| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| * so the code in this file is compiled twice, once per pte size. |
| */ |
| |
| #if PTTYPE == 64 |
| #define pt_element_t u64 |
| #define guest_walker guest_walker64 |
| #define FNAME(name) paging##64_##name |
| #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK |
| #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) |
| #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| #ifdef CONFIG_X86_64 |
| #define PT_MAX_FULL_LEVELS 4 |
| #define CMPXCHG cmpxchg |
| #else |
| #define CMPXCHG cmpxchg64 |
| #define PT_MAX_FULL_LEVELS 2 |
| #endif |
| #elif PTTYPE == 32 |
| #define pt_element_t u32 |
| #define guest_walker guest_walker32 |
| #define FNAME(name) paging##32_##name |
| #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK |
| #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) |
| #define PT_LEVEL_BITS PT32_LEVEL_BITS |
| #define PT_MAX_FULL_LEVELS 2 |
| #define CMPXCHG cmpxchg |
| #else |
| #error Invalid PTTYPE value |
| #endif |
| |
| #define gpte_to_gfn FNAME(gpte_to_gfn) |
| #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde) |
| |
| /* |
| * The guest_walker structure emulates the behavior of the hardware page |
| * table walker. |
| */ |
| struct guest_walker { |
| int level; |
| gfn_t table_gfn[PT_MAX_FULL_LEVELS]; |
| pt_element_t ptes[PT_MAX_FULL_LEVELS]; |
| gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; |
| unsigned pt_access; |
| unsigned pte_access; |
| gfn_t gfn; |
| u32 error_code; |
| }; |
| |
| static gfn_t gpte_to_gfn(pt_element_t gpte) |
| { |
| return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| } |
| |
| static gfn_t gpte_to_gfn_pde(pt_element_t gpte) |
| { |
| return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| } |
| |
| static bool FNAME(cmpxchg_gpte)(struct kvm *kvm, |
| gfn_t table_gfn, unsigned index, |
| pt_element_t orig_pte, pt_element_t new_pte) |
| { |
| pt_element_t ret; |
| pt_element_t *table; |
| struct page *page; |
| |
| page = gfn_to_page(kvm, table_gfn); |
| table = kmap_atomic(page, KM_USER0); |
| |
| ret = CMPXCHG(&table[index], orig_pte, new_pte); |
| |
| kunmap_atomic(table, KM_USER0); |
| |
| kvm_release_page_dirty(page); |
| |
| return (ret != orig_pte); |
| } |
| |
| static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte) |
| { |
| unsigned access; |
| |
| access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; |
| #if PTTYPE == 64 |
| if (is_nx(vcpu)) |
| access &= ~(gpte >> PT64_NX_SHIFT); |
| #endif |
| return access; |
| } |
| |
| /* |
| * Fetch a guest pte for a guest virtual address |
| */ |
| static int FNAME(walk_addr)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, gva_t addr, |
| int write_fault, int user_fault, int fetch_fault) |
| { |
| pt_element_t pte; |
| gfn_t table_gfn; |
| unsigned index, pt_access, pte_access; |
| gpa_t pte_gpa; |
| |
| pgprintk("%s: addr %lx\n", __FUNCTION__, addr); |
| walk: |
| walker->level = vcpu->arch.mmu.root_level; |
| pte = vcpu->arch.cr3; |
| #if PTTYPE == 64 |
| if (!is_long_mode(vcpu)) { |
| pte = vcpu->arch.pdptrs[(addr >> 30) & 3]; |
| if (!is_present_pte(pte)) |
| goto not_present; |
| --walker->level; |
| } |
| #endif |
| ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || |
| (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0); |
| |
| pt_access = ACC_ALL; |
| |
| for (;;) { |
| index = PT_INDEX(addr, walker->level); |
| |
| table_gfn = gpte_to_gfn(pte); |
| pte_gpa = gfn_to_gpa(table_gfn); |
| pte_gpa += index * sizeof(pt_element_t); |
| walker->table_gfn[walker->level - 1] = table_gfn; |
| walker->pte_gpa[walker->level - 1] = pte_gpa; |
| pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__, |
| walker->level - 1, table_gfn); |
| |
| kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte)); |
| |
| if (!is_present_pte(pte)) |
| goto not_present; |
| |
| if (write_fault && !is_writeble_pte(pte)) |
| if (user_fault || is_write_protection(vcpu)) |
| goto access_error; |
| |
| if (user_fault && !(pte & PT_USER_MASK)) |
| goto access_error; |
| |
| #if PTTYPE == 64 |
| if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK)) |
| goto access_error; |
| #endif |
| |
| if (!(pte & PT_ACCESSED_MASK)) { |
| mark_page_dirty(vcpu->kvm, table_gfn); |
| if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, |
