blob: 3070015edc7535fc5c299c0b0a9f00c8af99d9dd [file] [log] [blame]
/*
* net/dccp/input.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/dccp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
/* rate-limit for syncs in reply to sequence-invalid packets; RFC 4340, 7.5.4 */
int sysctl_dccp_sync_ratelimit __read_mostly = HZ / 8;
static void dccp_enqueue_skb(struct sock *sk, struct sk_buff *skb)
{
__skb_pull(skb, dccp_hdr(skb)->dccph_doff * 4);
__skb_queue_tail(&sk->sk_receive_queue, skb);
skb_set_owner_r(skb, sk);
sk->sk_data_ready(sk, 0);
}
static void dccp_fin(struct sock *sk, struct sk_buff *skb)
{
/*
* On receiving Close/CloseReq, both RD/WR shutdown are performed.
* RFC 4340, 8.3 says that we MAY send further Data/DataAcks after
* receiving the closing segment, but there is no guarantee that such
* data will be processed at all.
*/
sk->sk_shutdown = SHUTDOWN_MASK;
sock_set_flag(sk, SOCK_DONE);
dccp_enqueue_skb(sk, skb);
}
static int dccp_rcv_close(struct sock *sk, struct sk_buff *skb)
{
int queued = 0;
switch (sk->sk_state) {
/*
* We ignore Close when received in one of the following states:
* - CLOSED (may be a late or duplicate packet)
* - PASSIVE_CLOSEREQ (the peer has sent a CloseReq earlier)
* - RESPOND (already handled by dccp_check_req)
*/
case DCCP_CLOSING:
/*
* Simultaneous-close: receiving a Close after sending one. This
* can happen if both client and server perform active-close and
* will result in an endless ping-pong of crossing and retrans-
* mitted Close packets, which only terminates when one of the
* nodes times out (min. 64 seconds). Quicker convergence can be
* achieved when one of the nodes acts as tie-breaker.
* This is ok as both ends are done with data transfer and each
* end is just waiting for the other to acknowledge termination.
*/
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT)
break;
/* fall through */
case DCCP_REQUESTING:
case DCCP_ACTIVE_CLOSEREQ:
dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED);
dccp_done(sk);
break;
case DCCP_OPEN:
case DCCP_PARTOPEN:
/* Give waiting application a chance to read pending data */
queued = 1;
dccp_fin(sk, skb);
dccp_set_state(sk, DCCP_PASSIVE_CLOSE);
/* fall through */
case DCCP_PASSIVE_CLOSE:
/*
* Retransmitted Close: we have already enqueued the first one.
*/
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
}
return queued;
}
static int dccp_rcv_closereq(struct sock *sk, struct sk_buff *skb)
{
int queued = 0;
/*
* Step 7: Check for unexpected packet types
* If (S.is_server and P.type == CloseReq)
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT) {
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, DCCP_PKT_SYNC);
return queued;
}
/* Step 13: process relevant Client states < CLOSEREQ */
switch (sk->sk_state) {
case DCCP_REQUESTING:
dccp_send_close(sk, 0);
dccp_set_state(sk, DCCP_CLOSING);
break;
case DCCP_OPEN:
case DCCP_PARTOPEN:
/* Give waiting application a chance to read pending data */
queued = 1;
dccp_fin(sk, skb);
dccp_set_state(sk, DCCP_PASSIVE_CLOSEREQ);
/* fall through */
case DCCP_PASSIVE_CLOSEREQ:
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
}
return queued;
}
static u8 dccp_reset_code_convert(const u8 code)
{
const u8 error_code[] = {
[DCCP_RESET_CODE_CLOSED] = 0, /* normal termination */
[DCCP_RESET_CODE_UNSPECIFIED] = 0, /* nothing known */
[DCCP_RESET_CODE_ABORTED] = ECONNRESET,
[DCCP_RESET_CODE_NO_CONNECTION] = ECONNREFUSED,
[DCCP_RESET_CODE_CONNECTION_REFUSED] = ECONNREFUSED,
[DCCP_RESET_CODE_TOO_BUSY] = EUSERS,
