| /* |
| * 2002-10-18 written by Jim Houston jim.houston@ccur.com |
| * Copyright (C) 2002 by Concurrent Computer Corporation |
| * Distributed under the GNU GPL license version 2. |
| * |
| * Modified by George Anzinger to reuse immediately and to use |
| * find bit instructions. Also removed _irq on spinlocks. |
| * |
| * Modified by Nadia Derbey to make it RCU safe. |
| * |
| * Small id to pointer translation service. |
| * |
| * It uses a radix tree like structure as a sparse array indexed |
| * by the id to obtain the pointer. The bitmap makes allocating |
| * a new id quick. |
| * |
| * You call it to allocate an id (an int) an associate with that id a |
| * pointer or what ever, we treat it as a (void *). You can pass this |
| * id to a user for him to pass back at a later time. You then pass |
| * that id to this code and it returns your pointer. |
| |
| * You can release ids at any time. When all ids are released, most of |
| * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we |
| * don't need to go to the memory "store" during an id allocate, just |
| * so you don't need to be too concerned about locking and conflicts |
| * with the slab allocator. |
| */ |
| |
| #ifndef TEST // to test in user space... |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/export.h> |
| #endif |
| #include <linux/err.h> |
| #include <linux/string.h> |
| #include <linux/idr.h> |
| #include <linux/spinlock.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| |
| #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) |
| #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) |
| |
| /* Leave the possibility of an incomplete final layer */ |
| #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) |
| |
| /* Number of id_layer structs to leave in free list */ |
| #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) |
| |
| static struct kmem_cache *idr_layer_cache; |
| static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); |
| static DEFINE_PER_CPU(int, idr_preload_cnt); |
| static DEFINE_SPINLOCK(simple_ida_lock); |
| |
| /* the maximum ID which can be allocated given idr->layers */ |
| static int idr_max(int layers) |
| { |
| int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); |
| |
| return (1 << bits) - 1; |
| } |
| |
| /* |
| * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is |
| * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and |
| * so on. |
| */ |
| static int idr_layer_prefix_mask(int layer) |
| { |
| return ~idr_max(layer + 1); |
| } |
| |
| static struct idr_layer *get_from_free_list(struct idr *idp) |
| { |
| struct idr_layer *p; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&idp->lock, flags); |
| if ((p = idp->id_free)) { |
| idp->id_free = p->ary[0]; |
| idp->id_free_cnt--; |
| p->ary[0] = NULL; |
| } |
| spin_unlock_irqrestore(&idp->lock, flags); |
| return(p); |
| } |
| |
| /** |
| * idr_layer_alloc - allocate a new idr_layer |
| * @gfp_mask: allocation mask |
| * @layer_idr: optional idr to allocate from |
| * |
| * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch |
| * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch |
| * an idr_layer from @idr->id_free. |
| * |
| * @layer_idr is to maintain backward compatibility with the old alloc |
| * interface - idr_pre_get() and idr_get_new*() - and will be removed |
| * together with per-pool preload buffer. |
| */ |
| static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) |
| { |
| struct idr_layer *new; |
| |
| /* this is the old path, bypass to get_from_free_list() */ |
| if (layer_idr) |
| return get_from_free_list(layer_idr); |
| |
| /* |
| * Try to allocate directly from kmem_cache. We want to try this |
| * before preload buffer; otherwise, non-preloading idr_alloc() |
| * users will end up taking advantage of preloading ones. As the |
| * following is allowed to fail for preloaded cases, suppress |
| * warning this time. |
| */ |
| new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); |
| if (new) |
| return new; |
| |
| /* |
