| /* Generic MTRR (Memory Type Range Register) driver. |
| |
| Copyright (C) 1997-2000 Richard Gooch |
| Copyright (c) 2002 Patrick Mochel |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Library General Public |
| License as published by the Free Software Foundation; either |
| version 2 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Library General Public License for more details. |
| |
| You should have received a copy of the GNU Library General Public |
| License along with this library; if not, write to the Free |
| Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| Richard Gooch may be reached by email at rgooch@atnf.csiro.au |
| The postal address is: |
| Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia. |
| |
| Source: "Pentium Pro Family Developer's Manual, Volume 3: |
| Operating System Writer's Guide" (Intel document number 242692), |
| section 11.11.7 |
| |
| This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> |
| on 6-7 March 2002. |
| Source: Intel Architecture Software Developers Manual, Volume 3: |
| System Programming Guide; Section 9.11. (1997 edition - PPro). |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/mutex.h> |
| #include <linux/sort.h> |
| |
| #include <asm/e820.h> |
| #include <asm/mtrr.h> |
| #include <asm/uaccess.h> |
| #include <asm/processor.h> |
| #include <asm/msr.h> |
| #include <asm/kvm_para.h> |
| #include "mtrr.h" |
| |
| u32 num_var_ranges = 0; |
| |
| unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES]; |
| static DEFINE_MUTEX(mtrr_mutex); |
| |
| u64 size_or_mask, size_and_mask; |
| |
| static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {}; |
| |
| struct mtrr_ops * mtrr_if = NULL; |
| |
| static void set_mtrr(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type); |
| |
| void set_mtrr_ops(struct mtrr_ops * ops) |
| { |
| if (ops->vendor && ops->vendor < X86_VENDOR_NUM) |
| mtrr_ops[ops->vendor] = ops; |
| } |
| |
| /* Returns non-zero if we have the write-combining memory type */ |
| static int have_wrcomb(void) |
| { |
| struct pci_dev *dev; |
| u8 rev; |
| |
| if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) { |
| /* ServerWorks LE chipsets < rev 6 have problems with write-combining |
| Don't allow it and leave room for other chipsets to be tagged */ |
| if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS && |
| dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) { |
| pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev); |
| if (rev <= 5) { |
| printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n"); |
| pci_dev_put(dev); |
| return 0; |
| } |
| } |
| /* Intel 450NX errata # 23. Non ascending cacheline evictions to |
| write combining memory may resulting in data corruption */ |
| if (dev->vendor == PCI_VENDOR_ID_INTEL && |
| dev->device == PCI_DEVICE_ID_INTEL_82451NX) { |
| printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n"); |
| pci_dev_put(dev); |
| return 0; |
| } |
| pci_dev_put(dev); |
| } |
| return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0); |
| } |
| |
| /* This function returns the number of variable MTRRs */ |
| static void __init set_num_var_ranges(void) |
| { |
| unsigned long config = 0, dummy; |
| |
| if (use_intel()) { |
| rdmsr(MTRRcap_MSR, config, dummy); |
| } else if (is_cpu(AMD)) |
| config = 2; |
| else if (is_cpu(CYRIX) || is_cpu(CENTAUR)) |
| config = 8; |
| num_var_ranges = config & 0xff; |
| } |
| |
| static void __init init_table(void) |
| { |
| int i, max; |
| |
| max = num_var_ranges; |
| for (i = 0; i < max; i++) |
| mtrr_usage_table[i] = 1; |
| } |
| |
| struct set_mtrr_data { |
| atomic_t count; |
| atomic_t gate; |
| unsigned long smp_base; |
| unsigned long smp_size; |
| unsigned int smp_reg; |
| mtrr_type smp_type; |
| }; |
| |
| static void ipi_handler(void *info) |
| /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs. |
| [RETURNS] Nothing. |
| */ |
| { |
| #ifdef CONFIG_SMP |
| struct set_mtrr_data *data = info; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| atomic_dec(&data->count); |
| while(!atomic_read(&data->gate)) |
| cpu_relax(); |
| |
| /* The master has cleared me to execute */ |
| if (data->smp_reg != ~0U) |
| mtrr_if->set(data->smp_reg, data->smp_base, |
| data->smp_size, data->smp_type); |
| else |
| mtrr_if->set_all(); |
| |
| atomic_dec(&data->count); |
| while(atomic_read(&data->gate)) |
| cpu_relax(); |
| |
| atomic_dec(&data->count); |
| local_irq_restore(flags); |
| #endif |
| } |
| |
| static inline int types_compatible(mtrr_type type1, mtrr_type type2) { |
| return type1 == MTRR_TYPE_UNCACHABLE || |
| type2 == MTRR_TYPE_UNCACHABLE || |
| (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) || |
| (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH); |
| } |
| |
| /** |
| * set_mtrr - update mtrrs on all processors |
| * @reg: mtrr in question |
| * @base: mtrr base |
| * @size: mtrr size |
| * @type: mtrr type |
| * |
| * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly: |
| * |
| * 1. Send IPI to do the following: |
| * 2. Disable Interrupts |
| * 3. Wait for all procs to do so |
| * 4. Enter no-fill cache mode |
| * 5. Flush caches |
| * 6. Clear PGE bit |
| * 7. Flush all TLBs |
| * 8. Disable all range registers |
| * 9. Update the MTRRs |
| * 10. Enable all range registers |
| * 11. Flush all TLBs and caches again |
| * 12. Enter normal cache mode and reenable caching |
| * 13. Set PGE |
| * 14. Wait for buddies to catch up |
| * 15. Enable interrupts. |
| * |
| * What does that mean for us? Well, first we set data.count to the number |
| * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait |
| * until it hits 0 and proceed. We set the data.gate flag and reset data.count. |
| * Meanwhile, they are waiting for that flag to be set. Once it's set, each |
| * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it |
| * differently, so we call mtrr_if->set() callback and let them take care of it. |
| * When they're done, they again decrement data->count and wait for data.gate to |
| * be reset. |
| * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag. |
| * Everyone then enables interrupts and we all continue on. |
| * |
| * Note that the mechanism is the same for UP systems, too; all the SMP stuff |
| * becomes nops. |
| */ |
| static void set_mtrr(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type) |
