blob: 87f417712da02bfd1a14548f6048d742bceeb794 [file] [log] [blame]
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include "mtk_eth_soc.h"
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
#define MTK_ETHTOOL_STAT(x) { #x, \
offsetof(struct mtk_hw_stats, x) / sizeof(u64) }
/* strings used by ethtool */
static const struct mtk_ethtool_stats {
char str[ETH_GSTRING_LEN];
u32 offset;
} mtk_ethtool_stats[] = {
MTK_ETHTOOL_STAT(tx_bytes),
MTK_ETHTOOL_STAT(tx_packets),
MTK_ETHTOOL_STAT(tx_skip),
MTK_ETHTOOL_STAT(tx_collisions),
MTK_ETHTOOL_STAT(rx_bytes),
MTK_ETHTOOL_STAT(rx_packets),
MTK_ETHTOOL_STAT(rx_overflow),
MTK_ETHTOOL_STAT(rx_fcs_errors),
MTK_ETHTOOL_STAT(rx_short_errors),
MTK_ETHTOOL_STAT(rx_long_errors),
MTK_ETHTOOL_STAT(rx_checksum_errors),
MTK_ETHTOOL_STAT(rx_flow_control_packets),
};
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
return __raw_readl(eth->base + reg);
}
static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
return 0;
if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
break;
usleep_range(10, 20);
}
dev_err(eth->dev, "mdio: MDIO timeout\n");
return -1;
}
u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr,
u32 phy_register, u32 write_data)
{
if (mtk_mdio_busy_wait(eth))
return -1;
write_data &= 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
(phy_register << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return -1;
return 0;
}
u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
{
u32 d;
if (mtk_mdio_busy_wait(eth))
return 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
(phy_reg << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return 0xffff;
d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;
return d;
}
static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}
static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_read(eth, phy_addr, phy_reg);
}
static void mtk_phy_link_adjust(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG |
MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN |
MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN |
MAC_MCR_BACKPR_EN;
switch (mac->phy_dev->speed) {
case SPEED_1000:
mcr |= MAC_MCR_SPEED_1000;
break;
case SPEED_100:
mcr |= MAC_MCR_SPEED_100;
break;
};
if (mac->phy_dev->link)
mcr |= MAC_MCR_FORCE_LINK;
if (mac->phy_dev->duplex)
mcr |= MAC_MCR_FORCE_DPX;
if (mac->phy_dev->pause)
mcr |= MAC_MCR_FORCE_RX_FC | MAC_MCR_FORCE_TX_FC;
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
if (mac->phy_dev->link)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
}
static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *phy_node)
{
const __be32 *_addr = NULL;
struct phy_device *phydev;
int phy_mode, addr;
_addr = of_get_property(phy_node, "reg", NULL);
if (!_addr || (be32_to_cpu(*_addr) >= 0x20)) {
pr_err("%s: invalid phy address\n", phy_node->name);
return -EINVAL;
}
addr = be32_to_cpu(*_addr);
phy_mode = of_get_phy_mode(phy_node);
if (phy_mode < 0) {
dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode);
return -EINVAL;
}
phydev = of_phy_connect(eth->netdev[mac->id], phy_node,
mtk_phy_link_adjust, 0, phy_mode);
if (IS_ERR(phydev)) {
dev_err(eth->dev, "could not connect to PHY\n");
return PTR_ERR(phydev);
}
dev_info(eth->dev,
"connected mac %d to PHY at %s [uid=%08x, driver=%s]\n",
mac->id, phydev_name(phydev), phydev->phy_id,
phydev->drv->name);
mac->phy_dev = phydev;
return 0;
}
static int mtk_phy_connect(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
struct device_node *np;
u32 val, ge_mode;
np = of_parse_phandle(mac->of_node, "phy-handle", 0);
if (!np)
return -ENODEV;
switch (of_get_phy_mode(np)) {
case PHY_INTERFACE_MODE_RGMII:
ge_mode = 0;
break;
case PHY_INTERFACE_MODE_MII:
ge_mode = 1;
break;
case PHY_INTERFACE_MODE_RMII:
ge_mode = 2;
break;
default:
dev_err(eth->dev, "invalid phy_mode\n");
return -1;
}
/* put the gmac into the right mode */
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
val |= SYSCFG0_GE_MODE(ge_mode, mac->id);
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
mtk_phy_connect_node(eth, mac, np);
mac->phy_dev->autoneg = AUTONEG_ENABLE;
mac->phy_dev->speed = 0;
mac->phy_dev->duplex = 0;
mac->phy_dev->supported &= PHY_BASIC_FEATURES;
mac->phy_dev->advertising = mac->phy_dev->supported |
ADVERTISED_Autoneg;
phy_start_aneg(mac->phy_dev);
return 0;
}
static int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int err;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
err = 0;
goto err_put_node;
}
eth->mii_bus = mdiobus_alloc();
if (!eth->mii_bus) {
err = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = mtk_mdio_read;
eth->mii_bus->write = mtk_mdio_write;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%s", mii_np->name);
