not-taken (as it takes the lock itself and |
| * can be called from other contexts as well) |
| */ |
| rtnl_unlock(); |
| |
| /* enable SR-IOV if applicable */ |
| if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, |
| &bp->sp_rtnl_state)) { |
| bnx2x_disable_sriov(bp); |
| bnx2x_enable_sriov(bp); |
| } |
| } |
| |
| static void bnx2x_period_task(struct work_struct *work) |
| { |
| struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); |
| |
| if (!netif_running(bp->dev)) |
| goto period_task_exit; |
| |
| if (CHIP_REV_IS_SLOW(bp)) { |
| BNX2X_ERR("period task called on emulation, ignoring\n"); |
| goto period_task_exit; |
| } |
| |
| bnx2x_acquire_phy_lock(bp); |
| /* |
| * The barrier is needed to ensure the ordering between the writing to |
| * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and |
| * the reading here. |
| */ |
| smp_mb(); |
| if (bp->port.pmf) { |
| bnx2x_period_func(&bp->link_params, &bp->link_vars); |
| |
| /* Re-queue task in 1 sec */ |
| queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); |
| } |
| |
| bnx2x_release_phy_lock(bp); |
| period_task_exit: |
| return; |
| } |
| |
| /* |
| * Init service functions |
| */ |
| |
| u32 bnx2x_get_pretend_reg(struct bnx2x *bp) |
| { |
| u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; |
| u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; |
| return base + (BP_ABS_FUNC(bp)) * stride; |
| } |
| |
| static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, |
| struct bnx2x_mac_vals *vals) |
| { |
| u32 val, base_addr, offset, mask, reset_reg; |
| bool mac_stopped = false; |
| u8 port = BP_PORT(bp); |
| |
| /* reset addresses as they also mark which values were changed */ |
| vals->bmac_addr = 0; |
| vals->umac_addr = 0; |
| vals->xmac_addr = 0; |
| vals->emac_addr = 0; |
| |
| reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); |
| |
| if (!CHIP_IS_E3(bp)) { |
| val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); |
| mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; |
| if ((mask & reset_reg) && val) { |
| u32 wb_data[2]; |
| BNX2X_DEV_INFO("Disable bmac Rx\n"); |
| base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM |
| : NIG_REG_INGRESS_BMAC0_MEM; |
| offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL |
| : BIGMAC_REGISTER_BMAC_CONTROL; |
| |
| /* |
| * use rd/wr since we cannot use dmae. This is safe |
| * since MCP won't access the bus due to the request |
| * to unload, and no function on the path can be |
| * loaded at this time. |
| */ |
| wb_data[0] = REG_RD(bp, base_addr + offset); |
| wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); |
| vals->bmac_addr = base_addr + offset; |
| vals->bmac_val[0] = wb_data[0]; |
| vals->bmac_val[1] = wb_data[1]; |
| wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; |
| REG_WR(bp, vals->bmac_addr, wb_data[0]); |
| REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); |
| } |
| BNX2X_DEV_INFO("Disable emac Rx\n"); |
| vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; |
| vals->emac_val = REG_RD(bp, vals->emac_addr); |
| REG_WR(bp, vals->emac_addr, 0); |
| mac_stopped = true; |
| } else { |
| if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { |
| BNX2X_DEV_INFO("Disable xmac Rx\n"); |
| base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; |
| val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); |
| REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, |
| val & ~(1 << 1)); |
| REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, |
| val | (1 << 1)); |
| vals->xmac_addr = base_addr + XMAC_REG_CTRL; |
| vals->xmac_val = REG_RD(bp, vals->xmac_addr); |
| REG_WR(bp, vals->xmac_addr, 0); |
| mac_stopped = true; |
| } |
| mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; |
| if (mask & reset_reg) { |
| BNX2X_DEV_INFO("Disable umac Rx\n"); |
| base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; |
| vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; |
| vals->umac_val = REG_RD(bp, vals->umac_addr); |
| REG_WR(bp, vals->umac_addr, 0); |
| mac_stopped = true; |
| } |
| } |
| |
| if (mac_stopped) |
| msleep(20); |
| } |
| |
| #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) |
| #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) |
| #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) |
| #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) |
| |
| static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc) |
| { |
| u16 rcq, bd; |
| u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); |
| |
| rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; |
| bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; |
| |
| tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); |
| REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); |
| |
| BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", |
| port, bd, rcq); |
| } |
| |
| static int bnx2x_prev_mcp_done(struct bnx2x *bp) |
| { |
| u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, |
| DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); |
| if (!rc) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static struct bnx2x_prev_path_list * |
| bnx2x_prev_path_get_entry(struct bnx2x *bp) |
| { |
| struct bnx2x_prev_path_list *tmp_list; |
| |
| list_for_each_entry(tmp_list, &bnx2x_prev_list, list) |
| if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && |
| bp->pdev->bus->number == tmp_list->bus && |
| BP_PATH(bp) == tmp_list->path) |
| return tmp_list; |
| |
| return NULL; |
| } |
| |
| static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) |
| { |
| struct bnx2x_prev_path_list *tmp_list; |
| int rc; |
| |
| rc = down_interruptible(&bnx2x_prev_sem); |
| if (rc) { |
| BNX2X_ERR("Received %d when tried to take lock\n", rc); |
| return rc; |
| } |
| |
| tmp_list = bnx2x_prev_path_get_entry(bp); |
| if (tmp_list) { |
| tmp_list->aer = 1; |
| rc = 0; |
| } else { |
| BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", |
| BP_PATH(bp)); |
| } |
| |
| up(&bnx2x_prev_sem); |
| |
| return rc; |
| } |
| |
| static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) |
| { |
| struct bnx2x_prev_path_list *tmp_list; |
| int rc = false; |
| |
| if (down_trylock(&bnx2x_prev_sem)) |
| return false; |
| |
| tmp_list = bnx2x_prev_path_get_entry(bp); |
| if (tmp_list) { |
| if (tmp_list->aer) { |
| DP(NETIF_MSG_HW, "Path %d was marked by AER\n", |
| BP_PATH(bp)); |
| } else { |
| rc = true; |
| BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", |
| BP_PATH(bp)); |
| } |
| } |
| |
| up(&bnx2x_prev_sem); |
| |
| return rc; |
| } |
| |
| bool bnx2x_port_after_undi(struct bnx2x *bp) |
| { |
| struct bnx2x_prev_path_list *entry; |
| bool val; |
| |
| down(&bnx2x_prev_sem); |
| |
| entry = bnx2x_prev_path_get_entry(bp); |
| val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); |
| |
| up(&bnx2x_prev_sem); |
| |
| return val; |
| } |
| |
| static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) |
| { |
| struct bnx2x_prev_path_list *tmp_list; |
| int rc; |
| |
| rc = down_interruptible(&bnx2x_prev_sem); |
| if (rc) { |
| BNX2X_ERR("Received %d when tried to take lock\n", rc); |
| return rc; |
| } |
| |
| /* Check whether the entry for this path already exists */ |
| tmp_list = bnx2x_prev_path_get_entry(bp); |
| if (tmp_list) { |
| if (!tmp_list->aer) { |
| BNX2X_ERR("Re-Marking the path.\n"); |
| } else { |
| DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", |
| BP_PATH(bp)); |
| tmp_list->aer = 0; |
| } |
| up(&bnx2x_prev_sem); |
| return 0; |
| } |
| up(&bnx2x_prev_sem); |
| |
| /* Create an entry for this path and add it */ |
| tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); |
| if (!tmp_list) { |
| BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); |
| return -ENOMEM; |
| } |
| |
| tmp_list->bus = bp->pdev->bus->number; |
| tmp_list->slot = PCI_SLOT(bp->pdev->devfn); |
| tmp_list->path = BP_PATH(bp); |
| tmp_list->aer = 0; |
| tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; |
| |
| rc = down_interruptible(&bnx2x_prev_sem); |
| if (rc) { |
| BNX2X_ERR("Received %d when tried to take lock\n", rc); |
| kfree(tmp_list); |
| } else { |
| DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", |
| BP_PATH(bp)); |
| list_add(&tmp_list->list, &bnx2x_prev_list); |
| up(&bnx2x_prev_sem); |
| } |
| |
| return rc; |
| } |
| |
| static int bnx2x_do_flr(struct bnx2x *bp) |
| { |
| int i; |
| u16 status; |
| struct pci_dev *dev = bp->pdev; |
| |
| if (CHIP_IS_E1x(bp)) { |
| BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); |
| return -EINVAL; |
| } |
| |
| /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ |
| if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { |
| BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", |
| bp->common.bc_ver); |
| return -EINVAL; |
| } |
| |
| /* Wait for Transaction Pending bit clean */ |
| for (i = 0; i < 4; i++) { |
| if (i) |
| msleep((1 << (i - 1)) * 100); |
| |
| pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); |
| if (!(status & PCI_EXP_DEVSTA_TRPND)) |
| goto clear; |
| } |
| |
| dev_err(&dev->dev, |
| "transaction is not cleared; proceeding with reset anyway\n"); |
| |
| clear: |
| |
| BNX2X_DEV_INFO("Initiating FLR\n"); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); |
| |
| return 0; |
| } |
| |
| static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) |
| { |
| int rc; |
| |
| BNX2X_DEV_INFO("Uncommon unload Flow\n"); |
| |
| /* Test if previous unload process was already finished for this path */ |
| if (bnx2x_prev_is_path_marked(bp)) |
| return bnx2x_prev_mcp_done(bp); |
| |
| BNX2X_DEV_INFO("Path is unmarked\n"); |
| |
| /* If function has FLR capabilities, and existing FW version matches |
| * the one required, then FLR will be sufficient to clean any residue |
| * left by previous driver |
| */ |
| rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION); |
| |
| if (!rc) { |
| /* fw version is good */ |
| BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); |
| rc = bnx2x_do_flr(bp); |
| } |
| |
| if (!rc) { |
| /* FLR was performed */ |
| BNX2X_DEV_INFO("FLR successful\n"); |
| return 0; |
| } |
| |
| BNX2X_DEV_INFO("Could not FLR\n"); |
| |
| /* Close the MCP request, return failure*/ |
| rc = bnx2x_prev_mcp_done(bp); |
| if (!rc) |
| rc = BNX2X_PREV_WAIT_NEEDED; |
| |
| return rc; |
| } |
| |
| static int bnx2x_prev_unload_common(struct bnx2x *bp) |
| { |
| u32 reset_reg, tmp_reg = 0, rc; |
| bool prev_undi = false; |
| struct bnx2x_mac_vals mac_vals; |
| |
| /* It is possible a previous function received 'common' answer, |
| * but hasn't loaded yet, therefore creating a scenario of |
| * multiple functions receiving 'common' on the same path. |
| */ |
| BNX2X_DEV_INFO("Common unload Flow\n"); |
| |
| memset(&mac_vals, 0, sizeof(mac_vals)); |
| |
| if (bnx2x_prev_is_path_marked(bp)) |
| return bnx2x_prev_mcp_done(bp); |
| |
| reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); |
| |
| /* Reset should be performed after BRB is emptied */ |
| if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { |
| u32 timer_count = 1000; |
| |
| /* Close the MAC Rx to prevent BRB from filling up */ |
| bnx2x_prev_unload_close_mac(bp, &mac_vals); |
| |
| /* close LLH filters towards the BRB */ |
| bnx2x_set_rx_filter(&bp->link_params, 0); |
| |
| /* Check if the UNDI driver was previously loaded |
| * UNDI driver initializes CID offset for normal bell to 0x7 |
| */ |
| if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { |
| tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); |
| if (tmp_reg == 0x7) { |
| BNX2X_DEV_INFO("UNDI previously loaded\n"); |
| prev_undi = true; |
| /* clear the UNDI indication */ |
| REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); |
| /* clear possible idle check errors */ |
| REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); |
| } |
| } |
| if (!CHIP_IS_E1x(bp)) |
| /* block FW from writing to host */ |
| REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); |
| |
| /* wait until BRB is empty */ |
| tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); |
| while (timer_count) { |
| u32 prev_brb = tmp_reg; |
| |
| tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); |
| if (!tmp_reg) |
| break; |
| |
| BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); |
| |
| /* reset timer as long as BRB actually gets emptied */ |
| if (prev_brb > tmp_reg) |
| timer_count = 1000; |
| else |
| timer_count--; |
| |
| /* If UNDI resides in memory, manually increment it */ |
| if (prev_undi) |
| bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); |
| |
| udelay(10); |
| } |
| |
| if (!timer_count) |
| BNX2X_ERR("Failed to empty BRB, hope for the best\n"); |
| } |
| |
| /* No packets are in the pipeline, path is ready for reset */ |
| bnx2x_reset_common(bp); |
| |
| if (mac_vals.xmac_addr) |
| REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); |
| if (mac_vals.umac_addr) |
| REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); |
| if (mac_vals.emac_addr) |
| REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); |
| if (mac_vals.bmac_addr) { |
| REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); |
| REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); |
| } |
| |
| rc = bnx2x_prev_mark_path(bp, prev_undi); |
| if (rc) { |
| bnx2x_prev_mcp_done(bp); |
| return rc; |
| } |
| |
| return bnx2x_prev_mcp_done(bp); |
| } |
| |
| /* previous driver DMAE transaction may have occurred when pre-boot stage ended |
| * and boot began, or when kdump kernel was loaded. Either case would invalidate |
| * the addresses of the transaction, resulting in was-error bit set in the pci |
| * causing all hw-to-host pcie transactions to timeout. If this happened we want |
| * to clear the interrupt which detected this from the pglueb and the was done |
| * bit |
| */ |
| static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) |
| { |
| if (!CHIP_IS_E1x(bp)) { |
| u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { |
| DP(BNX2X_MSG_SP, |
| "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); |
| REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, |
| 1 << BP_FUNC(bp)); |
| } |
| } |
| } |
| |
| static int bnx2x_prev_unload(struct bnx2x *bp) |
| { |
| int time_counter = 10; |
| u32 rc, fw, hw_lock_reg, hw_lock_val; |
| BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); |
| |
| /* clear hw from errors which may have resulted from an interrupted |
| * dmae transaction. |
| */ |
| bnx2x_prev_interrupted_dmae(bp); |
| |