| { |
| struct set_mtrr_data data; |
| unsigned long flags; |
| |
| data.smp_reg = reg; |
| data.smp_base = base; |
| data.smp_size = size; |
| data.smp_type = type; |
| atomic_set(&data.count, num_booting_cpus() - 1); |
| /* make sure data.count is visible before unleashing other CPUs */ |
| smp_wmb(); |
| atomic_set(&data.gate,0); |
| |
| /* Start the ball rolling on other CPUs */ |
| if (smp_call_function(ipi_handler, &data, 0) != 0) |
| panic("mtrr: timed out waiting for other CPUs\n"); |
| |
| local_irq_save(flags); |
| |
| while(atomic_read(&data.count)) |
| cpu_relax(); |
| |
| /* ok, reset count and toggle gate */ |
| atomic_set(&data.count, num_booting_cpus() - 1); |
| smp_wmb(); |
| atomic_set(&data.gate,1); |
| |
| /* do our MTRR business */ |
| |
| /* HACK! |
| * We use this same function to initialize the mtrrs on boot. |
| * The state of the boot cpu's mtrrs has been saved, and we want |
| * to replicate across all the APs. |
| * If we're doing that @reg is set to something special... |
| */ |
| if (reg != ~0U) |
| mtrr_if->set(reg,base,size,type); |
| |
| /* wait for the others */ |
| while(atomic_read(&data.count)) |
| cpu_relax(); |
| |
| atomic_set(&data.count, num_booting_cpus() - 1); |
| smp_wmb(); |
| atomic_set(&data.gate,0); |
| |
| /* |
| * Wait here for everyone to have seen the gate change |
| * So we're the last ones to touch 'data' |
| */ |
| while(atomic_read(&data.count)) |
| cpu_relax(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * mtrr_add_page - Add a memory type region |
| * @base: Physical base address of region in pages (in units of 4 kB!) |
| * @size: Physical size of region in pages (4 kB) |
| * @type: Type of MTRR desired |
| * @increment: If this is true do usage counting on the region |
| * |
| * Memory type region registers control the caching on newer Intel and |
| * non Intel processors. This function allows drivers to request an |
| * MTRR is added. The details and hardware specifics of each processor's |
| * implementation are hidden from the caller, but nevertheless the |
| * caller should expect to need to provide a power of two size on an |
| * equivalent power of two boundary. |
| * |
| * If the region cannot be added either because all regions are in use |
| * or the CPU cannot support it a negative value is returned. On success |
| * the register number for this entry is returned, but should be treated |
| * as a cookie only. |
| * |
| * On a multiprocessor machine the changes are made to all processors. |
| * This is required on x86 by the Intel processors. |
| * |
| * The available types are |
| * |
| * %MTRR_TYPE_UNCACHABLE - No caching |
| * |
| * %MTRR_TYPE_WRBACK - Write data back in bursts whenever |
| * |
| * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts |
| * |
| * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes |
| * |
| * BUGS: Needs a quiet flag for the cases where drivers do not mind |
| * failures and do not wish system log messages to be sent. |
| */ |
| |
| int mtrr_add_page(unsigned long base, unsigned long size, |
| unsigned int type, bool increment) |
| { |
| int i, replace, error; |
| mtrr_type ltype; |
| unsigned long lbase, lsize; |
| |
| if (!mtrr_if) |
| return -ENXIO; |
| |
| if ((error = mtrr_if->validate_add_page(base,size,type))) |
| return error; |
| |
| if (type >= MTRR_NUM_TYPES) { |
| printk(KERN_WARNING "mtrr: type: %u invalid\n", type); |
| return -EINVAL; |
| } |
| |
| /* If the type is WC, check that this processor supports it */ |
| if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) { |
| printk(KERN_WARNING |
| "mtrr: your processor doesn't support write-combining\n"); |
| return -ENOSYS; |
| } |
| |
| if (!size) { |
| printk(KERN_WARNING "mtrr: zero sized request\n"); |
| return -EINVAL; |
| } |
| |
| if (base & size_or_mask || size & size_or_mask) { |
| printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n"); |
| return -EINVAL; |
| } |
| |
| error = -EINVAL; |
| replace = -1; |
| |
| /* No CPU hotplug when we change MTRR entries */ |
| get_online_cpus(); |
| /* Search for existing MTRR */ |
| mutex_lock(&mtrr_mutex); |
| for (i = 0; i < num_var_ranges; ++i) { |
| mtrr_if->get(i, &lbase, &lsize, <ype); |
| if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase) |
| continue; |
| /* At this point we know there is some kind of overlap/enclosure */ |
| if (base < lbase || base + size - 1 > lbase + lsize - 1) { |
| if (base <= lbase && base + size - 1 >= lbase + lsize - 1) { |
| /* New region encloses an existing region */ |
| if (type == ltype) { |
| replace = replace == -1 ? i : -2; |
| continue; |
| } |
| else if (types_compatible(type, ltype)) |
| continue; |
| } |
| printk(KERN_WARNING |
| "mtrr: 0x%lx000,0x%lx000 overlaps existing" |
| " 0x%lx000,0x%lx000\n", base, size, lbase, |
| lsize); |
| goto out; |
| } |
| /* New region is enclosed by an existing region */ |
| if (ltype != type) { |
| if (types_compatible(type, ltype)) |
| continue; |
| printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n", |
| base, size, mtrr_attrib_to_str(ltype), |
| mtrr_attrib_to_str(type)); |
| goto out; |
| } |
| if (increment) |
| ++mtrr_usage_table[i]; |
| error = i; |
| goto out; |
| } |
| /* Search for an empty MTRR */ |
| i = mtrr_if->get_free_region(base, size, replace); |
| if (i >= 0) { |
| set_mtrr(i, base, size, type); |
| if (likely(replace < 0)) { |
| mtrr_usage_table[i] = 1; |
| } else { |
| mtrr_usage_table[i] = mtrr_usage_table[replace]; |
| if (increment) |
| mtrr_usage_table[i]++; |
| if (unlikely(replace != i)) { |
| set_mtrr(replace, 0, 0, 0); |
| mtrr_usage_table[replace] = 0; |
| } |
| } |
| } else |
| printk(KERN_INFO "mtrr: no more MTRRs available\n"); |
| error = i; |
| out: |
| mutex_unlock(&mtrr_mutex); |
| put_online_cpus(); |
| return error; |
| } |
| |
| static int mtrr_check(unsigned long base, unsigned long size) |
| { |
| if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) { |
| printk(KERN_WARNING |
| "mtrr: size and base must be multiples of 4 kiB\n"); |
| printk(KERN_DEBUG |
| "mtrr: size: 0x%lx base: 0x%lx\n", size, base); |
| dump_stack(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * mtrr_add - Add a memory type region |
| * @base: Physical base address of region |
| * @size: Physical size of region |
| * @type: Type of MTRR desired |
