| /* |
| * builtin-timechart.c - make an svg timechart of system activity |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * |
| * Authors: |
| * Arjan van de Ven <arjan@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #include <traceevent/event-parse.h> |
| |
| #include "builtin.h" |
| |
| #include "util/util.h" |
| |
| #include "util/color.h" |
| #include <linux/list.h> |
| #include "util/cache.h" |
| #include "util/evlist.h" |
| #include "util/evsel.h" |
| #include <linux/rbtree.h> |
| #include <linux/time64.h> |
| #include "util/symbol.h" |
| #include "util/callchain.h" |
| #include "util/strlist.h" |
| |
| #include "perf.h" |
| #include "util/header.h" |
| #include <subcmd/parse-options.h> |
| #include "util/parse-events.h" |
| #include "util/event.h" |
| #include "util/session.h" |
| #include "util/svghelper.h" |
| #include "util/tool.h" |
| #include "util/data.h" |
| #include "util/debug.h" |
| |
| #define SUPPORT_OLD_POWER_EVENTS 1 |
| #define PWR_EVENT_EXIT -1 |
| |
| struct per_pid; |
| struct power_event; |
| struct wake_event; |
| |
| struct timechart { |
| struct perf_tool tool; |
| struct per_pid *all_data; |
| struct power_event *power_events; |
| struct wake_event *wake_events; |
| int proc_num; |
| unsigned int numcpus; |
| u64 min_freq, /* Lowest CPU frequency seen */ |
| max_freq, /* Highest CPU frequency seen */ |
| turbo_frequency, |
| first_time, last_time; |
| bool power_only, |
| tasks_only, |
| with_backtrace, |
| topology; |
| bool force; |
| /* IO related settings */ |
| bool io_only, |
| skip_eagain; |
| u64 io_events; |
| u64 min_time, |
| merge_dist; |
| }; |
| |
| struct per_pidcomm; |
| struct cpu_sample; |
| struct io_sample; |
| |
| /* |
| * Datastructure layout: |
| * We keep an list of "pid"s, matching the kernels notion of a task struct. |
| * Each "pid" entry, has a list of "comm"s. |
| * this is because we want to track different programs different, while |
| * exec will reuse the original pid (by design). |
| * Each comm has a list of samples that will be used to draw |
| * final graph. |
| */ |
| |
| struct per_pid { |
| struct per_pid *next; |
| |
| int pid; |
| int ppid; |
| |
| u64 start_time; |
| u64 end_time; |
| u64 total_time; |
| u64 total_bytes; |
| int display; |
| |
| struct per_pidcomm *all; |
| struct per_pidcomm *current; |
| }; |
| |
| |
| struct per_pidcomm { |
| struct per_pidcomm *next; |
| |
| u64 start_time; |
| u64 end_time; |
| u64 total_time; |
| u64 max_bytes; |
| u64 total_bytes; |
| |
| int Y; |
| int display; |
| |
| long state; |
| u64 state_since; |
| |
| char *comm; |
| |
| struct cpu_sample *samples; |
| struct io_sample *io_samples; |
| }; |
| |
| struct sample_wrapper { |
| struct sample_wrapper *next; |
| |
| u64 timestamp; |
| unsigned char data[0]; |
| }; |
| |
| #define TYPE_NONE 0 |
| #define TYPE_RUNNING 1 |
| #define TYPE_WAITING 2 |
| #define TYPE_BLOCKED 3 |
| |
| struct cpu_sample { |
| struct cpu_sample *next; |
| |
| u64 start_time; |
| u64 end_time; |
| int type; |
| int cpu; |
| const char *backtrace; |
| }; |
| |
| enum { |
| IOTYPE_READ, |
| IOTYPE_WRITE, |
| IOTYPE_SYNC, |
| IOTYPE_TX, |
| IOTYPE_RX, |
| IOTYPE_POLL, |
| }; |
| |
| struct io_sample { |
| struct io_sample *next; |
| |
| u64 start_time; |
| u64 end_time; |
| u64 bytes; |
| int type; |
| int fd; |
| int err; |
| int merges; |
| }; |
| |
| #define CSTATE 1 |
| #define PSTATE 2 |
| |
| struct power_event { |
| struct power_event *next; |
| int type; |
| int state; |
| u64 start_time; |
| u64 end_time; |
| int cpu; |
| }; |
| |
| struct wake_event { |
| struct wake_event *next; |
| int waker; |
| int wakee; |
| u64 time; |
| const char *backtrace; |
| }; |
| |
| struct process_filter { |
| char *name; |
| int pid; |
| struct process_filter *next; |
| }; |
| |
| static struct process_filter *process_filter; |
| |
| |
| static struct per_pid *find_create_pid(struct timechart *tchart, int pid) |
| { |
| struct per_pid *cursor = tchart->all_data; |
| |
| while (cursor) { |
| if (cursor->pid == pid) |
| return cursor; |
| cursor = cursor->next; |
| } |
| cursor = zalloc(sizeof(*cursor)); |
| assert(cursor != NULL); |
| cursor->pid = pid; |
| cursor->next = tchart->all_data; |
| tchart->all_data = cursor; |
| return cursor; |
| } |
| |
| static void pid_set_comm(struct timechart *tchart, int pid, char *comm) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| p = find_create_pid(tchart, pid); |
| c = p->all; |
| while (c) { |
| if (c->comm && strcmp(c->comm, comm) == 0) { |
| p->current = c; |
| return; |
| } |
| if (!c->comm) { |
| c->comm = strdup(comm); |
| p->current = c; |
| return; |
| } |
| c = c->next; |
| } |
| c = zalloc(sizeof(*c)); |
| assert(c != NULL); |
| c->comm = strdup(comm); |
| p->current = c; |
| c->next = p->all; |
| p->all = c; |
| } |
| |
| static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) |
| { |
| struct per_pid *p, *pp; |
| p = find_create_pid(tchart, pid); |
| pp = find_create_pid(tchart, ppid); |
| p->ppid = ppid; |
| if (pp->current && pp->current->comm && !p->current) |
| pid_set_comm(tchart, pid, pp->current->comm); |
| |
| p->start_time = timestamp; |
| if (p->current && !p->current->start_time) { |
| p->current->start_time = timestamp; |
| p->current->state_since = timestamp; |
| } |
| } |
| |
| static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) |
| { |
| struct per_pid *p; |
| p = find_create_pid(tchart, pid); |
| p->end_time = timestamp; |
| if (p->current) |
| p->current->end_time = timestamp; |
| } |
| |
| static void pid_put_sample(struct timechart *tchart, int pid, int type, |
| unsigned int cpu, u64 start, u64 end, |
| const char *backtrace) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| |
| p = find_create_pid(tchart, pid); |
| c = p->current; |
| if (!c) { |
| c = zalloc(sizeof(*c)); |
| assert(c != NULL); |
| p->current = c; |
| c->next = p->all; |
| p->all = c; |
| } |
| |
| sample = zalloc(sizeof(*sample)); |
| assert(sample != NULL); |
| sample->start_time = start; |
| sample->end_time = end; |
| sample->type = type; |
