| /* |
| * arch/i386/mm/ioremap.c |
| * |
| * Re-map IO memory to kernel address space so that we can access it. |
| * This is needed for high PCI addresses that aren't mapped in the |
| * 640k-1MB IO memory area on PC's |
| * |
| * (C) Copyright 1995 1996 Linus Torvalds |
| */ |
| |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <asm/io.h> |
| #include <asm/fixmap.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgtable.h> |
| |
| #define ISA_START_ADDRESS 0xa0000 |
| #define ISA_END_ADDRESS 0x100000 |
| |
| static int ioremap_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, unsigned long phys_addr, unsigned long flags) |
| { |
| pte_t *pte; |
| unsigned long pfn; |
| |
| pfn = phys_addr >> PAGE_SHIFT; |
| pte = pte_alloc_kernel(&init_mm, pmd, addr); |
| if (!pte) |
| return -ENOMEM; |
| do { |
| BUG_ON(!pte_none(*pte)); |
| set_pte(pte, pfn_pte(pfn, __pgprot(_PAGE_PRESENT | _PAGE_RW | |
| _PAGE_DIRTY | _PAGE_ACCESSED | flags))); |
| pfn++; |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| return 0; |
| } |
| |
| static inline int ioremap_pmd_range(pud_t *pud, unsigned long addr, |
| unsigned long end, unsigned long phys_addr, unsigned long flags) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| |
| phys_addr -= addr; |
| pmd = pmd_alloc(&init_mm, pud, addr); |
| if (!pmd) |
| return -ENOMEM; |
| do { |
| next = pmd_addr_end(addr, end); |
| if (ioremap_pte_range(pmd, addr, next, phys_addr + addr, flags)) |
| return -ENOMEM; |
| } while (pmd++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static inline int ioremap_pud_range(pgd_t *pgd, unsigned long addr, |
| unsigned long end, unsigned long phys_addr, unsigned long flags) |
| { |
| pud_t *pud; |
| unsigned long next; |
| |
| phys_addr -= addr; |
| pud = pud_alloc(&init_mm, pgd, addr); |
| if (!pud) |
| return -ENOMEM; |
| do { |
| next = pud_addr_end(addr, end); |
| if (ioremap_pmd_range(pud, addr, next, phys_addr + addr, flags)) |
| return -ENOMEM; |
| } while (pud++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static int ioremap_page_range(unsigned long addr, |
| unsigned long end, unsigned long phys_addr, unsigned long flags) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| int err; |
| |
| BUG_ON(addr >= end); |
| flush_cache_all(); |
| phys_addr -= addr; |
| pgd = pgd_offset_k(addr); |
| spin_lock(&init_mm.page_table_lock); |
| do { |
| next = pgd_addr_end(addr, end); |
| err = ioremap_pud_range(pgd, addr, next, phys_addr+addr, flags); |
| if (err) |
| break; |
| } while (pgd++, addr = next, addr != end); |
| spin_unlock(&init_mm.page_table_lock); |
| flush_tlb_all(); |
| return err; |
| } |
| |
| /* |
| * Generic mapping function (not visible outside): |
| */ |
| |
| /* |
| * Remap an arbitrary physical address space into the kernel virtual |
| * address space. Needed when the kernel wants to access high addresses |
| * directly. |
| * |
| * NOTE! We need to allow non-page-aligned mappings too: we will obviously |
| * have to convert them into an offset in a page-aligned mapping, but the |
| * caller shouldn't need to know that small detail. |
| */ |
| void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) |
| { |
| void __iomem * addr; |
| struct vm_struct * area; |
| unsigned long offset, last_addr; |
| |
| /* Don't allow wraparound or zero size */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| /* |
| * Don't remap the low PCI/ISA area, it's always mapped.. |
| */ |
| if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) |
| return (void __iomem *) phys_to_virt(phys_addr); |
| |
| /* |
| * Don't allow anybody to remap normal RAM that we're using.. |
| */ |
| if (phys_addr <= virt_to_phys(high_memory - 1)) { |
| char *t_addr, *t_end; |
| struct page *page; |
| |
| t_addr = __va(phys_addr); |
| t_end = t_addr + (size - 1); |
| |
| for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++) |
| if(!PageReserved(page)) |
| return NULL; |
| } |
| |
| /* |
| * Mappings have to be page-aligned |
| */ |
| offset = phys_addr & ~PAGE_MASK; |
| phys_addr &= PAGE_MASK; |
| size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| |
| /* |
| * Ok, go for it.. |
| */ |
| area = get_vm_area(size, VM_IOREMAP | (flags << 20)); |
| if (!area) |
| return NULL; |
| area->phys_addr = phys_addr; |
