| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * The IP fragmentation functionality. |
| * |
| * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> |
| * Alan Cox <alan@lxorguk.ukuu.org.uk> |
| * |
| * Fixes: |
| * Alan Cox : Split from ip.c , see ip_input.c for history. |
| * David S. Miller : Begin massive cleanup... |
| * Andi Kleen : Add sysctls. |
| * xxxx : Overlapfrag bug. |
| * Ultima : ip_expire() kernel panic. |
| * Bill Hawes : Frag accounting and evictor fixes. |
| * John McDonald : 0 length frag bug. |
| * Alexey Kuznetsov: SMP races, threading, cleanup. |
| * Patrick McHardy : LRU queue of frag heads for evictor. |
| */ |
| |
| #define pr_fmt(fmt) "IPv4: " fmt |
| |
| #include <linux/compiler.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/jiffies.h> |
| #include <linux/skbuff.h> |
| #include <linux/list.h> |
| #include <linux/ip.h> |
| #include <linux/icmp.h> |
| #include <linux/netdevice.h> |
| #include <linux/jhash.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <net/route.h> |
| #include <net/dst.h> |
| #include <net/sock.h> |
| #include <net/ip.h> |
| #include <net/icmp.h> |
| #include <net/checksum.h> |
| #include <net/inetpeer.h> |
| #include <net/inet_frag.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/inet.h> |
| #include <linux/netfilter_ipv4.h> |
| #include <net/inet_ecn.h> |
| #include <net/l3mdev.h> |
| |
| /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 |
| * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c |
| * as well. Or notify me, at least. --ANK |
| */ |
| static const char ip_frag_cache_name[] = "ip4-frags"; |
| |
| /* Use skb->cb to track consecutive/adjacent fragments coming at |
| * the end of the queue. Nodes in the rb-tree queue will |
| * contain "runs" of one or more adjacent fragments. |
| * |
| * Invariants: |
| * - next_frag is NULL at the tail of a "run"; |
| * - the head of a "run" has the sum of all fragment lengths in frag_run_len. |
| */ |
| struct ipfrag_skb_cb { |
| struct inet_skb_parm h; |
| struct sk_buff *next_frag; |
| int frag_run_len; |
| }; |
| |
| #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
| |
| static void ip4_frag_init_run(struct sk_buff *skb) |
| { |
| BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); |
| |
| FRAG_CB(skb)->next_frag = NULL; |
| FRAG_CB(skb)->frag_run_len = skb->len; |
| } |
| |
| /* Append skb to the last "run". */ |
| static void ip4_frag_append_to_last_run(struct inet_frag_queue *q, |
| struct sk_buff *skb) |
| { |
| RB_CLEAR_NODE(&skb->rbnode); |
| FRAG_CB(skb)->next_frag = NULL; |
| |
| FRAG_CB(q->last_run_head)->frag_run_len += skb->len; |
| FRAG_CB(q->fragments_tail)->next_frag = skb; |
| q->fragments_tail = skb; |
| } |
| |
| /* Create a new "run" with the skb. */ |
| static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb) |
| { |
| if (q->last_run_head) |
| rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, |
| &q->last_run_head->rbnode.rb_right); |
| else |
| rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); |
| rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| |
| ip4_frag_init_run(skb); |
| q->fragments_tail = skb; |
| q->last_run_head = skb; |
| } |
| |
| /* Describe an entry in the "incomplete datagrams" queue. */ |
| struct ipq { |
| struct inet_frag_queue q; |
| |
| u8 ecn; /* RFC3168 support */ |
| u16 max_df_size; /* largest frag with DF set seen */ |
| int iif; |
| unsigned int rid; |
| struct inet_peer *peer; |
| }; |
| |
| static u8 ip4_frag_ecn(u8 tos) |
| { |
| return 1 << (tos & INET_ECN_MASK); |
| } |
| |
| static struct inet_frags ip4_frags; |
| |
| static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, |