| sample->next = c->samples; |
| sample->cpu = cpu; |
| sample->backtrace = backtrace; |
| c->samples = sample; |
| |
| if (sample->type == TYPE_RUNNING && end > start && start > 0) { |
| c->total_time += (end-start); |
| p->total_time += (end-start); |
| } |
| |
| if (c->start_time == 0 || c->start_time > start) |
| c->start_time = start; |
| if (p->start_time == 0 || p->start_time > start) |
| p->start_time = start; |
| } |
| |
| #define MAX_CPUS 4096 |
| |
| static u64 cpus_cstate_start_times[MAX_CPUS]; |
| static int cpus_cstate_state[MAX_CPUS]; |
| static u64 cpus_pstate_start_times[MAX_CPUS]; |
| static u64 cpus_pstate_state[MAX_CPUS]; |
| |
| static int process_comm_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample __maybe_unused, |
| struct machine *machine __maybe_unused) |
| { |
| struct timechart *tchart = container_of(tool, struct timechart, tool); |
| pid_set_comm(tchart, event->comm.tid, event->comm.comm); |
| return 0; |
| } |
| |
| static int process_fork_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample __maybe_unused, |
| struct machine *machine __maybe_unused) |
| { |
| struct timechart *tchart = container_of(tool, struct timechart, tool); |
| pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); |
| return 0; |
| } |
| |
| static int process_exit_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample __maybe_unused, |
| struct machine *machine __maybe_unused) |
| { |
| struct timechart *tchart = container_of(tool, struct timechart, tool); |
| pid_exit(tchart, event->fork.pid, event->fork.time); |
| return 0; |
| } |
| |
| #ifdef SUPPORT_OLD_POWER_EVENTS |
| static int use_old_power_events; |
| #endif |
| |
| static void c_state_start(int cpu, u64 timestamp, int state) |
| { |
| cpus_cstate_start_times[cpu] = timestamp; |
| cpus_cstate_state[cpu] = state; |
| } |
| |
| static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) |
| { |
| struct power_event *pwr = zalloc(sizeof(*pwr)); |
| |
| if (!pwr) |
| return; |
| |
| pwr->state = cpus_cstate_state[cpu]; |
| pwr->start_time = cpus_cstate_start_times[cpu]; |
| pwr->end_time = timestamp; |
| pwr->cpu = cpu; |
| pwr->type = CSTATE; |
| pwr->next = tchart->power_events; |
| |
| tchart->power_events = pwr; |
| } |
| |
| static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) |
| { |
| struct power_event *pwr; |
| |
| if (new_freq > 8000000) /* detect invalid data */ |
| return; |
| |
| pwr = zalloc(sizeof(*pwr)); |
| if (!pwr) |
| return; |
| |
| pwr->state = cpus_pstate_state[cpu]; |
| pwr->start_time = cpus_pstate_start_times[cpu]; |
| pwr->end_time = timestamp; |
| pwr->cpu = cpu; |
| pwr->type = PSTATE; |
| pwr->next = tchart->power_events; |
| |
| if (!pwr->start_time) |
| pwr->start_time = tchart->first_time; |
| |
| tchart->power_events = pwr; |
| |
| cpus_pstate_state[cpu] = new_freq; |
| cpus_pstate_start_times[cpu] = timestamp; |
| |
| if ((u64)new_freq > tchart->max_freq) |
| tchart->max_freq = new_freq; |
| |
| if (new_freq < tchart->min_freq || tchart->min_freq == 0) |
| tchart->min_freq = new_freq; |
| |
| if (new_freq == tchart->max_freq - 1000) |
| tchart->turbo_frequency = tchart->max_freq; |
| } |
| |
| static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, |
| int waker, int wakee, u8 flags, const char *backtrace) |
| { |
| struct per_pid *p; |
| struct wake_event *we = zalloc(sizeof(*we)); |
| |
| if (!we) |
| return; |
| |
| we->time = timestamp; |
| we->waker = waker; |
| we->backtrace = backtrace; |
| |
| if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) |
| we->waker = -1; |
| |
| we->wakee = wakee; |
| we->next = tchart->wake_events; |
| tchart->wake_events = we; |
| p = find_create_pid(tchart, we->wakee); |
| |
| if (p && p->current && p->current->state == TYPE_NONE) { |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_WAITING; |
| } |
| if (p && p->current && p->current->state == TYPE_BLOCKED) { |
| pid_put_sample(tchart, p->pid, p->current->state, cpu, |
| p->current->state_since, timestamp, NULL); |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_WAITING; |
| } |
| } |
| |
| static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, |
| int prev_pid, int next_pid, u64 prev_state, |
| const char *backtrace) |
| { |
| struct per_pid *p = NULL, *prev_p; |
| |
| prev_p = find_create_pid(tchart, prev_pid); |
| |
| p = find_create_pid(tchart, next_pid); |
| |
| if (prev_p->current && prev_p->current->state != TYPE_NONE) |
| pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, |
| prev_p->current->state_since, timestamp, |
| backtrace); |
| if (p && p->current) { |
| if (p->current->state != TYPE_NONE) |
| pid_put_sample(tchart, next_pid, p->current->state, cpu, |
| p->current->state_since, timestamp, |
| backtrace); |
| |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_RUNNING; |
| } |
| |
| if (prev_p->current) { |
| prev_p->current->state = TYPE_NONE; |
| prev_p->current->state_since = timestamp; |
| if (prev_state & 2) |
| prev_p->current->state = TYPE_BLOCKED; |
| if (prev_state == 0) |
| prev_p->current->state = TYPE_WAITING; |
| } |
| } |
| |
| static const char *cat_backtrace(union perf_event *event, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct addr_location al; |
| unsigned int i; |
| char *p = NULL; |
| size_t p_len; |
| u8 cpumode = PERF_RECORD_MISC_USER; |
| struct addr_location tal; |
| struct ip_callchain *chain = sample->callchain; |
| FILE *f = open_memstream(&p, &p_len); |
| |
| if (!f) { |
| perror("open_memstream error"); |
| return NULL; |
| } |
| |
| if (!chain) |
| goto exit; |
| |
| if (machine__resolve(machine, &al, sample) < 0) { |
| fprintf(stderr, "problem processing %d event, skipping it.\n", |
| event->header.type); |
| goto exit; |
| } |
| |
| for (i = 0; i < chain->nr; i++) { |
| u64 ip; |
| |
| if (callchain_param.order == ORDER_CALLEE) |
| ip = chain->ips[i]; |
| else |
| ip = chain->ips[chain->nr - i - 1]; |
| |
| if (ip >= PERF_CONTEXT_MAX) { |
| switch (ip) { |
| case PERF_CONTEXT_HV: |
| cpumode = PERF_RECORD_MISC_HYPERVISOR; |
| break; |
| case PERF_CONTEXT_KERNEL: |
