| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Symmetric key cipher operations. |
| * |
| * Generic encrypt/decrypt wrapper for ciphers, handles operations across |
| * multiple page boundaries by using temporary blocks. In user context, |
| * the kernel is given a chance to schedule us once per page. |
| * |
| * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> |
| */ |
| |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/bug.h> |
| #include <linux/cryptouser.h> |
| #include <linux/compiler.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/seq_file.h> |
| #include <net/netlink.h> |
| |
| #include "internal.h" |
| |
| enum { |
| SKCIPHER_WALK_PHYS = 1 << 0, |
| SKCIPHER_WALK_SLOW = 1 << 1, |
| SKCIPHER_WALK_COPY = 1 << 2, |
| SKCIPHER_WALK_DIFF = 1 << 3, |
| SKCIPHER_WALK_SLEEP = 1 << 4, |
| }; |
| |
| struct skcipher_walk_buffer { |
| struct list_head entry; |
| struct scatter_walk dst; |
| unsigned int len; |
| u8 *data; |
| u8 buffer[]; |
| }; |
| |
| static int skcipher_walk_next(struct skcipher_walk *walk); |
| |
| static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr) |
| { |
| if (PageHighMem(scatterwalk_page(walk))) |
| kunmap_atomic(vaddr); |
| } |
| |
| static inline void *skcipher_map(struct scatter_walk *walk) |
| { |
| struct page *page = scatterwalk_page(walk); |
| |
| return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) + |
| offset_in_page(walk->offset); |
| } |
| |
| static inline void skcipher_map_src(struct skcipher_walk *walk) |
| { |
| walk->src.virt.addr = skcipher_map(&walk->in); |
| } |
| |
| static inline void skcipher_map_dst(struct skcipher_walk *walk) |
| { |
| walk->dst.virt.addr = skcipher_map(&walk->out); |
| } |
| |
| static inline void skcipher_unmap_src(struct skcipher_walk *walk) |
| { |
| skcipher_unmap(&walk->in, walk->src.virt.addr); |
| } |
| |
| static inline void skcipher_unmap_dst(struct skcipher_walk *walk) |
| { |
| skcipher_unmap(&walk->out, walk->dst.virt.addr); |
| } |
| |
| static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) |
| { |
| return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; |
| } |
| |
| /* Get a spot of the specified length that does not straddle a page. |
| * The caller needs to ensure that there is enough space for this operation. |
| */ |
| static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) |
| { |
| u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); |
| |
| return max(start, end_page); |
| } |
| |
| static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) |
| { |
| u8 *addr; |
| |
| addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); |
| addr = skcipher_get_spot(addr, bsize); |
| scatterwalk_copychunks(addr, &walk->out, bsize, |
| (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); |
| return 0; |
| } |
| |
| int skcipher_walk_done(struct skcipher_walk *walk, int err) |
| { |
| unsigned int n = walk->nbytes; |
| unsigned int nbytes = 0; |
| |
| if (!n) |
| goto finish; |
| |
| if (likely(err >= 0)) { |
| n -= err; |
| nbytes = walk->total - n; |
| } |
| |
| if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | |
| SKCIPHER_WALK_SLOW | |
| SKCIPHER_WALK_COPY | |
| SKCIPHER_WALK_DIFF)))) { |
| unmap_src: |
| skcipher_unmap_src(walk); |
| } else if (walk->flags & SKCIPHER_WALK_DIFF) { |
| skcipher_unmap_dst(walk); |
| goto unmap_src; |
| } else if (walk->flags & SKCIPHER_WALK_COPY) { |
| skcipher_map_dst(walk); |
| memcpy(walk->dst.virt.addr, walk->page, n); |
| skcipher_unmap_dst(walk); |
| } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { |
| if (err > 0) { |
| /* |
| * Didn't process all bytes. Either the algorithm is |
| * broken, or this was the last step and it turned out |
| * the message wasn't evenly divisible into blocks but |
| * the algorithm requires it. |
| */ |
| err = -EINVAL; |
| nbytes = 0; |
| } else |
| n = skcipher_done_slow(walk, n); |
| } |
| |
| if (err > 0) |
| err = 0; |
| |
| walk->total = nbytes; |
| walk->nbytes = 0; |
| |
| scatterwalk_advance(&walk->in, n); |
| scatterwalk_advance(&walk->out, n); |
| scatterwalk_done(&walk->in, 0, nbytes); |
| scatterwalk_done(&walk->out, 1, nbytes); |
| |
| if (nbytes) { |
| crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? |
| CRYPTO_TFM_REQ_MAY_SLEEP : 0); |
| return skcipher_walk_next(walk); |
| } |
| |
| finish: |
| /* Short-circuit for the common/fast path. */ |
| if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) |
| goto out; |
| |
| if (walk->flags & SKCIPHER_WALK_PHYS) |
| goto out; |
| |
| if (walk->iv != walk->oiv) |
| memcpy(walk->oiv, walk->iv, walk->ivsize); |
| if (walk->buffer != walk->page) |
| kfree(walk->buffer); |
| if (walk->page) |
| free_page((unsigned long)walk->page); |
| |
| out: |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_done); |
| |
| void skcipher_walk_complete(struct skcipher_walk *walk, int err) |
| { |
| struct skcipher_walk_buffer *p, *tmp; |
| |
| list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { |
| u8 *data; |
| |
| if (err) |
| goto done; |
| |
| data = p->data; |
| if (!data) { |
| data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); |
| data = skcipher_get_spot(data, walk->stride); |
| } |
| |
| scatterwalk_copychunks(data, &p->dst, p->len, 1); |
| |
| if (offset_in_page(p->data) + p->len + walk->stride > |
| PAGE_SIZE) |
| free_page((unsigned long)p->data); |
| |
| done: |
| list_del(&p->entry); |
| kfree(p); |
| } |
| |
| if (!err && walk->iv != walk->oiv) |
| memcpy(walk->oiv, walk->iv, walk->ivsize); |
| if (walk->buffer != walk->page) |
| kfree(walk->buffer); |
| if (walk->page) |
| free_page((unsigned long)walk->page); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_complete); |
| |
| static void skcipher_queue_write(struct skcipher_walk *walk, |
| struct skcipher_walk_buffer *p) |
| { |
| p->dst = walk->out; |
| list_add_tail(&p->entry, &walk->buffers); |
| } |
| |
| static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) |
| { |
| bool phys = walk->flags & SKCIPHER_WALK_PHYS; |
| unsigned alignmask = walk->alignmask; |
| struct skcipher_walk_buffer *p; |
| unsigned a; |
| unsigned n; |
| u8 *buffer; |
| void *v; |
| |
| if (!phys) { |
| if (!walk->buffer) |
| walk->buffer = walk->page; |
| buffer = walk->buffer; |
| if (buffer) |
| goto ok; |
| } |
| |
| /* Start with the minimum alignment of kmalloc. */ |
| a = crypto_tfm_ctx_alignment() - 1; |
| n = bsize; |
| |
| if (phys) { |
| /* Calculate the minimum alignment of p->buffer. */ |
| a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; |
| n += sizeof(*p); |
| } |
| |
| /* Minimum size to align p->buffer by alignmask. */ |
| n += alignmask & ~a; |
| |
| /* Minimum size to ensure p->buffer does not straddle a page. */ |
| n += (bsize - 1) & ~(alignmask | a); |
| |
| v = kzalloc(n, skcipher_walk_gfp(walk)); |
| if (!v) |
| return skcipher_walk_done(walk, -ENOMEM); |
| |
| if (phys) { |
| p = v; |
| p->len = bsize; |
| skcipher_queue_write(walk, p); |
| buffer = p->buffer; |
| } else { |
| walk->buffer = v; |
| buffer = v; |
| } |
| |
| ok: |
| walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); |
| walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); |
| walk->src.virt.addr = walk->dst.virt.addr; |
| |
| scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); |
| |
| walk->nbytes = bsize; |
| walk->flags |= SKCIPHER_WALK_SLOW; |
| |
| return 0; |
| } |
| |
| static int skcipher_next_copy(struct skcipher_walk *walk) |
| { |
| struct skcipher_walk_buffer *p; |
| u8 *tmp = walk->page; |
| |
| skcipher_map_src(walk); |
| memcpy(tmp, walk->src.virt.addr, walk->nbytes); |
| skcipher_unmap_src(walk); |
| |
| walk->src.virt.addr = tmp; |
| walk->dst.virt.addr = tmp; |
| |
| if (!(walk->flags & SKCIPHER_WALK_PHYS)) |
| return 0; |
| |
| p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); |
| if (!p) |
| return -ENOMEM; |
| |
| p->data = walk->page; |
| p->len = walk->nbytes; |
| skcipher_queue_write(walk, p); |
| |
| if (offset_in_page(walk->page) + walk->nbytes + walk->stride > |
| PAGE_SIZE) |
| walk->page = NULL; |
| else |
| walk->page += walk->nbytes; |
| |
| return 0; |
| } |
| |
| static int skcipher_next_fast(struct skcipher_walk *walk) |
| { |
| unsigned long diff; |
| |
| walk->src.phys.page = scatterwalk_page(&walk->in); |
| walk->src.phys.offset = offset_in_page(walk->in.offset); |