| index, pte, pte|PT_ACCESSED_MASK)) |
| goto walk; |
| pte |= PT_ACCESSED_MASK; |
| } |
| |
| pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); |
| |
| walker->ptes[walker->level - 1] = pte; |
| |
| if (walker->level == PT_PAGE_TABLE_LEVEL) { |
| walker->gfn = gpte_to_gfn(pte); |
| break; |
| } |
| |
| if (walker->level == PT_DIRECTORY_LEVEL |
| && (pte & PT_PAGE_SIZE_MASK) |
| && (PTTYPE == 64 || is_pse(vcpu))) { |
| walker->gfn = gpte_to_gfn_pde(pte); |
| walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL); |
| if (PTTYPE == 32 && is_cpuid_PSE36()) |
| walker->gfn += pse36_gfn_delta(pte); |
| break; |
| } |
| |
| pt_access = pte_access; |
| --walker->level; |
| } |
| |
| if (write_fault && !is_dirty_pte(pte)) { |
| bool ret; |
| |
| mark_page_dirty(vcpu->kvm, table_gfn); |
| ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte, |
| pte|PT_DIRTY_MASK); |
| if (ret) |
| goto walk; |
| pte |= PT_DIRTY_MASK; |
| kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte)); |
| walker->ptes[walker->level - 1] = pte; |
| } |
| |
| walker->pt_access = pt_access; |
| walker->pte_access = pte_access; |
| pgprintk("%s: pte %llx pte_access %x pt_access %x\n", |
| __FUNCTION__, (u64)pte, pt_access, pte_access); |
| return 1; |
| |
| not_present: |
| walker->error_code = 0; |
| goto err; |
| |
| access_error: |
| walker->error_code = PFERR_PRESENT_MASK; |
| |
| err: |
| if (write_fault) |
| walker->error_code |= PFERR_WRITE_MASK; |
| if (user_fault) |
| walker->error_code |= PFERR_USER_MASK; |
| if (fetch_fault) |
| walker->error_code |= PFERR_FETCH_MASK; |
| return 0; |
| } |
| |
| static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, |
| u64 *spte, const void *pte, int bytes, |
| int offset_in_pte) |
| { |
| pt_element_t gpte; |
| unsigned pte_access; |
| struct page *npage; |
| |
| gpte = *(const pt_element_t *)pte; |
| if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) { |
| if (!offset_in_pte && !is_present_pte(gpte)) |
| set_shadow_pte(spte, shadow_notrap_nonpresent_pte); |
| return; |
| } |
| if (bytes < sizeof(pt_element_t)) |
| return; |
| pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte); |
| pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte); |
| if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn) |
| return; |
| npage = vcpu->arch.update_pte.page; |
| if (!npage) |
| return; |
| get_page(npage); |
| mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0, |
| gpte & PT_DIRTY_MASK, NULL, gpte_to_gfn(gpte), npage); |
| } |
| |
| /* |
| * Fetch a shadow pte for a specific level in the paging hierarchy. |
| */ |
| static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, |
| struct guest_walker *walker, |
| int user_fault, int write_fault, int *ptwrite, |
| struct page *page) |
| { |
| hpa_t shadow_addr; |
| int level; |
| u64 *shadow_ent; |
| unsigned access = walker->pt_access; |
| |
| if (!is_present_pte(walker->ptes[walker->level - 1])) |
| return NULL; |
| |
| shadow_addr = vcpu->arch.mmu.root_hpa; |
| level = vcpu->arch.mmu.shadow_root_level; |
| if (level == PT32E_ROOT_LEVEL) { |
| shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; |
| shadow_addr &= PT64_BASE_ADDR_MASK; |
| --level; |
| } |
| |
| for (; ; level--) { |
| u32 index = SHADOW_PT_INDEX(addr, level); |
| struct kvm_mmu_page *shadow_page; |
| u64 shadow_pte; |
| int metaphysical; |
| gfn_t table_gfn; |
| bool new_page = 0; |
| |
| shadow_ent = ((u64 *)__va(shadow_addr)) + index; |
| if (is_shadow_present_pte(*shadow_ent)) { |
| if (level == PT_PAGE_TABLE_LEVEL) |
| break; |
| shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; |
| continue; |
| } |
| |
| if (level == PT_PAGE_TABLE_LEVEL) |
| break; |
| |
| if (level - 1 == PT_PAGE_TABLE_LEVEL |
| && walker->level == PT_DIRECTORY_LEVEL) { |
| metaphysical = 1; |
| if (!is_dirty_pte(walker->ptes[level - 1])) |
| access &= ~ACC_WRITE_MASK; |
| table_gfn = gpte_to_gfn(walker->ptes[level - 1]); |
| } else { |
| metaphysical = 0; |
| table_gfn = walker->table_gfn[level - 2]; |
| } |
| shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1, |
| metaphysical, access, |
| shadow_ent, &new_page); |
| if (new_page && !metaphysical) { |
| int r; |
| pt_element_t curr_pte; |
| r = kvm_read_guest_atomic(vcpu->kvm, |
| walker->pte_gpa[level - 2], |
| &curr_pte, sizeof(curr_pte)); |