err = of_mdiobus_register(eth->mii_bus, mii_np);
if (err)
goto err_free_bus;
return 0;
err_free_bus:
kfree(eth->mii_bus);
err_put_node:
of_node_put(mii_np);
eth->mii_bus = NULL;
return err;
}
static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
of_node_put(eth->mii_bus->dev.of_node);
kfree(eth->mii_bus);
}
static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask)
{
u32 val;
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val & ~mask, MTK_QDMA_INT_MASK);
/* flush write */
mtk_r32(eth, MTK_QDMA_INT_MASK);
}
static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask)
{
u32 val;
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val | mask, MTK_QDMA_INT_MASK);
/* flush write */
mtk_r32(eth, MTK_QDMA_INT_MASK);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
const char *macaddr = dev->dev_addr;
unsigned long flags;
if (ret)
return ret;
spin_lock_irqsave(&mac->hw->page_lock, flags);
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MTK_GDMA_MAC_ADRH(mac->id));
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA_MAC_ADRL(mac->id));
spin_unlock_irqrestore(&mac->hw->page_lock, flags);
return 0;
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = MTK_GDM1_TX_GBCNT;
u64 stats;
base += hw_stats->reg_offset;
u64_stats_update_begin(&hw_stats->syncp);
hw_stats->rx_bytes += mtk_r32(mac->hw, base);
stats = mtk_r32(mac->hw, base + 0x04);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x24);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
stats = mtk_r32(mac->hw, base + 0x34);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static struct rtnl_link_stats64 *mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int start;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
return storage;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MTK_MAX_RX_LENGTH);
return buf_size;
}
static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd,
struct mtk_rx_dma *dma_rxd)
{
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
dma_addr_t phy_ring_head, phy_ring_tail;
int cnt = MTK_DMA_SIZE;
dma_addr_t dma_addr;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
cnt * sizeof(struct mtk_tx_dma),
&phy_ring_head,
GFP_ATOMIC | __GFP_ZERO);
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE,
GFP_KERNEL);
dma_addr = dma_map_single(eth->dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
phy_ring_tail = phy_ring_head +
(sizeof(struct mtk_tx_dma) * (cnt - 1));
for (i = 0; i < cnt; i++) {
eth->scratch_ring[i].txd1 =
(dma_addr + (i * MTK_QDMA_PAGE_SIZE));
if (i < cnt - 1)
eth->scratch_ring[i].txd2 = (phy_ring_head +
((i + 1) * sizeof(struct mtk_tx_dma)));
eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE);
}
mtk_w32(eth, phy_ring_head, MTK_QDMA_FQ_HEAD);
mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
return 0;
}
static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
void *ret = ring->dma;
return ret + (desc - ring->phys);
}
static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
int idx = txd - ring->dma;
return &ring->buf[idx];
}
static void mtk_tx_unmap(struct device *dev, struct mtk_tx_buf *tx_buf)
{
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
tx_buf->flags = 0;
if (tx_buf->skb &&
(tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_buf *tx_buf;
unsigned long flags;
dma_addr_t mapped_addr;
unsigned int nr_frags;
int i, n_desc = 1;
u32 txd4 = 0;
itxd = ring->next_free;
if (itxd == ring->last_free)
return -ENOMEM;
/* set the forward port */
txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
memset(tx_buf, 0, sizeof(*tx_buf));
if (gso)
txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -ENOMEM;
/* normally we can rely on the stack not calling this more than once,
* however we have 2 queues running ont he same ring so we need to lock
* the ring access
*/
spin_lock_irqsave(&eth->page_lock, flags);
WRITE_ONCE(itxd->txd1, mapped_addr);
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
txd = itxd;
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool last_frag = false;
unsigned int frag_map_size;
txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
if (txd == ring->last_free)
goto err_dma;
n_desc++;
frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
(frag_size - frag_map_size) == 0)
last_frag = true;
WRITE_ONCE(txd->txd1, mapped_addr);
WRITE_ONCE(txd->txd3, (TX_DMA_SWC |
TX_DMA_PLEN0(frag_map_size) |
last_frag * TX_DMA_LS0) |
mac->id);
WRITE_ONCE(txd->txd4, 0);
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
tx_buf = mtk_desc_to_tx_buf(ring, txd);
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
frag_size -= frag_map_size;
offset += frag_map_size;
}
}
/* store skb to cleanup */
