blob: ebcec7362f95c75552d77203069843f8efe6dd2d [file] [log] [blame]
/*
* FSL SoC setup code
*
* Maintained by Kumar Gala (see MAINTAINERS for contact information)
*
* 2006 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/spi/spi.h>
#include <linux/fsl_devices.h>
#include <linux/fs_enet_pd.h>
#include <linux/fs_uart_pd.h>
#include <asm/system.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <sysdev/fsl_soc.h>
#include <mm/mmu_decl.h>
#include <asm/cpm2.h>
extern void init_fcc_ioports(struct fs_platform_info*);
extern void init_fec_ioports(struct fs_platform_info*);
extern void init_smc_ioports(struct fs_uart_platform_info*);
static phys_addr_t immrbase = -1;
phys_addr_t get_immrbase(void)
{
struct device_node *soc;
if (immrbase != -1)
return immrbase;
soc = of_find_node_by_type(NULL, "soc");
if (soc) {
int size;
u32 naddr;
const u32 *prop = of_get_property(soc, "#address-cells", &size);
if (prop && size == 4)
naddr = *prop;
else
naddr = 2;
prop = of_get_property(soc, "ranges", &size);
if (prop)
immrbase = of_translate_address(soc, prop + naddr);
of_node_put(soc);
}
return immrbase;
}
EXPORT_SYMBOL(get_immrbase);
static u32 sysfreq = -1;
u32 fsl_get_sys_freq(void)
{
struct device_node *soc;
const u32 *prop;
int size;
if (sysfreq != -1)
return sysfreq;
soc = of_find_node_by_type(NULL, "soc");
if (!soc)
return -1;
prop = of_get_property(soc, "clock-frequency", &size);
if (!prop || size != sizeof(*prop) || *prop == 0)
prop = of_get_property(soc, "bus-frequency", &size);
if (prop && size == sizeof(*prop))
sysfreq = *prop;
of_node_put(soc);
return sysfreq;
}
EXPORT_SYMBOL(fsl_get_sys_freq);
#if defined(CONFIG_CPM2) || defined(CONFIG_QUICC_ENGINE) || defined(CONFIG_8xx)
static u32 brgfreq = -1;
u32 get_brgfreq(void)
{
struct device_node *node;
const unsigned int *prop;
int size;
if (brgfreq != -1)
return brgfreq;
node = of_find_compatible_node(NULL, NULL, "fsl,cpm-brg");
if (node) {
prop = of_get_property(node, "clock-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
of_node_put(node);
return brgfreq;
}
/* Legacy device binding -- will go away when no users are left. */
node = of_find_node_by_type(NULL, "cpm");
if (!node)
node = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!node)
node = of_find_node_by_type(NULL, "qe");
if (node) {
prop = of_get_property(node, "brg-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
if (brgfreq == -1 || brgfreq == 0) {
prop = of_get_property(node, "bus-frequency", &size);
if (prop && size == 4)
brgfreq = *prop / 2;
}
of_node_put(node);
}
return brgfreq;
}
EXPORT_SYMBOL(get_brgfreq);
static u32 fs_baudrate = -1;
u32 get_baudrate(void)
{
struct device_node *node;
if (fs_baudrate != -1)
return fs_baudrate;
node = of_find_node_by_type(NULL, "serial");
if (node) {
int size;
const unsigned int *prop = of_get_property(node,
"current-speed", &size);
if (prop)
fs_baudrate = *prop;
of_node_put(node);
}
return fs_baudrate;
}
EXPORT_SYMBOL(get_baudrate);
#endif /* CONFIG_CPM2 */
#ifdef CONFIG_FIXED_PHY
static int __init of_add_fixed_phys(void)
{
int ret;
struct device_node *np;
u32 *fixed_link;
struct fixed_phy_status status = {};
for_each_node_by_name(np, "ethernet") {
fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
if (!fixed_link)
continue;
status.link = 1;
status.duplex = fixed_link[1];
status.speed = fixed_link[2];
status.pause = fixed_link[3];
status.asym_pause = fixed_link[4];
ret = fixed_phy_add(PHY_POLL, fixed_link[0], &status);
if (ret) {
of_node_put(np);
return ret;
}
}
return 0;
}
arch_initcall(of_add_fixed_phys);
#endif /* CONFIG_FIXED_PHY */