| addr = (void __iomem *) area->addr; |
| if (ioremap_page_range((unsigned long) addr, |
| (unsigned long) addr + size, phys_addr, flags)) { |
| vunmap((void __force *) addr); |
| return NULL; |
| } |
| return (void __iomem *) (offset + (char __iomem *)addr); |
| } |
| EXPORT_SYMBOL(__ioremap); |
| |
| /** |
| * ioremap_nocache - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap_nocache performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked uncachable |
| * on the CPU as well as honouring existing caching rules from things like |
| * the PCI bus. Note that there are other caches and buffers on many |
| * busses. In particular driver authors should read up on PCI writes |
| * |
| * It's useful if some control registers are in such an area and |
| * write combining or read caching is not desirable: |
| * |
| * Must be freed with iounmap. |
| */ |
| |
| void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size) |
| { |
| unsigned long last_addr; |
| void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD); |
| if (!p) |
| return p; |
| |
| /* Guaranteed to be > phys_addr, as per __ioremap() */ |
| last_addr = phys_addr + size - 1; |
| |
| if (last_addr < virt_to_phys(high_memory) - 1) { |
| struct page *ppage = virt_to_page(__va(phys_addr)); |
| unsigned long npages; |
| |
| phys_addr &= PAGE_MASK; |
| |
| /* This might overflow and become zero.. */ |
| last_addr = PAGE_ALIGN(last_addr); |
| |
| /* .. but that's ok, because modulo-2**n arithmetic will make |
| * the page-aligned "last - first" come out right. |
| */ |
| npages = (last_addr - phys_addr) >> PAGE_SHIFT; |
| |
| if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) { |
| iounmap(p); |
| p = NULL; |
| } |
| global_flush_tlb(); |
| } |
| |
| return p; |
| } |
| EXPORT_SYMBOL(ioremap_nocache); |
| |
| void iounmap(volatile void __iomem *addr) |
| { |
| struct vm_struct *p; |
| if ((void __force *) addr <= high_memory) |
| return; |
| |
| /* |
| * __ioremap special-cases the PCI/ISA range by not instantiating a |
| * vm_area and by simply returning an address into the kernel mapping |
| * of ISA space. So handle that here. |
| */ |
| if (addr >= phys_to_virt(ISA_START_ADDRESS) && |
| addr < phys_to_virt(ISA_END_ADDRESS)) |
| return; |
| |
| write_lock(&vmlist_lock); |
| p = __remove_vm_area((void *) (PAGE_MASK & (unsigned long __force) addr)); |
| if (!p) { |
| printk(KERN_WARNING "iounmap: bad address %p\n", addr); |
| goto out_unlock; |
| } |
| |
| if ((p->flags >> 20) && p->phys_addr < virt_to_phys(high_memory) - 1) { |
| change_page_attr(virt_to_page(__va(p->phys_addr)), |
| p->size >> PAGE_SHIFT, |
| PAGE_KERNEL); |
| global_flush_tlb(); |
| } |
| out_unlock: |
| write_unlock(&vmlist_lock); |
| kfree(p); |
| } |
| EXPORT_SYMBOL(iounmap); |
| |
| void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) |
| { |
| unsigned long offset, last_addr; |
| unsigned int nrpages; |
| enum fixed_addresses idx; |
| |
| /* Don't allow wraparound or zero size */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| /* |
| * Don't remap the low PCI/ISA area, it's always mapped.. |
| */ |
| if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) |
| return phys_to_virt(phys_addr); |
| |
| /* |
| * Mappings have to be page-aligned |
| */ |
| offset = phys_addr & ~PAGE_MASK; |
| phys_addr &= PAGE_MASK; |
| size = PAGE_ALIGN(last_addr) - phys_addr; |
| |
| /* |
| * Mappings have to fit in the FIX_BTMAP area. |
| */ |
| nrpages = size >> PAGE_SHIFT; |
| if (nrpages > NR_FIX_BTMAPS) |
| return NULL; |
| |
| /* |
| * Ok, go for it.. |
| */ |
| idx = FIX_BTMAP_BEGIN; |
| while (nrpages > 0) { |
| set_fixmap(idx, phys_addr); |
| phys_addr += PAGE_SIZE; |
| --idx; |
| --nrpages; |
| } |
| return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN)); |
| } |
| |
| void __init bt_iounmap(void *addr, unsigned long size) |
| { |
| unsigned long virt_addr; |
| unsigned long offset; |
| unsigned int nrpages; |
| enum fixed_addresses idx; |
| |
| virt_addr = (unsigned long)addr; |
| if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) |
| return; |
| offset = virt_addr & ~PAGE_MASK; |
| nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; |
| |
| idx = FIX_BTMAP_BEGIN; |
| while (nrpages > 0) { |
| clear_fixmap(idx); |
| --idx; |
| --nrpages; |
| } |
| } |