tx_buf->skb = skb;
WRITE_ONCE(itxd->txd4, txd4);
WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
(!nr_frags * TX_DMA_LS0)));
spin_unlock_irqrestore(&eth->page_lock, flags);
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
atomic_sub(n_desc, &ring->free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, txd);
/* unmap dma */
mtk_tx_unmap(&dev->dev, tx_buf);
itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
struct skb_frag_struct *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return DIV_ROUND_UP(nfrags, 2);
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
bool gso = false;
int tx_num;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
netif_stop_queue(dev);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
if (unlikely(atomic_read(&ring->free_count) <= ring->thresh)) {
netif_stop_queue(dev);
if (unlikely(atomic_read(&ring->free_count) >
ring->thresh))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
drop:
stats->tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth, u32 rx_intr)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int idx = ring->calc_idx;
struct sk_buff *skb;
u8 *data, *new_data;
struct mtk_rx_dma *rxd, trxd;
int done = 0;
while (done < budget) {
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
int mac = 0;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->dma[idx];
data = ring->data[idx];
mtk_rx_get_desc(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* find out which mac the packet come from. values start at 1 */
mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
RX_DMA_FPORT_MASK;
mac--;
netdev = eth->netdev[mac];
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&eth->netdev[mac]->dev,
new_data + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
skb_free_frag(new_data);
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
put_page(virt_to_head_page(new_data));
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(&netdev->dev, trxd.rxd1,
ring->buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & RX_DMA_L4_VALID)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
napi_gro_receive(napi, skb);
ring->data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size);
ring->calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
mtk_w32(eth, ring->calc_idx, MTK_QRX_CRX_IDX0);
done++;
}
if (done < budget)
mtk_w32(eth, rx_intr, MTK_QMTK_INT_STATUS);
return done;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int total = 0, done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
u32 cpu, dma;
static int condition;
int i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac;
desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
break;
mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
TX_DMA_FPORT_MASK;
mac--;
tx_buf = mtk_desc_to_tx_buf(ring, desc);
skb = tx_buf->skb;
if (!skb) {
condition = 1;
break;
}
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_tx_unmap(eth->dev, tx_buf);
ring->last_free->txd2 = next_cpu;
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = next_cpu;
}
mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] || !done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
/* read hw index again make sure no new tx packet */
if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR))
*tx_again = true;
else
mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS);
if (!total)
return 0;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] ||
unlikely(!netif_queue_stopped(eth->netdev[i])))
continue;
if (atomic_read(&ring->free_count) > ring->thresh)
netif_wake_queue(eth->netdev[i]);
}
return total;
}
static int mtk_poll(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
u32 status, status2, mask, tx_intr, rx_intr, status_intr;
int tx_done, rx_done;
bool tx_again = false;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
status2 = mtk_r32(eth, MTK_INT_STATUS2);
tx_intr = MTK_TX_DONE_INT;
rx_intr = MTK_RX_DONE_INT;
status_intr = (MTK_GDM1_AF | MTK_GDM2_AF);
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (status & tx_intr)
tx_done = mtk_poll_tx(eth, budget, &tx_again);
if (status & rx_intr)
rx_done = mtk_poll_rx(napi, budget, eth, rx_intr);
if (unlikely(status2 & status_intr)) {
mtk_stats_update(eth);
mtk_w32(eth, status_intr, MTK_INT_STATUS2);
}
if (unlikely(netif_msg_intr(eth))) {
mask = mtk_r32(eth, MTK_QDMA_INT_MASK);
netdev_info(eth->netdev[0],
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (tx_again || rx_done == budget)
return budget;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
if (status & (tx_intr | rx_intr))
return budget;
napi_complete(napi);
mtk_irq_enable(eth, tx_intr | rx_intr);
return rx_done;
}