| * Try to fetch one from the per-cpu preload buffer if in process |
| * context. See idr_preload() for details. |
| */ |
| if (!in_interrupt()) { |
| preempt_disable(); |
| new = __this_cpu_read(idr_preload_head); |
| if (new) { |
| __this_cpu_write(idr_preload_head, new->ary[0]); |
| __this_cpu_dec(idr_preload_cnt); |
| new->ary[0] = NULL; |
| } |
| preempt_enable(); |
| if (new) |
| return new; |
| } |
| |
| /* |
| * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so |
| * that memory allocation failure warning is printed as intended. |
| */ |
| return kmem_cache_zalloc(idr_layer_cache, gfp_mask); |
| } |
| |
| static void idr_layer_rcu_free(struct rcu_head *head) |
| { |
| struct idr_layer *layer; |
| |
| layer = container_of(head, struct idr_layer, rcu_head); |
| kmem_cache_free(idr_layer_cache, layer); |
| } |
| |
| static inline void free_layer(struct idr *idr, struct idr_layer *p) |
| { |
| if (idr->hint && idr->hint == p) |
| RCU_INIT_POINTER(idr->hint, NULL); |
| call_rcu(&p->rcu_head, idr_layer_rcu_free); |
| } |
| |
| /* only called when idp->lock is held */ |
| static void __move_to_free_list(struct idr *idp, struct idr_layer *p) |
| { |
| p->ary[0] = idp->id_free; |
| idp->id_free = p; |
| idp->id_free_cnt++; |
| } |
| |
| static void move_to_free_list(struct idr *idp, struct idr_layer *p) |
| { |
| unsigned long flags; |
| |
| /* |
| * Depends on the return element being zeroed. |
| */ |
| spin_lock_irqsave(&idp->lock, flags); |
| __move_to_free_list(idp, p); |
| spin_unlock_irqrestore(&idp->lock, flags); |
| } |
| |
| static void idr_mark_full(struct idr_layer **pa, int id) |
| { |
| struct idr_layer *p = pa[0]; |
| int l = 0; |
| |
| __set_bit(id & IDR_MASK, p->bitmap); |
| /* |
| * If this layer is full mark the bit in the layer above to |
| * show that this part of the radix tree is full. This may |
| * complete the layer above and require walking up the radix |
| * tree. |
| */ |
| while (bitmap_full(p->bitmap, IDR_SIZE)) { |
| if (!(p = pa[++l])) |
| break; |
| id = id >> IDR_BITS; |
| __set_bit((id & IDR_MASK), p->bitmap); |
| } |
| } |
| |
| static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
| { |
| while (idp->id_free_cnt < MAX_IDR_FREE) { |
| struct idr_layer *new; |
| new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); |
| if (new == NULL) |
| return (0); |
| move_to_free_list(idp, new); |
| } |
| return 1; |
| } |
| |
| /** |
| * sub_alloc - try to allocate an id without growing the tree depth |
| * @idp: idr handle |
| * @starting_id: id to start search at |
| * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer |
| * @gfp_mask: allocation mask for idr_layer_alloc() |
| * @layer_idr: optional idr passed to idr_layer_alloc() |
| * |
| * Allocate an id in range [@starting_id, INT_MAX] from @idp without |
| * growing its depth. Returns |
| * |
| * the allocated id >= 0 if successful, |
| * -EAGAIN if the tree needs to grow for allocation to succeed, |
| * -ENOSPC if the id space is exhausted, |
| * -ENOMEM if more idr_layers need to be allocated. |
| */ |
| static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, |
| gfp_t gfp_mask, struct idr *layer_idr) |
| { |
| int n, m, sh; |
| struct idr_layer *p, *new; |
| int l, id, oid; |
| |
| id = *starting_id; |
| restart: |
| p = idp->top; |
| l = idp->layers; |
| pa[l--] = NULL; |
| while (1) { |
| /* |
| * We run around this while until we reach the leaf node... |
| */ |
| n = (id >> (IDR_BITS*l)) & IDR_MASK; |
| m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); |
| if (m == IDR_SIZE) { |
| /* no space available go back to previous layer. */ |
| l++; |
| oid = id; |
| id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
| |
| /* if already at the top layer, we need to grow */ |
| if (id > idr_max(idp->layers)) { |
| *starting_id = id; |
| return -EAGAIN; |
| } |
| p = pa[l]; |
| BUG_ON(!p); |
| |
| /* If we need to go up one layer, continue the |
| * loop; otherwise, restart from the top. |
| */ |
| sh = IDR_BITS * (l + 1); |
| if (oid >> sh == id >> sh) |
