| /* Integer base 2 logarithm calculation |
| * |
| * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #ifndef _LINUX_LOG2_H |
| #define _LINUX_LOG2_H |
| |
| #include <linux/types.h> |
| #include <linux/bitops.h> |
| |
| /* |
| * deal with unrepresentable constant logarithms |
| */ |
| extern __attribute__((const, noreturn)) |
| int ____ilog2_NaN(void); |
| |
| /* |
| * non-constant log of base 2 calculators |
| * - the arch may override these in asm/bitops.h if they can be implemented |
| * more efficiently than using fls() and fls64() |
| * - the arch is not required to handle n==0 if implementing the fallback |
| */ |
| #ifndef CONFIG_ARCH_HAS_ILOG2_U32 |
| static inline __attribute__((const)) |
| int __ilog2_u32(u32 n) |
| { |
| return fls(n) - 1; |
| } |
| #endif |
| |
| #ifndef CONFIG_ARCH_HAS_ILOG2_U64 |
| static inline __attribute__((const)) |
| int __ilog2_u64(u64 n) |
| { |
| return fls64(n) - 1; |
| } |
| #endif |
| |
| /* |
| * Determine whether some value is a power of two, where zero is |
| * *not* considered a power of two. |
| */ |
| |
| static inline __attribute__((const)) |
| bool is_power_of_2(unsigned long n) |
| { |
| return (n != 0 && ((n & (n - 1)) == 0)); |
| } |
| |
| /* |
| * round up to nearest power of two |
| */ |
| static inline __attribute__((const)) |
| unsigned long __roundup_pow_of_two(unsigned long n) |
| { |
| return 1UL << fls_long(n - 1); |
| } |
| |
| /* |
| * round down to nearest power of two |
| */ |
| static inline __attribute__((const)) |
| unsigned long __rounddown_pow_of_two(unsigned long n) |
| { |
| return 1UL << (fls_long(n) - 1); |
| } |
| |
| /** |
| * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value |
| * @n - parameter |
| * |
| * constant-capable log of base 2 calculation |
| * - this can be used to initialise global variables from constant data, hence |
| * the massive ternary operator construction |
| * |
| * selects the appropriately-sized optimised version depending on sizeof(n) |
| */ |
| #define ilog2(n) \ |
| ( \ |
| __builtin_constant_p(n) ? ( \ |
| (n) < 1 ? ____ilog2_NaN() : \ |
| (n) & (1ULL << 63) ? 63 : \ |
| (n) & (1ULL << 62) ? 62 : \ |
| (n) & (1ULL << 61) ? 61 : \ |
| (n) & (1ULL << 60) ? 60 : \ |
| (n) & (1ULL << 59) ? 59 : \ |
| (n) & (1ULL << 58) ? 58 : \ |
| (n) & (1ULL << 57) ? 57 : \ |
| (n) & (1ULL << 56) ? 56 : \ |
| (n) & (1ULL << 55) ? 55 : \ |
| (n) & (1ULL << 54) ? 54 : \ |
| (n) & (1ULL << 53) ? 53 : \ |
| (n) & (1ULL << 52) ? 52 : \ |
| (n) & (1ULL << 51) ? 51 : \ |
| (n) & (1ULL << 50) ? 50 : \ |
| (n) & (1ULL << 49) ? 49 : \ |
| (n) & (1ULL << 48) ? 48 : \ |
| (n) & (1ULL << 47) ? 47 : \ |
| (n) & (1ULL << 46) ? 46 : \ |
| (n) & (1ULL << 45) ? 45 : \ |
| (n) & (1ULL << 44) ? 44 : \ |
| (n) & (1ULL << 43) ? 43 : \ |
| (n) & (1ULL << 42) ? 42 : \ |
| (n) & (1ULL << 41) ? 41 : \ |
| (n) & (1ULL << 40) ? 40 : \ |
| (n) & (1ULL << 39) ? 39 : \ |