| walk->dst.phys.page = scatterwalk_page(&walk->out); |
| walk->dst.phys.offset = offset_in_page(walk->out.offset); |
| |
| if (walk->flags & SKCIPHER_WALK_PHYS) |
| return 0; |
| |
| diff = walk->src.phys.offset - walk->dst.phys.offset; |
| diff |= walk->src.virt.page - walk->dst.virt.page; |
| |
| skcipher_map_src(walk); |
| walk->dst.virt.addr = walk->src.virt.addr; |
| |
| if (diff) { |
| walk->flags |= SKCIPHER_WALK_DIFF; |
| skcipher_map_dst(walk); |
| } |
| |
| return 0; |
| } |
| |
| static int skcipher_walk_next(struct skcipher_walk *walk) |
| { |
| unsigned int bsize; |
| unsigned int n; |
| int err; |
| |
| walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | |
| SKCIPHER_WALK_DIFF); |
| |
| n = walk->total; |
| bsize = min(walk->stride, max(n, walk->blocksize)); |
| n = scatterwalk_clamp(&walk->in, n); |
| n = scatterwalk_clamp(&walk->out, n); |
| |
| if (unlikely(n < bsize)) { |
| if (unlikely(walk->total < walk->blocksize)) |
| return skcipher_walk_done(walk, -EINVAL); |
| |
| slow_path: |
| err = skcipher_next_slow(walk, bsize); |
| goto set_phys_lowmem; |
| } |
| |
| if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { |
| if (!walk->page) { |
| gfp_t gfp = skcipher_walk_gfp(walk); |
| |
| walk->page = (void *)__get_free_page(gfp); |
| if (!walk->page) |
| goto slow_path; |
| } |
| |
| walk->nbytes = min_t(unsigned, n, |
| PAGE_SIZE - offset_in_page(walk->page)); |
| walk->flags |= SKCIPHER_WALK_COPY; |
| err = skcipher_next_copy(walk); |
| goto set_phys_lowmem; |
| } |
| |
| walk->nbytes = n; |
| |
| return skcipher_next_fast(walk); |
| |
| set_phys_lowmem: |
| if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { |
| walk->src.phys.page = virt_to_page(walk->src.virt.addr); |
| walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); |
| walk->src.phys.offset &= PAGE_SIZE - 1; |
| walk->dst.phys.offset &= PAGE_SIZE - 1; |
| } |
| return err; |
| } |
| |
| static int skcipher_copy_iv(struct skcipher_walk *walk) |
| { |
| unsigned a = crypto_tfm_ctx_alignment() - 1; |
| unsigned alignmask = walk->alignmask; |
| unsigned ivsize = walk->ivsize; |
| unsigned bs = walk->stride; |
| unsigned aligned_bs; |
| unsigned size; |
| u8 *iv; |
| |
| aligned_bs = ALIGN(bs, alignmask + 1); |
| |
| /* Minimum size to align buffer by alignmask. */ |
| size = alignmask & ~a; |
| |
| if (walk->flags & SKCIPHER_WALK_PHYS) |
| size += ivsize; |
| else { |
| size += aligned_bs + ivsize; |
| |
| /* Minimum size to ensure buffer does not straddle a page. */ |
| size += (bs - 1) & ~(alignmask | a); |
| } |
| |
| walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); |
| if (!walk->buffer) |
| return -ENOMEM; |
| |
| iv = PTR_ALIGN(walk->buffer, alignmask + 1); |
| iv = skcipher_get_spot(iv, bs) + aligned_bs; |
| |
| walk->iv = memcpy(iv, walk->iv, walk->ivsize); |
| return 0; |
| } |
| |
| static int skcipher_walk_first(struct skcipher_walk *walk) |
| { |
| if (WARN_ON_ONCE(in_irq())) |
| return -EDEADLK; |
| |
| walk->buffer = NULL; |
| if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { |
| int err = skcipher_copy_iv(walk); |
| if (err) |
| return err; |
| } |
| |
| walk->page = NULL; |
| |
| return skcipher_walk_next(walk); |
| } |
| |
| static int skcipher_walk_skcipher(struct skcipher_walk *walk, |
| struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| |
| walk->total = req->cryptlen; |
| walk->nbytes = 0; |
| walk->iv = req->iv; |
| walk->oiv = req->iv; |
| |
| if (unlikely(!walk->total)) |
| return 0; |
| |
| scatterwalk_start(&walk->in, req->src); |
| scatterwalk_start(&walk->out, req->dst); |
| |
| walk->flags &= ~SKCIPHER_WALK_SLEEP; |
| walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| SKCIPHER_WALK_SLEEP : 0; |
| |
| walk->blocksize = crypto_skcipher_blocksize(tfm); |
| walk->stride = crypto_skcipher_walksize(tfm); |
| walk->ivsize = crypto_skcipher_ivsize(tfm); |
| walk->alignmask = crypto_skcipher_alignmask(tfm); |
| |
| return skcipher_walk_first(walk); |
| } |
| |
| int skcipher_walk_virt(struct skcipher_walk *walk, |
| struct skcipher_request *req, bool atomic) |
| { |
| int err; |
| |
| might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); |