[DCCP_RESET_CODE_AGGRESSION_PENALTY] = EDQUOT,
[DCCP_RESET_CODE_PACKET_ERROR] = ENOMSG,
[DCCP_RESET_CODE_BAD_INIT_COOKIE] = EBADR,
[DCCP_RESET_CODE_BAD_SERVICE_CODE] = EBADRQC,
[DCCP_RESET_CODE_OPTION_ERROR] = EILSEQ,
[DCCP_RESET_CODE_MANDATORY_ERROR] = EOPNOTSUPP,
};
return code >= DCCP_MAX_RESET_CODES ? 0 : error_code[code];
}
static void dccp_rcv_reset(struct sock *sk, struct sk_buff *skb)
{
u8 err = dccp_reset_code_convert(dccp_hdr_reset(skb)->dccph_reset_code);
sk->sk_err = err;
/* Queue the equivalent of TCP fin so that dccp_recvmsg exits the loop */
dccp_fin(sk, skb);
if (err && !sock_flag(sk, SOCK_DEAD))
sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
dccp_time_wait(sk, DCCP_TIME_WAIT, 0);
}
static void dccp_event_ack_recv(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
if (dccp_msk(sk)->dccpms_send_ack_vector)
dccp_ackvec_check_rcv_ackno(dp->dccps_hc_rx_ackvec, sk,
DCCP_SKB_CB(skb)->dccpd_ack_seq);
}
static void dccp_deliver_input_to_ccids(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_sock *dp = dccp_sk(sk);
/* Don't deliver to RX CCID when node has shut down read end. */
if (!(sk->sk_shutdown & RCV_SHUTDOWN))
ccid_hc_rx_packet_recv(dp->dccps_hc_rx_ccid, sk, skb);
/*
* Until the TX queue has been drained, we can not honour SHUT_WR, since
* we need received feedback as input to adjust congestion control.
*/
if (sk->sk_write_queue.qlen > 0 || !(sk->sk_shutdown & SEND_SHUTDOWN))
ccid_hc_tx_packet_recv(dp->dccps_hc_tx_ccid, sk, skb);
}
static int dccp_check_seqno(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_hdr *dh = dccp_hdr(skb);
struct dccp_sock *dp = dccp_sk(sk);
u64 lswl, lawl, seqno = DCCP_SKB_CB(skb)->dccpd_seq,
ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq;
/*
* Step 5: Prepare sequence numbers for Sync
* If P.type == Sync or P.type == SyncAck,
* If S.AWL <= P.ackno <= S.AWH and P.seqno >= S.SWL,
* / * P is valid, so update sequence number variables
* accordingly. After this update, P will pass the tests
* in Step 6. A SyncAck is generated if necessary in
* Step 15 * /
* Update S.GSR, S.SWL, S.SWH
* Otherwise,
* Drop packet and return
*/
if (dh->dccph_type == DCCP_PKT_SYNC ||
dh->dccph_type == DCCP_PKT_SYNCACK) {
if (between48(ackno, dp->dccps_awl, dp->dccps_awh) &&
dccp_delta_seqno(dp->dccps_swl, seqno) >= 0)
dccp_update_gsr(sk, seqno);
else
return -1;
}
/*
* Step 6: Check sequence numbers
* Let LSWL = S.SWL and LAWL = S.AWL
* If P.type == CloseReq or P.type == Close or P.type == Reset,
* LSWL := S.GSR + 1, LAWL := S.GAR
* If LSWL <= P.seqno <= S.SWH
* and (P.ackno does not exist or LAWL <= P.ackno <= S.AWH),
* Update S.GSR, S.SWL, S.SWH
* If P.type != Sync,
* Update S.GAR
*/
lswl = dp->dccps_swl;
lawl = dp->dccps_awl;
if (dh->dccph_type == DCCP_PKT_CLOSEREQ ||
dh->dccph_type == DCCP_PKT_CLOSE ||
dh->dccph_type == DCCP_PKT_RESET) {
lswl = ADD48(dp->dccps_gsr, 1);
lawl = dp->dccps_gar;
}
if (between48(seqno, lswl, dp->dccps_swh) &&
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ ||
between48(ackno, lawl, dp->dccps_awh))) {
dccp_update_gsr(sk, seqno);
if (dh->dccph_type != DCCP_PKT_SYNC &&
(ackno != DCCP_PKT_WITHOUT_ACK_SEQ))
dp->dccps_gar = ackno;
} else {
unsigned long now = jiffies;
/*
* Step 6: Check sequence numbers
* Otherwise,
* If P.type == Reset,
* Send Sync packet acknowledging S.GSR
* Otherwise,
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*
* These Syncs are rate-limited as per RFC 4340, 7.5.4:
* at most 1 / (dccp_sync_rate_limit * HZ) Syncs per second.