| continue; |
| else |
| goto restart; |
| } |
| if (m != n) { |
| sh = IDR_BITS*l; |
| id = ((id >> sh) ^ n ^ m) << sh; |
| } |
| if ((id >= MAX_IDR_BIT) || (id < 0)) |
| return -ENOSPC; |
| if (l == 0) |
| break; |
| /* |
| * Create the layer below if it is missing. |
| */ |
| if (!p->ary[m]) { |
| new = idr_layer_alloc(gfp_mask, layer_idr); |
| if (!new) |
| return -ENOMEM; |
| new->layer = l-1; |
| new->prefix = id & idr_layer_prefix_mask(new->layer); |
| rcu_assign_pointer(p->ary[m], new); |
| p->count++; |
| } |
| pa[l--] = p; |
| p = p->ary[m]; |
| } |
| |
| pa[l] = p; |
| return id; |
| } |
| |
| static int idr_get_empty_slot(struct idr *idp, int starting_id, |
| struct idr_layer **pa, gfp_t gfp_mask, |
| struct idr *layer_idr) |
| { |
| struct idr_layer *p, *new; |
| int layers, v, id; |
| unsigned long flags; |
| |
| id = starting_id; |
| build_up: |
| p = idp->top; |
| layers = idp->layers; |
| if (unlikely(!p)) { |
| if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) |
| return -ENOMEM; |
| p->layer = 0; |
| layers = 1; |
| } |
| /* |
| * Add a new layer to the top of the tree if the requested |
| * id is larger than the currently allocated space. |
| */ |
| while (id > idr_max(layers)) { |
| layers++; |
| if (!p->count) { |
| /* special case: if the tree is currently empty, |
| * then we grow the tree by moving the top node |
| * upwards. |
| */ |
| p->layer++; |
| WARN_ON_ONCE(p->prefix); |
| continue; |
| } |
| if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { |
| /* |
| * The allocation failed. If we built part of |
| * the structure tear it down. |
| */ |
| spin_lock_irqsave(&idp->lock, flags); |
| for (new = p; p && p != idp->top; new = p) { |
| p = p->ary[0]; |
| new->ary[0] = NULL; |
| new->count = 0; |
| bitmap_clear(new->bitmap, 0, IDR_SIZE); |
| __move_to_free_list(idp, new); |
| } |
| spin_unlock_irqrestore(&idp->lock, flags); |
| return -ENOMEM; |
| } |
| new->ary[0] = p; |
| new->count = 1; |
| new->layer = layers-1; |
| new->prefix = id & idr_layer_prefix_mask(new->layer); |
| if (bitmap_full(p->bitmap, IDR_SIZE)) |
| __set_bit(0, new->bitmap); |
| p = new; |
| } |
| rcu_assign_pointer(idp->top, p); |
| idp->layers = layers; |
| v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); |
| if (v == -EAGAIN) |
| goto build_up; |
| return(v); |
| } |
| |
| /* |
| * @id and @pa are from a successful allocation from idr_get_empty_slot(). |
| * Install the user pointer @ptr and mark the slot full. |
| */ |
| static void idr_fill_slot(struct idr *idr, void *ptr, int id, |
| struct idr_layer **pa) |
| { |
| /* update hint used for lookup, cleared from free_layer() */ |
| rcu_assign_pointer(idr->hint, pa[0]); |
| |
| rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); |
| pa[0]->count++; |
| idr_mark_full(pa, id); |
| } |
| |
| |
| /** |
| * idr_preload - preload for idr_alloc() |
| * @gfp_mask: allocation mask to use for preloading |
| * |
| * Preload per-cpu layer buffer for idr_alloc(). Can only be used from |
| * process context and each idr_preload() invocation should be matched with |
| * idr_preload_end(). Note that preemption is disabled while preloaded. |
| * |
| * The first idr_alloc() in the preloaded section can be treated as if it |
| * were invoked with @gfp_mask used for preloading. This allows using more |
| * permissive allocation masks for idrs protected by spinlocks. |
| * |
| * For example, if idr_alloc() below fails, the failure can be treated as |
| * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. |
| * |
| * idr_preload(GFP_KERNEL); |
| * spin_lock(lock); |
| * |
| * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); |
| * |
| * spin_unlock(lock); |
| * idr_preload_end(); |
| * if (id < 0) |
| * error; |
| */ |
| void idr_preload(gfp_t gfp_mask) |
| { |
| /* |
| * Consuming preload buffer from non-process context breaks preload |
| * allocation guarantee. Disallow usage from those contexts. |
| */ |
| WARN_ON_ONCE(in_interrupt()); |
| might_sleep_if(gfp_mask & __GFP_WAIT); |
| |
| preempt_disable(); |
