| /* |
| * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| #include "common.h" |
| #include "regs.h" |
| #include "sge_defs.h" |
| #include "firmware_exports.h" |
| |
| /** |
| * t3_wait_op_done_val - wait until an operation is completed |
| * @adapter: the adapter performing the operation |
| * @reg: the register to check for completion |
| * @mask: a single-bit field within @reg that indicates completion |
| * @polarity: the value of the field when the operation is completed |
| * @attempts: number of check iterations |
| * @delay: delay in usecs between iterations |
| * @valp: where to store the value of the register at completion time |
| * |
| * Wait until an operation is completed by checking a bit in a register |
| * up to @attempts times. If @valp is not NULL the value of the register |
| * at the time it indicated completion is stored there. Returns 0 if the |
| * operation completes and -EAGAIN otherwise. |
| */ |
| |
| int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, |
| int polarity, int attempts, int delay, u32 *valp) |
| { |
| while (1) { |
| u32 val = t3_read_reg(adapter, reg); |
| |
| if (!!(val & mask) == polarity) { |
| if (valp) |
| *valp = val; |
| return 0; |
| } |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| udelay(delay); |
| } |
| } |
| |
| /** |
| * t3_write_regs - write a bunch of registers |
| * @adapter: the adapter to program |
| * @p: an array of register address/register value pairs |
| * @n: the number of address/value pairs |
| * @offset: register address offset |
| * |
| * Takes an array of register address/register value pairs and writes each |
| * value to the corresponding register. Register addresses are adjusted |
| * by the supplied offset. |
| */ |
| void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, |
| int n, unsigned int offset) |
| { |
| while (n--) { |
| t3_write_reg(adapter, p->reg_addr + offset, p->val); |
| p++; |
| } |
| } |
| |
| /** |
| * t3_set_reg_field - set a register field to a value |
| * @adapter: the adapter to program |
| * @addr: the register address |
| * @mask: specifies the portion of the register to modify |
| * @val: the new value for the register field |
| * |
| * Sets a register field specified by the supplied mask to the |
| * given value. |
| */ |
| void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, |
| u32 val) |
| { |
| u32 v = t3_read_reg(adapter, addr) & ~mask; |
| |
| t3_write_reg(adapter, addr, v | val); |
| t3_read_reg(adapter, addr); /* flush */ |
| } |
| |
| /** |
| * t3_read_indirect - read indirectly addressed registers |
| * @adap: the adapter |
| * @addr_reg: register holding the indirect address |
| * @data_reg: register holding the value of the indirect register |
| * @vals: where the read register values are stored |
| * @start_idx: index of first indirect register to read |
| * @nregs: how many indirect registers to read |
| * |
| * Reads registers that are accessed indirectly through an address/data |
| * register pair. |
| */ |
| void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, |
| unsigned int data_reg, u32 *vals, unsigned int nregs, |
| unsigned int start_idx) |
| { |
| while (nregs--) { |
| t3_write_reg(adap, addr_reg, start_idx); |
| *vals++ = t3_read_reg(adap, data_reg); |
| start_idx++; |
| } |
| } |
| |
| /** |
| * t3_mc7_bd_read - read from MC7 through backdoor accesses |
| * @mc7: identifies MC7 to read from |
| * @start: index of first 64-bit word to read |
| * @n: number of 64-bit words to read |
| * @buf: where to store the read result |
| * |
| * Read n 64-bit words from MC7 starting at word start, using backdoor |
| * accesses. |
| */ |
| int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, |
| u64 *buf) |
| { |
| static const int shift[] = { 0, 0, 16, 24 }; |
| static const int step[] = { 0, 32, 16, 8 }; |
| |
| unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ |
| struct adapter *adap = mc7->adapter; |
| |
| if (start >= size64 || start + n > size64) |
| return -EINVAL; |
| |
| start *= (8 << mc7->width); |
| while (n--) { |
| int i; |
| u64 val64 = 0; |
| |
| for (i = (1 << mc7->width) - 1; i >= 0; --i) { |
| int attempts = 10; |
| u32 val; |
| |
| t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); |
| t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); |
| val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); |
| while ((val & F_BUSY) && attempts--) |
| val = t3_read_reg(adap, |
| mc7->offset + A_MC7_BD_OP); |
| if (val & F_BUSY) |
| return -EIO; |
| |
| val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); |
| if (mc7->width == 0) { |
| val64 = t3_read_reg(adap, |
| mc7->offset + |
| A_MC7_BD_DATA0); |
| val64 |= (u64) val << 32; |
| } else { |
| if (mc7->width > 1) |
| val >>= shift[mc7->width]; |
| val64 |= (u64) val << (step[mc7->width] * i); |
| } |
| start += 8; |
| } |
| *buf++ = val64; |
| } |
| return 0; |
| } |
| |
| /* |
| * Initialize MI1. |
| */ |
| static void mi1_init(struct adapter *adap, const struct adapter_info *ai) |
| { |
| u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; |
| u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) | |
| V_CLKDIV(clkdiv); |
| |
| if (!(ai->caps & SUPPORTED_10000baseT_Full)) |
| val |= V_ST(1); |
| t3_write_reg(adap, A_MI1_CFG, val); |
| } |
| |
| #define MDIO_ATTEMPTS 10 |
| |
| /* |
| * MI1 read/write operations for direct-addressed PHYs. |
| */ |
| static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr, |
| int reg_addr, unsigned int *valp) |
| { |
| int ret; |
| u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); |
| |
| if (mmd_addr) |
| return -EINVAL; |
| |
| mutex_lock(&adapter->mdio_lock); |
| t3_write_reg(adapter, A_MI1_ADDR, addr); |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| if (!ret) |
| *valp = t3_read_reg(adapter, A_MI1_DATA); |
| mutex_unlock(&adapter->mdio_lock); |
| return ret; |
| } |
| |
| static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr, |
| int reg_addr, unsigned int val) |
| { |
| int ret; |
| u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); |
| |
| if (mmd_addr) |
| return -EINVAL; |
| |
| mutex_lock(&adapter->mdio_lock); |
| t3_write_reg(adapter, A_MI1_ADDR, addr); |
| t3_write_reg(adapter, A_MI1_DATA, val); |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| mutex_unlock(&adapter->mdio_lock); |
| return ret; |
| } |
| |
| static const struct mdio_ops mi1_mdio_ops = { |
| mi1_read, |
| mi1_write |
| }; |
| |
| /* |
| * MI1 read/write operations for indirect-addressed PHYs. |
| */ |
| static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr, |
| int reg_addr, unsigned int *valp) |
| { |
| int ret; |
| u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); |
| |
| mutex_lock(&adapter->mdio_lock); |
| t3_write_reg(adapter, A_MI1_ADDR, addr); |
| t3_write_reg(adapter, A_MI1_DATA, reg_addr); |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| if (!ret) { |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, |
| MDIO_ATTEMPTS, 20); |
| if (!ret) |
| *valp = t3_read_reg(adapter, A_MI1_DATA); |
| } |
| mutex_unlock(&adapter->mdio_lock); |
| return ret; |
| } |
| |
| static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr, |
| int reg_addr, unsigned int val) |
| { |
| int ret; |
| u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); |
| |
| mutex_lock(&adapter->mdio_lock); |
| t3_write_reg(adapter, A_MI1_ADDR, addr); |
| t3_write_reg(adapter, A_MI1_DATA, reg_addr); |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| if (!ret) { |
| t3_write_reg(adapter, A_MI1_DATA, val); |
| t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); |
| ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, |
| MDIO_ATTEMPTS, 20); |
| } |
| mutex_unlock(&adapter->mdio_lock); |
| return ret; |
| } |
| |
| static const struct mdio_ops mi1_mdio_ext_ops = { |
| mi1_ext_read, |
| mi1_ext_write |
| }; |
| |
| /** |
| * t3_mdio_change_bits - modify the value of a PHY register |
| * @phy: the PHY to operate on |
| * @mmd: the device address |
| * @reg: the register address |
| * @clear: what part of the register value to mask off |
| * @set: what part of the register value to set |
| * |
| * Changes the value of a PHY register by applying a mask to its current |
| * value and ORing the result with a new value. |
| */ |
| int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, |
| unsigned int set) |
| { |
| int ret; |
| unsigned int val; |
| |
| ret = mdio_read(phy, mmd, reg, &val); |
| if (!ret) { |
| val &= ~clear; |
| ret = mdio_write(phy, mmd, reg, val | set); |
| } |
| return ret; |
| } |
| |
| /** |
| * t3_phy_reset - reset a PHY block |
| * @phy: the PHY to operate on |
| * @mmd: the device address of the PHY block to reset |
| * @wait: how long to wait for the reset to complete in 1ms increments |
| * |
| * Resets a PHY block and optionally waits for the reset to complete. |
| * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset |
| * for 10G PHYs. |
| */ |
| int t3_phy_reset(struct cphy *phy, int mmd, int wait) |
| { |
| int err; |
| unsigned int ctl; |
| |
| err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); |
| if (err || !wait) |
| return err; |
| |
| do { |
| err = mdio_read(phy, mmd, MII_BMCR, &ctl); |
| if (err) |
| return err; |
| ctl &= BMCR_RESET; |
| if (ctl) |
| msleep(1); |
| } while (ctl && --wait); |
| |
| return ctl ? -1 : 0; |
| } |
| |
| /** |
| * t3_phy_advertise - set the PHY advertisement registers for autoneg |
| * @phy: the PHY to operate on |
| * @advert: bitmap of capabilities the PHY should advertise |
| * |
| * Sets a 10/100/1000 PHY's advertisement registers to advertise the |
| * requested capabilities. |
| */ |
| int t3_phy_advertise(struct cphy *phy, unsigned int advert) |
| { |
| int err; |
| unsigned int val = 0; |
| |
| err = mdio_read(phy, 0, MII_CTRL1000, &val); |
| if (err) |
| return err; |
| |
| val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); |
| if (advert & ADVERTISED_1000baseT_Half) |
| val |= ADVERTISE_1000HALF; |
| if (advert & ADVERTISED_1000baseT_Full) |
| val |= ADVERTISE_1000FULL; |
| |
| err = mdio_write(phy, 0, MII_CTRL1000, val); |
| if (err) |
| return err; |
| |
| val = 1; |
| if (advert & ADVERTISED_10baseT_Half) |
| val |= ADVERTISE_10HALF; |
| if (advert & ADVERTISED_10baseT_Full) |
| val |= ADVERTISE_10FULL; |
| if (advert & ADVERTISED_100baseT_Half) |
| val |= ADVERTISE_100HALF; |
| if (advert & ADVERTISED_100baseT_Full) |
| val |= ADVERTISE_100FULL; |
| if (advert & ADVERTISED_Pause) |
| val |= ADVERTISE_PAUSE_CAP; |
| if (advert & ADVERTISED_Asym_Pause) |
| val |= ADVERTISE_PAUSE_ASYM; |
| return mdio_write(phy, 0, MII_ADVERTISE, val); |
| } |
| |
| /** |
| * t3_set_phy_speed_duplex - force PHY speed and duplex |
| * @phy: the PHY to operate on |
| * @speed: requested PHY speed |
| * @duplex: requested PHY duplex |
| * |
| * Force a 10/100/1000 PHY's speed and duplex. This also disables |
| * auto-negotiation except for GigE, where auto-negotiation is mandatory. |
| */ |
| int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) |
| { |
| int err; |
| unsigned int ctl; |
| |
| err = mdio_read(phy, 0, MII_BMCR, &ctl); |
| if (err) |
| return err; |
| |
| if (speed >= 0) { |
| ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); |
| if (speed == SPEED_100) |
| ctl |= BMCR_SPEED100; |
| else if (speed == SPEED_1000) |
| ctl |= BMCR_SPEED1000; |
| } |
| if (duplex >= 0) { |
| ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); |
| if (duplex == DUPLEX_FULL) |
| ctl |= BMCR_FULLDPLX; |
| } |
| if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ |
| ctl |= BMCR_ANENABLE; |
| return mdio_write(phy, 0, MII_BMCR, ctl); |
| } |
| |
| static const struct adapter_info t3_adap_info[] = { |
| {2, 0, 0, 0, |
| F_GPIO2_OEN | F_GPIO4_OEN | |
| F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, |
| 0, |
| &mi1_mdio_ops, "Chelsio PE9000"}, |
| {2, 0, 0, 0, |
| F_GPIO2_OEN | F_GPIO4_OEN | |
| F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, |
| 0, |
| &mi1_mdio_ops, "Chelsio T302"}, |
| {1, 0, 0, 0, |
| F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | |
| F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, |
| SUPPORTED_10000baseT_Full | SUPPORTED_AUI, |
| &mi1_mdio_ext_ops, "Chelsio T310"}, |
| {2, 0, 0, 0, |
| F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | |
| F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | |
| F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, |
| SUPPORTED_10000baseT_Full | SUPPORTED_AUI, |
| &mi1_mdio_ext_ops, "Chelsio T320"}, |
| }; |
| |
| /* |
| * Return the adapter_info structure with a given index. Out-of-range indices |
| * return NULL. |
| */ |
| const struct adapter_info *t3_get_adapter_info(unsigned int id) |
| { |
| return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; |
| } |
| |
| #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \ |
| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII) |
| #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI) |
| |
| static const struct port_type_info port_types[] = { |
| {NULL}, |