*/
if (time_before(now, (dp->dccps_rate_last +
sysctl_dccp_sync_ratelimit)))
return 0;
DCCP_WARN("DCCP: Step 6 failed for %s packet, "
"(LSWL(%llu) <= P.seqno(%llu) <= S.SWH(%llu)) and "
"(P.ackno %s or LAWL(%llu) <= P.ackno(%llu) <= S.AWH(%llu), "
"sending SYNC...\n", dccp_packet_name(dh->dccph_type),
(unsigned long long) lswl, (unsigned long long) seqno,
(unsigned long long) dp->dccps_swh,
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ) ? "doesn't exist"
: "exists",
(unsigned long long) lawl, (unsigned long long) ackno,
(unsigned long long) dp->dccps_awh);
dp->dccps_rate_last = now;
if (dh->dccph_type == DCCP_PKT_RESET)
seqno = dp->dccps_gsr;
dccp_send_sync(sk, seqno, DCCP_PKT_SYNC);
return -1;
}
return 0;
}
static int __dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
const struct dccp_hdr *dh, const unsigned len)
{
struct dccp_sock *dp = dccp_sk(sk);
switch (dccp_hdr(skb)->dccph_type) {
case DCCP_PKT_DATAACK:
case DCCP_PKT_DATA:
/*
* FIXME: schedule DATA_DROPPED (RFC 4340, 11.7.2) if and when
* - sk_shutdown == RCV_SHUTDOWN, use Code 1, "Not Listening"
* - sk_receive_queue is full, use Code 2, "Receive Buffer"
*/
dccp_enqueue_skb(sk, skb);
return 0;
case DCCP_PKT_ACK:
goto discard;
case DCCP_PKT_RESET:
/*
* Step 9: Process Reset
* If P.type == Reset,
* Tear down connection
* S.state := TIMEWAIT
* Set TIMEWAIT timer
* Drop packet and return
*/
dccp_rcv_reset(sk, skb);
return 0;
case DCCP_PKT_CLOSEREQ:
if (dccp_rcv_closereq(sk, skb))
return 0;
goto discard;
case DCCP_PKT_CLOSE:
if (dccp_rcv_close(sk, skb))
return 0;
goto discard;
case DCCP_PKT_REQUEST:
/* Step 7
* or (S.is_server and P.type == Response)
* or (S.is_client and P.type == Request)
* or (S.state >= OPEN and P.type == Request
* and P.seqno >= S.OSR)
* or (S.state >= OPEN and P.type == Response
* and P.seqno >= S.OSR)
* or (S.state == RESPOND and P.type == Data),
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
if (dp->dccps_role != DCCP_ROLE_LISTEN)
goto send_sync;
goto check_seq;
case DCCP_PKT_RESPONSE:
if (dp->dccps_role != DCCP_ROLE_CLIENT)
goto send_sync;
check_seq:
if (dccp_delta_seqno(dp->dccps_osr,
DCCP_SKB_CB(skb)->dccpd_seq) >= 0) {
send_sync:
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_PKT_SYNC);
}
break;
case DCCP_PKT_SYNC:
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_PKT_SYNCACK);
/*
* From RFC 4340, sec. 5.7
*
* As with DCCP-Ack packets, DCCP-Sync and DCCP-SyncAck packets
* MAY have non-zero-length application data areas, whose
* contents receivers MUST ignore.