| |
| /* |
| * idr_alloc() is likely to succeed w/o full idr_layer buffer and |
| * return value from idr_alloc() needs to be checked for failure |
| * anyway. Silently give up if allocation fails. The caller can |
| * treat failures from idr_alloc() as if idr_alloc() were called |
| * with @gfp_mask which should be enough. |
| */ |
| while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { |
| struct idr_layer *new; |
| |
| preempt_enable(); |
| new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); |
| preempt_disable(); |
| if (!new) |
| break; |
| |
| /* link the new one to per-cpu preload list */ |
| new->ary[0] = __this_cpu_read(idr_preload_head); |
| __this_cpu_write(idr_preload_head, new); |
| __this_cpu_inc(idr_preload_cnt); |
| } |
| } |
| EXPORT_SYMBOL(idr_preload); |
| |
| /** |
| * idr_alloc - allocate new idr entry |
| * @idr: the (initialized) idr |
| * @ptr: pointer to be associated with the new id |
| * @start: the minimum id (inclusive) |
| * @end: the maximum id (exclusive, <= 0 for max) |
| * @gfp_mask: memory allocation flags |
| * |
| * Allocate an id in [start, end) and associate it with @ptr. If no ID is |
| * available in the specified range, returns -ENOSPC. On memory allocation |
| * failure, returns -ENOMEM. |
| * |
| * Note that @end is treated as max when <= 0. This is to always allow |
| * using @start + N as @end as long as N is inside integer range. |
| * |
| * The user is responsible for exclusively synchronizing all operations |
| * which may modify @idr. However, read-only accesses such as idr_find() |
| * or iteration can be performed under RCU read lock provided the user |
| * destroys @ptr in RCU-safe way after removal from idr. |
| */ |
| int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) |
| { |
| int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ |
| struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
| int id; |
| |
| might_sleep_if(gfp_mask & __GFP_WAIT); |
| |
| /* sanity checks */ |
| if (WARN_ON_ONCE(start < 0)) |
| return -EINVAL; |
| if (unlikely(max < start)) |
| return -ENOSPC; |
| |
| /* allocate id */ |
| id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); |
| if (unlikely(id < 0)) |
| return id; |
| if (unlikely(id > max)) |
| return -ENOSPC; |
| |
| idr_fill_slot(idr, ptr, id, pa); |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(idr_alloc); |
| |
| /** |
| * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion |
| * @idr: the (initialized) idr |
| * @ptr: pointer to be associated with the new id |
| * @start: the minimum id (inclusive) |
| * @end: the maximum id (exclusive, <= 0 for max) |
| * @gfp_mask: memory allocation flags |
| * |
| * Essentially the same as idr_alloc, but prefers to allocate progressively |
| * higher ids if it can. If the "cur" counter wraps, then it will start again |
| * at the "start" end of the range and allocate one that has already been used. |
| */ |
| int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, |
| gfp_t gfp_mask) |
| { |
| int id; |
| |
| id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); |
| if (id == -ENOSPC) |
| id = idr_alloc(idr, ptr, start, end, gfp_mask); |
| |
| if (likely(id >= 0)) |
| idr->cur = id + 1; |
| return id; |
| } |
| EXPORT_SYMBOL(idr_alloc_cyclic); |
| |
| static void idr_remove_warning(int id) |
| { |
| WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); |
| } |
| |
| static void sub_remove(struct idr *idp, int shift, int id) |
| { |
| struct idr_layer *p = idp->top; |
| struct idr_layer **pa[MAX_IDR_LEVEL + 1]; |
| struct idr_layer ***paa = &pa[0]; |
| struct idr_layer *to_free; |
| int n; |
| |
| *paa = NULL; |
| *++paa = &idp->top; |
| |
| while ((shift > 0) && p) { |
| n = (id >> shift) & IDR_MASK; |
| __clear_bit(n, p->bitmap); |
| *++paa = &p->ary[n]; |
| p = p->ary[n]; |
| shift -= IDR_BITS; |
| } |
| n = id & IDR_MASK; |
| if (likely(p != NULL && test_bit(n, p->bitmap))) { |
| __clear_bit(n, p->bitmap); |
| RCU_INIT_POINTER(p->ary[n], NULL); |
| to_free = NULL; |