static int mtk_tx_alloc(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = sizeof(*ring->dma);
ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
GFP_KERNEL);
if (!ring->buf)
goto no_tx_mem;
ring->dma = dma_alloc_coherent(eth->dev,
MTK_DMA_SIZE * sz,
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
goto no_tx_mem;
memset(ring->dma, 0, MTK_DMA_SIZE * sz);
for (i = 0; i < MTK_DMA_SIZE; i++) {
int next = (i + 1) % MTK_DMA_SIZE;
u32 next_ptr = ring->phys + next * sz;
ring->dma[i].txd2 = next_ptr;
ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
}
atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
ring->next_free = &ring->dma[0];
ring->last_free = &ring->dma[MTK_DMA_SIZE - 2];
ring->thresh = max((unsigned long)MTK_DMA_SIZE >> 2,
MAX_SKB_FRAGS);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR);
mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_CRX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_DRX_PTR);
return 0;
no_tx_mem:
return -ENOMEM;
}
static void mtk_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->buf) {
for (i = 0; i < MTK_DMA_SIZE; i++)
mtk_tx_unmap(eth->dev, &ring->buf[i]);
kfree(ring->buf);
ring->buf = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_rx_alloc(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int i;
ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
ring->buf_size = mtk_max_buf_size(ring->frag_size);
ring->data = kcalloc(MTK_DMA_SIZE, sizeof(*ring->data),
GFP_KERNEL);
if (!ring->data)
return -ENOMEM;
for (i = 0; i < MTK_DMA_SIZE; i++) {
ring->data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->data[i])
return -ENOMEM;
}
ring->dma = dma_alloc_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < MTK_DMA_SIZE; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
ring->data[i] + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
ring->dma[i].rxd1 = (unsigned int)dma_addr;
ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size);
}
ring->calc_idx = MTK_DMA_SIZE - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, eth->rx_ring.phys, MTK_QRX_BASE_PTR0);
mtk_w32(eth, MTK_DMA_SIZE, MTK_QRX_MAX_CNT0);
mtk_w32(eth, eth->rx_ring.calc_idx, MTK_QRX_CRX_IDX0);
mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
return 0;
}
static void mtk_rx_clean(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int i;
if (ring->data && ring->dma) {
for (i = 0; i < MTK_DMA_SIZE; i++) {
if (!ring->data[i])
continue;
if (!ring->dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
ring->dma[i].rxd1,
ring->buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->data[i]);
}
kfree(ring->data);
ring->data = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
/* wait for DMA to finish whatever it is doing before we start using it again */
static int mtk_dma_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) &
(MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
return 0;
if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT))
break;
}
dev_err(eth->dev, "DMA init timeout\n");
return -1;
}
static int mtk_dma_init(struct mtk_eth *eth)
{
int err;
if (mtk_dma_busy_wait(eth))
return -EBUSY;
/* QDMA needs scratch memory for internal reordering of the
* descriptors
*/
err = mtk_init_fq_dma(eth);
if (err)
return err;
err = mtk_tx_alloc(eth);
if (err)
return err;
err = mtk_rx_alloc(eth);
if (err)
return err;
/* Enable random early drop and set drop threshold automatically */
mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN,
MTK_QDMA_FC_THRES);
mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
mtk_tx_clean(eth);
mtk_rx_clean(eth);
kfree(eth->scratch_head);
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
schedule_work(&mac->pending_work);
}
static irqreturn_t mtk_handle_irq(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
u32 status;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
if (likely(status & (MTK_RX_DONE_INT | MTK_TX_DONE_INT))) {
if (likely(napi_schedule_prep(&eth->rx_napi)))
__napi_schedule(&eth->rx_napi);
} else {
mtk_w32(eth, status, MTK_QMTK_INT_STATUS);
}
mtk_irq_disable(eth, (MTK_RX_DONE_INT | MTK_TX_DONE_INT));
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 int_mask = MTK_TX_DONE_INT | MTK_RX_DONE_INT;
mtk_irq_disable(eth, int_mask);
mtk_handle_irq(dev->irq, dev);
mtk_irq_enable(eth, int_mask);
}
#endif
static int mtk_start_dma(struct mtk_eth *eth)
{
int err;
err = mtk_dma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
mtk_w32(eth,
MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN |
MTK_RX_2B_OFFSET | MTK_DMA_SIZE_16DWORDS |
MTK_RX_BT_32DWORDS,
MTK_QDMA_GLO_CFG);
return 0;
}
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
/* we run 2 netdevs on the same dma ring so we only bring it up once */