| cpumode = PERF_RECORD_MISC_KERNEL; |
| break; |
| case PERF_CONTEXT_USER: |
| cpumode = PERF_RECORD_MISC_USER; |
| break; |
| default: |
| pr_debug("invalid callchain context: " |
| "%"PRId64"\n", (s64) ip); |
| |
| /* |
| * It seems the callchain is corrupted. |
| * Discard all. |
| */ |
| zfree(&p); |
| goto exit_put; |
| } |
| continue; |
| } |
| |
| tal.filtered = 0; |
| thread__find_addr_location(al.thread, cpumode, |
| MAP__FUNCTION, ip, &tal); |
| |
| if (tal.sym) |
| fprintf(f, "..... %016" PRIx64 " %s\n", ip, |
| tal.sym->name); |
| else |
| fprintf(f, "..... %016" PRIx64 "\n", ip); |
| } |
| exit_put: |
| addr_location__put(&al); |
| exit: |
| fclose(f); |
| |
| return p; |
| } |
| |
| typedef int (*tracepoint_handler)(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace); |
| |
| static int process_sample_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample, |
| struct perf_evsel *evsel, |
| struct machine *machine) |
| { |
| struct timechart *tchart = container_of(tool, struct timechart, tool); |
| |
| if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { |
| if (!tchart->first_time || tchart->first_time > sample->time) |
| tchart->first_time = sample->time; |
| if (tchart->last_time < sample->time) |
| tchart->last_time = sample->time; |
| } |
| |
| if (evsel->handler != NULL) { |
| tracepoint_handler f = evsel->handler; |
| return f(tchart, evsel, sample, |
| cat_backtrace(event, sample, machine)); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| process_sample_cpu_idle(struct timechart *tchart __maybe_unused, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace __maybe_unused) |
| { |
| u32 state = perf_evsel__intval(evsel, sample, "state"); |
| u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); |
| |
| if (state == (u32)PWR_EVENT_EXIT) |
| c_state_end(tchart, cpu_id, sample->time); |
| else |
| c_state_start(cpu_id, sample->time, state); |
| return 0; |
| } |
| |
| static int |
| process_sample_cpu_frequency(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace __maybe_unused) |
| { |
| u32 state = perf_evsel__intval(evsel, sample, "state"); |
| u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); |
| |
| p_state_change(tchart, cpu_id, sample->time, state); |
| return 0; |
| } |
| |
| static int |
| process_sample_sched_wakeup(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace) |
| { |
| u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); |
| int waker = perf_evsel__intval(evsel, sample, "common_pid"); |
| int wakee = perf_evsel__intval(evsel, sample, "pid"); |
| |
| sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); |
| return 0; |
| } |
| |
| static int |
| process_sample_sched_switch(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace) |
| { |
| int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); |
| int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); |
| |
| sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, |
| prev_state, backtrace); |
| return 0; |
| } |
| |
| #ifdef SUPPORT_OLD_POWER_EVENTS |
| static int |
| process_sample_power_start(struct timechart *tchart __maybe_unused, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace __maybe_unused) |
| { |
| u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); |
| u64 value = perf_evsel__intval(evsel, sample, "value"); |
| |
| c_state_start(cpu_id, sample->time, value); |
| return 0; |
| } |
| |
| static int |
| process_sample_power_end(struct timechart *tchart, |
| struct perf_evsel *evsel __maybe_unused, |
| struct perf_sample *sample, |
| const char *backtrace __maybe_unused) |
| { |
| c_state_end(tchart, sample->cpu, sample->time); |
| return 0; |
| } |
| |
| static int |
| process_sample_power_frequency(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| const char *backtrace __maybe_unused) |
| { |
| u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); |
| u64 value = perf_evsel__intval(evsel, sample, "value"); |
| |
| p_state_change(tchart, cpu_id, sample->time, value); |
| return 0; |
| } |
| #endif /* SUPPORT_OLD_POWER_EVENTS */ |
| |
| /* |
| * After the last sample we need to wrap up the current C/P state |
| * and close out each CPU for these. |
| */ |
| static void end_sample_processing(struct timechart *tchart) |
| { |
| u64 cpu; |
| struct power_event *pwr; |
| |
| for (cpu = 0; cpu <= tchart->numcpus; cpu++) { |
| /* C state */ |
| #if 0 |
| pwr = zalloc(sizeof(*pwr)); |
| if (!pwr) |
| return; |
| |
| pwr->state = cpus_cstate_state[cpu]; |
| pwr->start_time = cpus_cstate_start_times[cpu]; |
| pwr->end_time = tchart->last_time; |
| pwr->cpu = cpu; |
| pwr->type = CSTATE; |
| pwr->next = tchart->power_events; |
| |
| tchart->power_events = pwr; |
| #endif |
| /* P state */ |
| |
| pwr = zalloc(sizeof(*pwr)); |
| if (!pwr) |
| return; |
| |
| pwr->state = cpus_pstate_state[cpu]; |
| pwr->start_time = cpus_pstate_start_times[cpu]; |
| pwr->end_time = tchart->last_time; |
| pwr->cpu = cpu; |
| pwr->type = PSTATE; |
| pwr->next = tchart->power_events; |
| |
| if (!pwr->start_time) |
| pwr->start_time = tchart->first_time; |
| if (!pwr->state) |
| pwr->state = tchart->min_freq; |
| tchart->power_events = pwr; |
| } |
| } |
| |
| static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, |
| u64 start, int fd) |
| { |
| struct per_pid *p = find_create_pid(tchart, pid); |
| struct per_pidcomm *c = p->current; |
| struct io_sample *sample; |
| struct io_sample *prev; |
| |
| if (!c) { |
| c = zalloc(sizeof(*c)); |
| if (!c) |
| return -ENOMEM; |
| p->current = c; |
| c->next = p->all; |
| p->all = c; |
| } |
| |
| prev = c->io_samples; |
| |
| if (prev && prev->start_time && !prev->end_time) { |
| pr_warning("Skip invalid start event: " |
| "previous event already started!\n"); |
| |
| /* remove previous event that has been started, |
| * we are not sure we will ever get an end for it */ |
| c->io_samples = prev->next; |
| free(prev); |
| return 0; |
| } |
| |
| sample = zalloc(sizeof(*sample)); |
| if (!sample) |
| return -ENOMEM; |
| sample->start_time = start; |