| while(*paa && ! --((**paa)->count)){ |
| if (to_free) |
| free_layer(idp, to_free); |
| to_free = **paa; |
| **paa-- = NULL; |
| } |
| if (!*paa) |
| idp->layers = 0; |
| if (to_free) |
| free_layer(idp, to_free); |
| } else |
| idr_remove_warning(id); |
| } |
| |
| /** |
| * idr_remove - remove the given id and free its slot |
| * @idp: idr handle |
| * @id: unique key |
| */ |
| void idr_remove(struct idr *idp, int id) |
| { |
| struct idr_layer *p; |
| struct idr_layer *to_free; |
| |
| if (id < 0) |
| return; |
| |
| if (id > idr_max(idp->layers)) { |
| idr_remove_warning(id); |
| return; |
| } |
| |
| sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); |
| if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
| idp->top->ary[0]) { |
| /* |
| * Single child at leftmost slot: we can shrink the tree. |
| * This level is not needed anymore since when layers are |
| * inserted, they are inserted at the top of the existing |
| * tree. |
| */ |
| to_free = idp->top; |
| p = idp->top->ary[0]; |
| rcu_assign_pointer(idp->top, p); |
| --idp->layers; |
| to_free->count = 0; |
| bitmap_clear(to_free->bitmap, 0, IDR_SIZE); |
| free_layer(idp, to_free); |
| } |
| while (idp->id_free_cnt >= MAX_IDR_FREE) { |
| p = get_from_free_list(idp); |
| /* |
| * Note: we don't call the rcu callback here, since the only |
| * layers that fall into the freelist are those that have been |
| * preallocated. |
| */ |
| kmem_cache_free(idr_layer_cache, p); |
| } |
| return; |
| } |
| EXPORT_SYMBOL(idr_remove); |
| |
| static void __idr_remove_all(struct idr *idp) |
| { |
| int n, id, max; |
| int bt_mask; |
| struct idr_layer *p; |
| struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
| struct idr_layer **paa = &pa[0]; |
| |
| n = idp->layers * IDR_BITS; |
| p = idp->top; |
| RCU_INIT_POINTER(idp->top, NULL); |
| max = idr_max(idp->layers); |
| |
| id = 0; |
| while (id >= 0 && id <= max) { |
| while (n > IDR_BITS && p) { |
| n -= IDR_BITS; |
| *paa++ = p; |
| p = p->ary[(id >> n) & IDR_MASK]; |
| } |
| |
| bt_mask = id; |
| id += 1 << n; |
| /* Get the highest bit that the above add changed from 0->1. */ |
| while (n < fls(id ^ bt_mask)) { |
| if (p) |
| free_layer(idp, p); |
| n += IDR_BITS; |
| p = *--paa; |
| } |
| } |
| idp->layers = 0; |
| } |
| |
| /** |
| * idr_destroy - release all cached layers within an idr tree |
| * @idp: idr handle |
| * |
| * Free all id mappings and all idp_layers. After this function, @idp is |
| * completely unused and can be freed / recycled. The caller is |
| * responsible for ensuring that no one else accesses @idp during or after |
| * idr_destroy(). |
| * |
| * A typical clean-up sequence for objects stored in an idr tree will use |
| * idr_for_each() to free all objects, if necessay, then idr_destroy() to |
| * free up the id mappings and cached idr_layers. |
| */ |
| void idr_destroy(struct idr *idp) |
| { |
| __idr_remove_all(idp); |
| |
| while (idp->id_free_cnt) { |
| struct idr_layer *p = get_from_free_list(idp); |
| kmem_cache_free(idr_layer_cache, p); |
| } |
| } |
| EXPORT_SYMBOL(idr_destroy); |
| |
| void *idr_find_slowpath(struct idr *idp, int id) |
| { |
| int n; |
| struct idr_layer *p; |
| |
| if (id < 0) |
| return NULL; |
| |
| p = rcu_dereference_raw(idp->top); |
| if (!p) |
| return NULL; |
| n = (p->layer+1) * IDR_BITS; |
| |
| if (id > idr_max(p->layer + 1)) |
| return NULL; |
| BUG_ON(n == 0); |
| |
| while (n > 0 && p) { |
| n -= IDR_BITS; |
| BUG_ON(n != p->layer*IDR_BITS); |
| p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
| } |
| return((void *)p); |
| } |
| EXPORT_SYMBOL(idr_find_slowpath); |
| |
| /** |
| * idr_for_each - iterate through all stored pointers |
| * @idp: idr handle |
| * @fn: function to be called for each pointer |
| * @data: data passed back to callback function |
| * |
| * Iterate over the pointers registered with the given idr. The |
| * callback function will be called for each pointer currently |
| * registered, passing the id, the pointer and the data pointer passed |