*/
goto discard;
}
DCCP_INC_STATS_BH(DCCP_MIB_INERRS);
discard:
__kfree_skb(skb);
return 0;
}
int dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
const struct dccp_hdr *dh, const unsigned len)
{
struct dccp_sock *dp = dccp_sk(sk);
if (dccp_check_seqno(sk, skb))
goto discard;
if (dccp_parse_options(sk, NULL, skb))
return 1;
if (DCCP_SKB_CB(skb)->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
dccp_event_ack_recv(sk, skb);
if (dccp_msk(sk)->dccpms_send_ack_vector &&
dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk,
DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_ACKVEC_STATE_RECEIVED))
goto discard;
dccp_deliver_input_to_ccids(sk, skb);
return __dccp_rcv_established(sk, skb, dh, len);
discard:
__kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_rcv_established);
static int dccp_rcv_request_sent_state_process(struct sock *sk,
struct sk_buff *skb,
const struct dccp_hdr *dh,
const unsigned len)
{
/*
* Step 4: Prepare sequence numbers in REQUEST
* If S.state == REQUEST,
* If (P.type == Response or P.type == Reset)
* and S.AWL <= P.ackno <= S.AWH,
* / * Set sequence number variables corresponding to the
* other endpoint, so P will pass the tests in Step 6 * /
* Set S.GSR, S.ISR, S.SWL, S.SWH
* / * Response processing continues in Step 10; Reset
* processing continues in Step 9 * /
*/
if (dh->dccph_type == DCCP_PKT_RESPONSE) {
const struct inet_connection_sock *icsk = inet_csk(sk);
struct dccp_sock *dp = dccp_sk(sk);
long tstamp = dccp_timestamp();
if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq,
dp->dccps_awl, dp->dccps_awh)) {
dccp_pr_debug("invalid ackno: S.AWL=%llu, "
"P.ackno=%llu, S.AWH=%llu \n",
(unsigned long long)dp->dccps_awl,
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
(unsigned long long)dp->dccps_awh);
goto out_invalid_packet;
}
if (dccp_parse_options(sk, NULL, skb))
goto out_invalid_packet;
/* Obtain usec RTT sample from SYN exchange (used by CCID 3) */
if (likely(dp->dccps_options_received.dccpor_timestamp_echo))
dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * (tstamp -
dp->dccps_options_received.dccpor_timestamp_echo));
if (dccp_msk(sk)->dccpms_send_ack_vector &&
dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk,
DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_ACKVEC_STATE_RECEIVED))
goto out_invalid_packet; /* FIXME: change error code */
/* Stop the REQUEST timer */
inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
WARN_ON(sk->sk_send_head == NULL);
kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
dp->dccps_isr = DCCP_SKB_CB(skb)->dccpd_seq;
dccp_update_gsr(sk, dp->dccps_isr);
/*
* SWL and AWL are initially adjusted so that they are not less than
* the initial Sequence Numbers received and sent, respectively:
* SWL := max(GSR + 1 - floor(W/4), ISR),
* AWL := max(GSS - W' + 1, ISS).
* These adjustments MUST be applied only at the beginning of the
* connection.