if (!atomic_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
napi_enable(&eth->rx_napi);
mtk_irq_enable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT);
}
atomic_inc(&eth->dma_refcnt);
phy_start(mac->phy_dev);
netif_start_queue(dev);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
unsigned long flags;
u32 val;
int i;
/* stop the dma engine */
spin_lock_irqsave(&eth->page_lock, flags);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_irqrestore(&eth->page_lock, flags);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
netif_tx_disable(dev);
phy_stop(mac->phy_dev);
/* only shutdown DMA if this is the last user */
if (!atomic_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_irq_disable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT);
napi_disable(&eth->rx_napi);
mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
mtk_dma_free(eth);
return 0;
}
static int __init mtk_hw_init(struct mtk_eth *eth)
{
int err, i;
/* reset the frame engine */
reset_control_assert(eth->rstc);
usleep_range(10, 20);
reset_control_deassert(eth->rstc);
usleep_range(10, 20);
/* Set GE2 driving and slew rate */
regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00);
/* set GE2 TDSEL */
regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5);
/* set GE2 TUNE */
regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0);
/* GE1, Force 1000M/FD, FC ON */
mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(0));
/* GE2, Force 1000M/FD, FC ON */
mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(1));
/* Enable RX VLan Offloading */
mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);
err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0,
dev_name(eth->dev), eth);
if (err)
return err;
err = mtk_mdio_init(eth);
if (err)
return err;
/* disable delay and normal interrupt */
mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
mtk_irq_disable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT);
mtk_w32(eth, RST_GL_PSE, MTK_RST_GL);
mtk_w32(eth, 0, MTK_RST_GL);
/* FE int grouping */
mtk_w32(eth, 0, MTK_FE_INT_GRP);
for (i = 0; i < 2; i++) {
u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i));
/* setup the forward port to send frame to QDMA */
val &= ~0xffff;
val |= 0x5555;
/* Enable RX checksum */
val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN;
/* setup the mac dma */
mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i));
}
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *mac_addr;
mac_addr = of_get_mac_address(mac->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
random_ether_addr(dev->dev_addr);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
dev->addr_assign_type = NET_ADDR_RANDOM;
}
return mtk_phy_connect(mac);
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
phy_disconnect(mac->phy_dev);
mtk_mdio_cleanup(eth);
mtk_irq_disable(eth, ~0);
free_irq(dev->irq, dev);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_mac *mac = container_of(work, struct mtk_mac, pending_work);
struct mtk_eth *eth = mac->hw;
struct net_device *dev = eth->netdev[mac->id];
int err;
rtnl_lock();
mtk_stop(dev);
err = mtk_open(dev);
if (err) {
netif_alert(eth, ifup, dev,
"Driver up/down cycle failed, closing device.\n");
dev_close(dev);
}
rtnl_unlock();
}
static int mtk_cleanup(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
struct mtk_mac *mac = netdev_priv(eth->netdev[i]);
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
free_netdev(eth->netdev[i]);
cancel_work_sync(&mac->pending_work);
}
return 0;
}
static int mtk_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
err = phy_read_status(mac->phy_dev);
if (err)
return -ENODEV;
return phy_ethtool_gset(mac->phy_dev, cmd);
}
static int mtk_set_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
if (cmd->phy_address != mac->phy_dev->mdio.addr) {
mac->phy_dev = mdiobus_get_phy(mac->hw->mii_bus,
cmd->phy_address);
if (!mac->phy_dev)
return -ENODEV;
}
return phy_ethtool_sset(mac->phy_dev, cmd);
}
static void mtk_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct mtk_mac *mac = netdev_priv(dev);
strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
info->n_stats = ARRAY_SIZE(mtk_ethtool_stats);
}
static u32 mtk_get_msglevel(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return mac->hw->msg_enable;
}
static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
struct mtk_mac *mac = netdev_priv(dev);
mac->hw->msg_enable = value;
}
static int mtk_nway_reset(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return genphy_restart_aneg(mac->phy_dev);
}
static u32 mtk_get_link(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
err = genphy_update_link(mac->phy_dev);