| /* Release previously held locks */ |
| hw_lock_reg = (BP_FUNC(bp) <= 5) ? |
| (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : |
| (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); |
| |
| hw_lock_val = REG_RD(bp, hw_lock_reg); |
| if (hw_lock_val) { |
| if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { |
| BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); |
| REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, |
| (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); |
| } |
| |
| BNX2X_DEV_INFO("Release Previously held hw lock\n"); |
| REG_WR(bp, hw_lock_reg, 0xffffffff); |
| } else |
| BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); |
| |
| if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { |
| BNX2X_DEV_INFO("Release previously held alr\n"); |
| bnx2x_release_alr(bp); |
| } |
| |
| do { |
| int aer = 0; |
| /* Lock MCP using an unload request */ |
| fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); |
| if (!fw) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| rc = -EBUSY; |
| break; |
| } |
| |
| rc = down_interruptible(&bnx2x_prev_sem); |
| if (rc) { |
| BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", |
| rc); |
| } else { |
| /* If Path is marked by EEH, ignore unload status */ |
| aer = !!(bnx2x_prev_path_get_entry(bp) && |
| bnx2x_prev_path_get_entry(bp)->aer); |
| up(&bnx2x_prev_sem); |
| } |
| |
| if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { |
| rc = bnx2x_prev_unload_common(bp); |
| break; |
| } |
| |
| /* non-common reply from MCP might require looping */ |
| rc = bnx2x_prev_unload_uncommon(bp); |
| if (rc != BNX2X_PREV_WAIT_NEEDED) |
| break; |
| |
| msleep(20); |
| } while (--time_counter); |
| |
| if (!time_counter || rc) { |
| BNX2X_ERR("Failed unloading previous driver, aborting\n"); |
| rc = -EBUSY; |
| } |
| |
| /* Mark function if its port was used to boot from SAN */ |
| if (bnx2x_port_after_undi(bp)) |
| bp->link_params.feature_config_flags |= |
| FEATURE_CONFIG_BOOT_FROM_SAN; |
| |
| BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); |
| |
| return rc; |
| } |
| |
| static void bnx2x_get_common_hwinfo(struct bnx2x *bp) |
| { |
| u32 val, val2, val3, val4, id, boot_mode; |
| u16 pmc; |
| |
| /* Get the chip revision id and number. */ |
| /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ |
| val = REG_RD(bp, MISC_REG_CHIP_NUM); |
| id = ((val & 0xffff) << 16); |
| val = REG_RD(bp, MISC_REG_CHIP_REV); |
| id |= ((val & 0xf) << 12); |
| |
| /* Metal is read from PCI regs, but we can't access >=0x400 from |
| * the configuration space (so we need to reg_rd) |
| */ |
| val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); |
| id |= (((val >> 24) & 0xf) << 4); |
| val = REG_RD(bp, MISC_REG_BOND_ID); |
| id |= (val & 0xf); |
| bp->common.chip_id = id; |
| |
| /* force 57811 according to MISC register */ |
| if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { |
| if (CHIP_IS_57810(bp)) |
| bp->common.chip_id = (CHIP_NUM_57811 << 16) | |
| (bp->common.chip_id & 0x0000FFFF); |
| else if (CHIP_IS_57810_MF(bp)) |
| bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | |
| (bp->common.chip_id & 0x0000FFFF); |
| bp->common.chip_id |= 0x1; |
| } |
| |
| /* Set doorbell size */ |
| bp->db_size = (1 << BNX2X_DB_SHIFT); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); |
| if ((val & 1) == 0) |
| val = REG_RD(bp, MISC_REG_PORT4MODE_EN); |
| else |
| val = (val >> 1) & 1; |
| BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : |
| "2_PORT_MODE"); |
| bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : |
| CHIP_2_PORT_MODE; |
| |
| if (CHIP_MODE_IS_4_PORT(bp)) |
| bp->pfid = (bp->pf_num >> 1); /* 0..3 */ |
| else |
| bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ |
| } else { |
| bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ |
| bp->pfid = bp->pf_num; /* 0..7 */ |
| } |
| |
| BNX2X_DEV_INFO("pf_id: %x", bp->pfid); |
| |
| bp->link_params.chip_id = bp->common.chip_id; |
| BNX2X_DEV_INFO("chip ID is 0x%x\n", id); |
| |
| val = (REG_RD(bp, 0x2874) & 0x55); |
| if ((bp->common.chip_id & 0x1) || |
| (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { |
| bp->flags |= ONE_PORT_FLAG; |
| BNX2X_DEV_INFO("single port device\n"); |
| } |
| |
| val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); |
| bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << |
| (val & MCPR_NVM_CFG4_FLASH_SIZE)); |
| BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", |
| bp->common.flash_size, bp->common.flash_size); |
| |
| bnx2x_init_shmem(bp); |
| |
| bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? |
| MISC_REG_GENERIC_CR_1 : |
| MISC_REG_GENERIC_CR_0)); |
| |
| bp->link_params.shmem_base = bp->common.shmem_base; |
| bp->link_params.shmem2_base = bp->common.shmem2_base; |
| if (SHMEM2_RD(bp, size) > |
| (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) |
| bp->link_params.lfa_base = |
| REG_RD(bp, bp->common.shmem2_base + |
| (u32)offsetof(struct shmem2_region, |
| lfa_host_addr[BP_PORT(bp)])); |
| else |
| bp->link_params.lfa_base = 0; |
| BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", |
| bp->common.shmem_base, bp->common.shmem2_base); |
| |
| if (!bp->common.shmem_base) { |
| BNX2X_DEV_INFO("MCP not active\n"); |
| bp->flags |= NO_MCP_FLAG; |
| return; |
| } |
| |
| bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); |
| BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); |
| |
| bp->link_params.hw_led_mode = ((bp->common.hw_config & |
| SHARED_HW_CFG_LED_MODE_MASK) >> |
| SHARED_HW_CFG_LED_MODE_SHIFT); |
| |
| bp->link_params.feature_config_flags = 0; |
| val = SHMEM_RD(bp, dev_info.shared_feature_config.config); |
| if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) |
| bp->link_params.feature_config_flags |= |
| FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; |
| else |
| bp->link_params.feature_config_flags &= |
| ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; |
| |
| val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; |
| bp->common.bc_ver = val; |
| BNX2X_DEV_INFO("bc_ver %X\n", val); |
| if (val < BNX2X_BC_VER) { |
| /* for now only warn |
| * later we might need to enforce this */ |
| BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", |
| BNX2X_BC_VER, val); |
| } |
| bp->link_params.feature_config_flags |= |
| (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? |
| FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; |
| |
| bp->link_params.feature_config_flags |= |
| (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? |
| FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; |
| bp->link_params.feature_config_flags |= |
| (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? |
| FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; |
| bp->link_params.feature_config_flags |= |
| (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? |
| FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; |
| |
| bp->link_params.feature_config_flags |= |
| (val >= REQ_BC_VER_4_MT_SUPPORTED) ? |
| FEATURE_CONFIG_MT_SUPPORT : 0; |
| |
| bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? |
| BC_SUPPORTS_PFC_STATS : 0; |
| |
| bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? |
| BC_SUPPORTS_FCOE_FEATURES : 0; |
| |
| bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? |
| BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; |
| |
| bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? |
| BC_SUPPORTS_RMMOD_CMD : 0; |
| |
| boot_mode = SHMEM_RD(bp, |
| dev_info.port_feature_config[BP_PORT(bp)].mba_config) & |
| PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; |
| switch (boot_mode) { |
| case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: |
| bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; |
| break; |
| case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: |
| bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; |
| break; |
| case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: |
| bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; |
| break; |
| case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: |
| bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; |
| break; |
| } |
| |
| pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc); |
| bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; |
| |
| BNX2X_DEV_INFO("%sWoL capable\n", |
| (bp->flags & NO_WOL_FLAG) ? "not " : ""); |
| |
| val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); |
| val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); |
| val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); |
| val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); |
| |
| dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", |
| val, val2, val3, val4); |
| } |
| |
| #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) |
| #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) |
| |
| static int bnx2x_get_igu_cam_info(struct bnx2x *bp) |
| { |
| int pfid = BP_FUNC(bp); |
| int igu_sb_id; |
| u32 val; |
| u8 fid, igu_sb_cnt = 0; |
| |
| bp->igu_base_sb = 0xff; |
| if (CHIP_INT_MODE_IS_BC(bp)) { |
| int vn = BP_VN(bp); |
| igu_sb_cnt = bp->igu_sb_cnt; |
| bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * |
| FP_SB_MAX_E1x; |
| |
| bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + |
| (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); |
| |
| return 0; |
| } |
| |
| /* IGU in normal mode - read CAM */ |
| for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; |
| igu_sb_id++) { |
| val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); |
| if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) |
| continue; |
| fid = IGU_FID(val); |
| if ((fid & IGU_FID_ENCODE_IS_PF)) { |
| if ((fid & IGU_FID_PF_NUM_MASK) != pfid) |
| continue; |
| if (IGU_VEC(val) == 0) |
| /* default status block */ |
| bp->igu_dsb_id = igu_sb_id; |
| else { |
| if (bp->igu_base_sb == 0xff) |
| bp->igu_base_sb = igu_sb_id; |
| igu_sb_cnt++; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_PCI_MSI |
| /* Due to new PF resource allocation by MFW T7.4 and above, it's |
| * optional that number of CAM entries will not be equal to the value |
| * advertised in PCI. |
| * Driver should use the minimal value of both as the actual status |
| * block count |
| */ |
| bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); |
| #endif |
| |
| if (igu_sb_cnt == 0) { |
| BNX2X_ERR("CAM configuration error\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) |
| { |
| int cfg_size = 0, idx, port = BP_PORT(bp); |
| |
| /* Aggregation of supported attributes of all external phys */ |
| bp->port.supported[0] = 0; |
| bp->port.supported[1] = 0; |
| switch (bp->link_params.num_phys) { |
| case 1: |
| bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; |
| cfg_size = 1; |
| break; |
| case 2: |
| bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; |
| cfg_size = 1; |
| break; |
| case 3: |
| if (bp->link_params.multi_phy_config & |
| PORT_HW_CFG_PHY_SWAPPED_ENABLED) { |
| bp->port.supported[1] = |
| bp->link_params.phy[EXT_PHY1].supported; |
| bp->port.supported[0] = |
| bp->link_params.phy[EXT_PHY2].supported; |
| } else { |
| bp->port.supported[0] = |
| bp->link_params.phy[EXT_PHY1].supported; |
| bp->port.supported[1] = |
| bp->link_params.phy[EXT_PHY2].supported; |
| } |
| cfg_size = 2; |
| break; |
| } |
| |
| if (!(bp->port.supported[0] || bp->port.supported[1])) { |
| BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].external_phy_config), |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].external_phy_config2)); |
| return; |
| } |
| |
| if (CHIP_IS_E3(bp)) |
| bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); |
| else { |
| switch (switch_cfg) { |
| case SWITCH_CFG_1G: |
| bp->port.phy_addr = REG_RD( |
| bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); |
| break; |
| case SWITCH_CFG_10G: |
| bp->port.phy_addr = REG_RD( |
| bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); |
| break; |
| default: |
| BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", |
| bp->port.link_config[0]); |
| return; |
| } |
| } |
| BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); |
| /* mask what we support according to speed_cap_mask per configuration */ |
| for (idx = 0; idx < cfg_size; idx++) { |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) |
| bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) |
| bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) |
| bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) |
| bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) |
| bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | |
| SUPPORTED_1000baseT_Full); |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) |
| bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) |
| bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; |
| |
| if (!(bp->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) |
| bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; |
| } |
| |
| BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], |
| bp->port.supported[1]); |
| } |
| |
| static void bnx2x_link_settings_requested(struct bnx2x *bp) |
| { |
| u32 link_config, idx, cfg_size = 0; |
| bp->port.advertising[0] = 0; |
| bp->port.advertising[1] = 0; |
| switch (bp->link_params.num_phys) { |
| case 1: |
| case 2: |
| cfg_size = 1; |
| break; |
| case 3: |
| cfg_size = 2; |
| break; |
| } |
| for (idx = 0; idx < cfg_size; idx++) { |
| bp->link_params.req_duplex[idx] = DUPLEX_FULL; |
| link_config = bp->port.link_config[idx]; |
| switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { |
| case PORT_FEATURE_LINK_SPEED_AUTO: |
| if (bp->port.supported[idx] & SUPPORTED_Autoneg) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_AUTO_NEG; |
| bp->port.advertising[idx] |= |
| bp->port.supported[idx]; |
| if (bp->link_params.phy[EXT_PHY1].type == |
| PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) |
| bp->port.advertising[idx] |= |
| (SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full); |
| } else { |
| /* force 10G, no AN */ |
| bp->link_params.req_line_speed[idx] = |
| SPEED_10000; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_10000baseT_Full | |
| ADVERTISED_FIBRE); |
| continue; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10M_FULL: |
| if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_10; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_10baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10M_HALF: |