*
* AWL was adjusted in dccp_v4_connect -acme
*/
dccp_set_seqno(&dp->dccps_swl,
max48(dp->dccps_swl, dp->dccps_isr));
dccp_sync_mss(sk, icsk->icsk_pmtu_cookie);
/*
* Step 10: Process REQUEST state (second part)
* If S.state == REQUEST,
* / * If we get here, P is a valid Response from the
* server (see Step 4), and we should move to
* PARTOPEN state. PARTOPEN means send an Ack,
* don't send Data packets, retransmit Acks
* periodically, and always include any Init Cookie
* from the Response * /
* S.state := PARTOPEN
* Set PARTOPEN timer
* Continue with S.state == PARTOPEN
* / * Step 12 will send the Ack completing the
* three-way handshake * /
*/
dccp_set_state(sk, DCCP_PARTOPEN);
/* Make sure socket is routed, for correct metrics. */
icsk->icsk_af_ops->rebuild_header(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
}
if (sk->sk_write_pending || icsk->icsk_ack.pingpong ||
icsk->icsk_accept_queue.rskq_defer_accept) {
/* Save one ACK. Data will be ready after
* several ticks, if write_pending is set.
*
* It may be deleted, but with this feature tcpdumps
* look so _wonderfully_ clever, that I was not able
* to stand against the temptation 8) --ANK
*/
/*
* OK, in DCCP we can as well do a similar trick, its
* even in the draft, but there is no need for us to
* schedule an ack here, as dccp_sendmsg does this for
* us, also stated in the draft. -acme
*/
__kfree_skb(skb);
return 0;
}
dccp_send_ack(sk);
return -1;
}
out_invalid_packet:
/* dccp_v4_do_rcv will send a reset */
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
return 1;
}
static int dccp_rcv_respond_partopen_state_process(struct sock *sk,
struct sk_buff *skb,
const struct dccp_hdr *dh,
const unsigned len)
{
int queued = 0;
switch (dh->dccph_type) {
case DCCP_PKT_RESET:
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
break;
case DCCP_PKT_DATA:
if (sk->sk_state == DCCP_RESPOND)
break;
case DCCP_PKT_DATAACK:
case DCCP_PKT_ACK:
/*
* FIXME: we should be reseting the PARTOPEN (DELACK) timer
* here but only if we haven't used the DELACK timer for
* something else, like sending a delayed ack for a TIMESTAMP
* echo, etc, for now were not clearing it, sending an extra
* ACK when there is nothing else to do in DELACK is not a big
* deal after all.
*/
/* Stop the PARTOPEN timer */
if (sk->sk_state == DCCP_PARTOPEN)
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
dccp_sk(sk)->dccps_osr = DCCP_SKB_CB(skb)->dccpd_seq;
dccp_set_state(sk, DCCP_OPEN);
if (dh->dccph_type == DCCP_PKT_DATAACK ||
dh->dccph_type == DCCP_PKT_DATA) {
__dccp_rcv_established(sk, skb, dh, len);
queued = 1; /* packet was queued
(by __dccp_rcv_established) */
}
break;
}
return queued;
}
int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
struct dccp_hdr *dh, unsigned len)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
const int old_state = sk->sk_state;
int queued = 0;
/*
* Step 3: Process LISTEN state
*
* If S.state == LISTEN,
* If P.type == Request or P contains a valid Init Cookie option,
* (* Must scan the packet's options to check for Init
* Cookies. Only Init Cookies are processed here,
* however; other options are processed in Step 8. This
* scan need only be performed if the endpoint uses Init
* Cookies *)
* (* Generate a new socket and switch to that socket *)
* Set S := new socket for this port pair
* S.state = RESPOND
* Choose S.ISS (initial seqno) or set from Init Cookies
* Initialize S.GAR := S.ISS
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init
* Cookies Continue with S.state == RESPOND