| sample->type = type; |
| sample->fd = fd; |
| sample->next = c->io_samples; |
| c->io_samples = sample; |
| |
| if (c->start_time == 0 || c->start_time > start) |
| c->start_time = start; |
| |
| return 0; |
| } |
| |
| static int pid_end_io_sample(struct timechart *tchart, int pid, int type, |
| u64 end, long ret) |
| { |
| struct per_pid *p = find_create_pid(tchart, pid); |
| struct per_pidcomm *c = p->current; |
| struct io_sample *sample, *prev; |
| |
| if (!c) { |
| pr_warning("Invalid pidcomm!\n"); |
| return -1; |
| } |
| |
| sample = c->io_samples; |
| |
| if (!sample) /* skip partially captured events */ |
| return 0; |
| |
| if (sample->end_time) { |
| pr_warning("Skip invalid end event: " |
| "previous event already ended!\n"); |
| return 0; |
| } |
| |
| if (sample->type != type) { |
| pr_warning("Skip invalid end event: invalid event type!\n"); |
| return 0; |
| } |
| |
| sample->end_time = end; |
| prev = sample->next; |
| |
| /* we want to be able to see small and fast transfers, so make them |
| * at least min_time long, but don't overlap them */ |
| if (sample->end_time - sample->start_time < tchart->min_time) |
| sample->end_time = sample->start_time + tchart->min_time; |
| if (prev && sample->start_time < prev->end_time) { |
| if (prev->err) /* try to make errors more visible */ |
| sample->start_time = prev->end_time; |
| else |
| prev->end_time = sample->start_time; |
| } |
| |
| if (ret < 0) { |
| sample->err = ret; |
| } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || |
| type == IOTYPE_TX || type == IOTYPE_RX) { |
| |
| if ((u64)ret > c->max_bytes) |
| c->max_bytes = ret; |
| |
| c->total_bytes += ret; |
| p->total_bytes += ret; |
| sample->bytes = ret; |
| } |
| |
| /* merge two requests to make svg smaller and render-friendly */ |
| if (prev && |
| prev->type == sample->type && |
| prev->err == sample->err && |
| prev->fd == sample->fd && |
| prev->end_time + tchart->merge_dist >= sample->start_time) { |
| |
| sample->bytes += prev->bytes; |
| sample->merges += prev->merges + 1; |
| |
| sample->start_time = prev->start_time; |
| sample->next = prev->next; |
| free(prev); |
| |
| if (!sample->err && sample->bytes > c->max_bytes) |
| c->max_bytes = sample->bytes; |
| } |
| |
| tchart->io_events++; |
| |
| return 0; |
| } |
| |
| static int |
| process_enter_read(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_read(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, |
| sample->time, ret); |
| } |
| |
| static int |
| process_enter_write(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_write(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, |
| sample->time, ret); |
| } |
| |
| static int |
| process_enter_sync(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_sync(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, |
| sample->time, ret); |
| } |
| |
| static int |
| process_enter_tx(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_tx(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, |
| sample->time, ret); |
| } |
| |
| static int |
| process_enter_rx(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_rx(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, |
| sample->time, ret); |
| } |
| |
| static int |
| process_enter_poll(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long fd = perf_evsel__intval(evsel, sample, "fd"); |
| return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, |
| sample->time, fd); |
| } |
| |
| static int |
| process_exit_poll(struct timechart *tchart, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| long ret = perf_evsel__intval(evsel, sample, "ret"); |
| return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, |
| sample->time, ret); |
| } |
| |
| /* |
| * Sort the pid datastructure |
| */ |
| static void sort_pids(struct timechart *tchart) |
| { |
| struct per_pid *new_list, *p, *cursor, *prev; |
| /* sort by ppid first, then by pid, lowest to highest */ |
| |
| new_list = NULL; |
| |
| while (tchart->all_data) { |
| p = tchart->all_data; |
| tchart->all_data = p->next; |
| p->next = NULL; |
| |
| if (new_list == NULL) { |
| new_list = p; |
| p->next = NULL; |
| continue; |
| } |
| prev = NULL; |
| cursor = new_list; |
| while (cursor) { |
| if (cursor->ppid > p->ppid || |
| (cursor->ppid == p->ppid && cursor->pid > p->pid)) { |
| /* must insert before */ |
| if (prev) { |
| p->next = prev->next; |
| prev->next = p; |
| cursor = NULL; |
| continue; |
| } else { |
| p->next = new_list; |
| new_list = p; |
| cursor = NULL; |
| continue; |
| } |
| } |
| |
| prev = cursor; |
| cursor = cursor->next; |
| if (!cursor) |
| prev->next = p; |
| } |
| } |
| tchart->all_data = new_list; |
| } |
| |
| |
| static void draw_c_p_states(struct timechart *tchart) |
| { |
| struct power_event *pwr; |
| pwr = tchart->power_events; |
| |
| /* |
| * two pass drawing so that the P state bars are on top of the C state blocks |
| */ |
| while (pwr) { |
| if (pwr->type == CSTATE) |
| svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| pwr = pwr->next; |
| } |
| |
| pwr = tchart->power_events; |
| while (pwr) { |
| if (pwr->type == PSTATE) { |
| if (!pwr->state) |
| pwr->state = tchart->min_freq; |
| svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| } |
| pwr = pwr->next; |
| } |
| } |
| |
| static void draw_wakeups(struct timechart *tchart) |
| { |
| struct wake_event *we; |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| |
| we = tchart->wake_events; |
| while (we) { |
| int from = 0, to = 0; |
| char *task_from = NULL, *task_to = NULL; |
| |
| /* locate the column of the waker and wakee */ |
| p = tchart->all_data; |
| while (p) { |
| if (p->pid == we->waker || p->pid == we->wakee) { |
| c = p->all; |
| while (c) { |
| if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { |
| if (p->pid == we->waker && !from) { |
| from = c->Y; |
| task_from = strdup(c->comm); |
| } |
| if (p->pid == we->wakee && !to) { |
| to = c->Y; |
| task_to = strdup(c->comm); |
| } |
| } |
| c = c->next; |
| } |
| c = p->all; |
| while (c) { |
| if (p->pid == we->waker && !from) { |