| * to this function. It is not safe to modify the idr tree while in |
| * the callback, so functions such as idr_get_new and idr_remove are |
| * not allowed. |
| * |
| * We check the return of @fn each time. If it returns anything other |
| * than %0, we break out and return that value. |
| * |
| * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). |
| */ |
| int idr_for_each(struct idr *idp, |
| int (*fn)(int id, void *p, void *data), void *data) |
| { |
| int n, id, max, error = 0; |
| struct idr_layer *p; |
| struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
| struct idr_layer **paa = &pa[0]; |
| |
| n = idp->layers * IDR_BITS; |
| p = rcu_dereference_raw(idp->top); |
| max = idr_max(idp->layers); |
| |
| id = 0; |
| while (id >= 0 && id <= max) { |
| while (n > 0 && p) { |
| n -= IDR_BITS; |
| *paa++ = p; |
| p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
| } |
| |
| if (p) { |
| error = fn(id, (void *)p, data); |
| if (error) |
| break; |
| } |
| |
| id += 1 << n; |
| while (n < fls(id)) { |
| n += IDR_BITS; |
| p = *--paa; |
| } |
| } |
| |
| return error; |
| } |
| EXPORT_SYMBOL(idr_for_each); |
| |
| /** |
| * idr_get_next - lookup next object of id to given id. |
| * @idp: idr handle |
| * @nextidp: pointer to lookup key |
| * |
| * Returns pointer to registered object with id, which is next number to |
| * given id. After being looked up, *@nextidp will be updated for the next |
| * iteration. |
| * |
| * This function can be called under rcu_read_lock(), given that the leaf |
| * pointers lifetimes are correctly managed. |
| */ |
| void *idr_get_next(struct idr *idp, int *nextidp) |
| { |
| struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; |
| struct idr_layer **paa = &pa[0]; |
| int id = *nextidp; |
| int n, max; |
| |
| /* find first ent */ |
| p = rcu_dereference_raw(idp->top); |
| if (!p) |
| return NULL; |
| n = (p->layer + 1) * IDR_BITS; |
| max = idr_max(p->layer + 1); |
| |
| while (id >= 0 && id <= max) { |
| while (n > 0 && p) { |
| n -= IDR_BITS; |
| *paa++ = p; |
| p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
| } |
| |
| if (p) { |
| *nextidp = id; |
| return p; |
| } |
| |
| /* |
| * Proceed to the next layer at the current level. Unlike |
| * idr_for_each(), @id isn't guaranteed to be aligned to |
| * layer boundary at this point and adding 1 << n may |
| * incorrectly skip IDs. Make sure we jump to the |
| * beginning of the next layer using round_up(). |
| */ |
| id = round_up(id + 1, 1 << n); |
| while (n < fls(id)) { |
| n += IDR_BITS; |
| p = *--paa; |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(idr_get_next); |
| |
| |
| /** |
| * idr_replace - replace pointer for given id |
| * @idp: idr handle |
| * @ptr: pointer you want associated with the id |
| * @id: lookup key |
| * |
| * Replace the pointer registered with an id and return the old value. |
| * A %-ENOENT return indicates that @id was not found. |
| * A %-EINVAL return indicates that @id was not within valid constraints. |
| * |
| * The caller must serialize with writers. |
| */ |
| void *idr_replace(struct idr *idp, void *ptr, int id) |
| { |
| int n; |
| struct idr_layer *p, *old_p; |
| |
| if (id < 0) |
| return ERR_PTR(-EINVAL); |
| |
| p = idp->top; |
| if (!p) |
| return ERR_PTR(-ENOENT); |
| |
| if (id > idr_max(p->layer + 1)) |
| return ERR_PTR(-ENOENT); |
| |
| n = p->layer * IDR_BITS; |
| while ((n > 0) && p) { |
| p = p->ary[(id >> n) & IDR_MASK]; |
| n -= IDR_BITS; |
| } |
| |
| n = id & IDR_MASK; |
| if (unlikely(p == NULL || !test_bit(n, p->bitmap))) |
| return ERR_PTR(-ENOENT); |
| |
| old_p = p->ary[n]; |
| rcu_assign_pointer(p->ary[n], ptr); |
| |
| return old_p; |
| } |
| EXPORT_SYMBOL(idr_replace); |
| |
| void __init idr_init_cache(void) |
| { |
| idr_layer_cache = kmem_cache_create("idr_layer_cache", |
| sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); |
| } |
| |
| /** |
| * idr_init - initialize idr handle |
| * @idp: idr handle |
| * |
| * This function is use to set up the handle (@idp) that you will pass |