| * @increment: If this is true do usage counting on the region |
| * |
| * Memory type region registers control the caching on newer Intel and |
| * non Intel processors. This function allows drivers to request an |
| * MTRR is added. The details and hardware specifics of each processor's |
| * implementation are hidden from the caller, but nevertheless the |
| * caller should expect to need to provide a power of two size on an |
| * equivalent power of two boundary. |
| * |
| * If the region cannot be added either because all regions are in use |
| * or the CPU cannot support it a negative value is returned. On success |
| * the register number for this entry is returned, but should be treated |
| * as a cookie only. |
| * |
| * On a multiprocessor machine the changes are made to all processors. |
| * This is required on x86 by the Intel processors. |
| * |
| * The available types are |
| * |
| * %MTRR_TYPE_UNCACHABLE - No caching |
| * |
| * %MTRR_TYPE_WRBACK - Write data back in bursts whenever |
| * |
| * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts |
| * |
| * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes |
| * |
| * BUGS: Needs a quiet flag for the cases where drivers do not mind |
| * failures and do not wish system log messages to be sent. |
| */ |
| |
| int |
| mtrr_add(unsigned long base, unsigned long size, unsigned int type, |
| bool increment) |
| { |
| if (mtrr_check(base, size)) |
| return -EINVAL; |
| return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type, |
| increment); |
| } |
| |
| /** |
| * mtrr_del_page - delete a memory type region |
| * @reg: Register returned by mtrr_add |
| * @base: Physical base address |
| * @size: Size of region |
| * |
| * If register is supplied then base and size are ignored. This is |
| * how drivers should call it. |
| * |
| * Releases an MTRR region. If the usage count drops to zero the |
| * register is freed and the region returns to default state. |
| * On success the register is returned, on failure a negative error |
| * code. |
| */ |
| |
| int mtrr_del_page(int reg, unsigned long base, unsigned long size) |
| { |
| int i, max; |
| mtrr_type ltype; |
| unsigned long lbase, lsize; |
| int error = -EINVAL; |
| |
| if (!mtrr_if) |
| return -ENXIO; |
| |
| max = num_var_ranges; |
| /* No CPU hotplug when we change MTRR entries */ |
| get_online_cpus(); |
| mutex_lock(&mtrr_mutex); |
| if (reg < 0) { |
| /* Search for existing MTRR */ |
| for (i = 0; i < max; ++i) { |
| mtrr_if->get(i, &lbase, &lsize, <ype); |
| if (lbase == base && lsize == size) { |
| reg = i; |
| break; |
| } |
| } |
| if (reg < 0) { |
| printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base, |
| size); |
| goto out; |
| } |
| } |
| if (reg >= max) { |
| printk(KERN_WARNING "mtrr: register: %d too big\n", reg); |
| goto out; |
| } |
| mtrr_if->get(reg, &lbase, &lsize, <ype); |
| if (lsize < 1) { |
| printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg); |
| goto out; |
| } |
| if (mtrr_usage_table[reg] < 1) { |
| printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg); |
| goto out; |
| } |
| if (--mtrr_usage_table[reg] < 1) |
| set_mtrr(reg, 0, 0, 0); |
| error = reg; |
| out: |
| mutex_unlock(&mtrr_mutex); |
| put_online_cpus(); |
| return error; |
| } |
| /** |
| * mtrr_del - delete a memory type region |
| * @reg: Register returned by mtrr_add |
| * @base: Physical base address |
| * @size: Size of region |
| * |
| * If register is supplied then base and size are ignored. This is |
| * how drivers should call it. |
| * |
| * Releases an MTRR region. If the usage count drops to zero the |
| * register is freed and the region returns to default state. |
| * On success the register is returned, on failure a negative error |
| * code. |
| */ |
| |
| int |
| mtrr_del(int reg, unsigned long base, unsigned long size) |
| { |
| if (mtrr_check(base, size)) |
| return -EINVAL; |
| return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT); |
| } |
| |
| EXPORT_SYMBOL(mtrr_add); |
| EXPORT_SYMBOL(mtrr_del); |
| |
| /* HACK ALERT! |
| * These should be called implicitly, but we can't yet until all the initcall |
| * stuff is done... |
| */ |
| static void __init init_ifs(void) |
| { |
| #ifndef CONFIG_X86_64 |
| amd_init_mtrr(); |
| cyrix_init_mtrr(); |
| centaur_init_mtrr(); |
| #endif |
| } |
| |
| /* The suspend/resume methods are only for CPU without MTRR. CPU using generic |
| * MTRR driver doesn't require this |
| */ |
| struct mtrr_value { |
| mtrr_type ltype; |
| unsigned long lbase; |
| unsigned long lsize; |
| }; |
| |
| static struct mtrr_value mtrr_state[MTRR_MAX_VAR_RANGES]; |
| |
| static int mtrr_save(struct sys_device * sysdev, pm_message_t state) |
| { |
| int i; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| mtrr_if->get(i, |
| &mtrr_state[i].lbase, |
| &mtrr_state[i].lsize, |
| &mtrr_state[i].ltype); |
| } |
| return 0; |
| } |
| |
| static int mtrr_restore(struct sys_device * sysdev) |
| { |
| int i; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| if (mtrr_state[i].lsize) |
| set_mtrr(i, |
| mtrr_state[i].lbase, |
| mtrr_state[i].lsize, |
| mtrr_state[i].ltype); |
| } |
| return 0; |
| } |
| |
| |
| |
| static struct sysdev_driver mtrr_sysdev_driver = { |
| .suspend = mtrr_save, |
| .resume = mtrr_restore, |
| }; |
| |
| /* should be related to MTRR_VAR_RANGES nums */ |
| #define RANGE_NUM 256 |
| |
| struct res_range { |
| unsigned long start; |
| unsigned long end; |
| }; |
| |
| static int __init |
| add_range(struct res_range *range, int nr_range, unsigned long start, |
| unsigned long end) |
| { |
| /* out of slots */ |
| if (nr_range >= RANGE_NUM) |
| return nr_range; |
| |
| range[nr_range].start = start; |
| range[nr_range].end = end; |
| |
| nr_range++; |
| |
| return nr_range; |
| } |
| |
| static int __init |
| add_range_with_merge(struct res_range *range, int nr_range, unsigned long start, |
| unsigned long end) |
| { |
| int i; |
| |
| /* try to merge it with old one */ |
| for (i = 0; i < nr_range; i++) { |
| unsigned long final_start, final_end; |
| unsigned long common_start, common_end; |
| |
| if (!range[i].end) |
| continue; |
| |
| common_start = max(range[i].start, start); |
| common_end = min(range[i].end, end); |
| if (common_start > common_end + 1) |
| continue; |
| |
| final_start = min(range[i].start, start); |