| from = c->Y; |
| task_from = strdup(c->comm); |
| } |
| if (p->pid == we->wakee && !to) { |
| to = c->Y; |
| task_to = strdup(c->comm); |
| } |
| c = c->next; |
| } |
| } |
| p = p->next; |
| } |
| |
| if (!task_from) { |
| task_from = malloc(40); |
| sprintf(task_from, "[%i]", we->waker); |
| } |
| if (!task_to) { |
| task_to = malloc(40); |
| sprintf(task_to, "[%i]", we->wakee); |
| } |
| |
| if (we->waker == -1) |
| svg_interrupt(we->time, to, we->backtrace); |
| else if (from && to && abs(from - to) == 1) |
| svg_wakeline(we->time, from, to, we->backtrace); |
| else |
| svg_partial_wakeline(we->time, from, task_from, to, |
| task_to, we->backtrace); |
| we = we->next; |
| |
| free(task_from); |
| free(task_to); |
| } |
| } |
| |
| static void draw_cpu_usage(struct timechart *tchart) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| p = tchart->all_data; |
| while (p) { |
| c = p->all; |
| while (c) { |
| sample = c->samples; |
| while (sample) { |
| if (sample->type == TYPE_RUNNING) { |
| svg_process(sample->cpu, |
| sample->start_time, |
| sample->end_time, |
| p->pid, |
| c->comm, |
| sample->backtrace); |
| } |
| |
| sample = sample->next; |
| } |
| c = c->next; |
| } |
| p = p->next; |
| } |
| } |
| |
| static void draw_io_bars(struct timechart *tchart) |
| { |
| const char *suf; |
| double bytes; |
| char comm[256]; |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct io_sample *sample; |
| int Y = 1; |
| |
| p = tchart->all_data; |
| while (p) { |
| c = p->all; |
| while (c) { |
| if (!c->display) { |
| c->Y = 0; |
| c = c->next; |
| continue; |
| } |
| |
| svg_box(Y, c->start_time, c->end_time, "process3"); |
| sample = c->io_samples; |
| for (sample = c->io_samples; sample; sample = sample->next) { |
| double h = (double)sample->bytes / c->max_bytes; |
| |
| if (tchart->skip_eagain && |
| sample->err == -EAGAIN) |
| continue; |
| |
| if (sample->err) |
| h = 1; |
| |
| if (sample->type == IOTYPE_SYNC) |
| svg_fbox(Y, |
| sample->start_time, |
| sample->end_time, |
| 1, |
| sample->err ? "error" : "sync", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| else if (sample->type == IOTYPE_POLL) |
| svg_fbox(Y, |
| sample->start_time, |
| sample->end_time, |
| 1, |
| sample->err ? "error" : "poll", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| else if (sample->type == IOTYPE_READ) |
| svg_ubox(Y, |
| sample->start_time, |
| sample->end_time, |
| h, |
| sample->err ? "error" : "disk", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| else if (sample->type == IOTYPE_WRITE) |
| svg_lbox(Y, |
| sample->start_time, |
| sample->end_time, |
| h, |
| sample->err ? "error" : "disk", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| else if (sample->type == IOTYPE_RX) |
| svg_ubox(Y, |
| sample->start_time, |
| sample->end_time, |
| h, |
| sample->err ? "error" : "net", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| else if (sample->type == IOTYPE_TX) |
| svg_lbox(Y, |
| sample->start_time, |
| sample->end_time, |
| h, |
| sample->err ? "error" : "net", |
| sample->fd, |
| sample->err, |
| sample->merges); |
| } |
| |
| suf = ""; |
| bytes = c->total_bytes; |
| if (bytes > 1024) { |
| bytes = bytes / 1024; |
| suf = "K"; |
| } |
| if (bytes > 1024) { |
| bytes = bytes / 1024; |
| suf = "M"; |
| } |
| if (bytes > 1024) { |
| bytes = bytes / 1024; |
| suf = "G"; |
| } |
| |
| |
| sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); |
| svg_text(Y, c->start_time, comm); |
| |
| c->Y = Y; |
| Y++; |
| c = c->next; |
| } |
| p = p->next; |
| } |
| } |
| |
| static void draw_process_bars(struct timechart *tchart) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| int Y = 0; |
| |
| Y = 2 * tchart->numcpus + 2; |
| |
| p = tchart->all_data; |
| while (p) { |
| c = p->all; |
| while (c) { |
| if (!c->display) { |
| c->Y = 0; |
| c = c->next; |
| continue; |
| } |
| |
| svg_box(Y, c->start_time, c->end_time, "process"); |
| sample = c->samples; |
| while (sample) { |
| if (sample->type == TYPE_RUNNING) |
| svg_running(Y, sample->cpu, |
| sample->start_time, |
| sample->end_time, |
| sample->backtrace); |
| if (sample->type == TYPE_BLOCKED) |
| svg_blocked(Y, sample->cpu, |
| sample->start_time, |
| sample->end_time, |
| sample->backtrace); |
| if (sample->type == TYPE_WAITING) |
| svg_waiting(Y, sample->cpu, |
| sample->start_time, |
| sample->end_time, |
| sample->backtrace); |
| sample = sample->next; |
| } |
| |
| if (c->comm) { |
| char comm[256]; |
| if (c->total_time > 5000000000) /* 5 seconds */ |
| sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC); |
| else |
| sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC); |
| |
| svg_text(Y, c->start_time, comm); |
| } |
| c->Y = Y; |
| Y++; |
| c = c->next; |
| } |
| p = p->next; |
| } |
| } |
| |
| static void add_process_filter(const char *string) |
| { |
| int pid = strtoull(string, NULL, 10); |
| struct process_filter *filt = malloc(sizeof(*filt)); |
| |
| if (!filt) |
| return; |
| |
| filt->name = strdup(string); |
| filt->pid = pid; |
| filt->next = process_filter; |
| |
| process_filter = filt; |
| } |
| |
| static int passes_filter(struct per_pid *p, struct per_pidcomm *c) |
| { |
| struct process_filter *filt; |
| if (!process_filter) |
| return 1; |
| |
| filt = process_filter; |
| while (filt) { |
| if (filt->pid && p->pid == filt->pid) |
| return 1; |
| if (strcmp(filt->name, c->comm) == 0) |
| return 1; |
| filt = filt->next; |
| } |
| return 0; |
| } |
| |
| static int determine_display_tasks_filtered(struct timechart *tchart) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| int count = 0; |
| |
| p = tchart->all_data; |
| while (p) { |
| p->display = 0; |
| if (p->start_time == 1) |
| p->start_time = tchart->first_time; |
| |
| /* no exit marker, task kept running to the end */ |
| if (p->end_time == 0) |
| p->end_time = tchart->last_time; |
| |
| c = p->all; |
| |
| while (c) { |
| c->display = 0; |
| |
| if (c->start_time == 1) |
| c->start_time = tchart->first_time; |
| |
| if (passes_filter(p, c)) { |
| c->display = 1; |