| if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_10; |
| bp->link_params.req_duplex[idx] = |
| DUPLEX_HALF; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_10baseT_Half | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_100M_FULL: |
| if (bp->port.supported[idx] & |
| SUPPORTED_100baseT_Full) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_100; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_100baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_100M_HALF: |
| if (bp->port.supported[idx] & |
| SUPPORTED_100baseT_Half) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_100; |
| bp->link_params.req_duplex[idx] = |
| DUPLEX_HALF; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_100baseT_Half | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_1G: |
| if (bp->port.supported[idx] & |
| SUPPORTED_1000baseT_Full) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_1000; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_1000baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_2_5G: |
| if (bp->port.supported[idx] & |
| SUPPORTED_2500baseX_Full) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_2500; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_2500baseX_Full | |
| ADVERTISED_TP); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10G_CX4: |
| if (bp->port.supported[idx] & |
| SUPPORTED_10000baseT_Full) { |
| bp->link_params.req_line_speed[idx] = |
| SPEED_10000; |
| bp->port.advertising[idx] |= |
| (ADVERTISED_10000baseT_Full | |
| ADVERTISED_FIBRE); |
| } else { |
| BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", |
| link_config, |
| bp->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| case PORT_FEATURE_LINK_SPEED_20G: |
| bp->link_params.req_line_speed[idx] = SPEED_20000; |
| |
| break; |
| default: |
| BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", |
| link_config); |
| bp->link_params.req_line_speed[idx] = |
| SPEED_AUTO_NEG; |
| bp->port.advertising[idx] = |
| bp->port.supported[idx]; |
| break; |
| } |
| |
| bp->link_params.req_flow_ctrl[idx] = (link_config & |
| PORT_FEATURE_FLOW_CONTROL_MASK); |
| if (bp->link_params.req_flow_ctrl[idx] == |
| BNX2X_FLOW_CTRL_AUTO) { |
| if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) |
| bp->link_params.req_flow_ctrl[idx] = |
| BNX2X_FLOW_CTRL_NONE; |
| else |
| bnx2x_set_requested_fc(bp); |
| } |
| |
| BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", |
| bp->link_params.req_line_speed[idx], |
| bp->link_params.req_duplex[idx], |
| bp->link_params.req_flow_ctrl[idx], |
| bp->port.advertising[idx]); |
| } |
| } |
| |
| static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) |
| { |
| __be16 mac_hi_be = cpu_to_be16(mac_hi); |
| __be32 mac_lo_be = cpu_to_be32(mac_lo); |
| memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); |
| memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); |
| } |
| |
| static void bnx2x_get_port_hwinfo(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| u32 config; |
| u32 ext_phy_type, ext_phy_config, eee_mode; |
| |
| bp->link_params.bp = bp; |
| bp->link_params.port = port; |
| |
| bp->link_params.lane_config = |
| SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); |
| |
| bp->link_params.speed_cap_mask[0] = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].speed_capability_mask) & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; |
| bp->link_params.speed_cap_mask[1] = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].speed_capability_mask2) & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; |
| bp->port.link_config[0] = |
| SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); |
| |
| bp->port.link_config[1] = |
| SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); |
| |
| bp->link_params.multi_phy_config = |
| SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); |
| /* If the device is capable of WoL, set the default state according |
| * to the HW |
| */ |
| config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); |
| bp->wol = (!(bp->flags & NO_WOL_FLAG) && |
| (config & PORT_FEATURE_WOL_ENABLED)); |
| |
| if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == |
| PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) |
| bp->flags |= NO_ISCSI_FLAG; |
| if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == |
| PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) |
| bp->flags |= NO_FCOE_FLAG; |
| |
| BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", |
| bp->link_params.lane_config, |
| bp->link_params.speed_cap_mask[0], |
| bp->port.link_config[0]); |
| |
| bp->link_params.switch_cfg = (bp->port.link_config[0] & |
| PORT_FEATURE_CONNECTED_SWITCH_MASK); |
| bnx2x_phy_probe(&bp->link_params); |
| bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); |
| |
| bnx2x_link_settings_requested(bp); |
| |
| /* |
| * If connected directly, work with the internal PHY, otherwise, work |
| * with the external PHY |
| */ |
| ext_phy_config = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port].external_phy_config); |
| ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); |
| if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) |
| bp->mdio.prtad = bp->port.phy_addr; |
| |
| else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && |
| (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) |
| bp->mdio.prtad = |
| XGXS_EXT_PHY_ADDR(ext_phy_config); |
| |
| /* Configure link feature according to nvram value */ |
| eee_mode = (((SHMEM_RD(bp, dev_info. |
| port_feature_config[port].eee_power_mode)) & |
| PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> |
| PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); |
| if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { |
| bp->link_params.eee_mode = EEE_MODE_ADV_LPI | |
| EEE_MODE_ENABLE_LPI | |
| EEE_MODE_OUTPUT_TIME; |
| } else { |
| bp->link_params.eee_mode = 0; |
| } |
| } |
| |
| void bnx2x_get_iscsi_info(struct bnx2x *bp) |
| { |
| u32 no_flags = NO_ISCSI_FLAG; |
| int port = BP_PORT(bp); |
| u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, |
| drv_lic_key[port].max_iscsi_conn); |
| |
| if (!CNIC_SUPPORT(bp)) { |
| bp->flags |= no_flags; |
| return; |
| } |
| |
| /* Get the number of maximum allowed iSCSI connections */ |
| bp->cnic_eth_dev.max_iscsi_conn = |
| (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> |
| BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; |
| |
| BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", |
| bp->cnic_eth_dev.max_iscsi_conn); |
| |
| /* |
| * If maximum allowed number of connections is zero - |
| * disable the feature. |
| */ |
| if (!bp->cnic_eth_dev.max_iscsi_conn) |
| bp->flags |= no_flags; |
| } |
| |
| static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) |
| { |
| /* Port info */ |
| bp->cnic_eth_dev.fcoe_wwn_port_name_hi = |
| MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); |
| bp->cnic_eth_dev.fcoe_wwn_port_name_lo = |
| MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); |
| |
| /* Node info */ |
| bp->cnic_eth_dev.fcoe_wwn_node_name_hi = |
| MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); |
| bp->cnic_eth_dev.fcoe_wwn_node_name_lo = |
| MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); |
| } |
| |
| static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) |
| { |
| u8 count = 0; |
| |
| if (IS_MF(bp)) { |
| u8 fid; |
| |
| /* iterate over absolute function ids for this path: */ |
| for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { |
| if (IS_MF_SD(bp)) { |
| u32 cfg = MF_CFG_RD(bp, |
| func_mf_config[fid].config); |
| |
| if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && |
| ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == |
| FUNC_MF_CFG_PROTOCOL_FCOE)) |
| count++; |
| } else { |
| u32 cfg = MF_CFG_RD(bp, |
| func_ext_config[fid]. |
| func_cfg); |
| |
| if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && |
| (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) |
| count++; |
| } |
| } |
| } else { /* SF */ |
| int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; |
| |
| for (port = 0; port < port_cnt; port++) { |
| u32 lic = SHMEM_RD(bp, |
| drv_lic_key[port].max_fcoe_conn) ^ |
| FW_ENCODE_32BIT_PATTERN; |
| if (lic) |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| static void bnx2x_get_fcoe_info(struct bnx2x *bp) |
| { |
| int port = BP_PORT(bp); |
| int func = BP_ABS_FUNC(bp); |
| u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, |
| drv_lic_key[port].max_fcoe_conn); |
| u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); |
| |
| if (!CNIC_SUPPORT(bp)) { |
| bp->flags |= NO_FCOE_FLAG; |
| return; |
| } |
| |
| /* Get the number of maximum allowed FCoE connections */ |
| bp->cnic_eth_dev.max_fcoe_conn = |
| (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> |
| BNX2X_MAX_FCOE_INIT_CONN_SHIFT; |
| |
| /* Calculate the number of maximum allowed FCoE tasks */ |
| bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; |
| |
| /* check if FCoE resources must be shared between different functions */ |
| if (num_fcoe_func) |
| bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; |
| |
| /* Read the WWN: */ |
| if (!IS_MF(bp)) { |
| /* Port info */ |
| bp->cnic_eth_dev.fcoe_wwn_port_name_hi = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port]. |
| fcoe_wwn_port_name_upper); |
| bp->cnic_eth_dev.fcoe_wwn_port_name_lo = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port]. |
| fcoe_wwn_port_name_lower); |
| |
| /* Node info */ |
| bp->cnic_eth_dev.fcoe_wwn_node_name_hi = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port]. |
| fcoe_wwn_node_name_upper); |
| bp->cnic_eth_dev.fcoe_wwn_node_name_lo = |
| SHMEM_RD(bp, |
| dev_info.port_hw_config[port]. |
| fcoe_wwn_node_name_lower); |
| } else if (!IS_MF_SD(bp)) { |
| /* |
| * Read the WWN info only if the FCoE feature is enabled for |
| * this function. |
| */ |
| if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) |
| bnx2x_get_ext_wwn_info(bp, func); |
| |
| } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) { |
| bnx2x_get_ext_wwn_info(bp, func); |
| } |
| |
| BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); |
| |
| /* |
| * If maximum allowed number of connections is zero - |
| * disable the feature. |
| */ |
| if (!bp->cnic_eth_dev.max_fcoe_conn) |
| bp->flags |= NO_FCOE_FLAG; |
| } |
| |
| static void bnx2x_get_cnic_info(struct bnx2x *bp) |
| { |
| /* |
| * iSCSI may be dynamically disabled but reading |
| * info here we will decrease memory usage by driver |
| * if the feature is disabled for good |
| */ |
| bnx2x_get_iscsi_info(bp); |
| bnx2x_get_fcoe_info(bp); |
| } |
| |
| static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) |
| { |
| u32 val, val2; |
| int func = BP_ABS_FUNC(bp); |
| int port = BP_PORT(bp); |
| u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; |
| u8 *fip_mac = bp->fip_mac; |
| |
| if (IS_MF(bp)) { |
| /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or |
| * FCoE MAC then the appropriate feature should be disabled. |
| * In non SD mode features configuration comes from struct |
| * func_ext_config. |
| */ |
| if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) { |
| u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); |
| if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { |
| val2 = MF_CFG_RD(bp, func_ext_config[func]. |
| iscsi_mac_addr_upper); |
| val = MF_CFG_RD(bp, func_ext_config[func]. |
| iscsi_mac_addr_lower); |
| bnx2x_set_mac_buf(iscsi_mac, val, val2); |
| BNX2X_DEV_INFO |
| ("Read iSCSI MAC: %pM\n", iscsi_mac); |
| } else { |
| bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; |
| } |
| |
| if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { |
| val2 = MF_CFG_RD(bp, func_ext_config[func]. |
| fcoe_mac_addr_upper); |
| val = MF_CFG_RD(bp, func_ext_config[func]. |
| fcoe_mac_addr_lower); |
| bnx2x_set_mac_buf(fip_mac, val, val2); |
| BNX2X_DEV_INFO |
| ("Read FCoE L2 MAC: %pM\n", fip_mac); |
| } else { |
| bp->flags |= NO_FCOE_FLAG; |
| } |
| |
| bp->mf_ext_config = cfg; |
| |
| } else { /* SD MODE */ |
| if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { |
| /* use primary mac as iscsi mac */ |
| memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); |
| |
| BNX2X_DEV_INFO("SD ISCSI MODE\n"); |
| BNX2X_DEV_INFO |
| ("Read iSCSI MAC: %pM\n", iscsi_mac); |
| } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { |
| /* use primary mac as fip mac */ |
| memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); |
| BNX2X_DEV_INFO("SD FCoE MODE\n"); |
| BNX2X_DEV_INFO |
| ("Read FIP MAC: %pM\n", fip_mac); |
| } |
| } |
| |
| /* If this is a storage-only interface, use SAN mac as |
| * primary MAC. Notice that for SD this is already the case, |
| * as the SAN mac was copied from the primary MAC. |
| */ |
| if (IS_MF_FCOE_AFEX(bp)) |
| memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); |
| } else { |
| val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. |
| iscsi_mac_upper); |
| val = SHMEM_RD(bp, dev_info.port_hw_config[port]. |
| iscsi_mac_lower); |
| bnx2x_set_mac_buf(iscsi_mac, val, val2); |
| |
| val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. |
| fcoe_fip_mac_upper); |
| val = SHMEM_RD(bp, dev_info.port_hw_config[port]. |
| fcoe_fip_mac_lower); |
| bnx2x_set_mac_buf(fip_mac, val, val2); |
| } |
| |
| /* Disable iSCSI OOO if MAC configuration is invalid. */ |
| if (!is_valid_ether_addr(iscsi_mac)) { |
| bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; |
| memset(iscsi_mac, 0, ETH_ALEN); |
| } |
| |
| /* Disable FCoE if MAC configuration is invalid. */ |
| if (!is_valid_ether_addr(fip_mac)) { |
| bp->flags |= NO_FCOE_FLAG; |
| memset(bp->fip_mac, 0, ETH_ALEN); |
| } |
| } |
| |
| static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) |
| { |
| u32 val, val2; |
| int func = BP_ABS_FUNC(bp); |
| int port = BP_PORT(bp); |
| |
| /* Zero primary MAC configuration */ |
| memset(bp->dev->dev_addr, 0, ETH_ALEN); |
| |
| if (BP_NOMCP(bp)) { |
| BNX2X_ERROR("warning: random MAC workaround active\n"); |
| eth_hw_addr_random(bp->dev); |
| } else if (IS_MF(bp)) { |
| val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); |
| val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); |
| if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && |
| (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) |
| bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); |
| |
| if (CNIC_SUPPORT(bp)) |
| bnx2x_get_cnic_mac_hwinfo(bp); |
| } else { |