| final_end = max(range[i].end, end); |
| |
| range[i].start = final_start; |
| range[i].end = final_end; |
| return nr_range; |
| } |
| |
| /* need to add that */ |
| return add_range(range, nr_range, start, end); |
| } |
| |
| static void __init |
| subtract_range(struct res_range *range, unsigned long start, unsigned long end) |
| { |
| int i, j; |
| |
| for (j = 0; j < RANGE_NUM; j++) { |
| if (!range[j].end) |
| continue; |
| |
| if (start <= range[j].start && end >= range[j].end) { |
| range[j].start = 0; |
| range[j].end = 0; |
| continue; |
| } |
| |
| if (start <= range[j].start && end < range[j].end && |
| range[j].start < end + 1) { |
| range[j].start = end + 1; |
| continue; |
| } |
| |
| |
| if (start > range[j].start && end >= range[j].end && |
| range[j].end > start - 1) { |
| range[j].end = start - 1; |
| continue; |
| } |
| |
| if (start > range[j].start && end < range[j].end) { |
| /* find the new spare */ |
| for (i = 0; i < RANGE_NUM; i++) { |
| if (range[i].end == 0) |
| break; |
| } |
| if (i < RANGE_NUM) { |
| range[i].end = range[j].end; |
| range[i].start = end + 1; |
| } else { |
| printk(KERN_ERR "run of slot in ranges\n"); |
| } |
| range[j].end = start - 1; |
| continue; |
| } |
| } |
| } |
| |
| static int __init cmp_range(const void *x1, const void *x2) |
| { |
| const struct res_range *r1 = x1; |
| const struct res_range *r2 = x2; |
| long start1, start2; |
| |
| start1 = r1->start; |
| start2 = r2->start; |
| |
| return start1 - start2; |
| } |
| |
| struct var_mtrr_range_state { |
| unsigned long base_pfn; |
| unsigned long size_pfn; |
| mtrr_type type; |
| }; |
| |
| static struct var_mtrr_range_state __initdata range_state[RANGE_NUM]; |
| static int __initdata debug_print; |
| |
| static int __init |
| x86_get_mtrr_mem_range(struct res_range *range, int nr_range, |
| unsigned long extra_remove_base, |
| unsigned long extra_remove_size) |
| { |
| unsigned long i, base, size; |
| mtrr_type type; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| type = range_state[i].type; |
| if (type != MTRR_TYPE_WRBACK) |
| continue; |
| base = range_state[i].base_pfn; |
| size = range_state[i].size_pfn; |
| nr_range = add_range_with_merge(range, nr_range, base, |
| base + size - 1); |
| } |
| if (debug_print) { |
| printk(KERN_DEBUG "After WB checking\n"); |
| for (i = 0; i < nr_range; i++) |
| printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n", |
| range[i].start, range[i].end + 1); |
| } |
| |
| /* take out UC ranges */ |
| for (i = 0; i < num_var_ranges; i++) { |
| type = range_state[i].type; |
| if (type != MTRR_TYPE_UNCACHABLE && |
| type != MTRR_TYPE_WRPROT) |
| continue; |
| size = range_state[i].size_pfn; |
| if (!size) |
| continue; |
| base = range_state[i].base_pfn; |
| subtract_range(range, base, base + size - 1); |
| } |
| if (extra_remove_size) |
| subtract_range(range, extra_remove_base, |
| extra_remove_base + extra_remove_size - 1); |
| |
| /* get new range num */ |
| nr_range = 0; |
| for (i = 0; i < RANGE_NUM; i++) { |
| if (!range[i].end) |
| continue; |
| nr_range++; |
| } |
| if (debug_print) { |
| printk(KERN_DEBUG "After UC checking\n"); |
| for (i = 0; i < nr_range; i++) |
| printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n", |
| range[i].start, range[i].end + 1); |
| } |
| |
| /* sort the ranges */ |
| sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL); |
| if (debug_print) { |
| printk(KERN_DEBUG "After sorting\n"); |
| for (i = 0; i < nr_range; i++) |
| printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n", |
| range[i].start, range[i].end + 1); |
| } |
| |
| /* clear those is not used */ |
| for (i = nr_range; i < RANGE_NUM; i++) |
| memset(&range[i], 0, sizeof(range[i])); |
| |
| return nr_range; |
| } |
| |
| static struct res_range __initdata range[RANGE_NUM]; |
| static int __initdata nr_range; |
| |
| #ifdef CONFIG_MTRR_SANITIZER |
| |
| static unsigned long __init sum_ranges(struct res_range *range, int nr_range) |
| { |
| unsigned long sum; |
| int i; |
| |
| sum = 0; |
| for (i = 0; i < nr_range; i++) |
| sum += range[i].end + 1 - range[i].start; |
| |
| return sum; |
| } |
| |
| static int enable_mtrr_cleanup __initdata = |
| CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT; |
| |
| static int __init disable_mtrr_cleanup_setup(char *str) |
| { |
| enable_mtrr_cleanup = 0; |
| return 0; |
| } |
| early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup); |
| |
| static int __init enable_mtrr_cleanup_setup(char *str) |
| { |
| enable_mtrr_cleanup = 1; |
| return 0; |
| } |
| early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup); |
| |
| static int __init mtrr_cleanup_debug_setup(char *str) |
| { |
| debug_print = 1; |
| return 0; |
| } |
| early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup); |
| |
| struct var_mtrr_state { |
| unsigned long range_startk; |
| unsigned long range_sizek; |
| unsigned long chunk_sizek; |
| unsigned long gran_sizek; |
| unsigned int reg; |
| }; |
| |
| static void __init |
| set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek, |
| unsigned char type, unsigned int address_bits) |
| { |
| u32 base_lo, base_hi, mask_lo, mask_hi; |
| u64 base, mask; |
| |
| if (!sizek) { |
| fill_mtrr_var_range(reg, 0, 0, 0, 0); |
| return; |
| } |
| |
| mask = (1ULL << address_bits) - 1; |
| mask &= ~((((u64)sizek) << 10) - 1); |
| |
| base = ((u64)basek) << 10; |
| |
| base |= type; |
| mask |= 0x800; |
| |
| base_lo = base & ((1ULL<<32) - 1); |
| base_hi = base >> 32; |
| |
| mask_lo = mask & ((1ULL<<32) - 1); |
| mask_hi = mask >> 32; |
| |
| fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi); |
| } |
| |
| static void __init |
| save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek, |
| unsigned char type) |
| { |
| range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10); |
| range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10); |
| range_state[reg].type = type; |
| } |
| |
| static void __init |
| set_var_mtrr_all(unsigned int address_bits) |
| { |
| unsigned long basek, sizek; |
| unsigned char type; |
| unsigned int reg; |
| |
| for (reg = 0; reg < num_var_ranges; reg++) { |
| basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10); |
| sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10); |
| type = range_state[reg].type; |