| p->display = 1; |
| count++; |
| } |
| |
| if (c->end_time == 0) |
| c->end_time = tchart->last_time; |
| |
| c = c->next; |
| } |
| p = p->next; |
| } |
| return count; |
| } |
| |
| static int determine_display_tasks(struct timechart *tchart, u64 threshold) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| int count = 0; |
| |
| p = tchart->all_data; |
| while (p) { |
| p->display = 0; |
| if (p->start_time == 1) |
| p->start_time = tchart->first_time; |
| |
| /* no exit marker, task kept running to the end */ |
| if (p->end_time == 0) |
| p->end_time = tchart->last_time; |
| if (p->total_time >= threshold) |
| p->display = 1; |
| |
| c = p->all; |
| |
| while (c) { |
| c->display = 0; |
| |
| if (c->start_time == 1) |
| c->start_time = tchart->first_time; |
| |
| if (c->total_time >= threshold) { |
| c->display = 1; |
| count++; |
| } |
| |
| if (c->end_time == 0) |
| c->end_time = tchart->last_time; |
| |
| c = c->next; |
| } |
| p = p->next; |
| } |
| return count; |
| } |
| |
| static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| int count = 0; |
| |
| p = timechart->all_data; |
| while (p) { |
| /* no exit marker, task kept running to the end */ |
| if (p->end_time == 0) |
| p->end_time = timechart->last_time; |
| |
| c = p->all; |
| |
| while (c) { |
| c->display = 0; |
| |
| if (c->total_bytes >= threshold) { |
| c->display = 1; |
| count++; |
| } |
| |
| if (c->end_time == 0) |
| c->end_time = timechart->last_time; |
| |
| c = c->next; |
| } |
| p = p->next; |
| } |
| return count; |
| } |
| |
| #define BYTES_THRESH (1 * 1024 * 1024) |
| #define TIME_THRESH 10000000 |
| |
| static void write_svg_file(struct timechart *tchart, const char *filename) |
| { |
| u64 i; |
| int count; |
| int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; |
| |
| if (tchart->power_only) |
| tchart->proc_num = 0; |
| |
| /* We'd like to show at least proc_num tasks; |
| * be less picky if we have fewer */ |
| do { |
| if (process_filter) |
| count = determine_display_tasks_filtered(tchart); |
| else if (tchart->io_events) |
| count = determine_display_io_tasks(tchart, thresh); |
| else |
| count = determine_display_tasks(tchart, thresh); |
| thresh /= 10; |
| } while (!process_filter && thresh && count < tchart->proc_num); |
| |
| if (!tchart->proc_num) |
| count = 0; |
| |
| if (tchart->io_events) { |
| open_svg(filename, 0, count, tchart->first_time, tchart->last_time); |
| |
| svg_time_grid(0.5); |
| svg_io_legenda(); |
| |
| draw_io_bars(tchart); |
| } else { |
| open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); |
| |
| svg_time_grid(0); |
| |
| svg_legenda(); |
| |
| for (i = 0; i < tchart->numcpus; i++) |
| svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); |
| |
| draw_cpu_usage(tchart); |
| if (tchart->proc_num) |
| draw_process_bars(tchart); |
| if (!tchart->tasks_only) |
| draw_c_p_states(tchart); |
| if (tchart->proc_num) |
| draw_wakeups(tchart); |
| } |
| |
| svg_close(); |
| } |
| |
| static int process_header(struct perf_file_section *section __maybe_unused, |
| struct perf_header *ph, |
| int feat, |
| int fd __maybe_unused, |
| void *data) |
| { |
| struct timechart *tchart = data; |
| |
| switch (feat) { |
| case HEADER_NRCPUS: |
| tchart->numcpus = ph->env.nr_cpus_avail; |
| break; |
| |
| case HEADER_CPU_TOPOLOGY: |
| if (!tchart->topology) |
| break; |
| |
| if (svg_build_topology_map(ph->env.sibling_cores, |
| ph->env.nr_sibling_cores, |
| ph->env.sibling_threads, |
| ph->env.nr_sibling_threads)) |
| fprintf(stderr, "problem building topology\n"); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int __cmd_timechart(struct timechart *tchart, const char *output_name) |
| { |
| const struct perf_evsel_str_handler power_tracepoints[] = { |
| { "power:cpu_idle", process_sample_cpu_idle }, |
| { "power:cpu_frequency", process_sample_cpu_frequency }, |
| { "sched:sched_wakeup", process_sample_sched_wakeup }, |
| { "sched:sched_switch", process_sample_sched_switch }, |
| #ifdef SUPPORT_OLD_POWER_EVENTS |
| { "power:power_start", process_sample_power_start }, |
| { "power:power_end", process_sample_power_end }, |
| { "power:power_frequency", process_sample_power_frequency }, |
| #endif |
| |
| { "syscalls:sys_enter_read", process_enter_read }, |
| { "syscalls:sys_enter_pread64", process_enter_read }, |
| { "syscalls:sys_enter_readv", process_enter_read }, |
| { "syscalls:sys_enter_preadv", process_enter_read }, |
| { "syscalls:sys_enter_write", process_enter_write }, |
| { "syscalls:sys_enter_pwrite64", process_enter_write }, |
| { "syscalls:sys_enter_writev", process_enter_write }, |
| { "syscalls:sys_enter_pwritev", process_enter_write }, |
| { "syscalls:sys_enter_sync", process_enter_sync }, |
| { "syscalls:sys_enter_sync_file_range", process_enter_sync }, |
| { "syscalls:sys_enter_fsync", process_enter_sync }, |
| { "syscalls:sys_enter_msync", process_enter_sync }, |
| { "syscalls:sys_enter_recvfrom", process_enter_rx }, |
| { "syscalls:sys_enter_recvmmsg", process_enter_rx }, |
| { "syscalls:sys_enter_recvmsg", process_enter_rx }, |
| { "syscalls:sys_enter_sendto", process_enter_tx }, |
| { "syscalls:sys_enter_sendmsg", process_enter_tx }, |
| { "syscalls:sys_enter_sendmmsg", process_enter_tx }, |
| { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, |
| { "syscalls:sys_enter_epoll_wait", process_enter_poll }, |
| { "syscalls:sys_enter_poll", process_enter_poll }, |
| { "syscalls:sys_enter_ppoll", process_enter_poll }, |
| { "syscalls:sys_enter_pselect6", process_enter_poll }, |
| { "syscalls:sys_enter_select", process_enter_poll }, |
| |
| { "syscalls:sys_exit_read", process_exit_read }, |
| { "syscalls:sys_exit_pread64", process_exit_read }, |
| { "syscalls:sys_exit_readv", process_exit_read }, |
| { "syscalls:sys_exit_preadv", process_exit_read }, |
| { "syscalls:sys_exit_write", process_exit_write }, |
| { "syscalls:sys_exit_pwrite64", process_exit_write }, |
| { "syscalls:sys_exit_writev", process_exit_write }, |
| { "syscalls:sys_exit_pwritev", process_exit_write }, |
| { "syscalls:sys_exit_sync", process_exit_sync }, |
