blob: d1c33a85059e22fb0a813e2b2d85f8bb967dc9eb [file] [log] [blame]
/*
* Arch specific cpu topology information
*
* Copyright (C) 2016, ARM Ltd.
* Written by: Juri Lelli, ARM Ltd.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Released under the GPLv2 only.
* SPDX-License-Identifier: GPL-2.0
*/
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
static DEFINE_MUTEX(cpu_scale_mutex);
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
unsigned long topology_get_cpu_scale(struct sched_domain *sd, int cpu)
{
return per_cpu(cpu_scale, cpu);
}
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
return sprintf(buf, "%lu\n",
topology_get_cpu_scale(NULL, cpu->dev.id));
}
static ssize_t cpu_capacity_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
int this_cpu = cpu->dev.id;
int i;
unsigned long new_capacity;
ssize_t ret;
if (!count)
return 0;
ret = kstrtoul(buf, 0, &new_capacity);
if (ret)
return ret;
if (new_capacity > SCHED_CAPACITY_SCALE)
return -EINVAL;
mutex_lock(&cpu_scale_mutex);
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
topology_set_cpu_scale(i, new_capacity);
mutex_unlock(&cpu_scale_mutex);
return count;
}
static DEVICE_ATTR_RW(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
static u32 capacity_scale;
static u32 *raw_capacity;
static bool cap_parsing_failed;
void topology_normalize_cpu_scale(void)
{
u64 capacity;
int cpu;
if (!raw_capacity || cap_parsing_failed)
return;
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
mutex_lock(&cpu_scale_mutex);
for_each_possible_cpu(cpu) {
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
cpu, raw_capacity[cpu]);
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
/ capacity_scale;
topology_set_cpu_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, topology_get_cpu_scale(NULL, cpu));
}
mutex_unlock(&cpu_scale_mutex);
}
int __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
int ret = 1;
u32 cpu_capacity;
if (cap_parsing_failed)
return !ret;
ret = of_property_read_u32(cpu_node,
"capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
cap_parsing_failed = true;
return 0;
}
}
capacity_scale = max(cpu_capacity, capacity_scale);
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
cpu_node->full_name, raw_capacity[cpu]);
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %s raw capacity\n",
cpu_node->full_name);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
kfree(raw_capacity);
}
return !ret;
}
#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static bool cap_parsing_done;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (cap_parsing_failed || cap_parsing_done)
return 0;
switch (val) {
case CPUFREQ_NOTIFY:
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit,
cpus_to_visit,
policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus) {
raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
policy->cpuinfo.max_freq / 1000UL;
capacity_scale = max(raw_capacity[cpu], capacity_scale);
}
if (cpumask_empty(cpus_to_visit)) {
topology_normalize_cpu_scale();
kfree(raw_capacity);
pr_debug("cpu_capacity: parsing done\n");
cap_parsing_done = true;
schedule_work(&parsing_done_work);
}
}
return 0;
}
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
/*
* on ACPI-based systems we need to use the default cpu capacity
* until we have the necessary code to parse the cpu capacity, so
* skip registering cpufreq notifier.
*/
if (!acpi_disabled || !raw_capacity)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
return -ENOMEM;
}
cpumask_copy(cpus_to_visit, cpu_possible_mask);
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(register_cpufreq_notifier);
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
#else
static int __init free_raw_capacity(void)
{
kfree(raw_capacity);
return 0;
}
core_initcall(free_raw_capacity);
#endif