static int __init gfar_mdio_of_init(void)
{
struct device_node *np = NULL;
struct platform_device *mdio_dev;
struct resource res;
int ret;
np = of_find_compatible_node(np, NULL, "fsl,gianfar-mdio");
/* try the deprecated version */
if (!np)
np = of_find_compatible_node(np, "mdio", "gianfar");
if (np) {
int k;
struct device_node *child = NULL;
struct gianfar_mdio_data mdio_data;
memset(&res, 0, sizeof(res));
memset(&mdio_data, 0, sizeof(mdio_data));
ret = of_address_to_resource(np, 0, &res);
if (ret)
goto err;
mdio_dev =
platform_device_register_simple("fsl-gianfar_mdio",
res.start, &res, 1);
if (IS_ERR(mdio_dev)) {
ret = PTR_ERR(mdio_dev);
goto err;
}
for (k = 0; k < 32; k++)
mdio_data.irq[k] = PHY_POLL;
while ((child = of_get_next_child(np, child)) != NULL) {
int irq = irq_of_parse_and_map(child, 0);
if (irq != NO_IRQ) {
const u32 *id = of_get_property(child,
"reg", NULL);
mdio_data.irq[*id] = irq;
}
}
ret =
platform_device_add_data(mdio_dev, &mdio_data,
sizeof(struct gianfar_mdio_data));
if (ret)
goto unreg;
}
of_node_put(np);
return 0;
unreg:
platform_device_unregister(mdio_dev);
err:
of_node_put(np);
return ret;
}
arch_initcall(gfar_mdio_of_init);
static const char *gfar_tx_intr = "tx";
static const char *gfar_rx_intr = "rx";
static const char *gfar_err_intr = "error";
static int __init gfar_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *gfar_dev;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "network", "gianfar")) != NULL;
i++) {
struct resource r[4];
struct device_node *phy, *mdio;
struct gianfar_platform_data gfar_data;
const unsigned int *id;
const char *model;
const char *ctype;
const void *mac_addr;
const phandle *ph;
int n_res = 2;
memset(r, 0, sizeof(r));
memset(&gfar_data, 0, sizeof(gfar_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
model = of_get_property(np, "model", NULL);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
r[1].name = gfar_tx_intr;
r[2].name = gfar_rx_intr;
of_irq_to_resource(np, 1, &r[2]);
r[3].name = gfar_err_intr;
of_irq_to_resource(np, 2, &r[3]);
n_res += 2;
}
gfar_dev =
platform_device_register_simple("fsl-gianfar", i, &r[0],
n_res);
if (IS_ERR(gfar_dev)) {
ret = PTR_ERR(gfar_dev);
goto err;
}
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(gfar_data.mac_addr, mac_addr, 6);
if (model && !strcasecmp(model, "TSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
gfar_data.interface = PHY_INTERFACE_MODE_RGMII_ID;
else
gfar_data.interface = PHY_INTERFACE_MODE_MII;
ph = of_get_property(np, "phy-handle", NULL);
if (ph == NULL) {
u32 *fixed_link;
fixed_link = (u32 *)of_get_property(np, "fixed-link",
NULL);
if (!fixed_link) {
ret = -ENODEV;
goto unreg;
}
snprintf(gfar_data.bus_id, MII_BUS_ID_SIZE, "0");
gfar_data.phy_id = fixed_link[0];
} else {
phy = of_find_node_by_phandle(*ph);
if (phy == NULL) {
ret = -ENODEV;
goto unreg;
}
mdio = of_get_parent(phy);
id = of_get_property(phy, "reg", NULL);
ret = of_address_to_resource(mdio, 0, &res);
if (ret) {
of_node_put(phy);
of_node_put(mdio);
goto unreg;
}
gfar_data.phy_id = *id;
snprintf(gfar_data.bus_id, MII_BUS_ID_SIZE, "%llx",
(unsigned long long)res.start);
of_node_put(phy);
of_node_put(mdio);
}
ret =
platform_device_add_data(gfar_dev, &gfar_data,
sizeof(struct
gianfar_platform_data));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(gfar_dev);
err:
return ret;
}
arch_initcall(gfar_of_init);
#ifdef CONFIG_PPC_83xx
static int __init mpc83xx_wdt_init(void)
{
struct resource r;
struct device_node *np;
struct platform_device *dev;
u32 freq = fsl_get_sys_freq();
int ret;
np = of_find_compatible_node(NULL, "watchdog", "mpc83xx_wdt");