| /* in SF read MACs from port configuration */ |
| val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); |
| val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); |
| bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); |
| |
| if (CNIC_SUPPORT(bp)) |
| bnx2x_get_cnic_mac_hwinfo(bp); |
| } |
| |
| memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); |
| |
| if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) |
| dev_err(&bp->pdev->dev, |
| "bad Ethernet MAC address configuration: %pM\n" |
| "change it manually before bringing up the appropriate network interface\n", |
| bp->dev->dev_addr); |
| } |
| |
| static bool bnx2x_get_dropless_info(struct bnx2x *bp) |
| { |
| int tmp; |
| u32 cfg; |
| |
| if (IS_VF(bp)) |
| return 0; |
| |
| if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { |
| /* Take function: tmp = func */ |
| tmp = BP_ABS_FUNC(bp); |
| cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); |
| cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); |
| } else { |
| /* Take port: tmp = port */ |
| tmp = BP_PORT(bp); |
| cfg = SHMEM_RD(bp, |
| dev_info.port_hw_config[tmp].generic_features); |
| cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); |
| } |
| return cfg; |
| } |
| |
| static int bnx2x_get_hwinfo(struct bnx2x *bp) |
| { |
| int /*abs*/func = BP_ABS_FUNC(bp); |
| int vn; |
| u32 val = 0; |
| int rc = 0; |
| |
| bnx2x_get_common_hwinfo(bp); |
| |
| /* |
| * initialize IGU parameters |
| */ |
| if (CHIP_IS_E1x(bp)) { |
| bp->common.int_block = INT_BLOCK_HC; |
| |
| bp->igu_dsb_id = DEF_SB_IGU_ID; |
| bp->igu_base_sb = 0; |
| } else { |
| bp->common.int_block = INT_BLOCK_IGU; |
| |
| /* do not allow device reset during IGU info processing */ |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); |
| |
| val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); |
| |
| if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { |
| int tout = 5000; |
| |
| BNX2X_DEV_INFO("FORCING Normal Mode\n"); |
| |
| val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); |
| REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); |
| REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); |
| |
| while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { |
| tout--; |
| usleep_range(1000, 2000); |
| } |
| |
| if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { |
| dev_err(&bp->pdev->dev, |
| "FORCING Normal Mode failed!!!\n"); |
| bnx2x_release_hw_lock(bp, |
| HW_LOCK_RESOURCE_RESET); |
| return -EPERM; |
| } |
| } |
| |
| if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { |
| BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); |
| bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; |
| } else |
| BNX2X_DEV_INFO("IGU Normal Mode\n"); |
| |
| rc = bnx2x_get_igu_cam_info(bp); |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); |
| if (rc) |
| return rc; |
| } |
| |
| /* |
| * set base FW non-default (fast path) status block id, this value is |
| * used to initialize the fw_sb_id saved on the fp/queue structure to |
| * determine the id used by the FW. |
| */ |
| if (CHIP_IS_E1x(bp)) |
| bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); |
| else /* |
| * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of |
| * the same queue are indicated on the same IGU SB). So we prefer |
| * FW and IGU SBs to be the same value. |
| */ |
| bp->base_fw_ndsb = bp->igu_base_sb; |
| |
| BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" |
| "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, |
| bp->igu_sb_cnt, bp->base_fw_ndsb); |
| |
| /* |
| * Initialize MF configuration |
| */ |
| |
| bp->mf_ov = 0; |
| bp->mf_mode = 0; |
| vn = BP_VN(bp); |
| |
| if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { |
| BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", |
| bp->common.shmem2_base, SHMEM2_RD(bp, size), |
| (u32)offsetof(struct shmem2_region, mf_cfg_addr)); |
| |
| if (SHMEM2_HAS(bp, mf_cfg_addr)) |
| bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); |
| else |
| bp->common.mf_cfg_base = bp->common.shmem_base + |
| offsetof(struct shmem_region, func_mb) + |
| E1H_FUNC_MAX * sizeof(struct drv_func_mb); |
| /* |
| * get mf configuration: |
| * 1. Existence of MF configuration |
| * 2. MAC address must be legal (check only upper bytes) |
| * for Switch-Independent mode; |
| * OVLAN must be legal for Switch-Dependent mode |
| * 3. SF_MODE configures specific MF mode |
| */ |
| if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { |
| /* get mf configuration */ |
| val = SHMEM_RD(bp, |
| dev_info.shared_feature_config.config); |
| val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; |
| |
| switch (val) { |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: |
| val = MF_CFG_RD(bp, func_mf_config[func]. |
| mac_upper); |
| /* check for legal mac (upper bytes)*/ |
| if (val != 0xffff) { |
| bp->mf_mode = MULTI_FUNCTION_SI; |
| bp->mf_config[vn] = MF_CFG_RD(bp, |
| func_mf_config[func].config); |
| } else |
| BNX2X_DEV_INFO("illegal MAC address for SI\n"); |
| break; |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: |
| if ((!CHIP_IS_E1x(bp)) && |
| (MF_CFG_RD(bp, func_mf_config[func]. |
| mac_upper) != 0xffff) && |
| (SHMEM2_HAS(bp, |
| afex_driver_support))) { |
| bp->mf_mode = MULTI_FUNCTION_AFEX; |
| bp->mf_config[vn] = MF_CFG_RD(bp, |
| func_mf_config[func].config); |
| } else { |
| BNX2X_DEV_INFO("can not configure afex mode\n"); |
| } |
| break; |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: |
| /* get OV configuration */ |
| val = MF_CFG_RD(bp, |
| func_mf_config[FUNC_0].e1hov_tag); |
| val &= FUNC_MF_CFG_E1HOV_TAG_MASK; |
| |
| if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { |
| bp->mf_mode = MULTI_FUNCTION_SD; |
| bp->mf_config[vn] = MF_CFG_RD(bp, |
| func_mf_config[func].config); |
| } else |
| BNX2X_DEV_INFO("illegal OV for SD\n"); |
| break; |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: |
| bp->mf_config[vn] = 0; |
| break; |
| default: |
| /* Unknown configuration: reset mf_config */ |
| bp->mf_config[vn] = 0; |
| BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); |
| } |
| } |
| |
| BNX2X_DEV_INFO("%s function mode\n", |
| IS_MF(bp) ? "multi" : "single"); |
| |
| switch (bp->mf_mode) { |
| case MULTI_FUNCTION_SD: |
| val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & |
| FUNC_MF_CFG_E1HOV_TAG_MASK; |
| if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { |
| bp->mf_ov = val; |
| bp->path_has_ovlan = true; |
| |
| BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", |
| func, bp->mf_ov, bp->mf_ov); |
| } else { |
| dev_err(&bp->pdev->dev, |
| "No valid MF OV for func %d, aborting\n", |
| func); |
| return -EPERM; |
| } |
| break; |
| case MULTI_FUNCTION_AFEX: |
| BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); |
| break; |
| case MULTI_FUNCTION_SI: |
| BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", |
| func); |
| break; |
| default: |
| if (vn) { |
| dev_err(&bp->pdev->dev, |
| "VN %d is in a single function mode, aborting\n", |
| vn); |
| return -EPERM; |
| } |
| break; |
| } |
| |
| /* check if other port on the path needs ovlan: |
| * Since MF configuration is shared between ports |
| * Possible mixed modes are only |
| * {SF, SI} {SF, SD} {SD, SF} {SI, SF} |
| */ |
| if (CHIP_MODE_IS_4_PORT(bp) && |
| !bp->path_has_ovlan && |
| !IS_MF(bp) && |
| bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { |
| u8 other_port = !BP_PORT(bp); |
| u8 other_func = BP_PATH(bp) + 2*other_port; |
| val = MF_CFG_RD(bp, |
| func_mf_config[other_func].e1hov_tag); |
| if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) |
| bp->path_has_ovlan = true; |
| } |
| } |
| |
| /* adjust igu_sb_cnt to MF for E1x */ |
| if (CHIP_IS_E1x(bp) && IS_MF(bp)) |
| bp->igu_sb_cnt /= E1HVN_MAX; |
| |
| /* port info */ |
| bnx2x_get_port_hwinfo(bp); |
| |
| /* Get MAC addresses */ |
| bnx2x_get_mac_hwinfo(bp); |
| |
| bnx2x_get_cnic_info(bp); |
| |
| return rc; |
| } |
| |
| static void bnx2x_read_fwinfo(struct bnx2x *bp) |
| { |
| int cnt, i, block_end, rodi; |
| char vpd_start[BNX2X_VPD_LEN+1]; |
| char str_id_reg[VENDOR_ID_LEN+1]; |
| char str_id_cap[VENDOR_ID_LEN+1]; |
| char *vpd_data; |
| char *vpd_extended_data = NULL; |
| u8 len; |
| |
| cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); |
| memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); |
| |
| if (cnt < BNX2X_VPD_LEN) |
| goto out_not_found; |
| |
| /* VPD RO tag should be first tag after identifier string, hence |
| * we should be able to find it in first BNX2X_VPD_LEN chars |
| */ |
| i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, |
| PCI_VPD_LRDT_RO_DATA); |
| if (i < 0) |
| goto out_not_found; |
| |
| block_end = i + PCI_VPD_LRDT_TAG_SIZE + |
| pci_vpd_lrdt_size(&vpd_start[i]); |
| |
| i += PCI_VPD_LRDT_TAG_SIZE; |
| |
| if (block_end > BNX2X_VPD_LEN) { |
| vpd_extended_data = kmalloc(block_end, GFP_KERNEL); |
| if (vpd_extended_data == NULL) |
| goto out_not_found; |
| |
| /* read rest of vpd image into vpd_extended_data */ |
| memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); |
| cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, |
| block_end - BNX2X_VPD_LEN, |
| vpd_extended_data + BNX2X_VPD_LEN); |
| if (cnt < (block_end - BNX2X_VPD_LEN)) |
| goto out_not_found; |
| vpd_data = vpd_extended_data; |
| } else |
| vpd_data = vpd_start; |
| |
| /* now vpd_data holds full vpd content in both cases */ |
| |
| rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, |
| PCI_VPD_RO_KEYWORD_MFR_ID); |
| if (rodi < 0) |
| goto out_not_found; |
| |
| len = pci_vpd_info_field_size(&vpd_data[rodi]); |
| |
| if (len != VENDOR_ID_LEN) |
| goto out_not_found; |
| |
| rodi += PCI_VPD_INFO_FLD_HDR_SIZE; |
| |
| /* vendor specific info */ |
| snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); |
| snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); |
| if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || |
| !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { |
| |
| rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, |
| PCI_VPD_RO_KEYWORD_VENDOR0); |
| if (rodi >= 0) { |
| len = pci_vpd_info_field_size(&vpd_data[rodi]); |
| |
| rodi += PCI_VPD_INFO_FLD_HDR_SIZE; |
| |
| if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { |
| memcpy(bp->fw_ver, &vpd_data[rodi], len); |
| bp->fw_ver[len] = ' '; |
| } |
| } |
| kfree(vpd_extended_data); |
| return; |
| } |
| out_not_found: |
| kfree(vpd_extended_data); |
| return; |
| } |
| |
| static void bnx2x_set_modes_bitmap(struct bnx2x *bp) |
| { |
| u32 flags = 0; |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| SET_FLAGS(flags, MODE_FPGA); |
| else if (CHIP_REV_IS_EMUL(bp)) |
| SET_FLAGS(flags, MODE_EMUL); |
| else |
| SET_FLAGS(flags, MODE_ASIC); |
| |
| if (CHIP_MODE_IS_4_PORT(bp)) |
| SET_FLAGS(flags, MODE_PORT4); |
| else |
| SET_FLAGS(flags, MODE_PORT2); |
| |
| if (CHIP_IS_E2(bp)) |
| SET_FLAGS(flags, MODE_E2); |
| else if (CHIP_IS_E3(bp)) { |
| SET_FLAGS(flags, MODE_E3); |
| if (CHIP_REV(bp) == CHIP_REV_Ax) |
| SET_FLAGS(flags, MODE_E3_A0); |
| else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ |
| SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); |
| } |
| |
| if (IS_MF(bp)) { |
| SET_FLAGS(flags, MODE_MF); |
| switch (bp->mf_mode) { |
| case MULTI_FUNCTION_SD: |
| SET_FLAGS(flags, MODE_MF_SD); |
| break; |
| case MULTI_FUNCTION_SI: |
| SET_FLAGS(flags, MODE_MF_SI); |
| break; |
| case MULTI_FUNCTION_AFEX: |
| SET_FLAGS(flags, MODE_MF_AFEX); |
| break; |
| } |
| } else |
| SET_FLAGS(flags, MODE_SF); |
| |
| #if defined(__LITTLE_ENDIAN) |
| SET_FLAGS(flags, MODE_LITTLE_ENDIAN); |
| #else /*(__BIG_ENDIAN)*/ |
| SET_FLAGS(flags, MODE_BIG_ENDIAN); |
| #endif |
| INIT_MODE_FLAGS(bp) = flags; |
| } |
| |
| static int bnx2x_init_bp(struct bnx2x *bp) |
| { |
| int func; |
| int rc; |
| |
| mutex_init(&bp->port.phy_mutex); |
| mutex_init(&bp->fw_mb_mutex); |
| spin_lock_init(&bp->stats_lock); |
| sema_init(&bp->stats_sema, 1); |
| |
| INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); |
| INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); |
| INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); |
| if (IS_PF(bp)) { |
| rc = bnx2x_get_hwinfo(bp); |
| if (rc) |
| return rc; |
| } else { |
| eth_zero_addr(bp->dev->dev_addr); |
| } |
| |
| bnx2x_set_modes_bitmap(bp); |
| |
| rc = bnx2x_alloc_mem_bp(bp); |
| if (rc) |
| return rc; |
| |
| bnx2x_read_fwinfo(bp); |
| |
| func = BP_FUNC(bp); |
| |
| /* need to reset chip if undi was active */ |
| if (IS_PF(bp) && !BP_NOMCP(bp)) { |
| /* init fw_seq */ |
| bp->fw_seq = |
| SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & |
| DRV_MSG_SEQ_NUMBER_MASK; |
| BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); |
| |
| bnx2x_prev_unload(bp); |
| } |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| dev_err(&bp->pdev->dev, "FPGA detected\n"); |
| |
| if (BP_NOMCP(bp) && (func == 0)) |
| dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); |
| |
| bp->disable_tpa = disable_tpa; |
| bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp); |
| |
| /* Set TPA flags */ |
| if (bp->disable_tpa) { |
| bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); |
| bp->dev->features &= ~NETIF_F_LRO; |
| } else { |
| bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); |
| bp->dev->features |= NETIF_F_LRO; |
| } |
| |
| if (CHIP_IS_E1(bp)) |
| bp->dropless_fc = 0; |
| else |
| bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); |
| |
| bp->mrrs = mrrs; |
| |
| bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; |
| if (IS_VF(bp)) |
| bp->rx_ring_size = MAX_RX_AVAIL; |
| |
| /* make sure that the numbers are in the right granularity */ |
| bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; |
| bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; |
| |
| bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; |
| |
| init_timer(&bp->timer); |
| bp->timer.expires = jiffies + bp->current_interval; |
| bp->timer.data = (unsigned long) bp; |
| bp->timer.function = bnx2x_timer; |
| |
| if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && |
| SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && |
| SHMEM2_RD(bp, dcbx_lldp_params_offset) && |
| SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { |
| bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); |
| bnx2x_dcbx_init_params(bp); |
| } else { |
| bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); |
| } |
| |
| if (CHIP_IS_E1x(bp)) |