| {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE, |
| "10GBASE-XR"}, |
| {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, |
| "10/100/1000BASE-T"}, |
| {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, |
| "10/100/1000BASE-T"}, |
| {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| {NULL, CAPS_10G, "10GBASE-KX4"}, |
| {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE, |
| "10GBASE-SR"}, |
| {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| }; |
| |
| #undef CAPS_1G |
| #undef CAPS_10G |
| |
| #define VPD_ENTRY(name, len) \ |
| u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] |
| |
| /* |
| * Partial EEPROM Vital Product Data structure. Includes only the ID and |
| * VPD-R sections. |
| */ |
| struct t3_vpd { |
| u8 id_tag; |
| u8 id_len[2]; |
| u8 id_data[16]; |
| u8 vpdr_tag; |
| u8 vpdr_len[2]; |
| VPD_ENTRY(pn, 16); /* part number */ |
| VPD_ENTRY(ec, 16); /* EC level */ |
| VPD_ENTRY(sn, 16); /* serial number */ |
| VPD_ENTRY(na, 12); /* MAC address base */ |
| VPD_ENTRY(cclk, 6); /* core clock */ |
| VPD_ENTRY(mclk, 6); /* mem clock */ |
| VPD_ENTRY(uclk, 6); /* uP clk */ |
| VPD_ENTRY(mdc, 6); /* MDIO clk */ |
| VPD_ENTRY(mt, 2); /* mem timing */ |
| VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ |
| VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ |
| VPD_ENTRY(port0, 2); /* PHY0 complex */ |
| VPD_ENTRY(port1, 2); /* PHY1 complex */ |
| VPD_ENTRY(port2, 2); /* PHY2 complex */ |
| VPD_ENTRY(port3, 2); /* PHY3 complex */ |
| VPD_ENTRY(rv, 1); /* csum */ |
| u32 pad; /* for multiple-of-4 sizing and alignment */ |
| }; |
| |
| #define EEPROM_MAX_POLL 4 |
| #define EEPROM_STAT_ADDR 0x4000 |
| #define VPD_BASE 0xc00 |
| |
| /** |
| * t3_seeprom_read - read a VPD EEPROM location |
| * @adapter: adapter to read |
| * @addr: EEPROM address |
| * @data: where to store the read data |
| * |
| * Read a 32-bit word from a location in VPD EEPROM using the card's PCI |
| * VPD ROM capability. A zero is written to the flag bit when the |
| * addres is written to the control register. The hardware device will |
| * set the flag to 1 when 4 bytes have been read into the data register. |
| */ |
| int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) |
| { |
| u16 val; |
| int attempts = EEPROM_MAX_POLL; |
| unsigned int base = adapter->params.pci.vpd_cap_addr; |
| |
| if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) |
| return -EINVAL; |
| |
| pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); |
| do { |
| udelay(10); |
| pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); |
| } while (!(val & PCI_VPD_ADDR_F) && --attempts); |
| |
| if (!(val & PCI_VPD_ADDR_F)) { |
| CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); |
| return -EIO; |
| } |
| pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data); |
| *data = le32_to_cpu(*data); |
| return 0; |
| } |
| |
| /** |
| * t3_seeprom_write - write a VPD EEPROM location |
| * @adapter: adapter to write |
| * @addr: EEPROM address |
| * @data: value to write |
| * |
| * Write a 32-bit word to a location in VPD EEPROM using the card's PCI |
| * VPD ROM capability. |
| */ |
| int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data) |
| { |
| u16 val; |
| int attempts = EEPROM_MAX_POLL; |
| unsigned int base = adapter->params.pci.vpd_cap_addr; |
| |
| if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) |
| return -EINVAL; |
| |
| pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, |
| cpu_to_le32(data)); |
| pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, |
| addr | PCI_VPD_ADDR_F); |
| do { |
| msleep(1); |
| pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); |
| } while ((val & PCI_VPD_ADDR_F) && --attempts); |
| |
| if (val & PCI_VPD_ADDR_F) { |
| CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /** |
| * t3_seeprom_wp - enable/disable EEPROM write protection |
| * @adapter: the adapter |
| * @enable: 1 to enable write protection, 0 to disable it |
| * |
| * Enables or disables write protection on the serial EEPROM. |
| */ |
| int t3_seeprom_wp(struct adapter *adapter, int enable) |
| { |
| return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); |
| } |
| |
| /* |
| * Convert a character holding a hex digit to a number. |
| */ |
| static unsigned int hex2int(unsigned char c) |
| { |
| return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; |
| } |
| |
| /** |
| * get_vpd_params - read VPD parameters from VPD EEPROM |
| * @adapter: adapter to read |
| * @p: where to store the parameters |
| * |
| * Reads card parameters stored in VPD EEPROM. |
| */ |
| static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) |
| { |
| int i, addr, ret; |
| struct t3_vpd vpd; |
| |
| /* |
| * Card information is normally at VPD_BASE but some early cards had |
| * it at 0. |
| */ |
| ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); |
| if (ret) |
| return ret; |
| addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; |
| |
| for (i = 0; i < sizeof(vpd); i += 4) { |
| ret = t3_seeprom_read(adapter, addr + i, |
| (u32 *)((u8 *)&vpd + i)); |
| if (ret) |
| return ret; |
| } |
| |
| p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); |
| p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); |
| p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); |
| p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); |
| p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); |
| |
| /* Old eeproms didn't have port information */ |
| if (adapter->params.rev == 0 && !vpd.port0_data[0]) { |
| p->port_type[0] = uses_xaui(adapter) ? 1 : 2; |
| p->port_type[1] = uses_xaui(adapter) ? 6 : 2; |
| } else { |
| p->port_type[0] = hex2int(vpd.port0_data[0]); |
| p->port_type[1] = hex2int(vpd.port1_data[0]); |
| p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); |
| p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); |
| } |
| |
| for (i = 0; i < 6; i++) |
| p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + |
| hex2int(vpd.na_data[2 * i + 1]); |
| return 0; |
| } |
| |
| /* serial flash and firmware constants */ |
| enum { |
| SF_ATTEMPTS = 5, /* max retries for SF1 operations */ |
| SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ |
| SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ |
| |
| /* flash command opcodes */ |
| SF_PROG_PAGE = 2, /* program page */ |
| SF_WR_DISABLE = 4, /* disable writes */ |
| SF_RD_STATUS = 5, /* read status register */ |
| SF_WR_ENABLE = 6, /* enable writes */ |
| SF_RD_DATA_FAST = 0xb, /* read flash */ |
| SF_ERASE_SECTOR = 0xd8, /* erase sector */ |
| |
| FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ |
| FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */ |
| FW_MIN_SIZE = 8 /* at least version and csum */ |
| }; |
| |
| /** |
| * sf1_read - read data from the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to read |
| * @cont: whether another operation will be chained |
| * @valp: where to store the read data |
| * |
| * Reads up to 4 bytes of data from the serial flash. The location of |
| * the read needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| u32 *valp) |
| { |
| int ret; |
| |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) |
| return -EBUSY; |
| t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); |
| ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); |
| if (!ret) |
| *valp = t3_read_reg(adapter, A_SF_DATA); |
| return ret; |
| } |
| |
| /** |
| * sf1_write - write data to the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to write |
| * @cont: whether another operation will be chained |
| * @val: value to write |
| * |
| * Writes up to 4 bytes of data to the serial flash. The location of |
| * the write needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| u32 val) |
| { |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) |
| return -EBUSY; |
| t3_write_reg(adapter, A_SF_DATA, val); |
| t3_write_reg(adapter, A_SF_OP, |
| V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); |
| return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); |
| } |
| |
| /** |
| * flash_wait_op - wait for a flash operation to complete |
| * @adapter: the adapter |
| * @attempts: max number of polls of the status register |
| * @delay: delay between polls in ms |
| * |
| * Wait for a flash operation to complete by polling the status register. |
| */ |
| static int flash_wait_op(struct adapter *adapter, int attempts, int delay) |
| { |
| int ret; |
| u32 status; |
| |
| while (1) { |
| if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || |
| (ret = sf1_read(adapter, 1, 0, &status)) != 0) |
| return ret; |
| if (!(status & 1)) |
| return 0; |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| msleep(delay); |
| } |
| } |
| |
| /** |
| * t3_read_flash - read words from serial flash |
| * @adapter: the adapter |
| * @addr: the start address for the read |
| * @nwords: how many 32-bit words to read |
| * @data: where to store the read data |
| * @byte_oriented: whether to store data as bytes or as words |
| * |
| * Read the specified number of 32-bit words from the serial flash. |
| * If @byte_oriented is set the read data is stored as a byte array |
| * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| * natural endianess. |
| */ |
| int t3_read_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int nwords, u32 *data, int byte_oriented) |
| { |
| int ret; |
| |
| if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) |
| return -EINVAL; |
| |
| addr = swab32(addr) | SF_RD_DATA_FAST; |
| |
| if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || |
| (ret = sf1_read(adapter, 1, 1, data)) != 0) |
| return ret; |
| |
| for (; nwords; nwords--, data++) { |
| ret = sf1_read(adapter, 4, nwords > 1, data); |
| if (ret) |
| return ret; |
| if (byte_oriented) |
| *data = htonl(*data); |
| } |
| return 0; |
| } |
| |
| /** |
| * t3_write_flash - write up to a page of data to the serial flash |
| * @adapter: the adapter |
| * @addr: the start address to write |
| * @n: length of data to write |
| * @data: the data to write |
| * |
| * Writes up to a page of data (256 bytes) to the serial flash starting |
| * at the given address. |
| */ |
| static int t3_write_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int n, const u8 *data) |
| { |
| int ret; |
| u32 buf[64]; |
| unsigned int i, c, left, val, offset = addr & 0xff; |
| |
| if (addr + n > SF_SIZE || offset + n > 256) |
| return -EINVAL; |
| |
| val = swab32(addr) | SF_PROG_PAGE; |
| |
| if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 1, val)) != 0) |
| return ret; |
| |
| for (left = n; left; left -= c) { |
| c = min(left, 4U); |
| for (val = 0, i = 0; i < c; ++i) |
| val = (val << 8) + *data++; |
| |
| ret = sf1_write(adapter, c, c != left, val); |
| if (ret) |
| return ret; |
| } |
| if ((ret = flash_wait_op(adapter, 5, 1)) != 0) |
| return ret; |
| |
| /* Read the page to verify the write succeeded */ |
| ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| if (ret) |
| return ret; |
| |
| if (memcmp(data - n, (u8 *) buf + offset, n)) |
| return -EIO; |
| return 0; |
| } |
| |
| enum fw_version_type { |
| FW_VERSION_N3, |
| FW_VERSION_T3 |
| }; |
| |
| /** |
| * t3_get_fw_version - read the firmware version |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the FW version from flash. |
| */ |
| int t3_get_fw_version(struct adapter *adapter, u32 *vers) |
| { |
| return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); |
| } |
| |
| /** |
| * t3_check_fw_version - check if the FW is compatible with this driver |
| * @adapter: the adapter |
| * |
| * Checks if an adapter's FW is compatible with the driver. Returns 0 |
| * if the versions are compatible, a negative error otherwise. |
| */ |
| int t3_check_fw_version(struct adapter *adapter) |
| { |
| int ret; |
| u32 vers; |
| unsigned int type, major, minor; |
| |
| ret = t3_get_fw_version(adapter, &vers); |
| if (ret) |
| return ret; |
| |
| type = G_FW_VERSION_TYPE(vers); |
| major = G_FW_VERSION_MAJOR(vers); |
| minor = G_FW_VERSION_MINOR(vers); |
| |
| if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR && |
| minor == FW_VERSION_MINOR) |
| return 0; |
| |
| CH_ERR(adapter, "found wrong FW version(%u.%u), " |
| "driver needs version %u.%u\n", major, minor, |
| FW_VERSION_MAJOR, FW_VERSION_MINOR); |
| return -EINVAL; |
| } |
| |
| /** |
| * t3_flash_erase_sectors - erase a range of flash sectors |
| * @adapter: the adapter |
| * @start: the first sector to erase |
| * @end: the last sector to erase |
| * |
| * Erases the sectors in the given range. |
| */ |
| static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) |
| { |
| while (start <= end) { |
| int ret; |
| |
| if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 0, |
| SF_ERASE_SECTOR | (start << 8))) != 0 || |
| (ret = flash_wait_op(adapter, 5, 500)) != 0) |
| return ret; |
| start++; |
| } |
| return 0; |
| } |
| |
| /* |
| * t3_load_fw - download firmware |
| * @adapter: the adapter |
| * @fw_data: the firrware image to write |