| struct sk_buff *prev_tail, struct net_device *dev); |
| |
| |
| static void ip4_frag_init(struct inet_frag_queue *q, const void *a) |
| { |
| struct ipq *qp = container_of(q, struct ipq, q); |
| struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4, |
| frags); |
| struct net *net = container_of(ipv4, struct net, ipv4); |
| |
| const struct frag_v4_compare_key *key = a; |
| |
| q->key.v4 = *key; |
| qp->ecn = 0; |
| qp->peer = q->net->max_dist ? |
| inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) : |
| NULL; |
| } |
| |
| static void ip4_frag_free(struct inet_frag_queue *q) |
| { |
| struct ipq *qp; |
| |
| qp = container_of(q, struct ipq, q); |
| if (qp->peer) |
| inet_putpeer(qp->peer); |
| } |
| |
| |
| /* Destruction primitives. */ |
| |
| static void ipq_put(struct ipq *ipq) |
| { |
| inet_frag_put(&ipq->q); |
| } |
| |
| /* Kill ipq entry. It is not destroyed immediately, |
| * because caller (and someone more) holds reference count. |
| */ |
| static void ipq_kill(struct ipq *ipq) |
| { |
| inet_frag_kill(&ipq->q); |
| } |
| |
| static bool frag_expire_skip_icmp(u32 user) |
| { |
| return user == IP_DEFRAG_AF_PACKET || |
| ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN, |
| __IP_DEFRAG_CONNTRACK_IN_END) || |
| ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN, |
| __IP_DEFRAG_CONNTRACK_BRIDGE_IN); |
| } |
| |
| /* |
| * Oops, a fragment queue timed out. Kill it and send an ICMP reply. |
| */ |
| static void ip_expire(struct timer_list *t) |
| { |
| struct inet_frag_queue *frag = from_timer(frag, t, timer); |
| const struct iphdr *iph; |
| struct sk_buff *head = NULL; |
| struct net *net; |
| struct ipq *qp; |
| int err; |
| |
| qp = container_of(frag, struct ipq, q); |
| net = container_of(qp->q.net, struct net, ipv4.frags); |
| |
| rcu_read_lock(); |
| spin_lock(&qp->q.lock); |
| |
| if (qp->q.flags & INET_FRAG_COMPLETE) |
| goto out; |
| |
| ipq_kill(qp); |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT); |
| |
| if (!(qp->q.flags & INET_FRAG_FIRST_IN)) |
| goto out; |
| |
| /* sk_buff::dev and sk_buff::rbnode are unionized. So we |
| * pull the head out of the tree in order to be able to |
| * deal with head->dev. |
| */ |
| if (qp->q.fragments) { |
| head = qp->q.fragments; |
| qp->q.fragments = head->next; |
| } else { |
| head = skb_rb_first(&qp->q.rb_fragments); |
| if (!head) |
| goto out; |
| if (FRAG_CB(head)->next_frag) |
| rb_replace_node(&head->rbnode, |
| &FRAG_CB(head)->next_frag->rbnode, |
| &qp->q.rb_fragments); |
| else |
| rb_erase(&head->rbnode, &qp->q.rb_fragments); |
| memset(&head->rbnode, 0, sizeof(head->rbnode)); |
| barrier(); |
| } |
| if (head == qp->q.fragments_tail) |
| qp->q.fragments_tail = NULL; |
| |
| sub_frag_mem_limit(qp->q.net, head->truesize); |
| |
| head->dev = dev_get_by_index_rcu(net, qp->iif); |
| if (!head->dev) |
| goto out; |
| |
| |
| /* skb has no dst, perform route lookup again */ |
| iph = ip_hdr(head); |
| err = ip_route_input_noref(head, iph->daddr, iph->saddr, |
| iph->tos, head->dev); |
| if (err) |
| goto out; |
| |
| /* Only an end host needs to send an ICMP |
| * "Fragment Reassembly Timeout" message, per RFC792. |
| */ |
| if (frag_expire_skip_icmp(qp->q.key.v4.user) && |
| (skb_rtable(head)->rt_type != RTN_LOCAL)) |
| goto out; |
| |
| spin_unlock(&qp->q.lock); |
| icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); |
| goto out_rcu_unlock; |
| |
| out: |
| spin_unlock(&qp->q.lock); |
| out_rcu_unlock: |
| rcu_read_unlock(); |
| if (head) |
| kfree_skb(head); |
| ipq_put(qp); |
| } |
| |
| /* Find the correct entry in the "incomplete datagrams" queue for |