| bp->cnic_base_cl_id = FP_SB_MAX_E1x; |
| else |
| bp->cnic_base_cl_id = FP_SB_MAX_E2; |
| |
| /* multiple tx priority */ |
| if (IS_VF(bp)) |
| bp->max_cos = 1; |
| else if (CHIP_IS_E1x(bp)) |
| bp->max_cos = BNX2X_MULTI_TX_COS_E1X; |
| else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) |
| bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; |
| else if (CHIP_IS_E3B0(bp)) |
| bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; |
| else |
| BNX2X_ERR("unknown chip %x revision %x\n", |
| CHIP_NUM(bp), CHIP_REV(bp)); |
| BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); |
| |
| /* We need at least one default status block for slow-path events, |
| * second status block for the L2 queue, and a third status block for |
| * CNIC if supported. |
| */ |
| if (CNIC_SUPPORT(bp)) |
| bp->min_msix_vec_cnt = 3; |
| else |
| bp->min_msix_vec_cnt = 2; |
| BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); |
| |
| bp->dump_preset_idx = 1; |
| |
| return rc; |
| } |
| |
| /**************************************************************************** |
| * General service functions |
| ****************************************************************************/ |
| |
| /* |
| * net_device service functions |
| */ |
| |
| /* called with rtnl_lock */ |
| static int bnx2x_open(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| bool global = false; |
| int other_engine = BP_PATH(bp) ? 0 : 1; |
| bool other_load_status, load_status; |
| int rc; |
| |
| bp->stats_init = true; |
| |
| netif_carrier_off(dev); |
| |
| bnx2x_set_power_state(bp, PCI_D0); |
| |
| /* If parity had happen during the unload, then attentions |
| * and/or RECOVERY_IN_PROGRES may still be set. In this case we |
| * want the first function loaded on the current engine to |
| * complete the recovery. |
| * Parity recovery is only relevant for PF driver. |
| */ |
| if (IS_PF(bp)) { |
| other_load_status = bnx2x_get_load_status(bp, other_engine); |
| load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); |
| if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || |
| bnx2x_chk_parity_attn(bp, &global, true)) { |
| do { |
| /* If there are attentions and they are in a |
| * global blocks, set the GLOBAL_RESET bit |
| * regardless whether it will be this function |
| * that will complete the recovery or not. |
| */ |
| if (global) |
| bnx2x_set_reset_global(bp); |
| |
| /* Only the first function on the current |
| * engine should try to recover in open. In case |
| * of attentions in global blocks only the first |
| * in the chip should try to recover. |
| */ |
| if ((!load_status && |
| (!global || !other_load_status)) && |
| bnx2x_trylock_leader_lock(bp) && |
| !bnx2x_leader_reset(bp)) { |
| netdev_info(bp->dev, |
| "Recovered in open\n"); |
| break; |
| } |
| |
| /* recovery has failed... */ |
| bnx2x_set_power_state(bp, PCI_D3hot); |
| bp->recovery_state = BNX2X_RECOVERY_FAILED; |
| |
| BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" |
| "If you still see this message after a few retries then power cycle is required.\n"); |
| |
| return -EAGAIN; |
| } while (0); |
| } |
| } |
| |
| bp->recovery_state = BNX2X_RECOVERY_DONE; |
| rc = bnx2x_nic_load(bp, LOAD_OPEN); |
| if (rc) |
| return rc; |
| return bnx2x_open_epilog(bp); |
| } |
| |
| /* called with rtnl_lock */ |
| static int bnx2x_close(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| /* Unload the driver, release IRQs */ |
| bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); |
| |
| return 0; |
| } |
| |
| static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, |
| struct bnx2x_mcast_ramrod_params *p) |
| { |
| int mc_count = netdev_mc_count(bp->dev); |
| struct bnx2x_mcast_list_elem *mc_mac = |
| kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); |
| struct netdev_hw_addr *ha; |
| |
| if (!mc_mac) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&p->mcast_list); |
| |
| netdev_for_each_mc_addr(ha, bp->dev) { |
| mc_mac->mac = bnx2x_mc_addr(ha); |
| list_add_tail(&mc_mac->link, &p->mcast_list); |
| mc_mac++; |
| } |
| |
| p->mcast_list_len = mc_count; |
| |
| return 0; |
| } |
| |
| static void bnx2x_free_mcast_macs_list( |
| struct bnx2x_mcast_ramrod_params *p) |
| { |
| struct bnx2x_mcast_list_elem *mc_mac = |
| list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, |
| link); |
| |
| WARN_ON(!mc_mac); |
| kfree(mc_mac); |
| } |
| |
| /** |
| * bnx2x_set_uc_list - configure a new unicast MACs list. |
| * |
| * @bp: driver handle |
| * |
| * We will use zero (0) as a MAC type for these MACs. |
| */ |
| static int bnx2x_set_uc_list(struct bnx2x *bp) |
| { |
| int rc; |
| struct net_device *dev = bp->dev; |
| struct netdev_hw_addr *ha; |
| struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; |
| unsigned long ramrod_flags = 0; |
| |
| /* First schedule a cleanup up of old configuration */ |
| rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); |
| if (rc < 0) { |
| BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); |
| return rc; |
| } |
| |
| netdev_for_each_uc_addr(ha, dev) { |
| rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, |
| BNX2X_UC_LIST_MAC, &ramrod_flags); |
| if (rc == -EEXIST) { |
| DP(BNX2X_MSG_SP, |
| "Failed to schedule ADD operations: %d\n", rc); |
| /* do not treat adding same MAC as error */ |
| rc = 0; |
| |
| } else if (rc < 0) { |
| |
| BNX2X_ERR("Failed to schedule ADD operations: %d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| /* Execute the pending commands */ |
| __set_bit(RAMROD_CONT, &ramrod_flags); |
| return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, |
| BNX2X_UC_LIST_MAC, &ramrod_flags); |
| } |
| |
| static int bnx2x_set_mc_list(struct bnx2x *bp) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnx2x_mcast_ramrod_params rparam = {NULL}; |
| int rc = 0; |
| |
| rparam.mcast_obj = &bp->mcast_obj; |
| |
| /* first, clear all configured multicast MACs */ |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); |
| if (rc < 0) { |
| BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); |
| return rc; |
| } |
| |
| /* then, configure a new MACs list */ |
| if (netdev_mc_count(dev)) { |
| rc = bnx2x_init_mcast_macs_list(bp, &rparam); |
| if (rc) { |
| BNX2X_ERR("Failed to create multicast MACs list: %d\n", |
| rc); |
| return rc; |
| } |
| |
| /* Now add the new MACs */ |
| rc = bnx2x_config_mcast(bp, &rparam, |
| BNX2X_MCAST_CMD_ADD); |
| if (rc < 0) |
| BNX2X_ERR("Failed to set a new multicast configuration: %d\n", |
| rc); |
| |
| bnx2x_free_mcast_macs_list(&rparam); |
| } |
| |
| return rc; |
| } |
| |
| /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ |
| void bnx2x_set_rx_mode(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| u32 rx_mode = BNX2X_RX_MODE_NORMAL; |
| |
| if (bp->state != BNX2X_STATE_OPEN) { |
| DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); |
| return; |
| } |
| |
| DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); |
| |
| if (dev->flags & IFF_PROMISC) |
| rx_mode = BNX2X_RX_MODE_PROMISC; |
| else if ((dev->flags & IFF_ALLMULTI) || |
| ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) && |
| CHIP_IS_E1(bp))) |
| rx_mode = BNX2X_RX_MODE_ALLMULTI; |
| else { |
| if (IS_PF(bp)) { |
| /* some multicasts */ |
| if (bnx2x_set_mc_list(bp) < 0) |
| rx_mode = BNX2X_RX_MODE_ALLMULTI; |
| |
| if (bnx2x_set_uc_list(bp) < 0) |
| rx_mode = BNX2X_RX_MODE_PROMISC; |
| } else { |
| /* configuring mcast to a vf involves sleeping (when we |
| * wait for the pf's response). Since this function is |
| * called from non sleepable context we must schedule |
| * a work item for this purpose |
| */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_SP_RTNL_VFPF_MCAST, |
| &bp->sp_rtnl_state); |
| smp_mb__after_clear_bit(); |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| } |
| } |
| |
| bp->rx_mode = rx_mode; |
| /* handle ISCSI SD mode */ |
| if (IS_MF_ISCSI_SD(bp)) |
| bp->rx_mode = BNX2X_RX_MODE_NONE; |
| |
| /* Schedule the rx_mode command */ |
| if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { |
| set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); |
| return; |
| } |
| |
| if (IS_PF(bp)) { |
| bnx2x_set_storm_rx_mode(bp); |
| } else { |
| /* configuring rx mode to storms in a vf involves sleeping (when |
| * we wait for the pf's response). Since this function is |
| * called from non sleepable context we must schedule |
| * a work item for this purpose |
| */ |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, |
| &bp->sp_rtnl_state); |
| smp_mb__after_clear_bit(); |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| } |
| } |
| |
| /* called with rtnl_lock */ |
| static int bnx2x_mdio_read(struct net_device *netdev, int prtad, |
| int devad, u16 addr) |
| { |
| struct bnx2x *bp = netdev_priv(netdev); |
| u16 value; |
| int rc; |
| |
| DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", |
| prtad, devad, addr); |
| |
| /* The HW expects different devad if CL22 is used */ |
| devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; |
| |
| bnx2x_acquire_phy_lock(bp); |
| rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); |
| bnx2x_release_phy_lock(bp); |
| DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); |
| |
| if (!rc) |
| rc = value; |
| return rc; |
| } |
| |
| /* called with rtnl_lock */ |
| static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, |
| u16 addr, u16 value) |
| { |
| struct bnx2x *bp = netdev_priv(netdev); |
| int rc; |
| |
| DP(NETIF_MSG_LINK, |
| "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", |
| prtad, devad, addr, value); |
| |
| /* The HW expects different devad if CL22 is used */ |
| devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; |
| |
| bnx2x_acquire_phy_lock(bp); |
| rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); |
| bnx2x_release_phy_lock(bp); |
| return rc; |
| } |
| |
| /* called with rtnl_lock */ |
| static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| struct mii_ioctl_data *mdio = if_mii(ifr); |
| |
| DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", |
| mdio->phy_id, mdio->reg_num, mdio->val_in); |
| |
| if (!netif_running(dev)) |
| return -EAGAIN; |
| |
| return mdio_mii_ioctl(&bp->mdio, mdio, cmd); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void poll_bnx2x(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| int i; |
| |
| for_each_eth_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| napi_schedule(&bnx2x_fp(bp, fp->index, napi)); |
| } |
| } |
| #endif |
| |
| static int bnx2x_validate_addr(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| /* query the bulletin board for mac address configured by the PF */ |
| if (IS_VF(bp)) |
| bnx2x_sample_bulletin(bp); |
| |
| if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { |
| BNX2X_ERR("Non-valid Ethernet address\n"); |
| return -EADDRNOTAVAIL; |
| } |
| return 0; |
| } |
| |
| static const struct net_device_ops bnx2x_netdev_ops = { |
| .ndo_open = bnx2x_open, |
| .ndo_stop = bnx2x_close, |
| .ndo_start_xmit = bnx2x_start_xmit, |
| .ndo_select_queue = bnx2x_select_queue, |
| .ndo_set_rx_mode = bnx2x_set_rx_mode, |
| .ndo_set_mac_address = bnx2x_change_mac_addr, |
| .ndo_validate_addr = bnx2x_validate_addr, |
| .ndo_do_ioctl = bnx2x_ioctl, |
| .ndo_change_mtu = bnx2x_change_mtu, |
| .ndo_fix_features = bnx2x_fix_features, |
| .ndo_set_features = bnx2x_set_features, |
| .ndo_tx_timeout = bnx2x_tx_timeout, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = poll_bnx2x, |
| #endif |
| .ndo_setup_tc = bnx2x_setup_tc, |
| #ifdef CONFIG_BNX2X_SRIOV |
| .ndo_set_vf_mac = bnx2x_set_vf_mac, |
| .ndo_set_vf_vlan = bnx2x_set_vf_vlan, |
| .ndo_get_vf_config = bnx2x_get_vf_config, |
| #endif |
| #ifdef NETDEV_FCOE_WWNN |
| .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, |
| #endif |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| .ndo_busy_poll = bnx2x_low_latency_recv, |
| #endif |
| }; |
| |
| static int bnx2x_set_coherency_mask(struct bnx2x *bp) |
| { |
| struct device *dev = &bp->pdev->dev; |
| |
| if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { |
| bp->flags |= USING_DAC_FLAG; |
| if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { |
| dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); |
| return -EIO; |
| } |
| } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { |
| dev_err(dev, "System does not support DMA, aborting\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, |
| struct net_device *dev, unsigned long board_type) |
| { |
| int rc; |
| u32 pci_cfg_dword; |
| bool chip_is_e1x = (board_type == BCM57710 || |
| board_type == BCM57711 || |
| board_type == BCM57711E); |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| bp->dev = dev; |
| bp->pdev = pdev; |
| |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_err(&bp->pdev->dev, |
| "Cannot enable PCI device, aborting\n"); |
| goto err_out; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| dev_err(&bp->pdev->dev, |
| "Cannot find PCI device base address, aborting\n"); |
| rc = -ENODEV; |
| goto err_out_disable; |
| } |
| |
| if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { |
| dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); |
| rc = -ENODEV; |
| goto err_out_disable; |
| } |
| |
| pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); |
| if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == |
| PCICFG_REVESION_ID_ERROR_VAL) { |
| pr_err("PCI device error, probably due to fan failure, aborting\n"); |
| rc = -ENODEV; |
| goto err_out_disable; |
| } |
| |
| if (atomic_read(&pdev->enable_cnt) == 1) { |
| rc = pci_request_regions(pdev, DRV_MODULE_NAME); |
| if (rc) { |
| dev_err(&bp->pdev->dev, |
| "Cannot obtain PCI resources, aborting\n"); |
| goto err_out_disable; |
| } |
| |
| pci_set_master(pdev); |
| pci_save_state(pdev); |
| } |
| |
| if (IS_PF(bp)) { |
| bp->pm_cap = pdev->pm_cap; |
| if (bp->pm_cap == 0) { |
| dev_err(&bp->pdev->dev, |
| "Cannot find power management capability, aborting\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| } |
| |
| if (!pci_is_pcie(pdev)) { |
| dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| |
| rc = bnx2x_set_coherency_mask(bp); |
| if (rc) |
| goto err_out_release; |
| |
| dev->mem_start = pci_resource_start(pdev, 0); |
| dev->base_addr = dev->mem_start; |
| dev->mem_end = pci_resource_end(pdev, 0); |
| |
| dev->irq = pdev->irq; |
| |
| bp->regview = pci_ioremap_bar(pdev, 0); |
| if (!bp->regview) { |
| dev_err(&bp->pdev->dev, |
| "Cannot map register space, aborting\n"); |