| * @size: image size |
| * |
| * Write the supplied firmware image to the card's serial flash. |
| * The FW image has the following sections: @size - 8 bytes of code and |
| * data, followed by 4 bytes of FW version, followed by the 32-bit |
| * 1's complement checksum of the whole image. |
| */ |
| int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) |
| { |
| u32 csum; |
| unsigned int i; |
| const u32 *p = (const u32 *)fw_data; |
| int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; |
| |
| if ((size & 3) || size < FW_MIN_SIZE) |
| return -EINVAL; |
| if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) |
| return -EFBIG; |
| |
| for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| csum += ntohl(p[i]); |
| if (csum != 0xffffffff) { |
| CH_ERR(adapter, "corrupted firmware image, checksum %u\n", |
| csum); |
| return -EINVAL; |
| } |
| |
| ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); |
| if (ret) |
| goto out; |
| |
| size -= 8; /* trim off version and checksum */ |
| for (addr = FW_FLASH_BOOT_ADDR; size;) { |
| unsigned int chunk_size = min(size, 256U); |
| |
| ret = t3_write_flash(adapter, addr, chunk_size, fw_data); |
| if (ret) |
| goto out; |
| |
| addr += chunk_size; |
| fw_data += chunk_size; |
| size -= chunk_size; |
| } |
| |
| ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); |
| out: |
| if (ret) |
| CH_ERR(adapter, "firmware download failed, error %d\n", ret); |
| return ret; |
| } |
| |
| #define CIM_CTL_BASE 0x2000 |
| |
| /** |
| * t3_cim_ctl_blk_read - read a block from CIM control region |
| * |
| * @adap: the adapter |
| * @addr: the start address within the CIM control region |
| * @n: number of words to read |
| * @valp: where to store the result |
| * |
| * Reads a block of 4-byte words from the CIM control region. |
| */ |
| int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, |
| unsigned int n, unsigned int *valp) |
| { |
| int ret = 0; |
| |
| if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) |
| return -EBUSY; |
| |
| for ( ; !ret && n--; addr += 4) { |
| t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); |
| ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, |
| 0, 5, 2); |
| if (!ret) |
| *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); |
| } |
| return ret; |
| } |
| |
| |
| /** |
| * t3_link_changed - handle interface link changes |
| * @adapter: the adapter |
| * @port_id: the port index that changed link state |
| * |
| * Called when a port's link settings change to propagate the new values |
| * to the associated PHY and MAC. After performing the common tasks it |
| * invokes an OS-specific handler. |
| */ |
| void t3_link_changed(struct adapter *adapter, int port_id) |
| { |
| int link_ok, speed, duplex, fc; |
| struct port_info *pi = adap2pinfo(adapter, port_id); |
| struct cphy *phy = &pi->phy; |
| struct cmac *mac = &pi->mac; |
| struct link_config *lc = &pi->link_config; |
| |
| phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); |
| |
| if (link_ok != lc->link_ok && adapter->params.rev > 0 && |
| uses_xaui(adapter)) { |
| if (link_ok) |
| t3b_pcs_reset(mac); |
| t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, |
| link_ok ? F_TXACTENABLE | F_RXEN : 0); |
| } |
| lc->link_ok = link_ok; |
| lc->speed = speed < 0 ? SPEED_INVALID : speed; |
| lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; |
| if (lc->requested_fc & PAUSE_AUTONEG) |
| fc &= lc->requested_fc; |
| else |
| fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| |
| if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { |
| /* Set MAC speed, duplex, and flow control to match PHY. */ |
| t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); |
| lc->fc = fc; |
| } |
| |
| t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); |
| } |
| |
| /** |
| * t3_link_start - apply link configuration to MAC/PHY |
| * @phy: the PHY to setup |
| * @mac: the MAC to setup |
| * @lc: the requested link configuration |
| * |
| * Set up a port's MAC and PHY according to a desired link configuration. |
| * - If the PHY can auto-negotiate first decide what to advertise, then |
| * enable/disable auto-negotiation as desired, and reset. |
| * - If the PHY does not auto-negotiate just reset it. |
| * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, |
| * otherwise do it later based on the outcome of auto-negotiation. |
| */ |
| int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) |
| { |
| unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| |
| lc->link_ok = 0; |
| if (lc->supported & SUPPORTED_Autoneg) { |
| lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); |
| if (fc) { |
| lc->advertising |= ADVERTISED_Asym_Pause; |
| if (fc & PAUSE_RX) |
| lc->advertising |= ADVERTISED_Pause; |
| } |
| phy->ops->advertise(phy, lc->advertising); |
| |
| if (lc->autoneg == AUTONEG_DISABLE) { |
| lc->speed = lc->requested_speed; |
| lc->duplex = lc->requested_duplex; |
| lc->fc = (unsigned char)fc; |
| t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, |
| fc); |
| /* Also disables autoneg */ |
| phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); |
| phy->ops->reset(phy, 0); |
| } else |
| phy->ops->autoneg_enable(phy); |
| } else { |
| t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); |
| lc->fc = (unsigned char)fc; |
| phy->ops->reset(phy, 0); |
| } |
| return 0; |
| } |
| |
| /** |
| * t3_set_vlan_accel - control HW VLAN extraction |
| * @adapter: the adapter |
| * @ports: bitmap of adapter ports to operate on |
| * @on: enable (1) or disable (0) HW VLAN extraction |
| * |
| * Enables or disables HW extraction of VLAN tags for the given port. |
| */ |
| void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) |
| { |
| t3_set_reg_field(adapter, A_TP_OUT_CONFIG, |
| ports << S_VLANEXTRACTIONENABLE, |
| on ? (ports << S_VLANEXTRACTIONENABLE) : 0); |
| } |
| |
| struct intr_info { |
| unsigned int mask; /* bits to check in interrupt status */ |
| const char *msg; /* message to print or NULL */ |
| short stat_idx; /* stat counter to increment or -1 */ |
| unsigned short fatal:1; /* whether the condition reported is fatal */ |
| }; |
| |
| /** |
| * t3_handle_intr_status - table driven interrupt handler |
| * @adapter: the adapter that generated the interrupt |
| * @reg: the interrupt status register to process |
| * @mask: a mask to apply to the interrupt status |
| * @acts: table of interrupt actions |
| * @stats: statistics counters tracking interrupt occurences |
| * |
| * A table driven interrupt handler that applies a set of masks to an |
| * interrupt status word and performs the corresponding actions if the |
| * interrupts described by the mask have occured. The actions include |
| * optionally printing a warning or alert message, and optionally |
| * incrementing a stat counter. The table is terminated by an entry |
| * specifying mask 0. Returns the number of fatal interrupt conditions. |
| */ |
| static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, |
| unsigned int mask, |
| const struct intr_info *acts, |
| unsigned long *stats) |
| { |
| int fatal = 0; |
| unsigned int status = t3_read_reg(adapter, reg) & mask; |
| |
| for (; acts->mask; ++acts) { |
| if (!(status & acts->mask)) |
| continue; |
| if (acts->fatal) { |
| fatal++; |
| CH_ALERT(adapter, "%s (0x%x)\n", |
| acts->msg, status & acts->mask); |
| } else if (acts->msg) |
| CH_WARN(adapter, "%s (0x%x)\n", |
| acts->msg, status & acts->mask); |
| if (acts->stat_idx >= 0) |
| stats[acts->stat_idx]++; |
| } |
| if (status) /* clear processed interrupts */ |
| t3_write_reg(adapter, reg, status); |
| return fatal; |
| } |
| |
| #define SGE_INTR_MASK (F_RSPQDISABLED) |
| #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ |
| F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ |
| F_NFASRCHFAIL) |
| #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) |
| #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ |
| V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ |
| F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW) |
| #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ |
| F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ |
| F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ |
| F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ |
| V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ |
| V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) |
| #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ |
| F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ |
| /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ |
| V_BISTERR(M_BISTERR) | F_PEXERR) |
| #define ULPRX_INTR_MASK F_PARERR |
| #define ULPTX_INTR_MASK 0 |
| #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \ |
| F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ |
| F_ZERO_SWITCH_ERROR) |
| #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ |
| F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ |
| F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ |
| F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT) |
| #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ |
| V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ |
| V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) |
| #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ |
| V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ |
| V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) |
| #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ |
| V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ |
| V_RXTPPARERRENB(M_RXTPPARERRENB) | \ |
| V_MCAPARERRENB(M_MCAPARERRENB)) |
| #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ |
| F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ |
| F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ |
| F_MPS0 | F_CPL_SWITCH) |
| |
| /* |
| * Interrupt handler for the PCIX1 module. |
| */ |
| static void pci_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pcix1_intr_info[] = { |
| {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, |
| {F_SIGTARABT, "PCI signaled target abort", -1, 1}, |
| {F_RCVTARABT, "PCI received target abort", -1, 1}, |
| {F_RCVMSTABT, "PCI received master abort", -1, 1}, |
| {F_SIGSYSERR, "PCI signaled system error", -1, 1}, |
| {F_DETPARERR, "PCI detected parity error", -1, 1}, |
| {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, |
| {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, |
| {F_RCVSPLCMPERR, "PCI received split completion error", -1, |
| 1}, |
| {F_DETCORECCERR, "PCI correctable ECC error", |
| STAT_PCI_CORR_ECC, 0}, |
| {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, |
| {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, |
| {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, |
| 1}, |
| {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, |
| 1}, |
| {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, |
| 1}, |
| {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " |
| "error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, |
| pcix1_intr_info, adapter->irq_stats)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * Interrupt handler for the PCIE module. |
| */ |
| static void pcie_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pcie_intr_info[] = { |
| {F_PEXERR, "PCI PEX error", -1, 1}, |
| {F_UNXSPLCPLERRR, |
| "PCI unexpected split completion DMA read error", -1, 1}, |
| {F_UNXSPLCPLERRC, |
| "PCI unexpected split completion DMA command error", -1, 1}, |
| {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, |
| {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, |
| {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, |
| {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, |
| {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), |
| "PCI MSI-X table/PBA parity error", -1, 1}, |
| {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, |
| pcie_intr_info, adapter->irq_stats)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * TP interrupt handler. |
| */ |
| static void tp_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info tp_intr_info[] = { |
| {0xffffff, "TP parity error", -1, 1}, |
| {0x1000000, "TP out of Rx pages", -1, 1}, |
| {0x2000000, "TP out of Tx pages", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, |
| tp_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * CIM interrupt handler. |
| */ |
| static void cim_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cim_intr_info[] = { |
| {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, |
| {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, |
| {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, |
| {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, |
| {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, |
| {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, |
| {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, |
| {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, |
| {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, |