| { "syscalls:sys_exit_sync_file_range", process_exit_sync }, |
| { "syscalls:sys_exit_fsync", process_exit_sync }, |
| { "syscalls:sys_exit_msync", process_exit_sync }, |
| { "syscalls:sys_exit_recvfrom", process_exit_rx }, |
| { "syscalls:sys_exit_recvmmsg", process_exit_rx }, |
| { "syscalls:sys_exit_recvmsg", process_exit_rx }, |
| { "syscalls:sys_exit_sendto", process_exit_tx }, |
| { "syscalls:sys_exit_sendmsg", process_exit_tx }, |
| { "syscalls:sys_exit_sendmmsg", process_exit_tx }, |
| { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, |
| { "syscalls:sys_exit_epoll_wait", process_exit_poll }, |
| { "syscalls:sys_exit_poll", process_exit_poll }, |
| { "syscalls:sys_exit_ppoll", process_exit_poll }, |
| { "syscalls:sys_exit_pselect6", process_exit_poll }, |
| { "syscalls:sys_exit_select", process_exit_poll }, |
| }; |
| struct perf_data_file file = { |
| .path = input_name, |
| .mode = PERF_DATA_MODE_READ, |
| .force = tchart->force, |
| }; |
| |
| struct perf_session *session = perf_session__new(&file, false, |
| &tchart->tool); |
| int ret = -EINVAL; |
| |
| if (session == NULL) |
| return -1; |
| |
| symbol__init(&session->header.env); |
| |
| (void)perf_header__process_sections(&session->header, |
| perf_data_file__fd(session->file), |
| tchart, |
| process_header); |
| |
| if (!perf_session__has_traces(session, "timechart record")) |
| goto out_delete; |
| |
| if (perf_session__set_tracepoints_handlers(session, |
| power_tracepoints)) { |
| pr_err("Initializing session tracepoint handlers failed\n"); |
| goto out_delete; |
| } |
| |
| ret = perf_session__process_events(session); |
| if (ret) |
| goto out_delete; |
| |
| end_sample_processing(tchart); |
| |
| sort_pids(tchart); |
| |
| write_svg_file(tchart, output_name); |
| |
| pr_info("Written %2.1f seconds of trace to %s.\n", |
| (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name); |
| out_delete: |
| perf_session__delete(session); |
| return ret; |
| } |
| |
| static int timechart__io_record(int argc, const char **argv) |
| { |
| unsigned int rec_argc, i; |
| const char **rec_argv; |
| const char **p; |
| char *filter = NULL; |
| |
| const char * const common_args[] = { |
| "record", "-a", "-R", "-c", "1", |
| }; |
| unsigned int common_args_nr = ARRAY_SIZE(common_args); |
| |
| const char * const disk_events[] = { |
| "syscalls:sys_enter_read", |
| "syscalls:sys_enter_pread64", |
| "syscalls:sys_enter_readv", |
| "syscalls:sys_enter_preadv", |
| "syscalls:sys_enter_write", |
| "syscalls:sys_enter_pwrite64", |
| "syscalls:sys_enter_writev", |
| "syscalls:sys_enter_pwritev", |
| "syscalls:sys_enter_sync", |
| "syscalls:sys_enter_sync_file_range", |
| "syscalls:sys_enter_fsync", |
| "syscalls:sys_enter_msync", |
| |
| "syscalls:sys_exit_read", |
| "syscalls:sys_exit_pread64", |
| "syscalls:sys_exit_readv", |
| "syscalls:sys_exit_preadv", |
| "syscalls:sys_exit_write", |
| "syscalls:sys_exit_pwrite64", |
| "syscalls:sys_exit_writev", |
| "syscalls:sys_exit_pwritev", |
| "syscalls:sys_exit_sync", |
| "syscalls:sys_exit_sync_file_range", |
| "syscalls:sys_exit_fsync", |
| "syscalls:sys_exit_msync", |
| }; |
| unsigned int disk_events_nr = ARRAY_SIZE(disk_events); |
| |
| const char * const net_events[] = { |
| "syscalls:sys_enter_recvfrom", |
| "syscalls:sys_enter_recvmmsg", |
| "syscalls:sys_enter_recvmsg", |
| "syscalls:sys_enter_sendto", |
| "syscalls:sys_enter_sendmsg", |
| "syscalls:sys_enter_sendmmsg", |
| |
| "syscalls:sys_exit_recvfrom", |
| "syscalls:sys_exit_recvmmsg", |
| "syscalls:sys_exit_recvmsg", |
| "syscalls:sys_exit_sendto", |
| "syscalls:sys_exit_sendmsg", |
| "syscalls:sys_exit_sendmmsg", |
| }; |
| unsigned int net_events_nr = ARRAY_SIZE(net_events); |
| |
| const char * const poll_events[] = { |
| "syscalls:sys_enter_epoll_pwait", |
| "syscalls:sys_enter_epoll_wait", |
| "syscalls:sys_enter_poll", |
| "syscalls:sys_enter_ppoll", |
| "syscalls:sys_enter_pselect6", |
| "syscalls:sys_enter_select", |
| |
| "syscalls:sys_exit_epoll_pwait", |
| "syscalls:sys_exit_epoll_wait", |
| "syscalls:sys_exit_poll", |
| "syscalls:sys_exit_ppoll", |
| "syscalls:sys_exit_pselect6", |
| "syscalls:sys_exit_select", |
| }; |
| unsigned int poll_events_nr = ARRAY_SIZE(poll_events); |
| |
| rec_argc = common_args_nr + |
| disk_events_nr * 4 + |
| net_events_nr * 4 + |
| poll_events_nr * 4 + |
| argc; |
| rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| |
| if (rec_argv == NULL) |
| return -ENOMEM; |
| |
| if (asprintf(&filter, "common_pid != %d", getpid()) < 0) |
| return -ENOMEM; |
| |
| p = rec_argv; |
| for (i = 0; i < common_args_nr; i++) |
| *p++ = strdup(common_args[i]); |
| |
| for (i = 0; i < disk_events_nr; i++) { |
| if (!is_valid_tracepoint(disk_events[i])) { |
| rec_argc -= 4; |
| continue; |
| } |
| |
| *p++ = "-e"; |
| *p++ = strdup(disk_events[i]); |
| *p++ = "--filter"; |
| *p++ = filter; |
| } |
| for (i = 0; i < net_events_nr; i++) { |
| if (!is_valid_tracepoint(net_events[i])) { |
| rec_argc -= 4; |
| continue; |
| } |
| |
| *p++ = "-e"; |
| *p++ = strdup(net_events[i]); |
| *p++ = "--filter"; |
| *p++ = filter; |
| } |
| for (i = 0; i < poll_events_nr; i++) { |
| if (!is_valid_tracepoint(poll_events[i])) { |
| rec_argc -= 4; |
| continue; |
| } |
| |
| *p++ = "-e"; |
| *p++ = strdup(poll_events[i]); |
| *p++ = "--filter"; |
| *p++ = filter; |
| } |
| |
| for (i = 0; i < (unsigned int)argc; i++) |
| *p++ = argv[i]; |
| |
| return cmd_record(rec_argc, rec_argv); |
| } |
| |
| |
| static int timechart__record(struct timechart *tchart, int argc, const char **argv) |
| { |
| unsigned int rec_argc, i, j; |
| const char **rec_argv; |
| const char **p; |
| unsigned int record_elems; |
| |
| const char * const common_args[] = { |
| "record", "-a", "-R", "-c", "1", |
| }; |
| unsigned int common_args_nr = ARRAY_SIZE(common_args); |
| |
| const char * const backtrace_args[] = { |
| "-g", |
| }; |
| unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); |
| |
| const char * const power_args[] = { |
| "-e", "power:cpu_frequency", |