| rc = -ENOMEM; |
| goto err_out_release; |
| } |
| |
| /* In E1/E1H use pci device function given by kernel. |
| * In E2/E3 read physical function from ME register since these chips |
| * support Physical Device Assignment where kernel BDF maybe arbitrary |
| * (depending on hypervisor). |
| */ |
| if (chip_is_e1x) { |
| bp->pf_num = PCI_FUNC(pdev->devfn); |
| } else { |
| /* chip is E2/3*/ |
| pci_read_config_dword(bp->pdev, |
| PCICFG_ME_REGISTER, &pci_cfg_dword); |
| bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> |
| ME_REG_ABS_PF_NUM_SHIFT); |
| } |
| BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); |
| |
| /* clean indirect addresses */ |
| pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, |
| PCICFG_VENDOR_ID_OFFSET); |
| /* |
| * Clean the following indirect addresses for all functions since it |
| * is not used by the driver. |
| */ |
| if (IS_PF(bp)) { |
| REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); |
| |
| if (chip_is_e1x) { |
| REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); |
| REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); |
| } |
| |
| /* Enable internal target-read (in case we are probed after PF |
| * FLR). Must be done prior to any BAR read access. Only for |
| * 57712 and up |
| */ |
| if (!chip_is_e1x) |
| REG_WR(bp, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| } |
| |
| dev->watchdog_timeo = TX_TIMEOUT; |
| |
| dev->netdev_ops = &bnx2x_netdev_ops; |
| bnx2x_set_ethtool_ops(bp, dev); |
| |
| dev->priv_flags |= IFF_UNICAST_FLT; |
| |
| dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | |
| NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | |
| NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; |
| if (!CHIP_IS_E1x(bp)) { |
| dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; |
| dev->hw_enc_features = |
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | |
| NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | |
| NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; |
| } |
| |
| dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; |
| |
| dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; |
| if (bp->flags & USING_DAC_FLAG) |
| dev->features |= NETIF_F_HIGHDMA; |
| |
| /* Add Loopback capability to the device */ |
| dev->hw_features |= NETIF_F_LOOPBACK; |
| |
| #ifdef BCM_DCBNL |
| dev->dcbnl_ops = &bnx2x_dcbnl_ops; |
| #endif |
| |
| /* get_port_hwinfo() will set prtad and mmds properly */ |
| bp->mdio.prtad = MDIO_PRTAD_NONE; |
| bp->mdio.mmds = 0; |
| bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; |
| bp->mdio.dev = dev; |
| bp->mdio.mdio_read = bnx2x_mdio_read; |
| bp->mdio.mdio_write = bnx2x_mdio_write; |
| |
| return 0; |
| |
| err_out_release: |
| if (atomic_read(&pdev->enable_cnt) == 1) |
| pci_release_regions(pdev); |
| |
| err_out_disable: |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| |
| err_out: |
| return rc; |
| } |
| |
| static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, |
| enum bnx2x_pci_bus_speed *speed) |
| { |
| u32 link_speed, val = 0; |
| |
| pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val); |
| *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; |
| |
| link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; |
| |
| switch (link_speed) { |
| case 3: |
| *speed = BNX2X_PCI_LINK_SPEED_8000; |
| break; |
| case 2: |
| *speed = BNX2X_PCI_LINK_SPEED_5000; |
| break; |
| default: |
| *speed = BNX2X_PCI_LINK_SPEED_2500; |
| } |
| } |
| |
| static int bnx2x_check_firmware(struct bnx2x *bp) |
| { |
| const struct firmware *firmware = bp->firmware; |
| struct bnx2x_fw_file_hdr *fw_hdr; |
| struct bnx2x_fw_file_section *sections; |
| u32 offset, len, num_ops; |
| __be16 *ops_offsets; |
| int i; |
| const u8 *fw_ver; |
| |
| if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { |
| BNX2X_ERR("Wrong FW size\n"); |
| return -EINVAL; |
| } |
| |
| fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; |
| sections = (struct bnx2x_fw_file_section *)fw_hdr; |
| |
| /* Make sure none of the offsets and sizes make us read beyond |
| * the end of the firmware data */ |
| for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { |
| offset = be32_to_cpu(sections[i].offset); |
| len = be32_to_cpu(sections[i].len); |
| if (offset + len > firmware->size) { |
| BNX2X_ERR("Section %d length is out of bounds\n", i); |
| return -EINVAL; |
| } |
| } |
| |
| /* Likewise for the init_ops offsets */ |
| offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); |
| ops_offsets = (__force __be16 *)(firmware->data + offset); |
| num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); |
| |
| for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { |
| if (be16_to_cpu(ops_offsets[i]) > num_ops) { |
| BNX2X_ERR("Section offset %d is out of bounds\n", i); |
| return -EINVAL; |
| } |
| } |
| |
| /* Check FW version */ |
| offset = be32_to_cpu(fw_hdr->fw_version.offset); |
| fw_ver = firmware->data + offset; |
| if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || |
| (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || |
| (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || |
| (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { |
| BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", |
| fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], |
| BCM_5710_FW_MAJOR_VERSION, |
| BCM_5710_FW_MINOR_VERSION, |
| BCM_5710_FW_REVISION_VERSION, |
| BCM_5710_FW_ENGINEERING_VERSION); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) |
| { |
| const __be32 *source = (const __be32 *)_source; |
| u32 *target = (u32 *)_target; |
| u32 i; |
| |
| for (i = 0; i < n/4; i++) |
| target[i] = be32_to_cpu(source[i]); |
| } |
| |
| /* |
| Ops array is stored in the following format: |
| {op(8bit), offset(24bit, big endian), data(32bit, big endian)} |
| */ |
| static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) |
| { |
| const __be32 *source = (const __be32 *)_source; |
| struct raw_op *target = (struct raw_op *)_target; |
| u32 i, j, tmp; |
| |
| for (i = 0, j = 0; i < n/8; i++, j += 2) { |
| tmp = be32_to_cpu(source[j]); |
| target[i].op = (tmp >> 24) & 0xff; |
| target[i].offset = tmp & 0xffffff; |
| target[i].raw_data = be32_to_cpu(source[j + 1]); |
| } |
| } |
| |
| /* IRO array is stored in the following format: |
| * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } |
| */ |
| static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) |
| { |
| const __be32 *source = (const __be32 *)_source; |
| struct iro *target = (struct iro *)_target; |
| u32 i, j, tmp; |
| |
| for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { |
| target[i].base = be32_to_cpu(source[j]); |
| j++; |
| tmp = be32_to_cpu(source[j]); |
| target[i].m1 = (tmp >> 16) & 0xffff; |
| target[i].m2 = tmp & 0xffff; |
| j++; |
| tmp = be32_to_cpu(source[j]); |
| target[i].m3 = (tmp >> 16) & 0xffff; |
| target[i].size = tmp & 0xffff; |
| j++; |
| } |
| } |
| |
| static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) |
| { |
| const __be16 *source = (const __be16 *)_source; |
| u16 *target = (u16 *)_target; |
| u32 i; |
| |
| for (i = 0; i < n/2; i++) |
| target[i] = be16_to_cpu(source[i]); |
| } |
| |
| #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ |
| do { \ |
| u32 len = be32_to_cpu(fw_hdr->arr.len); \ |
| bp->arr = kmalloc(len, GFP_KERNEL); \ |
| if (!bp->arr) \ |
| goto lbl; \ |
| func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ |
| (u8 *)bp->arr, len); \ |
| } while (0) |
| |
| static int bnx2x_init_firmware(struct bnx2x *bp) |
| { |
| const char *fw_file_name; |
| struct bnx2x_fw_file_hdr *fw_hdr; |
| int rc; |
| |
| if (bp->firmware) |
| return 0; |
| |
| if (CHIP_IS_E1(bp)) |
| fw_file_name = FW_FILE_NAME_E1; |
| else if (CHIP_IS_E1H(bp)) |
| fw_file_name = FW_FILE_NAME_E1H; |
| else if (!CHIP_IS_E1x(bp)) |
| fw_file_name = FW_FILE_NAME_E2; |
| else { |
| BNX2X_ERR("Unsupported chip revision\n"); |
| return -EINVAL; |
| } |
| BNX2X_DEV_INFO("Loading %s\n", fw_file_name); |
| |
| rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); |
| if (rc) { |
| BNX2X_ERR("Can't load firmware file %s\n", |
| fw_file_name); |
| goto request_firmware_exit; |
| } |
| |
| rc = bnx2x_check_firmware(bp); |
| if (rc) { |
| BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); |
| goto request_firmware_exit; |
| } |
| |
| fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; |
| |
| /* Initialize the pointers to the init arrays */ |
| /* Blob */ |
| BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); |
| |
| /* Opcodes */ |
| BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); |
| |
| /* Offsets */ |
| BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, |
| be16_to_cpu_n); |
| |
| /* STORMs firmware */ |
| INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->tsem_int_table_data.offset); |
| INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->tsem_pram_data.offset); |
| INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->usem_int_table_data.offset); |
| INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->usem_pram_data.offset); |
| INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->xsem_int_table_data.offset); |
| INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->xsem_pram_data.offset); |
| INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->csem_int_table_data.offset); |
| INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + |
| be32_to_cpu(fw_hdr->csem_pram_data.offset); |
| /* IRO */ |
| BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); |
| |
| return 0; |
| |
| iro_alloc_err: |
| kfree(bp->init_ops_offsets); |
| init_offsets_alloc_err: |
| kfree(bp->init_ops); |
| init_ops_alloc_err: |
| kfree(bp->init_data); |
| request_firmware_exit: |
| release_firmware(bp->firmware); |
| bp->firmware = NULL; |
| |
| return rc; |
| } |
| |
| static void bnx2x_release_firmware(struct bnx2x *bp) |
| { |
| kfree(bp->init_ops_offsets); |
| kfree(bp->init_ops); |
| kfree(bp->init_data); |
| release_firmware(bp->firmware); |
| bp->firmware = NULL; |
| } |
| |
| static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { |
| .init_hw_cmn_chip = bnx2x_init_hw_common_chip, |
| .init_hw_cmn = bnx2x_init_hw_common, |
| .init_hw_port = bnx2x_init_hw_port, |
| .init_hw_func = bnx2x_init_hw_func, |
| |
| .reset_hw_cmn = bnx2x_reset_common, |
| .reset_hw_port = bnx2x_reset_port, |
| .reset_hw_func = bnx2x_reset_func, |
| |
| .gunzip_init = bnx2x_gunzip_init, |
| .gunzip_end = bnx2x_gunzip_end, |
| |
| .init_fw = bnx2x_init_firmware, |
| .release_fw = bnx2x_release_firmware, |
| }; |
| |
| void bnx2x__init_func_obj(struct bnx2x *bp) |
| { |
| /* Prepare DMAE related driver resources */ |
| bnx2x_setup_dmae(bp); |
| |
| bnx2x_init_func_obj(bp, &bp->func_obj, |
| bnx2x_sp(bp, func_rdata), |
| bnx2x_sp_mapping(bp, func_rdata), |
| bnx2x_sp(bp, func_afex_rdata), |
| bnx2x_sp_mapping(bp, func_afex_rdata), |
| &bnx2x_func_sp_drv); |
| } |
| |
| /* must be called after sriov-enable */ |
| static int bnx2x_set_qm_cid_count(struct bnx2x *bp) |
| { |
| int cid_count = BNX2X_L2_MAX_CID(bp); |
| |
| if (IS_SRIOV(bp)) |
| cid_count += BNX2X_VF_CIDS; |
| |
| if (CNIC_SUPPORT(bp)) |
| cid_count += CNIC_CID_MAX; |
| |
| return roundup(cid_count, QM_CID_ROUND); |
| } |
| |
| /** |
| * bnx2x_get_num_none_def_sbs - return the number of none default SBs |
| * |
| * @dev: pci device |
| * |
| */ |
| static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, |
| int cnic_cnt, bool is_vf) |
| { |
| int pos, index; |
| u16 control = 0; |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); |
| |
| /* |
| * If MSI-X is not supported - return number of SBs needed to support |
| * one fast path queue: one FP queue + SB for CNIC |
| */ |
| if (!pos) { |
| dev_info(&pdev->dev, "no msix capability found\n"); |
| return 1 + cnic_cnt; |
| } |
| dev_info(&pdev->dev, "msix capability found\n"); |
| |
| /* |
| * The value in the PCI configuration space is the index of the last |
| * entry, namely one less than the actual size of the table, which is |
| * exactly what we want to return from this function: number of all SBs |
| * without the default SB. |
| * For VFs there is no default SB, then we return (index+1). |
| */ |
| pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control); |
| |
| index = control & PCI_MSIX_FLAGS_QSIZE; |
| |
| return is_vf ? index + 1 : index; |
| } |
| |
| static int set_max_cos_est(int chip_id) |
| { |
| switch (chip_id) { |
| case BCM57710: |
| case BCM57711: |
| case BCM57711E: |
| return BNX2X_MULTI_TX_COS_E1X; |
| case BCM57712: |
| case BCM57712_MF: |
| case BCM57712_VF: |
| return BNX2X_MULTI_TX_COS_E2_E3A0; |
| case BCM57800: |
| case BCM57800_MF: |
| case BCM57800_VF: |
| case BCM57810: |
| case BCM57810_MF: |
| case BCM57840_4_10: |
| case BCM57840_2_20: |
| case BCM57840_O: |
| case BCM57840_MFO: |
| case BCM57810_VF: |
| case BCM57840_MF: |
| case BCM57840_VF: |
| case BCM57811: |
| case BCM57811_MF: |
| case BCM57811_VF: |
| return BNX2X_MULTI_TX_COS_E3B0; |
| return 1; |
| default: |
| pr_err("Unknown board_type (%d), aborting\n", chip_id); |
| return -ENODEV; |
| } |
| } |
| |
| static int set_is_vf(int chip_id) |
| { |
| switch (chip_id) { |
| case BCM57712_VF: |
| case BCM57800_VF: |
| case BCM57810_VF: |
| case BCM57840_VF: |
| case BCM57811_VF: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); |
| |
| static int bnx2x_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *dev = NULL; |
| struct bnx2x *bp; |
| int pcie_width; |
| enum bnx2x_pci_bus_speed pcie_speed; |
| int rc, max_non_def_sbs; |
| int rx_count, tx_count, rss_count, doorbell_size; |
| int max_cos_est; |
| bool is_vf; |
| int cnic_cnt; |
| |
| /* An estimated maximum supported CoS number according to the chip |
| * version. |
| * We will try to roughly estimate the maximum number of CoSes this chip |
| * may support in order to minimize the memory allocated for Tx |
| * netdev_queue's. This number will be accurately calculated during the |
| * initialization of bp->max_cos based on the chip versions AND chip |
| * revision in the bnx2x_init_bp(). |
| */ |
| max_cos_est = set_max_cos_est(ent->driver_data); |
| if (max_cos_est < 0) |
| return max_cos_est; |
| is_vf = set_is_vf(ent->driver_data); |
| cnic_cnt = is_vf ? 0 : 1; |
| |
| max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf); |
| |
| /* Maximum number of RSS queues: one IGU SB goes to CNIC */ |
| rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt; |
| |