if (!np) {
ret = -ENODEV;
goto nodev;
}
memset(&r, 0, sizeof(r));
ret = of_address_to_resource(np, 0, &r);
if (ret)
goto err;
dev = platform_device_register_simple("mpc83xx_wdt", 0, &r, 1);
if (IS_ERR(dev)) {
ret = PTR_ERR(dev);
goto err;
}
ret = platform_device_add_data(dev, &freq, sizeof(freq));
if (ret)
goto unreg;
of_node_put(np);
return 0;
unreg:
platform_device_unregister(dev);
err:
of_node_put(np);
nodev:
return ret;
}
arch_initcall(mpc83xx_wdt_init);
#endif
static enum fsl_usb2_phy_modes determine_usb_phy(const char *phy_type)
{
if (!phy_type)
return FSL_USB2_PHY_NONE;
if (!strcasecmp(phy_type, "ulpi"))
return FSL_USB2_PHY_ULPI;
if (!strcasecmp(phy_type, "utmi"))
return FSL_USB2_PHY_UTMI;
if (!strcasecmp(phy_type, "utmi_wide"))
return FSL_USB2_PHY_UTMI_WIDE;
if (!strcasecmp(phy_type, "serial"))
return FSL_USB2_PHY_SERIAL;
return FSL_USB2_PHY_NONE;
}
static int __init fsl_usb_of_init(void)
{
struct device_node *np;
unsigned int i = 0;
struct platform_device *usb_dev_mph = NULL, *usb_dev_dr_host = NULL,
*usb_dev_dr_client = NULL;
int ret;
for_each_compatible_node(np, NULL, "fsl-usb2-mph") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
usb_dev_mph =
platform_device_register_simple("fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_mph)) {
ret = PTR_ERR(usb_dev_mph);
goto err;
}
usb_dev_mph->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_mph->dev.dma_mask = &usb_dev_mph->dev.coherent_dma_mask;
usb_data.operating_mode = FSL_USB2_MPH_HOST;
prop = of_get_property(np, "port0", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT0_ENABLED;
prop = of_get_property(np, "port1", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT1_ENABLED;
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
ret =
platform_device_add_data(usb_dev_mph, &usb_data,
sizeof(struct
fsl_usb2_platform_data));
if (ret)
goto unreg_mph;
i++;
}
for_each_compatible_node(np, NULL, "fsl-usb2-dr") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto unreg_mph;
of_irq_to_resource(np, 0, &r[1]);
prop = of_get_property(np, "dr_mode", NULL);
if (!prop || !strcmp(prop, "host")) {
usb_data.operating_mode = FSL_USB2_DR_HOST;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
} else if (prop && !strcmp(prop, "peripheral")) {
usb_data.operating_mode = FSL_USB2_DR_DEVICE;
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else if (prop && !strcmp(prop, "otg")) {
usb_data.operating_mode = FSL_USB2_DR_OTG;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else {
ret = -EINVAL;
goto err;
}
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
if (usb_dev_dr_host) {
usb_dev_dr_host->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_host->dev.dma_mask = &usb_dev_dr_host->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_host,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
if (usb_dev_dr_client) {
usb_dev_dr_client->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_client->dev.dma_mask = &usb_dev_dr_client->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_client,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
i++;
}
return 0;
unreg_dr:
if (usb_dev_dr_host)
platform_device_unregister(usb_dev_dr_host);
if (usb_dev_dr_client)
platform_device_unregister(usb_dev_dr_client);
unreg_mph:
if (usb_dev_mph)
platform_device_unregister(usb_dev_mph);
err:
return ret;
}
arch_initcall(fsl_usb_of_init);
static int __init of_fsl_spi_probe(char *type, char *compatible, u32 sysclk,
struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
struct device_node *np;
unsigned int i = 0;