| |
| walk->flags &= ~SKCIPHER_WALK_PHYS; |
| |
| err = skcipher_walk_skcipher(walk, req); |
| |
| walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_virt); |
| |
| void skcipher_walk_atomise(struct skcipher_walk *walk) |
| { |
| walk->flags &= ~SKCIPHER_WALK_SLEEP; |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_atomise); |
| |
| int skcipher_walk_async(struct skcipher_walk *walk, |
| struct skcipher_request *req) |
| { |
| walk->flags |= SKCIPHER_WALK_PHYS; |
| |
| INIT_LIST_HEAD(&walk->buffers); |
| |
| return skcipher_walk_skcipher(walk, req); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_async); |
| |
| static int skcipher_walk_aead_common(struct skcipher_walk *walk, |
| struct aead_request *req, bool atomic) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| int err; |
| |
| walk->nbytes = 0; |
| walk->iv = req->iv; |
| walk->oiv = req->iv; |
| |
| if (unlikely(!walk->total)) |
| return 0; |
| |
| walk->flags &= ~SKCIPHER_WALK_PHYS; |
| |
| scatterwalk_start(&walk->in, req->src); |
| scatterwalk_start(&walk->out, req->dst); |
| |
| scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); |
| scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); |
| |
| scatterwalk_done(&walk->in, 0, walk->total); |
| scatterwalk_done(&walk->out, 0, walk->total); |
| |
| if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) |
| walk->flags |= SKCIPHER_WALK_SLEEP; |
| else |
| walk->flags &= ~SKCIPHER_WALK_SLEEP; |
| |
| walk->blocksize = crypto_aead_blocksize(tfm); |
| walk->stride = crypto_aead_chunksize(tfm); |
| walk->ivsize = crypto_aead_ivsize(tfm); |
| walk->alignmask = crypto_aead_alignmask(tfm); |
| |
| err = skcipher_walk_first(walk); |
| |
| if (atomic) |
| walk->flags &= ~SKCIPHER_WALK_SLEEP; |
| |
| return err; |
| } |
| |
| int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req, |
| bool atomic) |
| { |
| walk->total = req->cryptlen; |
| |
| return skcipher_walk_aead_common(walk, req, atomic); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_aead); |
| |
| int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, |
| struct aead_request *req, bool atomic) |
| { |
| walk->total = req->cryptlen; |
| |
| return skcipher_walk_aead_common(walk, req, atomic); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); |
| |
| int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, |
| struct aead_request *req, bool atomic) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| |
| walk->total = req->cryptlen - crypto_aead_authsize(tfm); |
| |
| return skcipher_walk_aead_common(walk, req, atomic); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); |
| |
| static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg) |
| { |
| if (alg->cra_type == &crypto_blkcipher_type) |
| return sizeof(struct crypto_blkcipher *); |
| |
| if (alg->cra_type == &crypto_ablkcipher_type) |
| return sizeof(struct crypto_ablkcipher *); |
| |
| return crypto_alg_extsize(alg); |
| } |
| |
| static void skcipher_set_needkey(struct crypto_skcipher *tfm) |
| { |
| if (tfm->keysize) |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); |
| } |
| |
| static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); |
| struct crypto_blkcipher *blkcipher = *ctx; |
| int err; |
| |
| crypto_blkcipher_clear_flags(blkcipher, ~0); |
| crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_blkcipher_setkey(blkcipher, key, keylen); |
| crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) & |
| CRYPTO_TFM_RES_MASK); |
| if (unlikely(err)) { |
| skcipher_set_needkey(tfm); |
| return err; |
| } |
| |
| crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); |
| return 0; |
| } |
| |
| static int skcipher_crypt_blkcipher(struct skcipher_request *req, |
| int (*crypt)(struct blkcipher_desc *, |
| struct scatterlist *, |
| struct scatterlist *, |
| unsigned int)) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); |
| struct blkcipher_desc desc = { |
| .tfm = *ctx, |
| .info = req->iv, |
| .flags = req->base.flags, |
| }; |
| |
| |
| return crypt(&desc, req->dst, req->src, req->cryptlen); |
| } |
| |
| static int skcipher_encrypt_blkcipher(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; |