| * to the rest of the functions. |
| */ |
| void idr_init(struct idr *idp) |
| { |
| memset(idp, 0, sizeof(struct idr)); |
| spin_lock_init(&idp->lock); |
| } |
| EXPORT_SYMBOL(idr_init); |
| |
| static int idr_has_entry(int id, void *p, void *data) |
| { |
| return 1; |
| } |
| |
| bool idr_is_empty(struct idr *idp) |
| { |
| return !idr_for_each(idp, idr_has_entry, NULL); |
| } |
| EXPORT_SYMBOL(idr_is_empty); |
| |
| /** |
| * DOC: IDA description |
| * IDA - IDR based ID allocator |
| * |
| * This is id allocator without id -> pointer translation. Memory |
| * usage is much lower than full blown idr because each id only |
| * occupies a bit. ida uses a custom leaf node which contains |
| * IDA_BITMAP_BITS slots. |
| * |
| * 2007-04-25 written by Tejun Heo <htejun@gmail.com> |
| */ |
| |
| static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) |
| { |
| unsigned long flags; |
| |
| if (!ida->free_bitmap) { |
| spin_lock_irqsave(&ida->idr.lock, flags); |
| if (!ida->free_bitmap) { |
| ida->free_bitmap = bitmap; |
| bitmap = NULL; |
| } |
| spin_unlock_irqrestore(&ida->idr.lock, flags); |
| } |
| |
| kfree(bitmap); |
| } |
| |
| /** |
| * ida_pre_get - reserve resources for ida allocation |
| * @ida: ida handle |
| * @gfp_mask: memory allocation flag |
| * |
| * This function should be called prior to locking and calling the |
| * following function. It preallocates enough memory to satisfy the |
| * worst possible allocation. |
| * |
| * If the system is REALLY out of memory this function returns %0, |
| * otherwise %1. |
| */ |
| int ida_pre_get(struct ida *ida, gfp_t gfp_mask) |
| { |
| /* allocate idr_layers */ |
| if (!__idr_pre_get(&ida->idr, gfp_mask)) |
| return 0; |
| |
| /* allocate free_bitmap */ |
| if (!ida->free_bitmap) { |
| struct ida_bitmap *bitmap; |
| |
| bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); |
| if (!bitmap) |
| return 0; |
| |
| free_bitmap(ida, bitmap); |
| } |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(ida_pre_get); |
| |
| /** |
| * ida_get_new_above - allocate new ID above or equal to a start id |
| * @ida: ida handle |
| * @starting_id: id to start search at |
| * @p_id: pointer to the allocated handle |
| * |
| * Allocate new ID above or equal to @starting_id. It should be called |
| * with any required locks. |
| * |
| * If memory is required, it will return %-EAGAIN, you should unlock |
| * and go back to the ida_pre_get() call. If the ida is full, it will |
| * return %-ENOSPC. |
| * |
| * @p_id returns a value in the range @starting_id ... %0x7fffffff. |
| */ |
| int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) |
| { |
| struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
| struct ida_bitmap *bitmap; |
| unsigned long flags; |
| int idr_id = starting_id / IDA_BITMAP_BITS; |
| int offset = starting_id % IDA_BITMAP_BITS; |
| int t, id; |
| |
| restart: |
| /* get vacant slot */ |
| t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); |
| if (t < 0) |
| return t == -ENOMEM ? -EAGAIN : t; |
| |
| if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) |
| return -ENOSPC; |
| |
| if (t != idr_id) |
| offset = 0; |
| idr_id = t; |
| |
| /* if bitmap isn't there, create a new one */ |
| bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; |
| if (!bitmap) { |
| spin_lock_irqsave(&ida->idr.lock, flags); |
| bitmap = ida->free_bitmap; |
| ida->free_bitmap = NULL; |
| spin_unlock_irqrestore(&ida->idr.lock, flags); |
| |
| if (!bitmap) |
| return -EAGAIN; |
| |
| memset(bitmap, 0, sizeof(struct ida_bitmap)); |
| rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], |
| (void *)bitmap); |
| pa[0]->count++; |
| } |
| |
| /* lookup for empty slot */ |
| t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); |
| if (t == IDA_BITMAP_BITS) { |
| /* no empty slot after offset, continue to the next chunk */ |
| idr_id++; |
| offset = 0; |
| goto restart; |
| } |
| |
| id = idr_id * IDA_BITMAP_BITS + t; |
| if (id >= MAX_IDR_BIT) |
| return -ENOSPC; |
| |
| __set_bit(t, bitmap->bitmap); |