if (err)
return ethtool_op_get_link(dev);
return mac->phy_dev->link;
}
static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) {
memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int mtk_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(mtk_ethtool_stats);
default:
return -EOPNOTSUPP;
}
}
static void mtk_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hwstats = mac->hw_stats;
u64 *data_src, *data_dst;
unsigned int start;
int i;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hwstats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hwstats->stats_lock);
}
}
do {
data_src = (u64*)hwstats;
data_dst = data;
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++)
*data_dst++ = *(data_src + mtk_ethtool_stats[i].offset);
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}
static struct ethtool_ops mtk_ethtool_ops = {
.get_settings = mtk_get_settings,
.set_settings = mtk_set_settings,
.get_drvinfo = mtk_get_drvinfo,
.get_msglevel = mtk_get_msglevel,
.set_msglevel = mtk_set_msglevel,
.nway_reset = mtk_nway_reset,
.get_link = mtk_get_link,
.get_strings = mtk_get_strings,
.get_sset_count = mtk_get_sset_count,
.get_ethtool_stats = mtk_get_ethtool_stats,
};
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
struct mtk_mac *mac;
const __be32 *_id = of_get_property(np, "reg", NULL);
int id, err;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id >= MTK_MAC_COUNT) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
if (eth->netdev[id]) {
dev_err(eth->dev, "duplicate mac id found: %d\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
INIT_WORK(&mac->pending_work, mtk_pending_work);
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
dev_err(eth->dev, "failed to allocate counter memory\n");
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
eth->netdev[id]->vlan_features = MTK_HW_FEATURES &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= MTK_HW_FEATURES;
eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops;
err = register_netdev(eth->netdev[id]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
goto free_netdev;
}
eth->netdev[id]->irq = eth->irq;
netif_info(eth, probe, eth->netdev[id],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[id]->base_addr, eth->netdev[id]->irq);
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
static int mtk_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct device_node *mac_np;
const struct of_device_id *match;
struct mtk_soc_data *soc;
struct mtk_eth *eth;
int err;
device_reset(&pdev->dev);
match = of_match_device(of_mtk_match, &pdev->dev);
soc = (struct mtk_soc_data *)match->data;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->base = devm_ioremap_resource(&pdev->dev, res);
if (!eth->base)
return -EADDRNOTAVAIL;
spin_lock_init(&eth->page_lock);
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys)) {
dev_err(&pdev->dev, "no ethsys regmap found\n");
return PTR_ERR(eth->ethsys);
}
eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,pctl");
if (IS_ERR(eth->pctl)) {
dev_err(&pdev->dev, "no pctl regmap found\n");
return PTR_ERR(eth->pctl);
}
eth->rstc = devm_reset_control_get(&pdev->dev, "eth");
if (IS_ERR(eth->rstc)) {
dev_err(&pdev->dev, "no eth reset found\n");
return PTR_ERR(eth->rstc);
}
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
return -ENXIO;
}
eth->clk_ethif = devm_clk_get(&pdev->dev, "ethif");
eth->clk_esw = devm_clk_get(&pdev->dev, "esw");
eth->clk_gp1 = devm_clk_get(&pdev->dev, "gp1");
eth->clk_gp2 = devm_clk_get(&pdev->dev, "gp2");
if (IS_ERR(eth->clk_esw) || IS_ERR(eth->clk_gp1) ||
IS_ERR(eth->clk_gp2) || IS_ERR(eth->clk_ethif))
return -ENODEV;
clk_prepare_enable(eth->clk_ethif);
clk_prepare_enable(eth->clk_esw);
clk_prepare_enable(eth->clk_gp1);
clk_prepare_enable(eth->clk_gp2);
eth->dev = &pdev->dev;
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
err = mtk_hw_init(eth);
if (err)
return err;
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err)
goto err_free_dev;
}
/* we run 2 devices on the same DMA ring so we need a dummy device
* for NAPI to work
*/
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_poll,
MTK_NAPI_WEIGHT);
platform_set_drvdata(pdev, eth);
return 0;
err_free_dev:
mtk_cleanup(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
clk_disable_unprepare(eth->clk_ethif);
clk_disable_unprepare(eth->clk_esw);
clk_disable_unprepare(eth->clk_gp1);
clk_disable_unprepare(eth->clk_gp2);
netif_napi_del(&eth->rx_napi);
mtk_cleanup(eth);
platform_set_drvdata(pdev, NULL);
return 0;
}
const struct of_device_id of_mtk_match[] = {
{ .compatible = "mediatek,mt7623-eth" },
{},
};
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");