| * this IP datagram, and create new one, if nothing is found. |
| */ |
| static struct ipq *ip_find(struct net *net, struct iphdr *iph, |
| u32 user, int vif) |
| { |
| struct frag_v4_compare_key key = { |
| .saddr = iph->saddr, |
| .daddr = iph->daddr, |
| .user = user, |
| .vif = vif, |
| .id = iph->id, |
| .protocol = iph->protocol, |
| }; |
| struct inet_frag_queue *q; |
| |
| q = inet_frag_find(&net->ipv4.frags, &key); |
| if (!q) |
| return NULL; |
| |
| return container_of(q, struct ipq, q); |
| } |
| |
| /* Is the fragment too far ahead to be part of ipq? */ |
| static int ip_frag_too_far(struct ipq *qp) |
| { |
| struct inet_peer *peer = qp->peer; |
| unsigned int max = qp->q.net->max_dist; |
| unsigned int start, end; |
| |
| int rc; |
| |
| if (!peer || !max) |
| return 0; |
| |
| start = qp->rid; |
| end = atomic_inc_return(&peer->rid); |
| qp->rid = end; |
| |
| rc = qp->q.fragments_tail && (end - start) > max; |
| |
| if (rc) { |
| struct net *net; |
| |
| net = container_of(qp->q.net, struct net, ipv4.frags); |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| } |
| |
| return rc; |
| } |
| |
| static int ip_frag_reinit(struct ipq *qp) |
| { |
| unsigned int sum_truesize = 0; |
| |
| if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { |
| refcount_inc(&qp->q.refcnt); |
| return -ETIMEDOUT; |
| } |
| |
| sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments); |
| sub_frag_mem_limit(qp->q.net, sum_truesize); |
| |
| qp->q.flags = 0; |
| qp->q.len = 0; |
| qp->q.meat = 0; |
| qp->q.fragments = NULL; |
| qp->q.rb_fragments = RB_ROOT; |
| qp->q.fragments_tail = NULL; |
| qp->q.last_run_head = NULL; |
| qp->iif = 0; |
| qp->ecn = 0; |
| |
| return 0; |
| } |
| |
| /* Add new segment to existing queue. */ |
| static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) |
| { |
| struct net *net = container_of(qp->q.net, struct net, ipv4.frags); |
| struct rb_node **rbn, *parent; |
| struct sk_buff *skb1, *prev_tail; |
| struct net_device *dev; |
| unsigned int fragsize; |
| int flags, offset; |
| int ihl, end; |
| int err = -ENOENT; |
| u8 ecn; |
| |
| if (qp->q.flags & INET_FRAG_COMPLETE) |
| goto err; |
| |
| if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && |
| unlikely(ip_frag_too_far(qp)) && |
| unlikely(err = ip_frag_reinit(qp))) { |
| ipq_kill(qp); |
| goto err; |
| } |
| |
| ecn = ip4_frag_ecn(ip_hdr(skb)->tos); |
| offset = ntohs(ip_hdr(skb)->frag_off); |
| flags = offset & ~IP_OFFSET; |
| offset &= IP_OFFSET; |
| offset <<= 3; /* offset is in 8-byte chunks */ |
| ihl = ip_hdrlen(skb); |
| |
| /* Determine the position of this fragment. */ |
| end = offset + skb->len - skb_network_offset(skb) - ihl; |
| err = -EINVAL; |
| |
| /* Is this the final fragment? */ |
| if ((flags & IP_MF) == 0) { |
| /* If we already have some bits beyond end |
| * or have different end, the segment is corrupted. |
| */ |
| if (end < qp->q.len || |
| ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len)) |
| goto err; |
| qp->q.flags |= INET_FRAG_LAST_IN; |
| qp->q.len = end; |
| } else { |
| if (end&7) { |
| end &= ~7; |
| if (skb->ip_summed != CHECKSUM_UNNECESSARY) |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| if (end > qp->q.len) { |
| /* Some bits beyond end -> corruption. */ |
| if (qp->q.flags & INET_FRAG_LAST_IN) |
| goto err; |
| qp->q.len = end; |
| } |
| } |
| if (end == offset) |
| goto err; |
| |
| err = -ENOMEM; |
| if (!pskb_pull(skb, skb_network_offset(skb) + ihl)) |
| goto err; |
| |
| err = pskb_trim_rcsum(skb, end - offset); |
| if (err) |
| goto err; |
| |
| /* Note : skb->rbnode and skb->dev share the same location. */ |
| dev = skb->dev; |