| |
| return skcipher_crypt_blkcipher(req, alg->encrypt); |
| } |
| |
| static int skcipher_decrypt_blkcipher(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; |
| |
| return skcipher_crypt_blkcipher(req, alg->decrypt); |
| } |
| |
| static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm) |
| { |
| struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_blkcipher(*ctx); |
| } |
| |
| static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm) |
| { |
| struct crypto_alg *calg = tfm->__crt_alg; |
| struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); |
| struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); |
| struct crypto_blkcipher *blkcipher; |
| struct crypto_tfm *btfm; |
| |
| if (!crypto_mod_get(calg)) |
| return -EAGAIN; |
| |
| btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER, |
| CRYPTO_ALG_TYPE_MASK); |
| if (IS_ERR(btfm)) { |
| crypto_mod_put(calg); |
| return PTR_ERR(btfm); |
| } |
| |
| blkcipher = __crypto_blkcipher_cast(btfm); |
| *ctx = blkcipher; |
| tfm->exit = crypto_exit_skcipher_ops_blkcipher; |
| |
| skcipher->setkey = skcipher_setkey_blkcipher; |
| skcipher->encrypt = skcipher_encrypt_blkcipher; |
| skcipher->decrypt = skcipher_decrypt_blkcipher; |
| |
| skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher); |
| skcipher->keysize = calg->cra_blkcipher.max_keysize; |
| |
| skcipher_set_needkey(skcipher); |
| |
| return 0; |
| } |
| |
| static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); |
| struct crypto_ablkcipher *ablkcipher = *ctx; |
| int err; |
| |
| crypto_ablkcipher_clear_flags(ablkcipher, ~0); |
| crypto_ablkcipher_set_flags(ablkcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_ablkcipher_setkey(ablkcipher, key, keylen); |
| crypto_skcipher_set_flags(tfm, |
| crypto_ablkcipher_get_flags(ablkcipher) & |
| CRYPTO_TFM_RES_MASK); |
| if (unlikely(err)) { |
| skcipher_set_needkey(tfm); |
| return err; |
| } |
| |
| crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); |
| return 0; |
| } |
| |
| static int skcipher_crypt_ablkcipher(struct skcipher_request *req, |
| int (*crypt)(struct ablkcipher_request *)) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); |
| struct ablkcipher_request *subreq = skcipher_request_ctx(req); |
| |
| ablkcipher_request_set_tfm(subreq, *ctx); |
| ablkcipher_request_set_callback(subreq, skcipher_request_flags(req), |
| req->base.complete, req->base.data); |
| ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, |
| req->iv); |
| |
| return crypt(subreq); |
| } |
| |
| static int skcipher_encrypt_ablkcipher(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; |
| |
| return skcipher_crypt_ablkcipher(req, alg->encrypt); |
| } |
| |
| static int skcipher_decrypt_ablkcipher(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; |
| |
| return skcipher_crypt_ablkcipher(req, alg->decrypt); |
| } |
| |
| static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) |
| { |
| struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_ablkcipher(*ctx); |
| } |
| |
| static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) |
| { |
| struct crypto_alg *calg = tfm->__crt_alg; |
| struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); |
| struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); |
| struct crypto_ablkcipher *ablkcipher; |
| struct crypto_tfm *abtfm; |
| |
| if (!crypto_mod_get(calg)) |
| return -EAGAIN; |
| |
| abtfm = __crypto_alloc_tfm(calg, 0, 0); |
| if (IS_ERR(abtfm)) { |
| crypto_mod_put(calg); |
| return PTR_ERR(abtfm); |
| } |
| |
| ablkcipher = __crypto_ablkcipher_cast(abtfm); |
| *ctx = ablkcipher; |
| tfm->exit = crypto_exit_skcipher_ops_ablkcipher; |
| |
| skcipher->setkey = skcipher_setkey_ablkcipher; |
| skcipher->encrypt = skcipher_encrypt_ablkcipher; |
| skcipher->decrypt = skcipher_decrypt_ablkcipher; |
| |
| skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher); |
| skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) + |
| sizeof(struct ablkcipher_request); |
| skcipher->keysize = calg->cra_ablkcipher.max_keysize; |
| |
| skcipher_set_needkey(skcipher); |
| |
| return 0; |
| } |
| |