| "-e", "power:cpu_idle", |
| }; |
| unsigned int power_args_nr = ARRAY_SIZE(power_args); |
| |
| const char * const old_power_args[] = { |
| #ifdef SUPPORT_OLD_POWER_EVENTS |
| "-e", "power:power_start", |
| "-e", "power:power_end", |
| "-e", "power:power_frequency", |
| #endif |
| }; |
| unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); |
| |
| const char * const tasks_args[] = { |
| "-e", "sched:sched_wakeup", |
| "-e", "sched:sched_switch", |
| }; |
| unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); |
| |
| #ifdef SUPPORT_OLD_POWER_EVENTS |
| if (!is_valid_tracepoint("power:cpu_idle") && |
| is_valid_tracepoint("power:power_start")) { |
| use_old_power_events = 1; |
| power_args_nr = 0; |
| } else { |
| old_power_args_nr = 0; |
| } |
| #endif |
| |
| if (tchart->power_only) |
| tasks_args_nr = 0; |
| |
| if (tchart->tasks_only) { |
| power_args_nr = 0; |
| old_power_args_nr = 0; |
| } |
| |
| if (!tchart->with_backtrace) |
| backtrace_args_no = 0; |
| |
| record_elems = common_args_nr + tasks_args_nr + |
| power_args_nr + old_power_args_nr + backtrace_args_no; |
| |
| rec_argc = record_elems + argc; |
| rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| |
| if (rec_argv == NULL) |
| return -ENOMEM; |
| |
| p = rec_argv; |
| for (i = 0; i < common_args_nr; i++) |
| *p++ = strdup(common_args[i]); |
| |
| for (i = 0; i < backtrace_args_no; i++) |
| *p++ = strdup(backtrace_args[i]); |
| |
| for (i = 0; i < tasks_args_nr; i++) |
| *p++ = strdup(tasks_args[i]); |
| |
| for (i = 0; i < power_args_nr; i++) |
| *p++ = strdup(power_args[i]); |
| |
| for (i = 0; i < old_power_args_nr; i++) |
| *p++ = strdup(old_power_args[i]); |
| |
| for (j = 0; j < (unsigned int)argc; j++) |
| *p++ = argv[j]; |
| |
| return cmd_record(rec_argc, rec_argv); |
| } |
| |
| static int |
| parse_process(const struct option *opt __maybe_unused, const char *arg, |
| int __maybe_unused unset) |
| { |
| if (arg) |
| add_process_filter(arg); |
| return 0; |
| } |
| |
| static int |
| parse_highlight(const struct option *opt __maybe_unused, const char *arg, |
| int __maybe_unused unset) |
| { |
| unsigned long duration = strtoul(arg, NULL, 0); |
| |
| if (svg_highlight || svg_highlight_name) |
| return -1; |
| |
| if (duration) |
| svg_highlight = duration; |
| else |
| svg_highlight_name = strdup(arg); |
| |
| return 0; |
| } |
| |
| static int |
| parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) |
| { |
| char unit = 'n'; |
| u64 *value = opt->value; |
| |
| if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { |
| switch (unit) { |
| case 'm': |
| *value *= NSEC_PER_MSEC; |
| break; |
| case 'u': |
| *value *= NSEC_PER_USEC; |
| break; |
| case 'n': |
| break; |
| default: |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int cmd_timechart(int argc, const char **argv) |
| { |
| struct timechart tchart = { |
| .tool = { |
| .comm = process_comm_event, |
| .fork = process_fork_event, |
| .exit = process_exit_event, |
| .sample = process_sample_event, |
| .ordered_events = true, |
| }, |
| .proc_num = 15, |
| .min_time = NSEC_PER_MSEC, |
| .merge_dist = 1000, |
| }; |
| const char *output_name = "output.svg"; |
| const struct option timechart_common_options[] = { |
| OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), |
| OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"), |
| OPT_END() |
| }; |
| const struct option timechart_options[] = { |
| OPT_STRING('i', "input", &input_name, "file", "input file name"), |
| OPT_STRING('o', "output", &output_name, "file", "output file name"), |
| OPT_INTEGER('w', "width", &svg_page_width, "page width"), |
| OPT_CALLBACK(0, "highlight", NULL, "duration or task name", |
| "highlight tasks. Pass duration in ns or process name.", |
| parse_highlight), |
| OPT_CALLBACK('p', "process", NULL, "process", |
| "process selector. Pass a pid or process name.", |
| parse_process), |
| OPT_CALLBACK(0, "symfs", NULL, "directory", |
| "Look for files with symbols relative to this directory", |
| symbol__config_symfs), |
| OPT_INTEGER('n', "proc-num", &tchart.proc_num, |
| "min. number of tasks to print"), |
| OPT_BOOLEAN('t', "topology", &tchart.topology, |
| "sort CPUs according to topology"), |
| OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, |
| "skip EAGAIN errors"), |
| OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", |
| "all IO faster than min-time will visually appear longer", |
| parse_time), |
| OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", |
| "merge events that are merge-dist us apart", |
| parse_time), |
| OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), |
| OPT_PARENT(timechart_common_options), |
| }; |
| const char * const timechart_subcommands[] = { "record", NULL }; |
| const char *timechart_usage[] = { |
| "perf timechart [<options>] {record}", |
| NULL |
| }; |
| const struct option timechart_record_options[] = { |
| OPT_BOOLEAN('I', "io-only", &tchart.io_only, |
| "record only IO data"), |
| OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), |
| OPT_PARENT(timechart_common_options), |
| }; |
| const char * const timechart_record_usage[] = { |
| "perf timechart record [<options>]", |
| NULL |
| }; |
| argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, |
| timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); |
| |
| if (tchart.power_only && tchart.tasks_only) { |
| pr_err("-P and -T options cannot be used at the same time.\n"); |
| return -1; |
| } |
| |
| if (argc && !strncmp(argv[0], "rec", 3)) { |
| argc = parse_options(argc, argv, timechart_record_options, |
| timechart_record_usage, |
| PARSE_OPT_STOP_AT_NON_OPTION); |
| |
| if (tchart.power_only && tchart.tasks_only) { |
| pr_err("-P and -T options cannot be used at the same time.\n"); |
| return -1; |
| } |
| |
| if (tchart.io_only) |
| return timechart__io_record(argc, argv); |
| else |
| return timechart__record(&tchart, argc, argv); |
| } else if (argc) |
| usage_with_options(timechart_usage, timechart_options); |
| |
| setup_pager(); |
| |
| return __cmd_timechart(&tchart, output_name); |
| } |