| |
| set_var_mtrr(reg, basek, sizek, type, address_bits); |
| } |
| } |
| |
| static unsigned long to_size_factor(unsigned long sizek, char *factorp) |
| { |
| char factor; |
| unsigned long base = sizek; |
| |
| if (base & ((1<<10) - 1)) { |
| /* not MB alignment */ |
| factor = 'K'; |
| } else if (base & ((1<<20) - 1)){ |
| factor = 'M'; |
| base >>= 10; |
| } else { |
| factor = 'G'; |
| base >>= 20; |
| } |
| |
| *factorp = factor; |
| |
| return base; |
| } |
| |
| static unsigned int __init |
| range_to_mtrr(unsigned int reg, unsigned long range_startk, |
| unsigned long range_sizek, unsigned char type) |
| { |
| if (!range_sizek || (reg >= num_var_ranges)) |
| return reg; |
| |
| while (range_sizek) { |
| unsigned long max_align, align; |
| unsigned long sizek; |
| |
| /* Compute the maximum size I can make a range */ |
| if (range_startk) |
| max_align = ffs(range_startk) - 1; |
| else |
| max_align = 32; |
| align = fls(range_sizek) - 1; |
| if (align > max_align) |
| align = max_align; |
| |
| sizek = 1 << align; |
| if (debug_print) { |
| char start_factor = 'K', size_factor = 'K'; |
| unsigned long start_base, size_base; |
| |
| start_base = to_size_factor(range_startk, &start_factor), |
| size_base = to_size_factor(sizek, &size_factor), |
| |
| printk(KERN_DEBUG "Setting variable MTRR %d, " |
| "base: %ld%cB, range: %ld%cB, type %s\n", |
| reg, start_base, start_factor, |
| size_base, size_factor, |
| (type == MTRR_TYPE_UNCACHABLE)?"UC": |
| ((type == MTRR_TYPE_WRBACK)?"WB":"Other") |
| ); |
| } |
| save_var_mtrr(reg++, range_startk, sizek, type); |
| range_startk += sizek; |
| range_sizek -= sizek; |
| if (reg >= num_var_ranges) |
| break; |
| } |
| return reg; |
| } |
| |
| static unsigned __init |
| range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek, |
| unsigned long sizek) |
| { |
| unsigned long hole_basek, hole_sizek; |
| unsigned long second_basek, second_sizek; |
| unsigned long range0_basek, range0_sizek; |
| unsigned long range_basek, range_sizek; |
| unsigned long chunk_sizek; |
| unsigned long gran_sizek; |
| |
| hole_basek = 0; |
| hole_sizek = 0; |
| second_basek = 0; |
| second_sizek = 0; |
| chunk_sizek = state->chunk_sizek; |
| gran_sizek = state->gran_sizek; |
| |
| /* align with gran size, prevent small block used up MTRRs */ |
| range_basek = ALIGN(state->range_startk, gran_sizek); |
| if ((range_basek > basek) && basek) |
| return second_sizek; |
| state->range_sizek -= (range_basek - state->range_startk); |
| range_sizek = ALIGN(state->range_sizek, gran_sizek); |
| |
| while (range_sizek > state->range_sizek) { |
| range_sizek -= gran_sizek; |
| if (!range_sizek) |
| return 0; |
| } |
| state->range_sizek = range_sizek; |
| |
| /* try to append some small hole */ |
| range0_basek = state->range_startk; |
| range0_sizek = ALIGN(state->range_sizek, chunk_sizek); |
| |
| /* no increase */ |
| if (range0_sizek == state->range_sizek) { |
| if (debug_print) |
| printk(KERN_DEBUG "rangeX: %016lx - %016lx\n", |
| range0_basek<<10, |
| (range0_basek + state->range_sizek)<<10); |
| state->reg = range_to_mtrr(state->reg, range0_basek, |
| state->range_sizek, MTRR_TYPE_WRBACK); |
| return 0; |
| } |
| |
| /* only cut back, when it is not the last */ |
| if (sizek) { |
| while (range0_basek + range0_sizek > (basek + sizek)) { |
| if (range0_sizek >= chunk_sizek) |
| range0_sizek -= chunk_sizek; |
| else |
| range0_sizek = 0; |
| |
| if (!range0_sizek) |
| break; |
| } |
| } |
| |
| second_try: |
| range_basek = range0_basek + range0_sizek; |
| |
| /* one hole in the middle */ |
| if (range_basek > basek && range_basek <= (basek + sizek)) |
| second_sizek = range_basek - basek; |
| |
| if (range0_sizek > state->range_sizek) { |
| |
| /* one hole in middle or at end */ |
| hole_sizek = range0_sizek - state->range_sizek - second_sizek; |
| |
| /* hole size should be less than half of range0 size */ |
| if (hole_sizek >= (range0_sizek >> 1) && |
| range0_sizek >= chunk_sizek) { |
| range0_sizek -= chunk_sizek; |
| second_sizek = 0; |
| hole_sizek = 0; |
| |
| goto second_try; |
| } |
| } |
| |
| if (range0_sizek) { |
| if (debug_print) |
| printk(KERN_DEBUG "range0: %016lx - %016lx\n", |
| range0_basek<<10, |
| (range0_basek + range0_sizek)<<10); |
| state->reg = range_to_mtrr(state->reg, range0_basek, |
| range0_sizek, MTRR_TYPE_WRBACK); |
| } |
| |
| if (range0_sizek < state->range_sizek) { |
| /* need to handle left over */ |
| range_sizek = state->range_sizek - range0_sizek; |
| |
| if (debug_print) |
| printk(KERN_DEBUG "range: %016lx - %016lx\n", |
| range_basek<<10, |
| (range_basek + range_sizek)<<10); |
| state->reg = range_to_mtrr(state->reg, range_basek, |
| range_sizek, MTRR_TYPE_WRBACK); |
| } |
| |
| if (hole_sizek) { |
| hole_basek = range_basek - hole_sizek - second_sizek; |
| if (debug_print) |
| printk(KERN_DEBUG "hole: %016lx - %016lx\n", |
| hole_basek<<10, |
| (hole_basek + hole_sizek)<<10); |
| state->reg = range_to_mtrr(state->reg, hole_basek, |
| hole_sizek, MTRR_TYPE_UNCACHABLE); |
| } |
| |
| return second_sizek; |
| } |
| |
| static void __init |
| set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn, |
| unsigned long size_pfn) |
| { |
| unsigned long basek, sizek; |
| unsigned long second_sizek = 0; |
| |
| if (state->reg >= num_var_ranges) |
| return; |
| |
| basek = base_pfn << (PAGE_SHIFT - 10); |
| sizek = size_pfn << (PAGE_SHIFT - 10); |
| |
| /* See if I can merge with the last range */ |
| if ((basek <= 1024) || |
| (state->range_startk + state->range_sizek == basek)) { |
| unsigned long endk = basek + sizek; |
| state->range_sizek = endk - state->range_startk; |
| return; |
| } |
| /* Write the range mtrrs */ |
| if (state->range_sizek != 0) |
| second_sizek = range_to_mtrr_with_hole(state, basek, sizek); |
| |
| /* Allocate an msr */ |
| state->range_startk = basek + second_sizek; |
| state->range_sizek = sizek - second_sizek; |
| } |
| |
| /* mininum size of mtrr block that can take hole */ |
| static u64 mtrr_chunk_size __initdata = (256ULL<<20); |
| |
| static int __init parse_mtrr_chunk_size_opt(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| mtrr_chunk_size = memparse(p, &p); |
| return 0; |
| } |
| early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt); |
| |
| /* granity of mtrr of block */ |
| static u64 mtrr_gran_size __initdata; |