| static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| unsigned long alignmask = crypto_skcipher_alignmask(tfm); |
| struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); |
| u8 *buffer, *alignbuffer; |
| unsigned long absize; |
| int ret; |
| |
| absize = keylen + alignmask; |
| buffer = kmalloc(absize, GFP_ATOMIC); |
| if (!buffer) |
| return -ENOMEM; |
| |
| alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); |
| memcpy(alignbuffer, key, keylen); |
| ret = cipher->setkey(tfm, alignbuffer, keylen); |
| kzfree(buffer); |
| return ret; |
| } |
| |
| static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); |
| unsigned long alignmask = crypto_skcipher_alignmask(tfm); |
| int err; |
| |
| if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) { |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| if ((unsigned long)key & alignmask) |
| err = skcipher_setkey_unaligned(tfm, key, keylen); |
| else |
| err = cipher->setkey(tfm, key, keylen); |
| |
| if (unlikely(err)) { |
| skcipher_set_needkey(tfm); |
| return err; |
| } |
| |
| crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); |
| return 0; |
| } |
| |
| int crypto_skcipher_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_alg *alg = tfm->base.__crt_alg; |
| unsigned int cryptlen = req->cryptlen; |
| int ret; |
| |
| crypto_stats_get(alg); |
| if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) |
| ret = -ENOKEY; |
| else |
| ret = tfm->encrypt(req); |
| crypto_stats_skcipher_encrypt(cryptlen, ret, alg); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); |
| |
| int crypto_skcipher_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_alg *alg = tfm->base.__crt_alg; |
| unsigned int cryptlen = req->cryptlen; |
| int ret; |
| |
| crypto_stats_get(alg); |
| if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) |
| ret = -ENOKEY; |
| else |
| ret = tfm->decrypt(req); |
| crypto_stats_skcipher_decrypt(cryptlen, ret, alg); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); |
| |
| static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); |
| struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); |
| |
| alg->exit(skcipher); |
| } |
| |
| static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) |
| { |
| struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); |
| struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); |
| |
| if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type) |
| return crypto_init_skcipher_ops_blkcipher(tfm); |
| |
| if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type) |
| return crypto_init_skcipher_ops_ablkcipher(tfm); |
| |
| skcipher->setkey = skcipher_setkey; |
| skcipher->encrypt = alg->encrypt; |
| skcipher->decrypt = alg->decrypt; |
| skcipher->ivsize = alg->ivsize; |
| skcipher->keysize = alg->max_keysize; |
| |
| skcipher_set_needkey(skcipher); |
| |
| if (alg->exit) |
| skcipher->base.exit = crypto_skcipher_exit_tfm; |
| |
| if (alg->init) |
| return alg->init(skcipher); |
| |
| return 0; |
| } |
| |
| static void crypto_skcipher_free_instance(struct crypto_instance *inst) |
| { |
| struct skcipher_instance *skcipher = |
| container_of(inst, struct skcipher_instance, s.base); |
| |
| skcipher->free(skcipher); |
| } |
| |
| static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) |
| __maybe_unused; |
| static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) |
| { |
| struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, |
| base); |
| |
| seq_printf(m, "type : skcipher\n"); |
| seq_printf(m, "async : %s\n", |
| alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); |
| seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); |
| seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); |
| seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); |
| seq_printf(m, "ivsize : %u\n", skcipher->ivsize); |
| seq_printf(m, "chunksize : %u\n", skcipher->chunksize); |
| seq_printf(m, "walksize : %u\n", skcipher->walksize); |
| } |
| |
| #ifdef CONFIG_NET |
| static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) |
| { |
| struct crypto_report_blkcipher rblkcipher; |
| struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, |
| base); |