| {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, |
| {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, |
| {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, |
| cim_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP RX interrupt handler. |
| */ |
| static void ulprx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulprx_intr_info[] = { |
| {F_PARERR, "ULP RX parity error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, |
| ulprx_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP TX interrupt handler. |
| */ |
| static void ulptx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulptx_intr_info[] = { |
| {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", |
| STAT_ULP_CH0_PBL_OOB, 0}, |
| {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", |
| STAT_ULP_CH1_PBL_OOB, 0}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, |
| ulptx_intr_info, adapter->irq_stats)) |
| t3_fatal_err(adapter); |
| } |
| |
| #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ |
| F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ |
| F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ |
| F_ICSPI1_TX_FRAMING_ERROR) |
| #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ |
| F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ |
| F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ |
| F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) |
| |
| /* |
| * PM TX interrupt handler. |
| */ |
| static void pmtx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmtx_intr_info[] = { |
| {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, |
| {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, |
| {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, |
| {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), |
| "PMTX ispi parity error", -1, 1}, |
| {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), |
| "PMTX ospi parity error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, |
| pmtx_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ |
| F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ |
| F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ |
| F_IESPI1_TX_FRAMING_ERROR) |
| #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ |
| F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ |
| F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ |
| F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) |
| |
| /* |
| * PM RX interrupt handler. |
| */ |
| static void pmrx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmrx_intr_info[] = { |
| {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, |
| {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, |
| {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, |
| {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), |
| "PMRX ispi parity error", -1, 1}, |
| {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), |
| "PMRX ospi parity error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, |
| pmrx_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * CPL switch interrupt handler. |
| */ |
| static void cplsw_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cplsw_intr_info[] = { |
| /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */ |
| {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, |
| {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, |
| {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, |
| {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, |
| cplsw_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| /* |
| * MPS interrupt handler. |
| */ |
| static void mps_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info mps_intr_info[] = { |
| {0x1ff, "MPS parity error", -1, 1}, |
| {0} |
| }; |
| |
| if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, |
| mps_intr_info, NULL)) |
| t3_fatal_err(adapter); |
| } |
| |
| #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) |
| |
| /* |
| * MC7 interrupt handler. |
| */ |
| static void mc7_intr_handler(struct mc7 *mc7) |
| { |
| struct adapter *adapter = mc7->adapter; |
| u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); |
| |
| if (cause & F_CE) { |
| mc7->stats.corr_err++; |
| CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " |
| "data 0x%x 0x%x 0x%x\n", mc7->name, |
| t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), |
| t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), |
| t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), |
| t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); |
| } |
| |
| if (cause & F_UE) { |
| mc7->stats.uncorr_err++; |
| CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " |
| "data 0x%x 0x%x 0x%x\n", mc7->name, |
| t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), |
| t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), |
| t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), |
| t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); |
| } |
| |
| if (G_PE(cause)) { |
| mc7->stats.parity_err++; |
| CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", |
| mc7->name, G_PE(cause)); |
| } |
| |
| if (cause & F_AE) { |
| u32 addr = 0; |
| |
| if (adapter->params.rev > 0) |
| addr = t3_read_reg(adapter, |
| mc7->offset + A_MC7_ERR_ADDR); |
| mc7->stats.addr_err++; |
| CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", |
| mc7->name, addr); |
| } |
| |
| if (cause & MC7_INTR_FATAL) |
| t3_fatal_err(adapter); |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); |
| } |
| |
| #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ |
| V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) |
| /* |
| * XGMAC interrupt handler. |
| */ |
| static int mac_intr_handler(struct adapter *adap, unsigned int idx) |
| { |
| struct cmac *mac = &adap2pinfo(adap, idx)->mac; |
| u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset); |
| |
| if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { |
| mac->stats.tx_fifo_parity_err++; |
| CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); |
| } |
| if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { |
| mac->stats.rx_fifo_parity_err++; |
| CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); |
| } |
| if (cause & F_TXFIFO_UNDERRUN) |
| mac->stats.tx_fifo_urun++; |
| if (cause & F_RXFIFO_OVERFLOW) |
| mac->stats.rx_fifo_ovfl++; |
| if (cause & V_SERDES_LOS(M_SERDES_LOS)) |
| mac->stats.serdes_signal_loss++; |
| if (cause & F_XAUIPCSCTCERR) |
| mac->stats.xaui_pcs_ctc_err++; |
| if (cause & F_XAUIPCSALIGNCHANGE) |
| mac->stats.xaui_pcs_align_change++; |
| |
| t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); |
| if (cause & XGM_INTR_FATAL) |
| t3_fatal_err(adap); |
| return cause != 0; |
| } |
| |
| /* |
| * Interrupt handler for PHY events. |
| */ |
| int t3_phy_intr_handler(struct adapter *adapter) |
| { |
| static const int intr_gpio_bits[] = { 8, 0x20 }; |
| |
| u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); |
| |
| for_each_port(adapter, i) { |
| if (cause & intr_gpio_bits[i]) { |
| struct cphy *phy = &adap2pinfo(adapter, i)->phy; |
| int phy_cause = phy->ops->intr_handler(phy); |
| |
| if (phy_cause & cphy_cause_link_change) |
| t3_link_changed(adapter, i); |
| if (phy_cause & cphy_cause_fifo_error) |
| phy->fifo_errors++; |
| } |
| } |
| |
| t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); |
| return 0; |
| } |
| |
| /* |
| * T3 slow path (non-data) interrupt handler. |
| */ |
| int t3_slow_intr_handler(struct adapter *adapter) |
| { |
| u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); |
| |
| cause &= adapter->slow_intr_mask; |
| if (!cause) |
| return 0; |
| if (cause & F_PCIM0) { |
| if (is_pcie(adapter)) |
| pcie_intr_handler(adapter); |
| else |
| pci_intr_handler(adapter); |
| } |
| if (cause & F_SGE3) |
| t3_sge_err_intr_handler(adapter); |
| if (cause & F_MC7_PMRX) |
| mc7_intr_handler(&adapter->pmrx); |
| if (cause & F_MC7_PMTX) |
| mc7_intr_handler(&adapter->pmtx); |
| if (cause & F_MC7_CM) |
| mc7_intr_handler(&adapter->cm); |
| if (cause & F_CIM) |
| cim_intr_handler(adapter); |
| if (cause & F_TP1) |
| tp_intr_handler(adapter); |
| if (cause & F_ULP2_RX) |
| ulprx_intr_handler(adapter); |
| if (cause & F_ULP2_TX) |
| ulptx_intr_handler(adapter); |
| if (cause & F_PM1_RX) |
| pmrx_intr_handler(adapter); |
| if (cause & F_PM1_TX) |
| pmtx_intr_handler(adapter); |
| if (cause & F_CPL_SWITCH) |
| cplsw_intr_handler(adapter); |
| if (cause & F_MPS0) |
| mps_intr_handler(adapter); |
| if (cause & F_MC5A) |
| t3_mc5_intr_handler(&adapter->mc5); |
| if (cause & F_XGMAC0_0) |
| mac_intr_handler(adapter, 0); |
| if (cause & F_XGMAC0_1) |
| mac_intr_handler(adapter, 1); |
| if (cause & F_T3DBG) |
| t3_os_ext_intr_handler(adapter); |
| |
| /* Clear the interrupts just processed. */ |
| t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); |
| t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ |
| return 1; |
| } |
| |
| /** |
| * t3_intr_enable - enable interrupts |
| * @adapter: the adapter whose interrupts should be enabled |
| * |
| * Enable interrupts by setting the interrupt enable registers of the |
| * various HW modules and then enabling the top-level interrupt |
| * concentrator. |
| */ |
| void t3_intr_enable(struct adapter *adapter) |
| { |
| static const struct addr_val_pair intr_en_avp[] = { |
| {A_SG_INT_ENABLE, SGE_INTR_MASK}, |
| {A_MC7_INT_ENABLE, MC7_INTR_MASK}, |
| {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, |
| MC7_INTR_MASK}, |
| {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, |
| MC7_INTR_MASK}, |
| {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, |
| {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, |
| {A_TP_INT_ENABLE, 0x3bfffff}, |
| {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, |
| {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, |
| {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, |
| {A_MPS_INT_ENABLE, MPS_INTR_MASK}, |
| }; |
| |
| adapter->slow_intr_mask = PL_INTR_MASK; |
| |
| t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); |
| |
| if (adapter->params.rev > 0) { |
| t3_write_reg(adapter, A_CPL_INTR_ENABLE, |
| CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); |
| t3_write_reg(adapter, A_ULPTX_INT_ENABLE, |
| ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | |
| F_PBL_BOUND_ERR_CH1); |
| } else { |
| t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); |
| t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); |
| } |
| |
| t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, |
| adapter_info(adapter)->gpio_intr); |
| t3_write_reg(adapter, A_T3DBG_INT_ENABLE, |
| adapter_info(adapter)->gpio_intr); |
| if (is_pcie(adapter)) |
| t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); |
| else |
| t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); |
| t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); |
| t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ |
| } |
| |
| /** |
| * t3_intr_disable - disable a card's interrupts |
| * @adapter: the adapter whose interrupts should be disabled |
| * |
| * Disable interrupts. We only disable the top-level interrupt |
| * concentrator and the SGE data interrupts. |
| */ |
| void t3_intr_disable(struct adapter *adapter) |
| { |
| t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); |
| t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ |
| adapter->slow_intr_mask = 0; |
| } |
| |
| /** |
| * t3_intr_clear - clear all interrupts |
| * @adapter: the adapter whose interrupts should be cleared |
| * |
| * Clears all interrupts. |
| */ |
| void t3_intr_clear(struct adapter *adapter) |
| { |
| static const unsigned int cause_reg_addr[] = { |
| A_SG_INT_CAUSE, |
| A_SG_RSPQ_FL_STATUS, |
| A_PCIX_INT_CAUSE, |
| A_MC7_INT_CAUSE, |
| A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, |
| A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, |
| A_CIM_HOST_INT_CAUSE, |
| A_TP_INT_CAUSE, |
| A_MC5_DB_INT_CAUSE, |
| A_ULPRX_INT_CAUSE, |
| A_ULPTX_INT_CAUSE, |
| A_CPL_INTR_CAUSE, |
| A_PM1_TX_INT_CAUSE, |
| A_PM1_RX_INT_CAUSE, |
| A_MPS_INT_CAUSE, |
| A_T3DBG_INT_CAUSE, |
| }; |
| unsigned int i; |
| |
| /* Clear PHY and MAC interrupts for each port. */ |
| for_each_port(adapter, i) |
| t3_port_intr_clear(adapter, i); |
| |
| for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) |
| t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); |
| |
| t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); |
| t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ |
| } |
| |
| /** |
| * t3_port_intr_enable - enable port-specific interrupts |
| * @adapter: associated adapter |
| * @idx: index of port whose interrupts should be enabled |
| * |
| * Enable port-specific (i.e., MAC and PHY) interrupts for the given |
| * adapter port. |
| */ |
| void t3_port_intr_enable(struct adapter *adapter, int idx) |
| { |
| struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| |
| t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); |
| t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ |
| phy->ops->intr_enable(phy); |
| } |
| |