| |
| static int __init parse_mtrr_gran_size_opt(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| mtrr_gran_size = memparse(p, &p); |
| return 0; |
| } |
| early_param("mtrr_gran_size", parse_mtrr_gran_size_opt); |
| |
| static int nr_mtrr_spare_reg __initdata = |
| CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT; |
| |
| static int __init parse_mtrr_spare_reg(char *arg) |
| { |
| if (arg) |
| nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0); |
| return 0; |
| } |
| |
| early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg); |
| |
| static int __init |
| x86_setup_var_mtrrs(struct res_range *range, int nr_range, |
| u64 chunk_size, u64 gran_size) |
| { |
| struct var_mtrr_state var_state; |
| int i; |
| int num_reg; |
| |
| var_state.range_startk = 0; |
| var_state.range_sizek = 0; |
| var_state.reg = 0; |
| var_state.chunk_sizek = chunk_size >> 10; |
| var_state.gran_sizek = gran_size >> 10; |
| |
| memset(range_state, 0, sizeof(range_state)); |
| |
| /* Write the range etc */ |
| for (i = 0; i < nr_range; i++) |
| set_var_mtrr_range(&var_state, range[i].start, |
| range[i].end - range[i].start + 1); |
| |
| /* Write the last range */ |
| if (var_state.range_sizek != 0) |
| range_to_mtrr_with_hole(&var_state, 0, 0); |
| |
| num_reg = var_state.reg; |
| /* Clear out the extra MTRR's */ |
| while (var_state.reg < num_var_ranges) { |
| save_var_mtrr(var_state.reg, 0, 0, 0); |
| var_state.reg++; |
| } |
| |
| return num_reg; |
| } |
| |
| struct mtrr_cleanup_result { |
| unsigned long gran_sizek; |
| unsigned long chunk_sizek; |
| unsigned long lose_cover_sizek; |
| unsigned int num_reg; |
| int bad; |
| }; |
| |
| /* |
| * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G |
| * chunk size: gran_size, ..., 2G |
| * so we need (1+16)*8 |
| */ |
| #define NUM_RESULT 136 |
| #define PSHIFT (PAGE_SHIFT - 10) |
| |
| static struct mtrr_cleanup_result __initdata result[NUM_RESULT]; |
| static unsigned long __initdata min_loss_pfn[RANGE_NUM]; |
| |
| static void __init print_out_mtrr_range_state(void) |
| { |
| int i; |
| char start_factor = 'K', size_factor = 'K'; |
| unsigned long start_base, size_base; |
| mtrr_type type; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| |
| size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10); |
| if (!size_base) |
| continue; |
| |
| size_base = to_size_factor(size_base, &size_factor), |
| start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10); |
| start_base = to_size_factor(start_base, &start_factor), |
| type = range_state[i].type; |
| |
| printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n", |
| i, start_base, start_factor, |
| size_base, size_factor, |
| (type == MTRR_TYPE_UNCACHABLE) ? "UC" : |
| ((type == MTRR_TYPE_WRPROT) ? "WP" : |
| ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")) |
| ); |
| } |
| } |
| |
| static int __init mtrr_need_cleanup(void) |
| { |
| int i; |
| mtrr_type type; |
| unsigned long size; |
| /* extra one for all 0 */ |
| int num[MTRR_NUM_TYPES + 1]; |
| |
| /* check entries number */ |
| memset(num, 0, sizeof(num)); |
| for (i = 0; i < num_var_ranges; i++) { |
| type = range_state[i].type; |
| size = range_state[i].size_pfn; |
| if (type >= MTRR_NUM_TYPES) |
| continue; |
| if (!size) |
| type = MTRR_NUM_TYPES; |
| if (type == MTRR_TYPE_WRPROT) |
| type = MTRR_TYPE_UNCACHABLE; |
| num[type]++; |
| } |
| |
| /* check if we got UC entries */ |
| if (!num[MTRR_TYPE_UNCACHABLE]) |
| return 0; |
| |
| /* check if we only had WB and UC */ |
| if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] != |
| num_var_ranges - num[MTRR_NUM_TYPES]) |
| return 0; |
| |
| return 1; |
| } |
| |
| static unsigned long __initdata range_sums; |
| static void __init mtrr_calc_range_state(u64 chunk_size, u64 gran_size, |
| unsigned long extra_remove_base, |
| unsigned long extra_remove_size, |
| int i) |
| { |
| int num_reg; |
| static struct res_range range_new[RANGE_NUM]; |
| static int nr_range_new; |
| unsigned long range_sums_new; |
| |
| /* convert ranges to var ranges state */ |
| num_reg = x86_setup_var_mtrrs(range, nr_range, |
| chunk_size, gran_size); |
| |
| /* we got new setting in range_state, check it */ |
| memset(range_new, 0, sizeof(range_new)); |
| nr_range_new = x86_get_mtrr_mem_range(range_new, 0, |
| extra_remove_base, extra_remove_size); |
| range_sums_new = sum_ranges(range_new, nr_range_new); |
| |
| result[i].chunk_sizek = chunk_size >> 10; |
| result[i].gran_sizek = gran_size >> 10; |
| result[i].num_reg = num_reg; |
| if (range_sums < range_sums_new) { |
| result[i].lose_cover_sizek = |
| (range_sums_new - range_sums) << PSHIFT; |
| result[i].bad = 1; |
| } else |
| result[i].lose_cover_sizek = |
| (range_sums - range_sums_new) << PSHIFT; |
| |
| /* double check it */ |
| if (!result[i].bad && !result[i].lose_cover_sizek) { |
| if (nr_range_new != nr_range || |
| memcmp(range, range_new, sizeof(range))) |
| result[i].bad = 1; |
| } |
| |
| if (!result[i].bad && (range_sums - range_sums_new < |
| min_loss_pfn[num_reg])) { |
| min_loss_pfn[num_reg] = |
| range_sums - range_sums_new; |
| } |
| } |
| |
| static void __init mtrr_print_out_one_result(int i) |
| { |
| char gran_factor, chunk_factor, lose_factor; |
| unsigned long gran_base, chunk_base, lose_base; |
| |
| gran_base = to_size_factor(result[i].gran_sizek, &gran_factor), |
| chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor), |
| lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor), |
| printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t", |
| result[i].bad ? "*BAD*" : " ", |
| gran_base, gran_factor, chunk_base, chunk_factor); |
| printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n", |
| result[i].num_reg, result[i].bad ? "-" : "", |
| lose_base, lose_factor); |
| } |
| |
| static int __init mtrr_search_optimal_index(void) |
| { |
| int i; |
| int num_reg_good; |
| int index_good; |
| |
| if (nr_mtrr_spare_reg >= num_var_ranges) |
| nr_mtrr_spare_reg = num_var_ranges - 1; |
| num_reg_good = -1; |
| for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) { |
| if (!min_loss_pfn[i]) |
| num_reg_good = i; |
| } |
| |
| index_good = -1; |
| if (num_reg_good != -1) { |
| for (i = 0; i < NUM_RESULT; i++) { |
| if (!result[i].bad && |
| result[i].num_reg == num_reg_good && |
| !result[i].lose_cover_sizek) { |