| |
| memset(&rblkcipher, 0, sizeof(rblkcipher)); |
| |
| strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); |
| strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); |
| |
| rblkcipher.blocksize = alg->cra_blocksize; |
| rblkcipher.min_keysize = skcipher->min_keysize; |
| rblkcipher.max_keysize = skcipher->max_keysize; |
| rblkcipher.ivsize = skcipher->ivsize; |
| |
| return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, |
| sizeof(rblkcipher), &rblkcipher); |
| } |
| #else |
| static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| static const struct crypto_type crypto_skcipher_type2 = { |
| .extsize = crypto_skcipher_extsize, |
| .init_tfm = crypto_skcipher_init_tfm, |
| .free = crypto_skcipher_free_instance, |
| #ifdef CONFIG_PROC_FS |
| .show = crypto_skcipher_show, |
| #endif |
| .report = crypto_skcipher_report, |
| .maskclear = ~CRYPTO_ALG_TYPE_MASK, |
| .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK, |
| .type = CRYPTO_ALG_TYPE_SKCIPHER, |
| .tfmsize = offsetof(struct crypto_skcipher, base), |
| }; |
| |
| int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, |
| const char *name, u32 type, u32 mask) |
| { |
| spawn->base.frontend = &crypto_skcipher_type2; |
| return crypto_grab_spawn(&spawn->base, name, type, mask); |
| } |
| EXPORT_SYMBOL_GPL(crypto_grab_skcipher); |
| |
| struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, |
| u32 type, u32 mask) |
| { |
| return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask); |
| } |
| EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); |
| |
| struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( |
| const char *alg_name, u32 type, u32 mask) |
| { |
| struct crypto_skcipher *tfm; |
| |
| /* Only sync algorithms allowed. */ |
| mask |= CRYPTO_ALG_ASYNC; |
| |
| tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask); |
| |
| /* |
| * Make sure we do not allocate something that might get used with |
| * an on-stack request: check the request size. |
| */ |
| if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > |
| MAX_SYNC_SKCIPHER_REQSIZE)) { |
| crypto_free_skcipher(tfm); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return (struct crypto_sync_skcipher *)tfm; |
| } |
| EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); |
| |
| int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask) |
| { |
| return crypto_type_has_alg(alg_name, &crypto_skcipher_type2, |
| type, mask); |
| } |
| EXPORT_SYMBOL_GPL(crypto_has_skcipher2); |
| |
| static int skcipher_prepare_alg(struct skcipher_alg *alg) |
| { |
| struct crypto_alg *base = &alg->base; |
| |
| if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || |
| alg->walksize > PAGE_SIZE / 8) |
| return -EINVAL; |
| |
| if (!alg->chunksize) |
| alg->chunksize = base->cra_blocksize; |
| if (!alg->walksize) |
| alg->walksize = alg->chunksize; |
| |
| base->cra_type = &crypto_skcipher_type2; |
| base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; |
| base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; |
| |
| return 0; |
| } |
| |
| int crypto_register_skcipher(struct skcipher_alg *alg) |
| { |
| struct crypto_alg *base = &alg->base; |
| int err; |
| |
| err = skcipher_prepare_alg(alg); |
| if (err) |
| return err; |
| |
| return crypto_register_alg(base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_register_skcipher); |
| |
| void crypto_unregister_skcipher(struct skcipher_alg *alg) |
| { |
| crypto_unregister_alg(&alg->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); |
| |
| int crypto_register_skciphers(struct skcipher_alg *algs, int count) |
| { |
| int i, ret; |
| |
| for (i = 0; i < count; i++) { |
| ret = crypto_register_skcipher(&algs[i]); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| for (--i; i >= 0; --i) |
| crypto_unregister_skcipher(&algs[i]); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(crypto_register_skciphers); |
| |
| void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) |
| { |
| int i; |
| |
| for (i = count - 1; i >= 0; --i) |
| crypto_unregister_skcipher(&algs[i]); |
| } |
| EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); |
| |