| /** |
| * t3_port_intr_disable - disable port-specific interrupts |
| * @adapter: associated adapter |
| * @idx: index of port whose interrupts should be disabled |
| * |
| * Disable port-specific (i.e., MAC and PHY) interrupts for the given |
| * adapter port. |
| */ |
| void t3_port_intr_disable(struct adapter *adapter, int idx) |
| { |
| struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| |
| t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); |
| t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ |
| phy->ops->intr_disable(phy); |
| } |
| |
| /** |
| * t3_port_intr_clear - clear port-specific interrupts |
| * @adapter: associated adapter |
| * @idx: index of port whose interrupts to clear |
| * |
| * Clear port-specific (i.e., MAC and PHY) interrupts for the given |
| * adapter port. |
| */ |
| void t3_port_intr_clear(struct adapter *adapter, int idx) |
| { |
| struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| |
| t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); |
| t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ |
| phy->ops->intr_clear(phy); |
| } |
| |
| /** |
| * t3_sge_write_context - write an SGE context |
| * @adapter: the adapter |
| * @id: the context id |
| * @type: the context type |
| * |
| * Program an SGE context with the values already loaded in the |
| * CONTEXT_DATA? registers. |
| */ |
| static int t3_sge_write_context(struct adapter *adapter, unsigned int id, |
| unsigned int type) |
| { |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); |
| return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1); |
| } |
| |
| /** |
| * t3_sge_init_ecntxt - initialize an SGE egress context |
| * @adapter: the adapter to configure |
| * @id: the context id |
| * @gts_enable: whether to enable GTS for the context |
| * @type: the egress context type |
| * @respq: associated response queue |
| * @base_addr: base address of queue |
| * @size: number of queue entries |
| * @token: uP token |
| * @gen: initial generation value for the context |
| * @cidx: consumer pointer |
| * |
| * Initialize an SGE egress context and make it ready for use. If the |
| * platform allows concurrent context operations, the caller is |
| * responsible for appropriate locking. |
| */ |
| int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, |
| enum sge_context_type type, int respq, u64 base_addr, |
| unsigned int size, unsigned int token, int gen, |
| unsigned int cidx) |
| { |
| unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; |
| |
| if (base_addr & 0xfff) /* must be 4K aligned */ |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| base_addr >>= 12; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | |
| V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | |
| V_EC_BASE_LO(base_addr & 0xffff)); |
| base_addr >>= 16; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); |
| base_addr >>= 32; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA3, |
| V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | |
| V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | |
| F_EC_VALID); |
| return t3_sge_write_context(adapter, id, F_EGRESS); |
| } |
| |
| /** |
| * t3_sge_init_flcntxt - initialize an SGE free-buffer list context |
| * @adapter: the adapter to configure |
| * @id: the context id |
| * @gts_enable: whether to enable GTS for the context |
| * @base_addr: base address of queue |
| * @size: number of queue entries |
| * @bsize: size of each buffer for this queue |
| * @cong_thres: threshold to signal congestion to upstream producers |
| * @gen: initial generation value for the context |
| * @cidx: consumer pointer |
| * |
| * Initialize an SGE free list context and make it ready for use. The |
| * caller is responsible for ensuring only one context operation occurs |
| * at a time. |
| */ |
| int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, |
| int gts_enable, u64 base_addr, unsigned int size, |
| unsigned int bsize, unsigned int cong_thres, int gen, |
| unsigned int cidx) |
| { |
| if (base_addr & 0xfff) /* must be 4K aligned */ |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| base_addr >>= 12; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); |
| base_addr >>= 32; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA1, |
| V_FL_BASE_HI((u32) base_addr) | |
| V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | |
| V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | |
| V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA3, |
| V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | |
| V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); |
| return t3_sge_write_context(adapter, id, F_FREELIST); |
| } |
| |
| /** |
| * t3_sge_init_rspcntxt - initialize an SGE response queue context |
| * @adapter: the adapter to configure |
| * @id: the context id |
| * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ |
| * @base_addr: base address of queue |
| * @size: number of queue entries |
| * @fl_thres: threshold for selecting the normal or jumbo free list |
| * @gen: initial generation value for the context |
| * @cidx: consumer pointer |
| * |
| * Initialize an SGE response queue context and make it ready for use. |
| * The caller is responsible for ensuring only one context operation |
| * occurs at a time. |
| */ |
| int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, |
| int irq_vec_idx, u64 base_addr, unsigned int size, |
| unsigned int fl_thres, int gen, unsigned int cidx) |
| { |
| unsigned int intr = 0; |
| |
| if (base_addr & 0xfff) /* must be 4K aligned */ |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| base_addr >>= 12; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | |
| V_CQ_INDEX(cidx)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); |
| base_addr >>= 32; |
| if (irq_vec_idx >= 0) |
| intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA2, |
| V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); |
| return t3_sge_write_context(adapter, id, F_RESPONSEQ); |
| } |
| |
| /** |
| * t3_sge_init_cqcntxt - initialize an SGE completion queue context |
| * @adapter: the adapter to configure |
| * @id: the context id |
| * @base_addr: base address of queue |
| * @size: number of queue entries |
| * @rspq: response queue for async notifications |
| * @ovfl_mode: CQ overflow mode |
| * @credits: completion queue credits |
| * @credit_thres: the credit threshold |
| * |
| * Initialize an SGE completion queue context and make it ready for use. |
| * The caller is responsible for ensuring only one context operation |
| * occurs at a time. |
| */ |
| int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, |
| unsigned int size, int rspq, int ovfl_mode, |
| unsigned int credits, unsigned int credit_thres) |
| { |
| if (base_addr & 0xfff) /* must be 4K aligned */ |
| return -EINVAL; |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| base_addr >>= 12; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); |
| base_addr >>= 32; |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA2, |
| V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | |
| V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode)); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | |
| V_CQ_CREDIT_THRES(credit_thres)); |
| return t3_sge_write_context(adapter, id, F_CQ); |
| } |
| |
| /** |
| * t3_sge_enable_ecntxt - enable/disable an SGE egress context |
| * @adapter: the adapter |
| * @id: the egress context id |
| * @enable: enable (1) or disable (0) the context |
| * |
| * Enable or disable an SGE egress context. The caller is responsible for |
| * ensuring only one context operation occurs at a time. |
| */ |
| int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) |
| { |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); |
| return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1); |
| } |
| |
| /** |
| * t3_sge_disable_fl - disable an SGE free-buffer list |
| * @adapter: the adapter |
| * @id: the free list context id |
| * |
| * Disable an SGE free-buffer list. The caller is responsible for |
| * ensuring only one context operation occurs at a time. |
| */ |
| int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) |
| { |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); |
| return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1); |
| } |
| |
| /** |
| * t3_sge_disable_rspcntxt - disable an SGE response queue |
| * @adapter: the adapter |
| * @id: the response queue context id |
| * |
| * Disable an SGE response queue. The caller is responsible for |
| * ensuring only one context operation occurs at a time. |
| */ |
| int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) |
| { |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); |
| return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1); |
| } |
| |
| /** |
| * t3_sge_disable_cqcntxt - disable an SGE completion queue |
| * @adapter: the adapter |
| * @id: the completion queue context id |
| * |
| * Disable an SGE completion queue. The caller is responsible for |
| * ensuring only one context operation occurs at a time. |
| */ |
| int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) |
| { |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); |
| return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1); |
| } |
| |
| /** |
| * t3_sge_cqcntxt_op - perform an operation on a completion queue context |
| * @adapter: the adapter |
| * @id: the context id |
| * @op: the operation to perform |
| * |
| * Perform the selected operation on an SGE completion queue context. |
| * The caller is responsible for ensuring only one context operation |
| * occurs at a time. |
| */ |
| int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, |
| unsigned int credits) |
| { |
| u32 val; |
| |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | |
| V_CONTEXT(id) | F_CQ); |
| if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 0, 5, 1, &val)) |
| return -EIO; |
| |
| if (op >= 2 && op < 7) { |
| if (adapter->params.rev > 0) |
| return G_CQ_INDEX(val); |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); |
| if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, |
| F_CONTEXT_CMD_BUSY, 0, 5, 1)) |
| return -EIO; |
| return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); |
| } |
| return 0; |
| } |
| |
| /** |
| * t3_sge_read_context - read an SGE context |
| * @type: the context type |
| * @adapter: the adapter |
| * @id: the context id |
| * @data: holds the retrieved context |
| * |
| * Read an SGE egress context. The caller is responsible for ensuring |
| * only one context operation occurs at a time. |
| */ |
| static int t3_sge_read_context(unsigned int type, struct adapter *adapter, |
| unsigned int id, u32 data[4]) |
| { |
| if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| return -EBUSY; |
| |
| t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); |
| if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, |
| 5, 1)) |
| return -EIO; |
| data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); |
| data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); |
| data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); |
| data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); |
| return 0; |
| } |
| |
| /** |
| * t3_sge_read_ecntxt - read an SGE egress context |
| * @adapter: the adapter |
| * @id: the context id |
| * @data: holds the retrieved context |
| * |
| * Read an SGE egress context. The caller is responsible for ensuring |
| * only one context operation occurs at a time. |
| */ |
| int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]) |
| { |
| if (id >= 65536) |
| return -EINVAL; |
| return t3_sge_read_context(F_EGRESS, adapter, id, data); |
| } |
| |
| /** |
| * t3_sge_read_cq - read an SGE CQ context |
| * @adapter: the adapter |
| * @id: the context id |
| * @data: holds the retrieved context |
| * |
| * Read an SGE CQ context. The caller is responsible for ensuring |
| * only one context operation occurs at a time. |
| */ |
| int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]) |
| { |
| if (id >= 65536) |
| return -EINVAL; |
| return t3_sge_read_context(F_CQ, adapter, id, data); |
| } |
| |
| /** |
| * t3_sge_read_fl - read an SGE free-list context |
| * @adapter: the adapter |
| * @id: the context id |
| * @data: holds the retrieved context |
| * |
| * Read an SGE free-list context. The caller is responsible for ensuring |
| * only one context operation occurs at a time. |
| */ |
| int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]) |
| { |
| if (id >= SGE_QSETS * 2) |
| return -EINVAL; |
| return t3_sge_read_context(F_FREELIST, adapter, id, data); |
| } |
| |
| /** |
| * t3_sge_read_rspq - read an SGE response queue context |
| * @adapter: the adapter |
| * @id: the context id |
| * @data: holds the retrieved context |
| * |
| * Read an SGE response queue context. The caller is responsible for |
| * ensuring only one context operation occurs at a time. |
| */ |
| int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]) |