* (* A Response packet will be generated in Step 11 *)
* Otherwise,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk->sk_state == DCCP_LISTEN) {
if (dh->dccph_type == DCCP_PKT_REQUEST) {
if (inet_csk(sk)->icsk_af_ops->conn_request(sk,
skb) < 0)
return 1;
goto discard;
}
if (dh->dccph_type == DCCP_PKT_RESET)
goto discard;
/* Caller (dccp_v4_do_rcv) will send Reset */
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
return 1;
}
if (sk->sk_state != DCCP_REQUESTING) {
if (dccp_check_seqno(sk, skb))
goto discard;
/*
* Step 8: Process options and mark acknowledgeable
*/
if (dccp_parse_options(sk, NULL, skb))
return 1;
if (dcb->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
dccp_event_ack_recv(sk, skb);
if (dccp_msk(sk)->dccpms_send_ack_vector &&
dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk,
DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_ACKVEC_STATE_RECEIVED))
goto discard;
dccp_deliver_input_to_ccids(sk, skb);
}
/*
* Step 9: Process Reset
* If P.type == Reset,
* Tear down connection
* S.state := TIMEWAIT
* Set TIMEWAIT timer
* Drop packet and return
*/
if (dh->dccph_type == DCCP_PKT_RESET) {
dccp_rcv_reset(sk, skb);
return 0;
/*
* Step 7: Check for unexpected packet types
* If (S.is_server and P.type == Response)
* or (S.is_client and P.type == Request)
* or (S.state == RESPOND and P.type == Data),
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
} else if ((dp->dccps_role != DCCP_ROLE_CLIENT &&
dh->dccph_type == DCCP_PKT_RESPONSE) ||
(dp->dccps_role == DCCP_ROLE_CLIENT &&
dh->dccph_type == DCCP_PKT_REQUEST) ||
(sk->sk_state == DCCP_RESPOND &&
dh->dccph_type == DCCP_PKT_DATA)) {
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNC);
goto discard;
} else if (dh->dccph_type == DCCP_PKT_CLOSEREQ) {
if (dccp_rcv_closereq(sk, skb))
return 0;
goto discard;
} else if (dh->dccph_type == DCCP_PKT_CLOSE) {
if (dccp_rcv_close(sk, skb))
return 0;
goto discard;
}
switch (sk->sk_state) {
case DCCP_CLOSED:
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
return 1;
case DCCP_REQUESTING:
/* FIXME: do congestion control initialization */
queued = dccp_rcv_request_sent_state_process(sk, skb, dh, len);
if (queued >= 0)
return queued;
__kfree_skb(skb);
return 0;
case DCCP_RESPOND:
case DCCP_PARTOPEN:
queued = dccp_rcv_respond_partopen_state_process(sk, skb,
dh, len);
break;
}
if (dh->dccph_type == DCCP_PKT_ACK ||
dh->dccph_type == DCCP_PKT_DATAACK) {
switch (old_state) {
case DCCP_PARTOPEN:
sk->sk_state_change(sk);
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
break;
}
} else if (unlikely(dh->dccph_type == DCCP_PKT_SYNC)) {
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNCACK);
goto discard;
}
if (!queued) {
discard:
__kfree_skb(skb);
}
return 0;
}
EXPORT_SYMBOL_GPL(dccp_rcv_state_process);
/**
* dccp_sample_rtt - Validate and finalise computation of RTT sample
* @delta: number of microseconds between packet and acknowledgment
* The routine is kept generic to work in different contexts. It should be
* called immediately when the ACK used for the RTT sample arrives.
*/
u32 dccp_sample_rtt(struct sock *sk, long delta)
{
/* dccpor_elapsed_time is either zeroed out or set and > 0 */
delta -= dccp_sk(sk)->dccps_options_received.dccpor_elapsed_time * 10;
if (unlikely(delta <= 0)) {
DCCP_WARN("unusable RTT sample %ld, using min\n", delta);
return DCCP_SANE_RTT_MIN;
}
if (unlikely(delta > DCCP_SANE_RTT_MAX)) {
DCCP_WARN("RTT sample %ld too large, using max\n", delta);
return DCCP_SANE_RTT_MAX;
}
return delta;
}
EXPORT_SYMBOL_GPL(dccp_sample_rtt);