| int skcipher_register_instance(struct crypto_template *tmpl, |
| struct skcipher_instance *inst) |
| { |
| int err; |
| |
| err = skcipher_prepare_alg(&inst->alg); |
| if (err) |
| return err; |
| |
| return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_register_instance); |
| |
| static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); |
| int err; |
| |
| crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(cipher, key, keylen); |
| crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) & |
| CRYPTO_TFM_RES_MASK); |
| return err; |
| } |
| |
| static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| struct crypto_spawn *spawn = skcipher_instance_ctx(inst); |
| struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); |
| struct crypto_cipher *cipher; |
| |
| cipher = crypto_spawn_cipher(spawn); |
| if (IS_ERR(cipher)) |
| return PTR_ERR(cipher); |
| |
| ctx->cipher = cipher; |
| return 0; |
| } |
| |
| static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_cipher(ctx->cipher); |
| } |
| |
| static void skcipher_free_instance_simple(struct skcipher_instance *inst) |
| { |
| crypto_drop_spawn(skcipher_instance_ctx(inst)); |
| kfree(inst); |
| } |
| |
| /** |
| * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode |
| * |
| * Allocate an skcipher_instance for a simple block cipher mode of operation, |
| * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, |
| * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, |
| * alignmask, and priority are set from the underlying cipher but can be |
| * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and |
| * default ->setkey(), ->init(), and ->exit() methods are installed. |
| * |
| * @tmpl: the template being instantiated |
| * @tb: the template parameters |
| * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is |
| * returned here. It must be dropped with crypto_mod_put(). |
| * |
| * Return: a pointer to the new instance, or an ERR_PTR(). The caller still |
| * needs to register the instance. |
| */ |
| struct skcipher_instance * |
| skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb, |
| struct crypto_alg **cipher_alg_ret) |
| { |
| struct crypto_attr_type *algt; |
| struct crypto_alg *cipher_alg; |
| struct skcipher_instance *inst; |
| struct crypto_spawn *spawn; |
| u32 mask; |
| int err; |
| |
| algt = crypto_get_attr_type(tb); |
| if (IS_ERR(algt)) |
| return ERR_CAST(algt); |
| |
| if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) |
| return ERR_PTR(-EINVAL); |
| |
| mask = CRYPTO_ALG_TYPE_MASK | |
| crypto_requires_off(algt->type, algt->mask, |
| CRYPTO_ALG_NEED_FALLBACK); |
| |
| cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask); |
| if (IS_ERR(cipher_alg)) |
| return ERR_CAST(cipher_alg); |
| |
| inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); |
| if (!inst) { |
| err = -ENOMEM; |
| goto err_put_cipher_alg; |
| } |
| spawn = skcipher_instance_ctx(inst); |
| |
| err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, |
| cipher_alg); |
| if (err) |
| goto err_free_inst; |
| |
| err = crypto_init_spawn(spawn, cipher_alg, |
| skcipher_crypto_instance(inst), |
| CRYPTO_ALG_TYPE_MASK); |
| if (err) |
| goto err_free_inst; |
| inst->free = skcipher_free_instance_simple; |
| |
| /* Default algorithm properties, can be overridden */ |
| inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; |
| inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; |
| inst->alg.base.cra_priority = cipher_alg->cra_priority; |
| inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; |
| inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; |
| inst->alg.ivsize = cipher_alg->cra_blocksize; |
| |
| /* Use skcipher_ctx_simple by default, can be overridden */ |
| inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); |
| inst->alg.setkey = skcipher_setkey_simple; |
| inst->alg.init = skcipher_init_tfm_simple; |
| inst->alg.exit = skcipher_exit_tfm_simple; |
| |
| *cipher_alg_ret = cipher_alg; |
| return inst; |
| |
| err_free_inst: |
| kfree(inst); |
| err_put_cipher_alg: |
| crypto_mod_put(cipher_alg); |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Symmetric key cipher type"); |