| if (++bitmap->nr_busy == IDA_BITMAP_BITS) |
| idr_mark_full(pa, idr_id); |
| |
| *p_id = id; |
| |
| /* Each leaf node can handle nearly a thousand slots and the |
| * whole idea of ida is to have small memory foot print. |
| * Throw away extra resources one by one after each successful |
| * allocation. |
| */ |
| if (ida->idr.id_free_cnt || ida->free_bitmap) { |
| struct idr_layer *p = get_from_free_list(&ida->idr); |
| if (p) |
| kmem_cache_free(idr_layer_cache, p); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ida_get_new_above); |
| |
| /** |
| * ida_remove - remove the given ID |
| * @ida: ida handle |
| * @id: ID to free |
| */ |
| void ida_remove(struct ida *ida, int id) |
| { |
| struct idr_layer *p = ida->idr.top; |
| int shift = (ida->idr.layers - 1) * IDR_BITS; |
| int idr_id = id / IDA_BITMAP_BITS; |
| int offset = id % IDA_BITMAP_BITS; |
| int n; |
| struct ida_bitmap *bitmap; |
| |
| if (idr_id > idr_max(ida->idr.layers)) |
| goto err; |
| |
| /* clear full bits while looking up the leaf idr_layer */ |
| while ((shift > 0) && p) { |
| n = (idr_id >> shift) & IDR_MASK; |
| __clear_bit(n, p->bitmap); |
| p = p->ary[n]; |
| shift -= IDR_BITS; |
| } |
| |
| if (p == NULL) |
| goto err; |
| |
| n = idr_id & IDR_MASK; |
| __clear_bit(n, p->bitmap); |
| |
| bitmap = (void *)p->ary[n]; |
| if (!bitmap || !test_bit(offset, bitmap->bitmap)) |
| goto err; |
| |
| /* update bitmap and remove it if empty */ |
| __clear_bit(offset, bitmap->bitmap); |
| if (--bitmap->nr_busy == 0) { |
| __set_bit(n, p->bitmap); /* to please idr_remove() */ |
| idr_remove(&ida->idr, idr_id); |
| free_bitmap(ida, bitmap); |
| } |
| |
| return; |
| |
| err: |
| WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); |
| } |
| EXPORT_SYMBOL(ida_remove); |
| |
| /** |
| * ida_destroy - release all cached layers within an ida tree |
| * @ida: ida handle |
| */ |
| void ida_destroy(struct ida *ida) |
| { |
| idr_destroy(&ida->idr); |
| kfree(ida->free_bitmap); |
| } |
| EXPORT_SYMBOL(ida_destroy); |
| |
| /** |
| * ida_simple_get - get a new id. |
| * @ida: the (initialized) ida. |
| * @start: the minimum id (inclusive, < 0x8000000) |
| * @end: the maximum id (exclusive, < 0x8000000 or 0) |
| * @gfp_mask: memory allocation flags |
| * |
| * Allocates an id in the range start <= id < end, or returns -ENOSPC. |
| * On memory allocation failure, returns -ENOMEM. |
| * |
| * Use ida_simple_remove() to get rid of an id. |
| */ |
| int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, |
| gfp_t gfp_mask) |
| { |
| int ret, id; |
| unsigned int max; |
| unsigned long flags; |
| |
| BUG_ON((int)start < 0); |
| BUG_ON((int)end < 0); |
| |
| if (end == 0) |
| max = 0x80000000; |
| else { |
| BUG_ON(end < start); |
| max = end - 1; |
| } |
| |
| again: |
| if (!ida_pre_get(ida, gfp_mask)) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&simple_ida_lock, flags); |
| ret = ida_get_new_above(ida, start, &id); |
| if (!ret) { |
| if (id > max) { |
| ida_remove(ida, id); |
| ret = -ENOSPC; |
| } else { |
| ret = id; |
| } |
| } |
| spin_unlock_irqrestore(&simple_ida_lock, flags); |
| |
| if (unlikely(ret == -EAGAIN)) |
| goto again; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ida_simple_get); |
| |
| /** |
| * ida_simple_remove - remove an allocated id. |
| * @ida: the (initialized) ida. |
| * @id: the id returned by ida_simple_get. |
| */ |
| void ida_simple_remove(struct ida *ida, unsigned int id) |
| { |
| unsigned long flags; |
| |
| BUG_ON((int)id < 0); |
| spin_lock_irqsave(&simple_ida_lock, flags); |
| ida_remove(ida, id); |
| spin_unlock_irqrestore(&simple_ida_lock, flags); |
| } |
| EXPORT_SYMBOL(ida_simple_remove); |
| |
| /** |
| * ida_init - initialize ida handle |
| * @ida: ida handle |
| * |
| * This function is use to set up the handle (@ida) that you will pass |
| * to the rest of the functions. |
| */ |
| void ida_init(struct ida *ida) |
| { |
| memset(ida, 0, sizeof(struct ida)); |
| idr_init(&ida->idr); |
| |
| } |
| EXPORT_SYMBOL(ida_init); |