| { |
| if (id >= SGE_QSETS) |
| return -EINVAL; |
| return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); |
| } |
| |
| /** |
| * t3_config_rss - configure Rx packet steering |
| * @adapter: the adapter |
| * @rss_config: RSS settings (written to TP_RSS_CONFIG) |
| * @cpus: values for the CPU lookup table (0xff terminated) |
| * @rspq: values for the response queue lookup table (0xffff terminated) |
| * |
| * Programs the receive packet steering logic. @cpus and @rspq provide |
| * the values for the CPU and response queue lookup tables. If they |
| * provide fewer values than the size of the tables the supplied values |
| * are used repeatedly until the tables are fully populated. |
| */ |
| void t3_config_rss(struct adapter *adapter, unsigned int rss_config, |
| const u8 * cpus, const u16 *rspq) |
| { |
| int i, j, cpu_idx = 0, q_idx = 0; |
| |
| if (cpus) |
| for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| u32 val = i << 16; |
| |
| for (j = 0; j < 2; ++j) { |
| val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); |
| if (cpus[cpu_idx] == 0xff) |
| cpu_idx = 0; |
| } |
| t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); |
| } |
| |
| if (rspq) |
| for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, |
| (i << 16) | rspq[q_idx++]); |
| if (rspq[q_idx] == 0xffff) |
| q_idx = 0; |
| } |
| |
| t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); |
| } |
| |
| /** |
| * t3_read_rss - read the contents of the RSS tables |
| * @adapter: the adapter |
| * @lkup: holds the contents of the RSS lookup table |
| * @map: holds the contents of the RSS map table |
| * |
| * Reads the contents of the receive packet steering tables. |
| */ |
| int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map) |
| { |
| int i; |
| u32 val; |
| |
| if (lkup) |
| for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, |
| 0xffff0000 | i); |
| val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); |
| if (!(val & 0x80000000)) |
| return -EAGAIN; |
| *lkup++ = val; |
| *lkup++ = (val >> 8); |
| } |
| |
| if (map) |
| for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, |
| 0xffff0000 | i); |
| val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); |
| if (!(val & 0x80000000)) |
| return -EAGAIN; |
| *map++ = val; |
| } |
| return 0; |
| } |
| |
| /** |
| * t3_tp_set_offload_mode - put TP in NIC/offload mode |
| * @adap: the adapter |
| * @enable: 1 to select offload mode, 0 for regular NIC |
| * |
| * Switches TP to NIC/offload mode. |
| */ |
| void t3_tp_set_offload_mode(struct adapter *adap, int enable) |
| { |
| if (is_offload(adap) || !enable) |
| t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, |
| V_NICMODE(!enable)); |
| } |
| |
| /** |
| * pm_num_pages - calculate the number of pages of the payload memory |
| * @mem_size: the size of the payload memory |
| * @pg_size: the size of each payload memory page |
| * |
| * Calculate the number of pages, each of the given size, that fit in a |
| * memory of the specified size, respecting the HW requirement that the |
| * number of pages must be a multiple of 24. |
| */ |
| static inline unsigned int pm_num_pages(unsigned int mem_size, |
| unsigned int pg_size) |
| { |
| unsigned int n = mem_size / pg_size; |
| |
| return n - n % 24; |
| } |
| |
| #define mem_region(adap, start, size, reg) \ |
| t3_write_reg((adap), A_ ## reg, (start)); \ |
| start += size |
| |
| /* |
| * partition_mem - partition memory and configure TP memory settings |
| * @adap: the adapter |
| * @p: the TP parameters |
| * |
| * Partitions context and payload memory and configures TP's memory |
| * registers. |
| */ |
| static void partition_mem(struct adapter *adap, const struct tp_params *p) |
| { |
| unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); |
| unsigned int timers = 0, timers_shift = 22; |
| |
| if (adap->params.rev > 0) { |
| if (tids <= 16 * 1024) { |
| timers = 1; |
| timers_shift = 16; |
| } else if (tids <= 64 * 1024) { |
| timers = 2; |
| timers_shift = 18; |
| } else if (tids <= 256 * 1024) { |
| timers = 3; |
| timers_shift = 20; |
| } |
| } |
| |
| t3_write_reg(adap, A_TP_PMM_SIZE, |
| p->chan_rx_size | (p->chan_tx_size >> 16)); |
| |
| t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); |
| t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); |
| t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); |
| t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), |
| V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); |
| |
| t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); |
| t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); |
| t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); |
| |
| pstructs = p->rx_num_pgs + p->tx_num_pgs; |
| /* Add a bit of headroom and make multiple of 24 */ |
| pstructs += 48; |
| pstructs -= pstructs % 24; |
| t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); |
| |
| m = tids * TCB_SIZE; |
| mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); |
| mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); |
| t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); |
| m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); |
| mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); |
| mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); |
| mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); |
| mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); |
| |
| m = (m + 4095) & ~0xfff; |
| t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); |
| t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); |
| |
| tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; |
| m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - |
| adap->params.mc5.nfilters - adap->params.mc5.nroutes; |
| if (tids < m) |
| adap->params.mc5.nservers += m - tids; |
| } |
| |
| static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, |
| u32 val) |
| { |
| t3_write_reg(adap, A_TP_PIO_ADDR, addr); |
| t3_write_reg(adap, A_TP_PIO_DATA, val); |
| } |
| |
| static void tp_config(struct adapter *adap, const struct tp_params *p) |
| { |
| t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | |
| F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | |
| F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); |
| t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | |
| F_MTUENABLE | V_WINDOWSCALEMODE(1) | |
| V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); |
| t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | |
| V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | |
| V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) | |
| F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); |
| t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE, |
| F_IPV6ENABLE | F_NICMODE); |
| t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); |
| t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); |
| t3_set_reg_field(adap, A_TP_PARA_REG6, |
| adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND, |
| 0); |
| |
| t3_set_reg_field(adap, A_TP_PC_CONFIG, |
| F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL, |
| F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE | |
| F_RXCONGESTIONMODE); |
| t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0); |
| |
| if (adap->params.rev > 0) { |
| tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); |
| t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, |
| F_TXPACEAUTO); |
| t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); |
| t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); |
| } else |
| t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); |
| |
| t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212); |
| t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212); |
| t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212); |
| } |
| |
| /* Desired TP timer resolution in usec */ |
| #define TP_TMR_RES 50 |
| |
| /* TCP timer values in ms */ |
| #define TP_DACK_TIMER 50 |
| #define TP_RTO_MIN 250 |
| |
| /** |
| * tp_set_timers - set TP timing parameters |
| * @adap: the adapter to set |
| * @core_clk: the core clock frequency in Hz |
| * |
| * Set TP's timing parameters, such as the various timer resolutions and |
| * the TCP timer values. |
| */ |
| static void tp_set_timers(struct adapter *adap, unsigned int core_clk) |
| { |
| unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; |
| unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ |
| unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ |
| unsigned int tps = core_clk >> tre; |
| |
| t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | |
| V_DELAYEDACKRESOLUTION(dack_re) | |
| V_TIMESTAMPRESOLUTION(tstamp_re)); |
| t3_write_reg(adap, A_TP_DACK_TIMER, |
| (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); |
| t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); |
| t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); |
| t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); |
| t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); |
| t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | |
| V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | |
| V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | |
| V_KEEPALIVEMAX(9)); |
| |
| #define SECONDS * tps |
| |
| t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); |
| t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); |
| t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); |
| t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); |
| t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); |
| t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); |
| t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); |
| t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); |
| t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); |
| |
| #undef SECONDS |
| } |
| |
| /** |
| * t3_tp_set_coalescing_size - set receive coalescing size |
| * @adap: the adapter |
| * @size: the receive coalescing size |
| * @psh: whether a set PSH bit should deliver coalesced data |
| * |
| * Set the receive coalescing size and PSH bit handling. |
| */ |
| int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh) |
| { |
| u32 val; |
| |
| if (size > MAX_RX_COALESCING_LEN) |
| return -EINVAL; |
| |
| val = t3_read_reg(adap, A_TP_PARA_REG3); |
| val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); |
| |
| if (size) { |
| val |= F_RXCOALESCEENABLE; |
| if (psh) |
| val |= F_RXCOALESCEPSHEN; |
| t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | |
| V_MAXRXDATA(MAX_RX_COALESCING_LEN)); |
| } |
| t3_write_reg(adap, A_TP_PARA_REG3, val); |
| return 0; |
| } |
| |
| /** |
| * t3_tp_set_max_rxsize - set the max receive size |
| * @adap: the adapter |
| * @size: the max receive size |
| * |
| * Set TP's max receive size. This is the limit that applies when |
| * receive coalescing is disabled. |
| */ |
| void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) |
| { |
| t3_write_reg(adap, A_TP_PARA_REG7, |
| V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); |
| } |
| |
| static void __devinit init_mtus(unsigned short mtus[]) |
| { |
| /* |
| * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so |
| * it can accomodate max size TCP/IP headers when SACK and timestamps |
| * are enabled and still have at least 8 bytes of payload. |
| */ |
| mtus[0] = 88; |
| mtus[1] = 256; |
| mtus[2] = 512; |
| mtus[3] = 576; |
| mtus[4] = 808; |
| mtus[5] = 1024; |
| mtus[6] = 1280; |
| mtus[7] = 1492; |
| mtus[8] = 1500; |
| mtus[9] = 2002; |
| mtus[10] = 2048; |
| mtus[11] = 4096; |
| mtus[12] = 4352; |
| mtus[13] = 8192; |
| mtus[14] = 9000; |
| mtus[15] = 9600; |
| } |
| |
| /* |
| * Initial congestion control parameters. |
| */ |
| static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) |
| { |
| a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; |
| a[9] = 2; |
| a[10] = 3; |
| a[11] = 4; |
| a[12] = 5; |
| a[13] = 6; |
| a[14] = 7; |
| a[15] = 8; |
| a[16] = 9; |
| a[17] = 10; |
| a[18] = 14; |
| a[19] = 17; |
| a[20] = 21; |
| a[21] = 25; |
| a[22] = 30; |
| a[23] = 35; |
| a[24] = 45; |
| a[25] = 60; |
| a[26] = 80; |
| a[27] = 100; |
| a[28] = 200; |
| a[29] = 300; |
| a[30] = 400; |
| a[31] = 500; |
| |
| b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; |
| b[9] = b[10] = 1; |
| b[11] = b[12] = 2; |
| b[13] = b[14] = b[15] = b[16] = 3; |
| b[17] = b[18] = b[19] = b[20] = b[21] = 4; |
| b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; |
| b[28] = b[29] = 6; |
| b[30] = b[31] = 7; |
| } |
| |
| /* The minimum additive increment value for the congestion control table */ |
| #define CC_MIN_INCR 2U |
| |
| /** |
| * t3_load_mtus - write the MTU and congestion control HW tables |
| * @adap: the adapter |
| * @mtus: the unrestricted values for the MTU table |
| * @alphs: the values for the congestion control alpha parameter |
| * @beta: the values for the congestion control beta parameter |
| * @mtu_cap: the maximum permitted effective MTU |
| * |