for_each_compatible_node(np, type, compatible) {
int ret;
unsigned int j;
const void *prop;
struct resource res[2];
struct platform_device *pdev;
struct fsl_spi_platform_data pdata = {
.activate_cs = activate_cs,
.deactivate_cs = deactivate_cs,
};
memset(res, 0, sizeof(res));
pdata.sysclk = sysclk;
prop = of_get_property(np, "reg", NULL);
if (!prop)
goto err;
pdata.bus_num = *(u32 *)prop;
prop = of_get_property(np, "cell-index", NULL);
if (prop)
i = *(u32 *)prop;
prop = of_get_property(np, "mode", NULL);
if (prop && !strcmp(prop, "cpu-qe"))
pdata.qe_mode = 1;
for (j = 0; j < num_board_infos; j++) {
if (board_infos[j].bus_num == pdata.bus_num)
pdata.max_chipselect++;
}
if (!pdata.max_chipselect)
continue;
ret = of_address_to_resource(np, 0, &res[0]);
if (ret)
goto err;
ret = of_irq_to_resource(np, 0, &res[1]);
if (ret == NO_IRQ)
goto err;
pdev = platform_device_alloc("mpc83xx_spi", i);
if (!pdev)
goto err;
ret = platform_device_add_data(pdev, &pdata, sizeof(pdata));
if (ret)
goto unreg;
ret = platform_device_add_resources(pdev, res,
ARRAY_SIZE(res));
if (ret)
goto unreg;
ret = platform_device_add(pdev);
if (ret)
goto unreg;
goto next;
unreg:
platform_device_del(pdev);
err:
pr_err("%s: registration failed\n", np->full_name);
next:
i++;
}
return i;
}
int __init fsl_spi_init(struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
u32 sysclk = -1;
int ret;
#ifdef CONFIG_QUICC_ENGINE
/* SPI controller is either clocked from QE or SoC clock */
sysclk = get_brgfreq();
#endif
if (sysclk == -1) {
sysclk = fsl_get_sys_freq();
if (sysclk == -1)
return -ENODEV;
}
ret = of_fsl_spi_probe(NULL, "fsl,spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
if (!ret)
of_fsl_spi_probe("spi", "fsl_spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
return spi_register_board_info(board_infos, num_board_infos);
}
#if defined(CONFIG_PPC_85xx) || defined(CONFIG_PPC_86xx)
static __be32 __iomem *rstcr;
static int __init setup_rstcr(void)
{
struct device_node *np;
np = of_find_node_by_name(NULL, "global-utilities");
if ((np && of_get_property(np, "fsl,has-rstcr", NULL))) {
const u32 *prop = of_get_property(np, "reg", NULL);
if (prop) {
/* map reset control register
* 0xE00B0 is offset of reset control register
*/
rstcr = ioremap(get_immrbase() + *prop + 0xB0, 0xff);
if (!rstcr)
printk (KERN_EMERG "Error: reset control "
"register not mapped!\n");
}
} else
printk (KERN_INFO "rstcr compatible register does not exist!\n");
if (np)
of_node_put(np);
return 0;
}
arch_initcall(setup_rstcr);
void fsl_rstcr_restart(char *cmd)
{
local_irq_disable();
if (rstcr)
/* set reset control register */
out_be32(rstcr, 0x2); /* HRESET_REQ */
while (1) ;
}
#endif
#if defined(CONFIG_FB_FSL_DIU) || defined(CONFIG_FB_FSL_DIU_MODULE)
struct platform_diu_data_ops diu_ops = {
.diu_size = 1280 * 1024 * 4, /* default one 1280x1024 buffer */
};
EXPORT_SYMBOL(diu_ops);
int __init preallocate_diu_videomemory(void)
{
pr_debug("diu_size=%lu\n", diu_ops.diu_size);
diu_ops.diu_mem = __alloc_bootmem(diu_ops.diu_size, 8, 0);
if (!diu_ops.diu_mem) {
printk(KERN_ERR "fsl-diu: cannot allocate %lu bytes\n",
diu_ops.diu_size);
return -ENOMEM;
}
pr_debug("diu_mem=%p\n", diu_ops.diu_mem);
rh_init(&diu_ops.diu_rh_info, 4096, ARRAY_SIZE(diu_ops.diu_rh_block),
diu_ops.diu_rh_block);
return rh_attach_region(&diu_ops.diu_rh_info,
(unsigned long) diu_ops.diu_mem,
diu_ops.diu_size);
}
static int __init early_parse_diufb(char *p)
{
if (!p)
return 1;
diu_ops.diu_size = _ALIGN_UP(memparse(p, &p), 8);
pr_debug("diu_size=%lu\n", diu_ops.diu_size);
return 0;
}
early_param("diufb", early_parse_diufb);
#endif