| if (rss_count < 1) |
| return -EINVAL; |
| |
| /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ |
| rx_count = rss_count + cnic_cnt; |
| |
| /* Maximum number of netdev Tx queues: |
| * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 |
| */ |
| tx_count = rss_count * max_cos_est + cnic_cnt; |
| |
| /* dev zeroed in init_etherdev */ |
| dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); |
| if (!dev) |
| return -ENOMEM; |
| |
| bp = netdev_priv(dev); |
| |
| bp->flags = 0; |
| if (is_vf) |
| bp->flags |= IS_VF_FLAG; |
| |
| bp->igu_sb_cnt = max_non_def_sbs; |
| bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; |
| bp->msg_enable = debug; |
| bp->cnic_support = cnic_cnt; |
| bp->cnic_probe = bnx2x_cnic_probe; |
| |
| pci_set_drvdata(pdev, dev); |
| |
| rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); |
| if (rc < 0) { |
| free_netdev(dev); |
| return rc; |
| } |
| |
| BNX2X_DEV_INFO("This is a %s function\n", |
| IS_PF(bp) ? "physical" : "virtual"); |
| BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); |
| BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); |
| BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", |
| tx_count, rx_count); |
| |
| rc = bnx2x_init_bp(bp); |
| if (rc) |
| goto init_one_exit; |
| |
| /* Map doorbells here as we need the real value of bp->max_cos which |
| * is initialized in bnx2x_init_bp() to determine the number of |
| * l2 connections. |
| */ |
| if (IS_VF(bp)) { |
| bp->doorbells = bnx2x_vf_doorbells(bp); |
| rc = bnx2x_vf_pci_alloc(bp); |
| if (rc) |
| goto init_one_exit; |
| } else { |
| doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); |
| if (doorbell_size > pci_resource_len(pdev, 2)) { |
| dev_err(&bp->pdev->dev, |
| "Cannot map doorbells, bar size too small, aborting\n"); |
| rc = -ENOMEM; |
| goto init_one_exit; |
| } |
| bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), |
| doorbell_size); |
| } |
| if (!bp->doorbells) { |
| dev_err(&bp->pdev->dev, |
| "Cannot map doorbell space, aborting\n"); |
| rc = -ENOMEM; |
| goto init_one_exit; |
| } |
| |
| if (IS_VF(bp)) { |
| rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); |
| if (rc) |
| goto init_one_exit; |
| } |
| |
| /* Enable SRIOV if capability found in configuration space */ |
| rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); |
| if (rc) |
| goto init_one_exit; |
| |
| /* calc qm_cid_count */ |
| bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); |
| BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); |
| |
| /* disable FCOE L2 queue for E1x*/ |
| if (CHIP_IS_E1x(bp)) |
| bp->flags |= NO_FCOE_FLAG; |
| |
| /* Set bp->num_queues for MSI-X mode*/ |
| bnx2x_set_num_queues(bp); |
| |
| /* Configure interrupt mode: try to enable MSI-X/MSI if |
| * needed. |
| */ |
| rc = bnx2x_set_int_mode(bp); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot set interrupts\n"); |
| goto init_one_exit; |
| } |
| BNX2X_DEV_INFO("set interrupts successfully\n"); |
| |
| /* register the net device */ |
| rc = register_netdev(dev); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot register net device\n"); |
| goto init_one_exit; |
| } |
| BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); |
| |
| if (!NO_FCOE(bp)) { |
| /* Add storage MAC address */ |
| rtnl_lock(); |
| dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); |
| rtnl_unlock(); |
| } |
| |
| bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); |
| BNX2X_DEV_INFO("got pcie width %d and speed %d\n", |
| pcie_width, pcie_speed); |
| |
| BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", |
| board_info[ent->driver_data].name, |
| (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), |
| pcie_width, |
| pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" : |
| pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" : |
| pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" : |
| "Unknown", |
| dev->base_addr, bp->pdev->irq, dev->dev_addr); |
| |
| return 0; |
| |
| init_one_exit: |
| if (bp->regview) |
| iounmap(bp->regview); |
| |
| if (IS_PF(bp) && bp->doorbells) |
| iounmap(bp->doorbells); |
| |
| free_netdev(dev); |
| |
| if (atomic_read(&pdev->enable_cnt) == 1) |
| pci_release_regions(pdev); |
| |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| |
| return rc; |
| } |
| |
| static void __bnx2x_remove(struct pci_dev *pdev, |
| struct net_device *dev, |
| struct bnx2x *bp, |
| bool remove_netdev) |
| { |
| /* Delete storage MAC address */ |
| if (!NO_FCOE(bp)) { |
| rtnl_lock(); |
| dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); |
| rtnl_unlock(); |
| } |
| |
| #ifdef BCM_DCBNL |
| /* Delete app tlvs from dcbnl */ |
| bnx2x_dcbnl_update_applist(bp, true); |
| #endif |
| |
| if (IS_PF(bp) && |
| !BP_NOMCP(bp) && |
| (bp->flags & BC_SUPPORTS_RMMOD_CMD)) |
| bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); |
| |
| /* Close the interface - either directly or implicitly */ |
| if (remove_netdev) { |
| unregister_netdev(dev); |
| } else { |
| rtnl_lock(); |
| dev_close(dev); |
| rtnl_unlock(); |
| } |
| |
| bnx2x_iov_remove_one(bp); |
| |
| /* Power on: we can't let PCI layer write to us while we are in D3 */ |
| if (IS_PF(bp)) |
| bnx2x_set_power_state(bp, PCI_D0); |
| |
| /* Disable MSI/MSI-X */ |
| bnx2x_disable_msi(bp); |
| |
| /* Power off */ |
| if (IS_PF(bp)) |
| bnx2x_set_power_state(bp, PCI_D3hot); |
| |
| /* Make sure RESET task is not scheduled before continuing */ |
| cancel_delayed_work_sync(&bp->sp_rtnl_task); |
| |
| /* send message via vfpf channel to release the resources of this vf */ |
| if (IS_VF(bp)) |
| bnx2x_vfpf_release(bp); |
| |
| /* Assumes no further PCIe PM changes will occur */ |
| if (system_state == SYSTEM_POWER_OFF) { |
| pci_wake_from_d3(pdev, bp->wol); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| if (bp->regview) |
| iounmap(bp->regview); |
| |
| /* for vf doorbells are part of the regview and were unmapped along with |
| * it. FW is only loaded by PF. |
| */ |
| if (IS_PF(bp)) { |
| if (bp->doorbells) |
| iounmap(bp->doorbells); |
| |
| bnx2x_release_firmware(bp); |
| } |
| bnx2x_free_mem_bp(bp); |
| |
| if (remove_netdev) |
| free_netdev(dev); |
| |
| if (atomic_read(&pdev->enable_cnt) == 1) |
| pci_release_regions(pdev); |
| |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| static void bnx2x_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp; |
| |
| if (!dev) { |
| dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); |
| return; |
| } |
| bp = netdev_priv(dev); |
| |
| __bnx2x_remove(pdev, dev, bp, true); |
| } |
| |
| static int bnx2x_eeh_nic_unload(struct bnx2x *bp) |
| { |
| bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; |
| |
| bp->rx_mode = BNX2X_RX_MODE_NONE; |
| |
| if (CNIC_LOADED(bp)) |
| bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); |
| |
| /* Stop Tx */ |
| bnx2x_tx_disable(bp); |
| /* Delete all NAPI objects */ |
| bnx2x_del_all_napi(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_del_all_napi_cnic(bp); |
| netdev_reset_tc(bp->dev); |
| |
| del_timer_sync(&bp->timer); |
| cancel_delayed_work(&bp->sp_task); |
| cancel_delayed_work(&bp->period_task); |
| |
| spin_lock_bh(&bp->stats_lock); |
| bp->stats_state = STATS_STATE_DISABLED; |
| spin_unlock_bh(&bp->stats_lock); |
| |
| bnx2x_save_statistics(bp); |
| |
| netif_carrier_off(bp->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * bnx2x_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| rtnl_lock(); |
| |
| BNX2X_ERR("IO error detected\n"); |
| |
| netif_device_detach(dev); |
| |
| if (state == pci_channel_io_perm_failure) { |
| rtnl_unlock(); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| if (netif_running(dev)) |
| bnx2x_eeh_nic_unload(bp); |
| |
| bnx2x_prev_path_mark_eeh(bp); |
| |
| pci_disable_device(pdev); |
| |
| rtnl_unlock(); |
| |
| /* Request a slot reset */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * bnx2x_io_slot_reset - called after the PCI bus has been reset |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. |
| */ |
| static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp = netdev_priv(dev); |
| int i; |
| |
| rtnl_lock(); |
| BNX2X_ERR("IO slot reset initializing...\n"); |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset\n"); |
| rtnl_unlock(); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| pci_set_master(pdev); |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| if (netif_running(dev)) |
| bnx2x_set_power_state(bp, PCI_D0); |
| |
| if (netif_running(dev)) { |
| BNX2X_ERR("IO slot reset --> driver unload\n"); |
| |
| /* MCP should have been reset; Need to wait for validity */ |
| bnx2x_init_shmem(bp); |
| |
| if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { |
| u32 v; |
| |
| v = SHMEM2_RD(bp, |
| drv_capabilities_flag[BP_FW_MB_IDX(bp)]); |
| SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], |
| v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); |
| } |
| bnx2x_drain_tx_queues(bp); |
| bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); |
| bnx2x_netif_stop(bp, 1); |
| bnx2x_free_irq(bp); |
| |
| /* Report UNLOAD_DONE to MCP */ |
| bnx2x_send_unload_done(bp, true); |
| |
| bp->sp_state = 0; |
| bp->port.pmf = 0; |
| |
| bnx2x_prev_unload(bp); |
| |
| /* We should have reseted the engine, so It's fair to |
| * assume the FW will no longer write to the bnx2x driver. |
| */ |
| bnx2x_squeeze_objects(bp); |
| bnx2x_free_skbs(bp); |
| for_each_rx_queue(bp, i) |
| bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); |
| bnx2x_free_fp_mem(bp); |
| bnx2x_free_mem(bp); |
| |
| bp->state = BNX2X_STATE_CLOSED; |
| } |
| |
| rtnl_unlock(); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * bnx2x_io_resume - called when traffic can start flowing again |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. |
| */ |
| static void bnx2x_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| if (bp->recovery_state != BNX2X_RECOVERY_DONE) { |
| netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); |
| return; |
| } |
| |
| rtnl_lock(); |
| |
| bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & |
| DRV_MSG_SEQ_NUMBER_MASK; |
| |
| if (netif_running(dev)) |
| bnx2x_nic_load(bp, LOAD_NORMAL); |
| |
| netif_device_attach(dev); |
| |
| rtnl_unlock(); |
| } |
| |
| static const struct pci_error_handlers bnx2x_err_handler = { |
| .error_detected = bnx2x_io_error_detected, |
| .slot_reset = bnx2x_io_slot_reset, |
| .resume = bnx2x_io_resume, |
| }; |
| |
| static void bnx2x_shutdown(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp; |
| |
| if (!dev) |
| return; |
| |
| bp = netdev_priv(dev); |
| if (!bp) |
| return; |
| |
| rtnl_lock(); |
| netif_device_detach(dev); |
| rtnl_unlock(); |
| |
| /* Don't remove the netdevice, as there are scenarios which will cause |
| * the kernel to hang, e.g., when trying to remove bnx2i while the |
| * rootfs is mounted from SAN. |
| */ |
| __bnx2x_remove(pdev, dev, bp, false); |
| } |
| |
| static struct pci_driver bnx2x_pci_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = bnx2x_pci_tbl, |
| .probe = bnx2x_init_one, |
| .remove = bnx2x_remove_one, |
| .suspend = bnx2x_suspend, |
| .resume = bnx2x_resume, |
| .err_handler = &bnx2x_err_handler, |
| #ifdef CONFIG_BNX2X_SRIOV |
| .sriov_configure = bnx2x_sriov_configure, |
| #endif |
| .shutdown = bnx2x_shutdown, |
| }; |
| |
| static int __init bnx2x_init(void) |
| { |
| int ret; |
| |
| pr_info("%s", version); |
| |
| bnx2x_wq = create_singlethread_workqueue("bnx2x"); |
| if (bnx2x_wq == NULL) { |
| pr_err("Cannot create workqueue\n"); |
| return -ENOMEM; |
| } |
| |
| ret = pci_register_driver(&bnx2x_pci_driver); |
| if (ret) { |
| pr_err("Cannot register driver\n"); |
| destroy_workqueue(bnx2x_wq); |
| } |
| return ret; |
| } |
| |
| static void __exit bnx2x_cleanup(void) |
| { |
| struct list_head *pos, *q; |
| |
| pci_unregister_driver(&bnx2x_pci_driver); |
| |
| destroy_workqueue(bnx2x_wq); |
| |
| /* Free globally allocated resources */ |
| list_for_each_safe(pos, q, &bnx2x_prev_list) { |
| struct bnx2x_prev_path_list *tmp = |
| list_entry(pos, struct bnx2x_prev_path_list, list); |
| list_del(pos); |
| kfree(tmp); |
| } |
| } |
| |
| void bnx2x_notify_link_changed(struct bnx2x *bp) |
| { |
| REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); |
| } |
| |
| module_init(bnx2x_init); |
| module_exit(bnx2x_cleanup); |
| |
| /** |
| * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). |
| * |
| * @bp: driver handle |
| * @set: set or clear the CAM entry |
| * |
| * This function will wait until the ramrod completion returns. |
| * Return 0 if success, -ENODEV if ramrod doesn't return. |
| */ |
| static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) |
| { |
| unsigned long ramrod_flags = 0; |
| |
| __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, |
| &bp->iscsi_l2_mac_obj, true, |
| BNX2X_ISCSI_ETH_MAC, &ramrod_flags); |
| } |
| |
| /* count denotes the number of new completions we have seen */ |
| static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) |
| { |
| struct eth_spe *spe; |
| int cxt_index, cxt_offset; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return; |
| #endif |
| |
| spin_lock_bh(&bp->spq_lock); |
| BUG_ON(bp->cnic_spq_pending < count); |
| bp->cnic_spq_pending -= count; |
| |
| for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { |
| u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) |
| & SPE_HDR_CONN_TYPE) >> |
| SPE_HDR_CONN_TYPE_SHIFT; |
| u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) |
| >> SPE_HDR_CMD_ID_SHIFT) & 0xff; |
| |
| /* Set validation for iSCSI L2 client before sending SETUP |
| * ramrod |
| */ |
| if (type == ETH_CONNECTION_TYPE) { |
| if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { |
| cxt_index = BNX2X_ISCSI_ETH_CID(bp) / |
| ILT_PAGE_CIDS; |
| cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - |
| (cxt_index * ILT_PAGE_CIDS); |
| bnx2x_set_ctx_validation(bp, |
| &bp->context[cxt_index]. |
| vcxt[cxt_offset].eth, |
| BNX2X_ISCSI_ETH_CID(bp)); |
| } |
| } |
| |
| /* |
| * There may be not more than 8 L2, not more than 8 L5 SPEs |
| * and in the air. We also check that number of outstanding |
| * COMMON ramrods is not more than the EQ and SPQ can |
| * accommodate. |
| */ |
| if (type == ETH_CONNECTION_TYPE) { |
| if (!atomic_read(&bp->cq_spq_left)) |
| break; |
| else |
| atomic_dec(&bp->cq_spq_left); |
| } else if (type == NONE_CONNECTION_TYPE) { |
| if (!atomic_read(&bp->eq_spq_left)) |
| break; |
| else |