| index_good = i; |
| break; |
| } |
| } |
| } |
| |
| return index_good; |
| } |
| |
| |
| static int __init mtrr_cleanup(unsigned address_bits) |
| { |
| unsigned long extra_remove_base, extra_remove_size; |
| unsigned long base, size, def, dummy; |
| mtrr_type type; |
| u64 chunk_size, gran_size; |
| int index_good; |
| int i; |
| |
| if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1) |
| return 0; |
| rdmsr(MTRRdefType_MSR, def, dummy); |
| def &= 0xff; |
| if (def != MTRR_TYPE_UNCACHABLE) |
| return 0; |
| |
| /* get it and store it aside */ |
| memset(range_state, 0, sizeof(range_state)); |
| for (i = 0; i < num_var_ranges; i++) { |
| mtrr_if->get(i, &base, &size, &type); |
| range_state[i].base_pfn = base; |
| range_state[i].size_pfn = size; |
| range_state[i].type = type; |
| } |
| |
| /* check if we need handle it and can handle it */ |
| if (!mtrr_need_cleanup()) |
| return 0; |
| |
| /* print original var MTRRs at first, for debugging: */ |
| printk(KERN_DEBUG "original variable MTRRs\n"); |
| print_out_mtrr_range_state(); |
| |
| memset(range, 0, sizeof(range)); |
| extra_remove_size = 0; |
| extra_remove_base = 1 << (32 - PAGE_SHIFT); |
| if (mtrr_tom2) |
| extra_remove_size = |
| (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base; |
| nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base, |
| extra_remove_size); |
| /* |
| * [0, 1M) should always be coverred by var mtrr with WB |
| * and fixed mtrrs should take effective before var mtrr for it |
| */ |
| nr_range = add_range_with_merge(range, nr_range, 0, |
| (1ULL<<(20 - PAGE_SHIFT)) - 1); |
| /* sort the ranges */ |
| sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL); |
| |
| range_sums = sum_ranges(range, nr_range); |
| printk(KERN_INFO "total RAM coverred: %ldM\n", |
| range_sums >> (20 - PAGE_SHIFT)); |
| |
| if (mtrr_chunk_size && mtrr_gran_size) { |
| i = 0; |
| mtrr_calc_range_state(mtrr_chunk_size, mtrr_gran_size, |
| extra_remove_base, extra_remove_size, i); |
| |
| mtrr_print_out_one_result(i); |
| |
| if (!result[i].bad) { |
| set_var_mtrr_all(address_bits); |
| return 1; |
| } |
| printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, " |
| "will find optimal one\n"); |
| } |
| |
| i = 0; |
| memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn)); |
| memset(result, 0, sizeof(result)); |
| for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) { |
| |
| for (chunk_size = gran_size; chunk_size < (1ULL<<32); |
| chunk_size <<= 1) { |
| |
| if (i >= NUM_RESULT) |
| continue; |
| |
| mtrr_calc_range_state(chunk_size, gran_size, |
| extra_remove_base, extra_remove_size, i); |
| if (debug_print) { |
| mtrr_print_out_one_result(i); |
| printk(KERN_INFO "\n"); |
| } |
| |
| i++; |
| } |
| } |
| |
| /* try to find the optimal index */ |
| index_good = mtrr_search_optimal_index(); |
| |
| if (index_good != -1) { |
| printk(KERN_INFO "Found optimal setting for mtrr clean up\n"); |
| i = index_good; |
| mtrr_print_out_one_result(i); |
| |
| /* convert ranges to var ranges state */ |
| chunk_size = result[i].chunk_sizek; |
| chunk_size <<= 10; |
| gran_size = result[i].gran_sizek; |
| gran_size <<= 10; |
| x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size); |
| set_var_mtrr_all(address_bits); |
| printk(KERN_DEBUG "New variable MTRRs\n"); |
| print_out_mtrr_range_state(); |
| return 1; |
| } else { |
| /* print out all */ |
| for (i = 0; i < NUM_RESULT; i++) |
| mtrr_print_out_one_result(i); |
| } |
| |
| printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n"); |
| printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n"); |
| |
| return 0; |
| } |
| #else |
| static int __init mtrr_cleanup(unsigned address_bits) |
| { |
| return 0; |
| } |
| #endif |
| |
| static int __initdata changed_by_mtrr_cleanup; |
| |
| static int disable_mtrr_trim; |
| |
| static int __init disable_mtrr_trim_setup(char *str) |
| { |
| disable_mtrr_trim = 1; |
| return 0; |
| } |
| early_param("disable_mtrr_trim", disable_mtrr_trim_setup); |
| |
| /* |
| * Newer AMD K8s and later CPUs have a special magic MSR way to force WB |
| * for memory >4GB. Check for that here. |
| * Note this won't check if the MTRRs < 4GB where the magic bit doesn't |
| * apply to are wrong, but so far we don't know of any such case in the wild. |
| */ |
| #define Tom2Enabled (1U << 21) |
| #define Tom2ForceMemTypeWB (1U << 22) |
| |
| int __init amd_special_default_mtrr(void) |
| { |
| u32 l, h; |
| |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) |
| return 0; |
| if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11) |
| return 0; |
| /* In case some hypervisor doesn't pass SYSCFG through */ |
| if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0) |
| return 0; |
| /* |
| * Memory between 4GB and top of mem is forced WB by this magic bit. |
| * Reserved before K8RevF, but should be zero there. |
| */ |
| if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) == |
| (Tom2Enabled | Tom2ForceMemTypeWB)) |
| return 1; |
| return 0; |
| } |
| |
| static u64 __init real_trim_memory(unsigned long start_pfn, |
| unsigned long limit_pfn) |
| { |
| u64 trim_start, trim_size; |
| trim_start = start_pfn; |
| trim_start <<= PAGE_SHIFT; |
| trim_size = limit_pfn; |
| trim_size <<= PAGE_SHIFT; |
| trim_size -= trim_start; |
| |
| return e820_update_range(trim_start, trim_size, E820_RAM, |
| E820_RESERVED); |
| } |
| /** |
| * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs |
| * @end_pfn: ending page frame number |
| * |
| * Some buggy BIOSes don't setup the MTRRs properly for systems with certain |
| * memory configurations. This routine checks that the highest MTRR matches |
| * the end of memory, to make sure the MTRRs having a write back type cover |
| * all of the memory the kernel is intending to use. If not, it'll trim any |
| * memory off the end by adjusting end_pfn, removing it from the kernel's |
| * allocation pools, warning the user with an obnoxious message. |
| */ |
| int __init mtrr_trim_uncached_memory(unsigned long end_pfn) |
| { |
| unsigned long i, base, size, highest_pfn = 0, def, dummy; |
| mtrr_type type; |
| u64 total_trim_size; |
| |
| /* extra one for all 0 */ |
| int num[MTRR_NUM_TYPES + 1]; |
| /* |
| * Make sure we only trim uncachable memory on machines that |
| * support the Intel MTRR architecture: |