| if (r || curr_pte != walker->ptes[level - 2]) { |
| kvm_release_page_clean(page); |
| return NULL; |
| } |
| } |
| shadow_addr = __pa(shadow_page->spt); |
| shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK |
| | PT_WRITABLE_MASK | PT_USER_MASK; |
| *shadow_ent = shadow_pte; |
| } |
| |
| mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access, |
| user_fault, write_fault, |
| walker->ptes[walker->level-1] & PT_DIRTY_MASK, |
| ptwrite, walker->gfn, page); |
| |
| return shadow_ent; |
| } |
| |
| /* |
| * Page fault handler. There are several causes for a page fault: |
| * - there is no shadow pte for the guest pte |
| * - write access through a shadow pte marked read only so that we can set |
| * the dirty bit |
| * - write access to a shadow pte marked read only so we can update the page |
| * dirty bitmap, when userspace requests it |
| * - mmio access; in this case we will never install a present shadow pte |
| * - normal guest page fault due to the guest pte marked not present, not |
| * writable, or not executable |
| * |
| * Returns: 1 if we need to emulate the instruction, 0 otherwise, or |
| * a negative value on error. |
| */ |
| static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, |
| u32 error_code) |
| { |
| int write_fault = error_code & PFERR_WRITE_MASK; |
| int user_fault = error_code & PFERR_USER_MASK; |
| int fetch_fault = error_code & PFERR_FETCH_MASK; |
| struct guest_walker walker; |
| u64 *shadow_pte; |
| int write_pt = 0; |
| int r; |
| struct page *page; |
| |
| pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code); |
| kvm_mmu_audit(vcpu, "pre page fault"); |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| down_read(¤t->mm->mmap_sem); |
| /* |
| * Look up the shadow pte for the faulting address. |
| */ |
| r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault, |
| fetch_fault); |
| |
| /* |
| * The page is not mapped by the guest. Let the guest handle it. |
| */ |
| if (!r) { |
| pgprintk("%s: guest page fault\n", __FUNCTION__); |
| inject_page_fault(vcpu, addr, walker.error_code); |
| vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ |
| up_read(¤t->mm->mmap_sem); |
| return 0; |
| } |
| |
| page = gfn_to_page(vcpu->kvm, walker.gfn); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, |
| &write_pt, page); |
| pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__, |
| shadow_pte, *shadow_pte, write_pt); |
| |
| if (!write_pt) |
| vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ |
| |
| /* |
| * mmio: emulate if accessible, otherwise its a guest fault. |
| */ |
| if (shadow_pte && is_io_pte(*shadow_pte)) { |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| up_read(¤t->mm->mmap_sem); |
| return 1; |
| } |
| |
| ++vcpu->stat.pf_fixed; |
| kvm_mmu_audit(vcpu, "post page fault (fixed)"); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| up_read(¤t->mm->mmap_sem); |
| |
| return write_pt; |
| } |
| |
| static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr) |
| { |
| struct guest_walker walker; |
| gpa_t gpa = UNMAPPED_GVA; |
| int r; |
| |
| r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0); |
| |
| if (r) { |
| gpa = gfn_to_gpa(walker.gfn); |
| gpa |= vaddr & ~PAGE_MASK; |
| } |
| |
| return gpa; |
| } |
| |
| static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp) |
| { |
| int i, offset = 0, r = 0; |
| pt_element_t pt; |
| |
| if (sp->role.metaphysical |
| || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) { |
| nonpaging_prefetch_page(vcpu, sp); |
| return; |
| } |
| |
| if (PTTYPE == 32) |
| offset = sp->role.quadrant << PT64_LEVEL_BITS; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| gpa_t pte_gpa = gfn_to_gpa(sp->gfn); |
| pte_gpa += (i+offset) * sizeof(pt_element_t); |
| |
| r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &pt, |
| sizeof(pt_element_t)); |
| if (r || is_present_pte(pt)) |
| sp->spt[i] = shadow_trap_nonpresent_pte; |
| else |
| sp->spt[i] = shadow_notrap_nonpresent_pte; |
| } |
| } |
| |
| #undef pt_element_t |
| #undef guest_walker |
| #undef FNAME |
| #undef PT_BASE_ADDR_MASK |
| #undef PT_INDEX |
| #undef SHADOW_PT_INDEX |
| #undef PT_LEVEL_MASK |
| #undef PT_DIR_BASE_ADDR_MASK |
| #undef PT_LEVEL_BITS |
| #undef PT_MAX_FULL_LEVELS |
| #undef gpte_to_gfn |
| #undef gpte_to_gfn_pde |
| #undef CMPXCHG |