| atomic_dec(&bp->eq_spq_left); |
| } else if ((type == ISCSI_CONNECTION_TYPE) || |
| (type == FCOE_CONNECTION_TYPE)) { |
| if (bp->cnic_spq_pending >= |
| bp->cnic_eth_dev.max_kwqe_pending) |
| break; |
| else |
| bp->cnic_spq_pending++; |
| } else { |
| BNX2X_ERR("Unknown SPE type: %d\n", type); |
| bnx2x_panic(); |
| break; |
| } |
| |
| spe = bnx2x_sp_get_next(bp); |
| *spe = *bp->cnic_kwq_cons; |
| |
| DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", |
| bp->cnic_spq_pending, bp->cnic_kwq_pending, count); |
| |
| if (bp->cnic_kwq_cons == bp->cnic_kwq_last) |
| bp->cnic_kwq_cons = bp->cnic_kwq; |
| else |
| bp->cnic_kwq_cons++; |
| } |
| bnx2x_sp_prod_update(bp); |
| spin_unlock_bh(&bp->spq_lock); |
| } |
| |
| static int bnx2x_cnic_sp_queue(struct net_device *dev, |
| struct kwqe_16 *kwqes[], u32 count) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| int i; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) { |
| BNX2X_ERR("Can't post to SP queue while panic\n"); |
| return -EIO; |
| } |
| #endif |
| |
| if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && |
| (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { |
| BNX2X_ERR("Handling parity error recovery. Try again later\n"); |
| return -EAGAIN; |
| } |
| |
| spin_lock_bh(&bp->spq_lock); |
| |
| for (i = 0; i < count; i++) { |
| struct eth_spe *spe = (struct eth_spe *)kwqes[i]; |
| |
| if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) |
| break; |
| |
| *bp->cnic_kwq_prod = *spe; |
| |
| bp->cnic_kwq_pending++; |
| |
| DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", |
| spe->hdr.conn_and_cmd_data, spe->hdr.type, |
| spe->data.update_data_addr.hi, |
| spe->data.update_data_addr.lo, |
| bp->cnic_kwq_pending); |
| |
| if (bp->cnic_kwq_prod == bp->cnic_kwq_last) |
| bp->cnic_kwq_prod = bp->cnic_kwq; |
| else |
| bp->cnic_kwq_prod++; |
| } |
| |
| spin_unlock_bh(&bp->spq_lock); |
| |
| if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) |
| bnx2x_cnic_sp_post(bp, 0); |
| |
| return i; |
| } |
| |
| static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) |
| { |
| struct cnic_ops *c_ops; |
| int rc = 0; |
| |
| mutex_lock(&bp->cnic_mutex); |
| c_ops = rcu_dereference_protected(bp->cnic_ops, |
| lockdep_is_held(&bp->cnic_mutex)); |
| if (c_ops) |
| rc = c_ops->cnic_ctl(bp->cnic_data, ctl); |
| mutex_unlock(&bp->cnic_mutex); |
| |
| return rc; |
| } |
| |
| static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) |
| { |
| struct cnic_ops *c_ops; |
| int rc = 0; |
| |
| rcu_read_lock(); |
| c_ops = rcu_dereference(bp->cnic_ops); |
| if (c_ops) |
| rc = c_ops->cnic_ctl(bp->cnic_data, ctl); |
| rcu_read_unlock(); |
| |
| return rc; |
| } |
| |
| /* |
| * for commands that have no data |
| */ |
| int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) |
| { |
| struct cnic_ctl_info ctl = {0}; |
| |
| ctl.cmd = cmd; |
| |
| return bnx2x_cnic_ctl_send(bp, &ctl); |
| } |
| |
| static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) |
| { |
| struct cnic_ctl_info ctl = {0}; |
| |
| /* first we tell CNIC and only then we count this as a completion */ |
| ctl.cmd = CNIC_CTL_COMPLETION_CMD; |
| ctl.data.comp.cid = cid; |
| ctl.data.comp.error = err; |
| |
| bnx2x_cnic_ctl_send_bh(bp, &ctl); |
| bnx2x_cnic_sp_post(bp, 0); |
| } |
| |
| /* Called with netif_addr_lock_bh() taken. |
| * Sets an rx_mode config for an iSCSI ETH client. |
| * Doesn't block. |
| * Completion should be checked outside. |
| */ |
| static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) |
| { |
| unsigned long accept_flags = 0, ramrod_flags = 0; |
| u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); |
| int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; |
| |
| if (start) { |
| /* Start accepting on iSCSI L2 ring. Accept all multicasts |
| * because it's the only way for UIO Queue to accept |
| * multicasts (in non-promiscuous mode only one Queue per |
| * function will receive multicast packets (leading in our |
| * case). |
| */ |
| __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); |
| __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); |
| __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); |
| __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); |
| |
| /* Clear STOP_PENDING bit if START is requested */ |
| clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); |
| |
| sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; |
| } else |
| /* Clear START_PENDING bit if STOP is requested */ |
| clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); |
| |
| if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) |
| set_bit(sched_state, &bp->sp_state); |
| else { |
| __set_bit(RAMROD_RX, &ramrod_flags); |
| bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, |
| ramrod_flags); |
| } |
| } |
| |
| static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| switch (ctl->cmd) { |
| case DRV_CTL_CTXTBL_WR_CMD: { |
| u32 index = ctl->data.io.offset; |
| dma_addr_t addr = ctl->data.io.dma_addr; |
| |
| bnx2x_ilt_wr(bp, index, addr); |
| break; |
| } |
| |
| case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { |
| int count = ctl->data.credit.credit_count; |
| |
| bnx2x_cnic_sp_post(bp, count); |
| break; |
| } |
| |
| /* rtnl_lock is held. */ |
| case DRV_CTL_START_L2_CMD: { |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| unsigned long sp_bits = 0; |
| |
| /* Configure the iSCSI classification object */ |
| bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, |
| cp->iscsi_l2_client_id, |
| cp->iscsi_l2_cid, BP_FUNC(bp), |
| bnx2x_sp(bp, mac_rdata), |
| bnx2x_sp_mapping(bp, mac_rdata), |
| BNX2X_FILTER_MAC_PENDING, |
| &bp->sp_state, BNX2X_OBJ_TYPE_RX, |
| &bp->macs_pool); |
| |
| /* Set iSCSI MAC address */ |
| rc = bnx2x_set_iscsi_eth_mac_addr(bp); |
| if (rc) |
| break; |
| |
| mmiowb(); |
| barrier(); |
| |
| /* Start accepting on iSCSI L2 ring */ |
| |
| netif_addr_lock_bh(dev); |
| bnx2x_set_iscsi_eth_rx_mode(bp, true); |
| netif_addr_unlock_bh(dev); |
| |
| /* bits to wait on */ |
| __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); |
| __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); |
| |
| if (!bnx2x_wait_sp_comp(bp, sp_bits)) |
| BNX2X_ERR("rx_mode completion timed out!\n"); |
| |
| break; |
| } |
| |
| /* rtnl_lock is held. */ |
| case DRV_CTL_STOP_L2_CMD: { |
| unsigned long sp_bits = 0; |
| |
| /* Stop accepting on iSCSI L2 ring */ |
| netif_addr_lock_bh(dev); |
| bnx2x_set_iscsi_eth_rx_mode(bp, false); |
| netif_addr_unlock_bh(dev); |
| |
| /* bits to wait on */ |
| __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); |
| __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); |
| |
| if (!bnx2x_wait_sp_comp(bp, sp_bits)) |
| BNX2X_ERR("rx_mode completion timed out!\n"); |
| |
| mmiowb(); |
| barrier(); |
| |
| /* Unset iSCSI L2 MAC */ |
| rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, |
| BNX2X_ISCSI_ETH_MAC, true); |
| break; |
| } |
| case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { |
| int count = ctl->data.credit.credit_count; |
| |
| smp_mb__before_atomic_inc(); |
| atomic_add(count, &bp->cq_spq_left); |
| smp_mb__after_atomic_inc(); |
| break; |
| } |
| case DRV_CTL_ULP_REGISTER_CMD: { |
| int ulp_type = ctl->data.register_data.ulp_type; |
| |
| if (CHIP_IS_E3(bp)) { |
| int idx = BP_FW_MB_IDX(bp); |
| u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); |
| int path = BP_PATH(bp); |
| int port = BP_PORT(bp); |
| int i; |
| u32 scratch_offset; |
| u32 *host_addr; |
| |
| /* first write capability to shmem2 */ |
| if (ulp_type == CNIC_ULP_ISCSI) |
| cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; |
| else if (ulp_type == CNIC_ULP_FCOE) |
| cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; |
| SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); |
| |
| if ((ulp_type != CNIC_ULP_FCOE) || |
| (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || |
| (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) |
| break; |
| |
| /* if reached here - should write fcoe capabilities */ |
| scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); |
| if (!scratch_offset) |
| break; |
| scratch_offset += offsetof(struct glob_ncsi_oem_data, |
| fcoe_features[path][port]); |
| host_addr = (u32 *) &(ctl->data.register_data. |
| fcoe_features); |
| for (i = 0; i < sizeof(struct fcoe_capabilities); |
| i += 4) |
| REG_WR(bp, scratch_offset + i, |
| *(host_addr + i/4)); |
| } |
| break; |
| } |
| |
| case DRV_CTL_ULP_UNREGISTER_CMD: { |
| int ulp_type = ctl->data.ulp_type; |
| |
| if (CHIP_IS_E3(bp)) { |
| int idx = BP_FW_MB_IDX(bp); |
| u32 cap; |
| |
| cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); |
| if (ulp_type == CNIC_ULP_ISCSI) |
| cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; |
| else if (ulp_type == CNIC_ULP_FCOE) |
| cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; |
| SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); |
| } |
| break; |
| } |
| |
| default: |
| BNX2X_ERR("unknown command %x\n", ctl->cmd); |
| rc = -EINVAL; |
| } |
| |
| return rc; |
| } |
| |
| void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) |
| { |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| |
| if (bp->flags & USING_MSIX_FLAG) { |
| cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; |
| cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; |
| cp->irq_arr[0].vector = bp->msix_table[1].vector; |
| } else { |
| cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; |
| cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; |
| } |
| if (!CHIP_IS_E1x(bp)) |
| cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; |
| else |
| cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; |
| |
| cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); |
| cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); |
| cp->irq_arr[1].status_blk = bp->def_status_blk; |
| cp->irq_arr[1].status_blk_num = DEF_SB_ID; |
| cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; |
| |
| cp->num_irq = 2; |
| } |
| |
| void bnx2x_setup_cnic_info(struct bnx2x *bp) |
| { |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| |
| cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + |
| bnx2x_cid_ilt_lines(bp); |
| cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; |
| cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); |
| cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); |
| |
| if (NO_ISCSI_OOO(bp)) |
| cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; |
| } |
| |
| static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, |
| void *data) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| int rc; |
| |
| DP(NETIF_MSG_IFUP, "Register_cnic called\n"); |
| |
| if (ops == NULL) { |
| BNX2X_ERR("NULL ops received\n"); |
| return -EINVAL; |
| } |
| |
| if (!CNIC_SUPPORT(bp)) { |
| BNX2X_ERR("Can't register CNIC when not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!CNIC_LOADED(bp)) { |
| rc = bnx2x_load_cnic(bp); |
| if (rc) { |
| BNX2X_ERR("CNIC-related load failed\n"); |
| return rc; |
| } |
| } |
| |
| bp->cnic_enabled = true; |
| |
| bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!bp->cnic_kwq) |
| return -ENOMEM; |
| |
| bp->cnic_kwq_cons = bp->cnic_kwq; |
| bp->cnic_kwq_prod = bp->cnic_kwq; |
| bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; |
| |
| bp->cnic_spq_pending = 0; |
| bp->cnic_kwq_pending = 0; |
| |
| bp->cnic_data = data; |
| |
| cp->num_irq = 0; |
| cp->drv_state |= CNIC_DRV_STATE_REGD; |
| cp->iro_arr = bp->iro_arr; |
| |
| bnx2x_setup_cnic_irq_info(bp); |
| |
| rcu_assign_pointer(bp->cnic_ops, ops); |
| |
| return 0; |
| } |
| |
| static int bnx2x_unregister_cnic(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| |
| mutex_lock(&bp->cnic_mutex); |
| cp->drv_state = 0; |
| RCU_INIT_POINTER(bp->cnic_ops, NULL); |
| mutex_unlock(&bp->cnic_mutex); |
| synchronize_rcu(); |
| bp->cnic_enabled = false; |
| kfree(bp->cnic_kwq); |
| bp->cnic_kwq = NULL; |
| |
| return 0; |
| } |
| |
| struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| |
| /* If both iSCSI and FCoE are disabled - return NULL in |
| * order to indicate CNIC that it should not try to work |
| * with this device. |
| */ |
| if (NO_ISCSI(bp) && NO_FCOE(bp)) |
| return NULL; |
| |
| cp->drv_owner = THIS_MODULE; |
| cp->chip_id = CHIP_ID(bp); |
| cp->pdev = bp->pdev; |
| cp->io_base = bp->regview; |
| cp->io_base2 = bp->doorbells; |
| cp->max_kwqe_pending = 8; |
| cp->ctx_blk_size = CDU_ILT_PAGE_SZ; |
| cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + |
| bnx2x_cid_ilt_lines(bp); |
| cp->ctx_tbl_len = CNIC_ILT_LINES; |
| cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; |
| cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; |
| cp->drv_ctl = bnx2x_drv_ctl; |
| cp->drv_register_cnic = bnx2x_register_cnic; |
| cp->drv_unregister_cnic = bnx2x_unregister_cnic; |
| cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); |
| cp->iscsi_l2_client_id = |
| bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); |
| cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); |
| |
| if (NO_ISCSI_OOO(bp)) |
| cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; |
| |
| if (NO_ISCSI(bp)) |
| cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; |
| |
| if (NO_FCOE(bp)) |
| cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; |
| |
| BNX2X_DEV_INFO( |
| "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", |
| cp->ctx_blk_size, |
| cp->ctx_tbl_offset, |
| cp->ctx_tbl_len, |
| cp->starting_cid); |
| return cp; |
| } |
| |
| u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) |
| { |
| struct bnx2x *bp = fp->bp; |
| u32 offset = BAR_USTRORM_INTMEM; |
| |
| if (IS_VF(bp)) |
| return bnx2x_vf_ustorm_prods_offset(bp, fp); |
| else if (!CHIP_IS_E1x(bp)) |
| offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); |
| else |
| offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); |
| |
| return offset; |
| } |
| |
| /* called only on E1H or E2. |
| * When pretending to be PF, the pretend value is the function number 0...7 |
| * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID |
| * combination |
| */ |
| int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) |
| { |
| u32 pretend_reg; |
| |
| if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) |
| return -1; |
| |
| /* get my own pretend register */ |
| pretend_reg = bnx2x_get_pretend_reg(bp); |
| REG_WR(bp, pretend_reg, pretend_func_val); |
| REG_RD(bp, pretend_reg); |
| return 0; |
| } |