| * Write the MTU table with the supplied MTUs capping each at &mtu_cap. |
| * Update the high-speed congestion control table with the supplied alpha, |
| * beta, and MTUs. |
| */ |
| void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], |
| unsigned short alpha[NCCTRL_WIN], |
| unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) |
| { |
| static const unsigned int avg_pkts[NCCTRL_WIN] = { |
| 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, |
| 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, |
| 28672, 40960, 57344, 81920, 114688, 163840, 229376 |
| }; |
| |
| unsigned int i, w; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| unsigned int mtu = min(mtus[i], mtu_cap); |
| unsigned int log2 = fls(mtu); |
| |
| if (!(mtu & ((1 << log2) >> 2))) /* round */ |
| log2--; |
| t3_write_reg(adap, A_TP_MTU_TABLE, |
| (i << 24) | (log2 << 16) | mtu); |
| |
| for (w = 0; w < NCCTRL_WIN; ++w) { |
| unsigned int inc; |
| |
| inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], |
| CC_MIN_INCR); |
| |
| t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | |
| (w << 16) | (beta[w] << 13) | inc); |
| } |
| } |
| } |
| |
| /** |
| * t3_read_hw_mtus - returns the values in the HW MTU table |
| * @adap: the adapter |
| * @mtus: where to store the HW MTU values |
| * |
| * Reads the HW MTU table. |
| */ |
| void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]) |
| { |
| int i; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| unsigned int val; |
| |
| t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); |
| val = t3_read_reg(adap, A_TP_MTU_TABLE); |
| mtus[i] = val & 0x3fff; |
| } |
| } |
| |
| /** |
| * t3_get_cong_cntl_tab - reads the congestion control table |
| * @adap: the adapter |
| * @incr: where to store the alpha values |
| * |
| * Reads the additive increments programmed into the HW congestion |
| * control table. |
| */ |
| void t3_get_cong_cntl_tab(struct adapter *adap, |
| unsigned short incr[NMTUS][NCCTRL_WIN]) |
| { |
| unsigned int mtu, w; |
| |
| for (mtu = 0; mtu < NMTUS; ++mtu) |
| for (w = 0; w < NCCTRL_WIN; ++w) { |
| t3_write_reg(adap, A_TP_CCTRL_TABLE, |
| 0xffff0000 | (mtu << 5) | w); |
| incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) & |
| 0x1fff; |
| } |
| } |
| |
| /** |
| * t3_tp_get_mib_stats - read TP's MIB counters |
| * @adap: the adapter |
| * @tps: holds the returned counter values |
| * |
| * Returns the values of TP's MIB counters. |
| */ |
| void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) |
| { |
| t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, |
| sizeof(*tps) / sizeof(u32), 0); |
| } |
| |
| #define ulp_region(adap, name, start, len) \ |
| t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ |
| t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ |
| (start) + (len) - 1); \ |
| start += len |
| |
| #define ulptx_region(adap, name, start, len) \ |
| t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ |
| t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ |
| (start) + (len) - 1) |
| |
| static void ulp_config(struct adapter *adap, const struct tp_params *p) |
| { |
| unsigned int m = p->chan_rx_size; |
| |
| ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); |
| ulp_region(adap, TDDP, m, p->chan_rx_size / 8); |
| ulptx_region(adap, TPT, m, p->chan_rx_size / 4); |
| ulp_region(adap, STAG, m, p->chan_rx_size / 4); |
| ulp_region(adap, RQ, m, p->chan_rx_size / 4); |
| ulptx_region(adap, PBL, m, p->chan_rx_size / 4); |
| ulp_region(adap, PBL, m, p->chan_rx_size / 4); |
| t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); |
| } |
| |
| void t3_config_trace_filter(struct adapter *adapter, |
| const struct trace_params *tp, int filter_index, |
| int invert, int enable) |
| { |
| u32 addr, key[4], mask[4]; |
| |
| key[0] = tp->sport | (tp->sip << 16); |
| key[1] = (tp->sip >> 16) | (tp->dport << 16); |
| key[2] = tp->dip; |
| key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); |
| |
| mask[0] = tp->sport_mask | (tp->sip_mask << 16); |
| mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); |
| mask[2] = tp->dip_mask; |
| mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); |
| |
| if (invert) |
| key[3] |= (1 << 29); |
| if (enable) |
| key[3] |= (1 << 28); |
| |
| addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; |
| tp_wr_indirect(adapter, addr++, key[0]); |
| tp_wr_indirect(adapter, addr++, mask[0]); |
| tp_wr_indirect(adapter, addr++, key[1]); |
| tp_wr_indirect(adapter, addr++, mask[1]); |
| tp_wr_indirect(adapter, addr++, key[2]); |
| tp_wr_indirect(adapter, addr++, mask[2]); |
| tp_wr_indirect(adapter, addr++, key[3]); |
| tp_wr_indirect(adapter, addr, mask[3]); |
| t3_read_reg(adapter, A_TP_PIO_DATA); |
| } |
| |
| /** |
| * t3_config_sched - configure a HW traffic scheduler |
| * @adap: the adapter |
| * @kbps: target rate in Kbps |
| * @sched: the scheduler index |
| * |
| * Configure a HW scheduler for the target rate |
| */ |
| int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) |
| { |
| unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; |
| unsigned int clk = adap->params.vpd.cclk * 1000; |
| unsigned int selected_cpt = 0, selected_bpt = 0; |
| |
| if (kbps > 0) { |
| kbps *= 125; /* -> bytes */ |
| for (cpt = 1; cpt <= 255; cpt++) { |
| tps = clk / cpt; |
| bpt = (kbps + tps / 2) / tps; |
| if (bpt > 0 && bpt <= 255) { |
| v = bpt * tps; |
| delta = v >= kbps ? v - kbps : kbps - v; |
| if (delta <= mindelta) { |
| mindelta = delta; |
| selected_cpt = cpt; |
| selected_bpt = bpt; |
| } |
| } else if (selected_cpt) |
| break; |
| } |
| if (!selected_cpt) |
| return -EINVAL; |
| } |
| t3_write_reg(adap, A_TP_TM_PIO_ADDR, |
| A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); |
| v = t3_read_reg(adap, A_TP_TM_PIO_DATA); |
| if (sched & 1) |
| v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); |
| else |
| v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); |
| t3_write_reg(adap, A_TP_TM_PIO_DATA, v); |
| return 0; |
| } |
| |
| static int tp_init(struct adapter *adap, const struct tp_params *p) |
| { |
| int busy = 0; |
| |
| tp_config(adap, p); |
| t3_set_vlan_accel(adap, 3, 0); |
| |
| if (is_offload(adap)) { |
| tp_set_timers(adap, adap->params.vpd.cclk * 1000); |
| t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); |
| busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, |
| 0, 1000, 5); |
| if (busy) |
| CH_ERR(adap, "TP initialization timed out\n"); |
| } |
| |
| if (!busy) |
| t3_write_reg(adap, A_TP_RESET, F_TPRESET); |
| return busy; |
| } |
| |
| int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask) |
| { |
| if (port_mask & ~((1 << adap->params.nports) - 1)) |
| return -EINVAL; |
| t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, |
| port_mask << S_PORT0ACTIVE); |
| return 0; |
| } |
| |
| /* |
| * Perform the bits of HW initialization that are dependent on the number |
| * of available ports. |
| */ |
| static void init_hw_for_avail_ports(struct adapter *adap, int nports) |
| { |
| int i; |
| |
| if (nports == 1) { |
| t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); |
| t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); |
| t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN | |
| F_PORT0ACTIVE | F_ENFORCEPKT); |
| t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000); |
| } else { |
| t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); |
| t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); |
| t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, |
| V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); |
| t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | |
| F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | |
| F_ENFORCEPKT); |
| t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); |
| t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); |
| t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, |
| V_TX_MOD_QUEUE_REQ_MAP(0xaa)); |
| for (i = 0; i < 16; i++) |
| t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, |
| (i << 16) | 0x1010); |
| } |
| } |
| |
| static int calibrate_xgm(struct adapter *adapter) |
| { |
| if (uses_xaui(adapter)) { |
| unsigned int v, i; |
| |
| for (i = 0; i < 5; ++i) { |
| t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); |
| t3_read_reg(adapter, A_XGM_XAUI_IMP); |
| msleep(1); |
| v = t3_read_reg(adapter, A_XGM_XAUI_IMP); |
| if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { |
| t3_write_reg(adapter, A_XGM_XAUI_IMP, |
| V_XAUIIMP(G_CALIMP(v) >> 2)); |
| return 0; |
| } |
| } |
| CH_ERR(adapter, "MAC calibration failed\n"); |
| return -1; |
| } else { |
| t3_write_reg(adapter, A_XGM_RGMII_IMP, |
| V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, |
| F_XGM_IMPSETUPDATE); |
| } |
| return 0; |
| } |
| |
| static void calibrate_xgm_t3b(struct adapter *adapter) |
| { |
| if (!uses_xaui(adapter)) { |
| t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | |
| F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, |
| F_XGM_IMPSETUPDATE); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, |
| 0); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); |
| t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); |
| } |
| } |
| |
| struct mc7_timing_params { |
| unsigned char ActToPreDly; |
| unsigned char ActToRdWrDly; |
| unsigned char PreCyc; |
| unsigned char RefCyc[5]; |
| unsigned char BkCyc; |
| unsigned char WrToRdDly; |
| unsigned char RdToWrDly; |
| }; |
| |
| /* |
| * Write a value to a register and check that the write completed. These |
| * writes normally complete in a cycle or two, so one read should suffice. |
| * The very first read exists to flush the posted write to the device. |
| */ |
| static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) |
| { |
| t3_write_reg(adapter, addr, val); |
| t3_read_reg(adapter, addr); /* flush */ |
| if (!(t3_read_reg(adapter, addr) & F_BUSY)) |
| return 0; |
| CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); |
| return -EIO; |
| } |
| |
| static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) |
| { |
| static const unsigned int mc7_mode[] = { |
| 0x632, 0x642, 0x652, 0x432, 0x442 |
| }; |
| static const struct mc7_timing_params mc7_timings[] = { |
| {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, |
| {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, |
| {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, |
| {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, |
| {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} |
| }; |
| |
| u32 val; |
| unsigned int width, density, slow, attempts; |
| struct adapter *adapter = mc7->adapter; |
| const struct mc7_timing_params *p = &mc7_timings[mem_type]; |
| |
| if (!mc7->size) |
| return 0; |
| |
| val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); |
| slow = val & F_SLOW; |
| width = G_WIDTH(val); |
| density = G_DEN(val); |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); |
| val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ |
| msleep(1); |
| |
| if (!slow) { |
| t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); |
| t3_read_reg(adapter, mc7->offset + A_MC7_CAL); |
| msleep(1); |
| if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & |
| (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { |
| CH_ERR(adapter, "%s MC7 calibration timed out\n", |
| mc7->name); |
| goto out_fail; |
| } |
| } |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_PARM, |
| V_ACTTOPREDLY(p->ActToPreDly) | |
| V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | |
| V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | |
| V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_CFG, |
| val | F_CLKEN | F_TERM150); |
| t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ |
| |
| if (!slow) |
| t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, |
| F_DLLENB); |
| udelay(1); |
| |
| val = slow ? 3 : 6; |
| if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) |
| goto out_fail; |
| |
| if (!slow) { |
| t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); |
| t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); |
| udelay(5); |
| } |
| |
| if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_MODE, |
| mc7_mode[mem_type]) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || |
| wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) |
| goto out_fail; |
| |
| /* clock value is in KHz */ |
| mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ |
| mc7_clock /= 1000000; /* KHz->MHz, ns->us */ |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_REF, |
| F_PERREFEN | V_PREREFDIV(mc7_clock)); |
| t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ |
| |
| t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); |
| t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); |
| t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); |
| t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, |
| (mc7->size << width) - 1); |
| t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); |
| t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ |
| |
| attempts = 50; |
| do { |
| msleep(250); |
| val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); |
| } while ((val & F_BUSY) && --attempts); |
| if (val & F_BUSY) { |
| CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); |
| goto out_fail; |
| } |
| |
| /* Enable normal memory accesses. */ |
| t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); |
| return 0; |
| |
| out_fail: |
| return -1; |
| } |
| |
| static void config_pcie(struct adapter *adap) |
| { |
| static const u16 ack_lat[4][6] = { |
| {237, 416, 559, 1071, 2095, 4143}, |
| {128, 217, 289, 545, 1057, 2081}, |
| {73, 118, 154, 282, 538, 1050}, |
| {67, 107, 86, 150, 278, 534} |
| }; |
| static const u16 rpl_tmr[4][6] = { |
| {711, 1248, 1677, 3213, 6285, 12429}, |
| {384, 651, 867, 1635, 3171, 6243}, |
| {219, 354, 462, 846, 1614, 3150}, |
| {201, 321, 258, 450, 834, 1602} |
| }; |
| |
| u16 val; |
| unsigned int log2_width, pldsize; |
| unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; |
| |
| pci_read_config_word(adap->pdev, |
| adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, |
| &val); |
| pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; |
| pci_read_config_word(adap->pdev, |
| adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, |
| &val); |
| |
| fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); |
| fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : |
| G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); |
| log2_width = fls(adap->params.pci.width) - 1; |
| acklat = ack_lat[log2_width][pldsize]; |
| if (val & 1) /* check LOsEnable */ |
| acklat += fst_trn_tx * 4; |
| rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; |
| |
| if (adap->params.rev == 0) |
| t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, |
| V_T3A_ACKLAT(M_T3A_ACKLAT), |
| V_T3A_ACKLAT(acklat)); |
| else |
| t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), |
| V_ACKLAT(acklat)); |
| |
| t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), |
| V_REPLAYLMT(rpllmt)); |
| |
| t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); |
| t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN); |
| } |
| |
| /* |
| * Initialize and configure T3 HW modules. This performs the |
| * initialization steps that need to be done once after a card is reset. |
| * MAC and PHY initialization is handled separarely whenever a port is enabled. |
| * |
| * fw_params are passed to FW and their value is platform dependent. Only the |
| * top 8 bits are available for use, the rest must be 0. |
| */ |
| int t3_init_hw(struct adapter *adapter, u32 fw_params) |
| { |
| int err = -EIO, attempts = 100; |
| const struct vpd_params *vpd = &adapter->params.vpd; |
| |
| if (adapter->params.rev > 0) |
| calibrate_xgm_t3b(adapter); |
| else if (calibrate_xgm(adapter)) |
| goto out_err; |
| |
| if (vpd->mclk) { |
| partition_mem(adapter, &adapter->params.tp); |
| |
| if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || |
| mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || |
| mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || |
| t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, |
| adapter->params.mc5.nfilters, |
| adapter->params.mc5.nroutes)) |
| goto out_err; |
| } |
| |
| if (tp_init(adapter, &adapter->params.tp)) |
| goto out_err; |
| |
| t3_tp_set_coalescing_size(adapter, |
| min(adapter->params.sge.max_pkt_size, |
| MAX_RX_COALESCING_LEN), 1); |
| t3_tp_set_max_rxsize(adapter, |
| min(adapter->params.sge.max_pkt_size, 16384U)); |
| ulp_config(adapter, &adapter->params.tp); |
| |
| if (is_pcie(adapter)) |
| config_pcie(adapter); |
| else |
| t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN); |
| |
| t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000); |
| init_hw_for_avail_ports(adapter, adapter->params.nports); |
| t3_sge_init(adapter, &adapter->params.sge); |
| |
| t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); |
| t3_write_reg(adapter, A_CIM_BOOT_CFG, |
| V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); |
| t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ |
| |
| do { /* wait for uP to initialize */ |
| msleep(20); |
| } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); |
| if (!attempts) { |
| CH_ERR(adapter, "uP initialization timed out\n"); |
| goto out_err; |
| } |
| |
| err = 0; |
| out_err: |
| return err; |
| } |
| |
| /** |
| * get_pci_mode - determine a card's PCI mode |
| * @adapter: the adapter |
| * @p: where to store the PCI settings |
| * |
| * Determines a card's PCI mode and associated parameters, such as speed |
| * and width. |
| */ |
| static void __devinit get_pci_mode(struct adapter *adapter, |
| struct pci_params *p) |
| { |
| static unsigned short speed_map[] = { 33, 66, 100, 133 }; |
| u32 pci_mode, pcie_cap; |
| |
| pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| if (pcie_cap) { |
| u16 val; |
| |
| p->variant = PCI_VARIANT_PCIE; |
| p->pcie_cap_addr = pcie_cap; |
| pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA, |
| &val); |
| p->width = (val >> 4) & 0x3f; |
| return; |
| } |
| |
| pci_mode = t3_read_reg(adapter, A_PCIX_MODE); |
| p->speed = speed_map[G_PCLKRANGE(pci_mode)]; |
| p->width = (pci_mode & F_64BIT) ? 64 : 32; |
| pci_mode = G_PCIXINITPAT(pci_mode); |
| if (pci_mode == 0) |
| p->variant = PCI_VARIANT_PCI; |
| else if (pci_mode < 4) |
| p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; |
| else if (pci_mode < 8) |
| p->variant = PCI_VARIANT_PCIX_MODE1_ECC; |
| else |
| p->variant = PCI_VARIANT_PCIX_266_MODE2; |
| } |
| |
| /** |
| * init_link_config - initialize a link's SW state |
| * @lc: structure holding the link state |
| * @ai: information about the current card |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/duplex/flow-control/autonegotiation |
| * settings. |
| */ |
| static void __devinit init_link_config(struct link_config *lc, |
| unsigned int caps) |
| { |
| lc->supported = caps; |
| lc->requested_speed = lc->speed = SPEED_INVALID; |
| lc->requested_duplex = lc->duplex = DUPLEX_INVALID; |
| lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| if (lc->supported & SUPPORTED_Autoneg) { |
| lc->advertising = lc->supported; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->advertising = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| } |
| |
| /** |
| * mc7_calc_size - calculate MC7 memory size |
| * @cfg: the MC7 configuration |
| * |
| * Calculates the size of an MC7 memory in bytes from the value of its |
| * configuration register. |
| */ |
| static unsigned int __devinit mc7_calc_size(u32 cfg) |
| { |
| unsigned int width = G_WIDTH(cfg); |
| unsigned int banks = !!(cfg & F_BKS) + 1; |
| unsigned int org = !!(cfg & F_ORG) + 1; |
| unsigned int density = G_DEN(cfg); |
| unsigned int MBs = ((256 << density) * banks) / (org << width); |
| |
| return MBs << 20; |
| } |
| |
| static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7, |
| unsigned int base_addr, const char *name) |
| { |
| u32 cfg; |
| |
| mc7->adapter = adapter; |
| mc7->name = name; |
| mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; |
| cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); |
| mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg); |
| mc7->width = G_WIDTH(cfg); |
| } |
| |
| void mac_prep(struct cmac *mac, struct adapter *adapter, int index) |
| { |
| mac->adapter = adapter; |
| mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; |
| mac->nucast = 1; |
| |
| if (adapter->params.rev == 0 && uses_xaui(adapter)) { |
| t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, |
| is_10G(adapter) ? 0x2901c04 : 0x2301c04); |
| t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, |
| F_ENRGMII, 0); |
| } |
| } |
| |
| void early_hw_init(struct adapter *adapter, const struct adapter_info *ai) |
| { |
| u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); |
| |
| mi1_init(adapter, ai); |
| t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ |
| V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); |
| t3_write_reg(adapter, A_T3DBG_GPIO_EN, |
| ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); |
| t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0); |
| |
| if (adapter->params.rev == 0 || !uses_xaui(adapter)) |
| val |= F_ENRGMII; |
| |
| /* Enable MAC clocks so we can access the registers */ |
| t3_write_reg(adapter, A_XGM_PORT_CFG, val); |
| t3_read_reg(adapter, A_XGM_PORT_CFG); |
| |
| val |= F_CLKDIVRESET_; |
| t3_write_reg(adapter, A_XGM_PORT_CFG, val); |
| t3_read_reg(adapter, A_XGM_PORT_CFG); |
| t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); |
| t3_read_reg(adapter, A_XGM_PORT_CFG); |
| } |
| |
| /* |
| * Reset the adapter. |
| * Older PCIe cards lose their config space during reset, PCI-X |
| * ones don't. |
| */ |
| int t3_reset_adapter(struct adapter *adapter) |
| { |
| int i, save_and_restore_pcie = |
| adapter->params.rev < T3_REV_B2 && is_pcie(adapter); |
| uint16_t devid = 0; |
| |
| if (save_and_restore_pcie) |
| pci_save_state(adapter->pdev); |
| t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); |
| |
| /* |
| * Delay. Give Some time to device to reset fully. |
| * XXX The delay time should be modified. |
| */ |
| for (i = 0; i < 10; i++) { |
| msleep(50); |
| pci_read_config_word(adapter->pdev, 0x00, &devid); |
| if (devid == 0x1425) |
| break; |
| } |
| |
| if (devid != 0x1425) |
| return -1; |
| |
| if (save_and_restore_pcie) |
| pci_restore_state(adapter->pdev); |
| return 0; |
| } |
| |
| /* |
| * Initialize adapter SW state for the various HW modules, set initial values |
| * for some adapter tunables, take PHYs out of reset, and initialize the MDIO |
| * interface. |
| */ |
| int __devinit t3_prep_adapter(struct adapter *adapter, |
| const struct adapter_info *ai, int reset) |
| { |
| int ret; |
| unsigned int i, j = 0; |
| |
| get_pci_mode(adapter, &adapter->params.pci); |
| |
| adapter->params.info = ai; |
| adapter->params.nports = ai->nports; |
| adapter->params.rev = t3_read_reg(adapter, A_PL_REV); |
| adapter->params.linkpoll_period = 0; |
| adapter->params.stats_update_period = is_10G(adapter) ? |
| MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); |
| adapter->params.pci.vpd_cap_addr = |
| pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); |
| ret = get_vpd_params(adapter, &adapter->params.vpd); |
| if (ret < 0) |
| return ret; |
| |
| if (reset && t3_reset_adapter(adapter)) |
| return -1; |
| |
| t3_sge_prep(adapter, &adapter->params.sge); |
| |
| if (adapter->params.vpd.mclk) { |
| struct tp_params *p = &adapter->params.tp; |
| |
| mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); |
| mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); |
| mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); |
| |
| p->nchan = ai->nports; |
| p->pmrx_size = t3_mc7_size(&adapter->pmrx); |
| p->pmtx_size = t3_mc7_size(&adapter->pmtx); |
| p->cm_size = t3_mc7_size(&adapter->cm); |
| p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ |
| p->chan_tx_size = p->pmtx_size / p->nchan; |
| p->rx_pg_size = 64 * 1024; |
| p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; |
| p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); |
| p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); |
| p->ntimer_qs = p->cm_size >= (128 << 20) || |
| adapter->params.rev > 0 ? 12 : 6; |
| } |
| |
| adapter->params.offload = t3_mc7_size(&adapter->pmrx) && |
| t3_mc7_size(&adapter->pmtx) && |
| t3_mc7_size(&adapter->cm); |
| |
| if (is_offload(adapter)) { |
| adapter->params.mc5.nservers = DEFAULT_NSERVERS; |
| adapter->params.mc5.nfilters = adapter->params.rev > 0 ? |
| DEFAULT_NFILTERS : 0; |
| adapter->params.mc5.nroutes = 0; |
| t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); |
| |
| init_mtus(adapter->params.mtus); |
| init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); |
| } |
| |
| early_hw_init(adapter, ai); |
| |
| for_each_port(adapter, i) { |
| u8 hw_addr[6]; |
| struct port_info *p = adap2pinfo(adapter, i); |
| |
| while (!adapter->params.vpd.port_type[j]) |
| ++j; |
| |
| p->port_type = &port_types[adapter->params.vpd.port_type[j]]; |
| p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, |
| ai->mdio_ops); |
| mac_prep(&p->mac, adapter, j); |
| ++j; |
| |
| /* |
| * The VPD EEPROM stores the base Ethernet address for the |
| * card. A port's address is derived from the base by adding |
| * the port's index to the base's low octet. |
| */ |
| memcpy(hw_addr, adapter->params.vpd.eth_base, 5); |
| hw_addr[5] = adapter->params.vpd.eth_base[5] + i; |
| |
| memcpy(adapter->port[i]->dev_addr, hw_addr, |
| ETH_ALEN); |
| memcpy(adapter->port[i]->perm_addr, hw_addr, |
| ETH_ALEN); |
| init_link_config(&p->link_config, p->port_type->caps); |
| p->phy.ops->power_down(&p->phy, 1); |
| if (!(p->port_type->caps & SUPPORTED_IRQ)) |
| adapter->params.linkpoll_period = 10; |
| } |
| |
| return 0; |
| } |
| |
| void t3_led_ready(struct adapter *adapter) |
| { |
| t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, |
| F_GPIO0_OUT_VAL); |
| } |