| /* Makes sure compiler wont do silly aliasing games */ |
| barrier(); |
| |
| /* RFC5722, Section 4, amended by Errata ID : 3089 |
| * When reassembling an IPv6 datagram, if |
| * one or more its constituent fragments is determined to be an |
| * overlapping fragment, the entire datagram (and any constituent |
| * fragments) MUST be silently discarded. |
| * |
| * We do the same here for IPv4 (and increment an snmp counter). |
| */ |
| |
| /* Find out where to put this fragment. */ |
| prev_tail = qp->q.fragments_tail; |
| if (!prev_tail) |
| ip4_frag_create_run(&qp->q, skb); /* First fragment. */ |
| else if (prev_tail->ip_defrag_offset + prev_tail->len < end) { |
| /* This is the common case: skb goes to the end. */ |
| /* Detect and discard overlaps. */ |
| if (offset < prev_tail->ip_defrag_offset + prev_tail->len) |
| goto discard_qp; |
| if (offset == prev_tail->ip_defrag_offset + prev_tail->len) |
| ip4_frag_append_to_last_run(&qp->q, skb); |
| else |
| ip4_frag_create_run(&qp->q, skb); |
| } else { |
| /* Binary search. Note that skb can become the first fragment, |
| * but not the last (covered above). |
| */ |
| rbn = &qp->q.rb_fragments.rb_node; |
| do { |
| parent = *rbn; |
| skb1 = rb_to_skb(parent); |
| if (end <= skb1->ip_defrag_offset) |
| rbn = &parent->rb_left; |
| else if (offset >= skb1->ip_defrag_offset + |
| FRAG_CB(skb1)->frag_run_len) |
| rbn = &parent->rb_right; |
| else /* Found an overlap with skb1. */ |
| goto discard_qp; |
| } while (*rbn); |
| /* Here we have parent properly set, and rbn pointing to |
| * one of its NULL left/right children. Insert skb. |
| */ |
| ip4_frag_init_run(skb); |
| rb_link_node(&skb->rbnode, parent, rbn); |
| rb_insert_color(&skb->rbnode, &qp->q.rb_fragments); |
| } |
| |
| if (dev) |
| qp->iif = dev->ifindex; |
| skb->ip_defrag_offset = offset; |
| |
| qp->q.stamp = skb->tstamp; |
| qp->q.meat += skb->len; |
| qp->ecn |= ecn; |
| add_frag_mem_limit(qp->q.net, skb->truesize); |
| if (offset == 0) |
| qp->q.flags |= INET_FRAG_FIRST_IN; |
| |
| fragsize = skb->len + ihl; |
| |
| if (fragsize > qp->q.max_size) |
| qp->q.max_size = fragsize; |
| |
| if (ip_hdr(skb)->frag_off & htons(IP_DF) && |
| fragsize > qp->max_df_size) |
| qp->max_df_size = fragsize; |
| |
| if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && |
| qp->q.meat == qp->q.len) { |
| unsigned long orefdst = skb->_skb_refdst; |
| |
| skb->_skb_refdst = 0UL; |
| err = ip_frag_reasm(qp, skb, prev_tail, dev); |
| skb->_skb_refdst = orefdst; |
| return err; |
| } |
| |
| skb_dst_drop(skb); |
| return -EINPROGRESS; |
| |
| discard_qp: |
| inet_frag_kill(&qp->q); |
| err = -EINVAL; |
| __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS); |
| err: |
| kfree_skb(skb); |
| return err; |
| } |
| |
| /* Build a new IP datagram from all its fragments. */ |
| static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, |
| struct sk_buff *prev_tail, struct net_device *dev) |
| { |
| struct net *net = container_of(qp->q.net, struct net, ipv4.frags); |
| struct iphdr *iph; |
| struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments); |
| struct sk_buff **nextp; /* To build frag_list. */ |
| struct rb_node *rbn; |
| int len; |
| int ihlen; |
| int err; |
| u8 ecn; |
| |
| ipq_kill(qp); |
| |
| ecn = ip_frag_ecn_table[qp->ecn]; |
| if (unlikely(ecn == 0xff)) { |
| err = -EINVAL; |
| goto out_fail; |
| } |
| /* Make the one we just received the head. */ |
| if (head != skb) { |
| fp = skb_clone(skb, GFP_ATOMIC); |
| if (!fp) |
| goto out_nomem; |
| FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; |
| if (RB_EMPTY_NODE(&skb->rbnode)) |
| FRAG_CB(prev_tail)->next_frag = fp; |