| */ |
| if (!is_cpu(INTEL) || disable_mtrr_trim) |
| return 0; |
| rdmsr(MTRRdefType_MSR, def, dummy); |
| def &= 0xff; |
| if (def != MTRR_TYPE_UNCACHABLE) |
| return 0; |
| |
| /* get it and store it aside */ |
| memset(range_state, 0, sizeof(range_state)); |
| for (i = 0; i < num_var_ranges; i++) { |
| mtrr_if->get(i, &base, &size, &type); |
| range_state[i].base_pfn = base; |
| range_state[i].size_pfn = size; |
| range_state[i].type = type; |
| } |
| |
| /* Find highest cached pfn */ |
| for (i = 0; i < num_var_ranges; i++) { |
| type = range_state[i].type; |
| if (type != MTRR_TYPE_WRBACK) |
| continue; |
| base = range_state[i].base_pfn; |
| size = range_state[i].size_pfn; |
| if (highest_pfn < base + size) |
| highest_pfn = base + size; |
| } |
| |
| /* kvm/qemu doesn't have mtrr set right, don't trim them all */ |
| if (!highest_pfn) { |
| printk(KERN_INFO "CPU MTRRs all blank - virtualized system.\n"); |
| return 0; |
| } |
| |
| /* check entries number */ |
| memset(num, 0, sizeof(num)); |
| for (i = 0; i < num_var_ranges; i++) { |
| type = range_state[i].type; |
| if (type >= MTRR_NUM_TYPES) |
| continue; |
| size = range_state[i].size_pfn; |
| if (!size) |
| type = MTRR_NUM_TYPES; |
| num[type]++; |
| } |
| |
| /* no entry for WB? */ |
| if (!num[MTRR_TYPE_WRBACK]) |
| return 0; |
| |
| /* check if we only had WB and UC */ |
| if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] != |
| num_var_ranges - num[MTRR_NUM_TYPES]) |
| return 0; |
| |
| memset(range, 0, sizeof(range)); |
| nr_range = 0; |
| if (mtrr_tom2) { |
| range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT)); |
| range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1; |
| if (highest_pfn < range[nr_range].end + 1) |
| highest_pfn = range[nr_range].end + 1; |
| nr_range++; |
| } |
| nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0); |
| |
| total_trim_size = 0; |
| /* check the head */ |
| if (range[0].start) |
| total_trim_size += real_trim_memory(0, range[0].start); |
| /* check the holes */ |
| for (i = 0; i < nr_range - 1; i++) { |
| if (range[i].end + 1 < range[i+1].start) |
| total_trim_size += real_trim_memory(range[i].end + 1, |
| range[i+1].start); |
| } |
| /* check the top */ |
| i = nr_range - 1; |
| if (range[i].end + 1 < end_pfn) |
| total_trim_size += real_trim_memory(range[i].end + 1, |
| end_pfn); |
| |
| if (total_trim_size) { |
| printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover" |
| " all of memory, losing %lluMB of RAM.\n", |
| total_trim_size >> 20); |
| |
| if (!changed_by_mtrr_cleanup) |
| WARN_ON(1); |
| |
| printk(KERN_INFO "update e820 for mtrr\n"); |
| update_e820(); |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * mtrr_bp_init - initialize mtrrs on the boot CPU |
| * |
| * This needs to be called early; before any of the other CPUs are |
| * initialized (i.e. before smp_init()). |
| * |
| */ |
| void __init mtrr_bp_init(void) |
| { |
| u32 phys_addr; |
| init_ifs(); |
| |
| phys_addr = 32; |
| |
| if (cpu_has_mtrr) { |
| mtrr_if = &generic_mtrr_ops; |
| size_or_mask = 0xff000000; /* 36 bits */ |
| size_and_mask = 0x00f00000; |
| phys_addr = 36; |
| |
| /* This is an AMD specific MSR, but we assume(hope?) that |
| Intel will implement it to when they extend the address |
| bus of the Xeon. */ |
| if (cpuid_eax(0x80000000) >= 0x80000008) { |
| phys_addr = cpuid_eax(0x80000008) & 0xff; |
| /* CPUID workaround for Intel 0F33/0F34 CPU */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && |
| boot_cpu_data.x86 == 0xF && |
| boot_cpu_data.x86_model == 0x3 && |
| (boot_cpu_data.x86_mask == 0x3 || |
| boot_cpu_data.x86_mask == 0x4)) |
| phys_addr = 36; |
| |
| size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1); |
| size_and_mask = ~size_or_mask & 0xfffff00000ULL; |
| } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR && |
| boot_cpu_data.x86 == 6) { |
| /* VIA C* family have Intel style MTRRs, but |
| don't support PAE */ |
| size_or_mask = 0xfff00000; /* 32 bits */ |
| size_and_mask = 0; |
| phys_addr = 32; |
| } |
| } else { |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_AMD: |
| if (cpu_has_k6_mtrr) { |
| /* Pre-Athlon (K6) AMD CPU MTRRs */ |
| mtrr_if = mtrr_ops[X86_VENDOR_AMD]; |
| size_or_mask = 0xfff00000; /* 32 bits */ |
| size_and_mask = 0; |
| } |
| break; |
| case X86_VENDOR_CENTAUR: |
| if (cpu_has_centaur_mcr) { |
| mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR]; |
| size_or_mask = 0xfff00000; /* 32 bits */ |
| size_and_mask = 0; |
| } |
| break; |
| case X86_VENDOR_CYRIX: |
| if (cpu_has_cyrix_arr) { |
| mtrr_if = mtrr_ops[X86_VENDOR_CYRIX]; |
| size_or_mask = 0xfff00000; /* 32 bits */ |
| size_and_mask = 0; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (mtrr_if) { |
| set_num_var_ranges(); |
| init_table(); |
| if (use_intel()) { |
| get_mtrr_state(); |
| |
| if (mtrr_cleanup(phys_addr)) { |
| changed_by_mtrr_cleanup = 1; |
| mtrr_if->set_all(); |
| } |
| |
| } |
| } |
| } |
| |
| void mtrr_ap_init(void) |
| { |
| unsigned long flags; |
| |
| if (!mtrr_if || !use_intel()) |
| return; |
| /* |
| * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed, |
| * but this routine will be called in cpu boot time, holding the lock |
| * breaks it. This routine is called in two cases: 1.very earily time |
| * of software resume, when there absolutely isn't mtrr entry changes; |
| * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to |
| * prevent mtrr entry changes |
| */ |
| local_irq_save(flags); |
| |
| mtrr_if->set_all(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * Save current fixed-range MTRR state of the BSP |
| */ |
| void mtrr_save_state(void) |
| { |
| smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1); |
| } |
| |
| static int __init mtrr_init_finialize(void) |
| { |
| if (!mtrr_if) |
| return 0; |
| if (use_intel()) { |
| if (!changed_by_mtrr_cleanup) |
| mtrr_state_warn(); |
| } else { |
| /* The CPUs haven't MTRR and seem to not support SMP. They have |
| * specific drivers, we use a tricky method to support |
| * suspend/resume for them. |
| * TBD: is there any system with such CPU which supports |
| * suspend/resume? if no, we should remove the code. |
| */ |
| sysdev_driver_register(&cpu_sysdev_class, |
| &mtrr_sysdev_driver); |
| } |
| return 0; |
| } |
| subsys_initcall(mtrr_init_finialize); |