| (n) & (1ULL << 38) ? 38 : \ |
| (n) & (1ULL << 37) ? 37 : \ |
| (n) & (1ULL << 36) ? 36 : \ |
| (n) & (1ULL << 35) ? 35 : \ |
| (n) & (1ULL << 34) ? 34 : \ |
| (n) & (1ULL << 33) ? 33 : \ |
| (n) & (1ULL << 32) ? 32 : \ |
| (n) & (1ULL << 31) ? 31 : \ |
| (n) & (1ULL << 30) ? 30 : \ |
| (n) & (1ULL << 29) ? 29 : \ |
| (n) & (1ULL << 28) ? 28 : \ |
| (n) & (1ULL << 27) ? 27 : \ |
| (n) & (1ULL << 26) ? 26 : \ |
| (n) & (1ULL << 25) ? 25 : \ |
| (n) & (1ULL << 24) ? 24 : \ |
| (n) & (1ULL << 23) ? 23 : \ |
| (n) & (1ULL << 22) ? 22 : \ |
| (n) & (1ULL << 21) ? 21 : \ |
| (n) & (1ULL << 20) ? 20 : \ |
| (n) & (1ULL << 19) ? 19 : \ |
| (n) & (1ULL << 18) ? 18 : \ |
| (n) & (1ULL << 17) ? 17 : \ |
| (n) & (1ULL << 16) ? 16 : \ |
| (n) & (1ULL << 15) ? 15 : \ |
| (n) & (1ULL << 14) ? 14 : \ |
| (n) & (1ULL << 13) ? 13 : \ |
| (n) & (1ULL << 12) ? 12 : \ |
| (n) & (1ULL << 11) ? 11 : \ |
| (n) & (1ULL << 10) ? 10 : \ |
| (n) & (1ULL << 9) ? 9 : \ |
| (n) & (1ULL << 8) ? 8 : \ |
| (n) & (1ULL << 7) ? 7 : \ |
| (n) & (1ULL << 6) ? 6 : \ |
| (n) & (1ULL << 5) ? 5 : \ |
| (n) & (1ULL << 4) ? 4 : \ |
| (n) & (1ULL << 3) ? 3 : \ |
| (n) & (1ULL << 2) ? 2 : \ |
| (n) & (1ULL << 1) ? 1 : \ |
| (n) & (1ULL << 0) ? 0 : \ |
| ____ilog2_NaN() \ |
| ) : \ |
| (sizeof(n) <= 4) ? \ |
| __ilog2_u32(n) : \ |
| __ilog2_u64(n) \ |
| ) |
| |
| /** |
| * roundup_pow_of_two - round the given value up to nearest power of two |
| * @n - parameter |
| * |
| * round the given value up to the nearest power of two |
| * - the result is undefined when n == 0 |
| * - this can be used to initialise global variables from constant data |
| */ |
| #define roundup_pow_of_two(n) \ |
| ( \ |
| __builtin_constant_p(n) ? ( \ |
| (n == 1) ? 1 : \ |
| (1UL << (ilog2((n) - 1) + 1)) \ |
| ) : \ |
| __roundup_pow_of_two(n) \ |
| ) |
| |
| /** |
| * rounddown_pow_of_two - round the given value down to nearest power of two |
| * @n - parameter |
| * |
| * round the given value down to the nearest power of two |
| * - the result is undefined when n == 0 |
| * - this can be used to initialise global variables from constant data |
| */ |
| #define rounddown_pow_of_two(n) \ |
| ( \ |
| __builtin_constant_p(n) ? ( \ |
| (1UL << ilog2(n))) : \ |
| __rounddown_pow_of_two(n) \ |
| ) |
| |
| /** |
| * order_base_2 - calculate the (rounded up) base 2 order of the argument |
| * @n: parameter |
| * |
| * The first few values calculated by this routine: |
| * ob2(0) = 0 |
| * ob2(1) = 0 |
| * ob2(2) = 1 |
| * ob2(3) = 2 |
| * ob2(4) = 2 |
| * ob2(5) = 3 |
| * ... and so on. |
| */ |
| |
| static inline __attribute_const__ |
| int __order_base_2(unsigned long n) |
| { |
| return n > 1 ? ilog2(n - 1) + 1 : 0; |
| } |
| |
| #define order_base_2(n) \ |
| ( \ |
| __builtin_constant_p(n) ? ( \ |
| ((n) == 0 || (n) == 1) ? 0 : \ |
| ilog2((n) - 1) + 1) : \ |
| __order_base_2(n) \ |
| ) |
| #endif /* _LINUX_LOG2_H */ |