| else |
| rb_replace_node(&skb->rbnode, &fp->rbnode, |
| &qp->q.rb_fragments); |
| if (qp->q.fragments_tail == skb) |
| qp->q.fragments_tail = fp; |
| skb_morph(skb, head); |
| FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; |
| rb_replace_node(&head->rbnode, &skb->rbnode, |
| &qp->q.rb_fragments); |
| consume_skb(head); |
| head = skb; |
| } |
| |
| WARN_ON(head->ip_defrag_offset != 0); |
| |
| /* Allocate a new buffer for the datagram. */ |
| ihlen = ip_hdrlen(head); |
| len = ihlen + qp->q.len; |
| |
| err = -E2BIG; |
| if (len > 65535) |
| goto out_oversize; |
| |
| /* Head of list must not be cloned. */ |
| if (skb_unclone(head, GFP_ATOMIC)) |
| goto out_nomem; |
| |
| /* If the first fragment is fragmented itself, we split |
| * it to two chunks: the first with data and paged part |
| * and the second, holding only fragments. */ |
| if (skb_has_frag_list(head)) { |
| struct sk_buff *clone; |
| int i, plen = 0; |
| |
| clone = alloc_skb(0, GFP_ATOMIC); |
| if (!clone) |
| goto out_nomem; |
| skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
| skb_frag_list_init(head); |
| for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
| plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
| clone->len = clone->data_len = head->data_len - plen; |
| head->truesize += clone->truesize; |
| clone->csum = 0; |
| clone->ip_summed = head->ip_summed; |
| add_frag_mem_limit(qp->q.net, clone->truesize); |
| skb_shinfo(head)->frag_list = clone; |
| nextp = &clone->next; |
| } else { |
| nextp = &skb_shinfo(head)->frag_list; |
| } |
| |
| skb_push(head, head->data - skb_network_header(head)); |
| |
| /* Traverse the tree in order, to build frag_list. */ |
| fp = FRAG_CB(head)->next_frag; |
| rbn = rb_next(&head->rbnode); |
| rb_erase(&head->rbnode, &qp->q.rb_fragments); |
| while (rbn || fp) { |
| /* fp points to the next sk_buff in the current run; |
| * rbn points to the next run. |
| */ |
| /* Go through the current run. */ |
| while (fp) { |
| *nextp = fp; |
| nextp = &fp->next; |
| fp->prev = NULL; |
| memset(&fp->rbnode, 0, sizeof(fp->rbnode)); |
| head->data_len += fp->len; |
| head->len += fp->len; |
| if (head->ip_summed != fp->ip_summed) |
| head->ip_summed = CHECKSUM_NONE; |
| else if (head->ip_summed == CHECKSUM_COMPLETE) |
| head->csum = csum_add(head->csum, fp->csum); |
| head->truesize += fp->truesize; |
| fp = FRAG_CB(fp)->next_frag; |
| } |
| /* Move to the next run. */ |
| if (rbn) { |
| struct rb_node *rbnext = rb_next(rbn); |
| |
| fp = rb_to_skb(rbn); |
| rb_erase(rbn, &qp->q.rb_fragments); |
| rbn = rbnext; |
| } |
| } |
| sub_frag_mem_limit(qp->q.net, head->truesize); |
| |
| *nextp = NULL; |
| head->next = NULL; |
| head->prev = NULL; |
| head->dev = dev; |
| head->tstamp = qp->q.stamp; |
| IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size); |
| |
| iph = ip_hdr(head); |
| iph->tot_len = htons(len); |
| iph->tos |= ecn; |
| |
| /* When we set IP_DF on a refragmented skb we must also force a |
| * call to ip_fragment to avoid forwarding a DF-skb of size s while |
| * original sender only sent fragments of size f (where f < s). |
| * |
| * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest |
| * frag seen to avoid sending tiny DF-fragments in case skb was built |
| * from one very small df-fragment and one large non-df frag. |
| */ |
| if (qp->max_df_size == qp->q.max_size) { |
| IPCB(head)->flags |= IPSKB_FRAG_PMTU; |
| iph->frag_off = htons(IP_DF); |
| } else { |
| iph->frag_off = 0; |
| } |
| |
| ip_send_check(iph); |
| |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); |
| qp->q.fragments = NULL; |
| qp->q.rb_fragments = RB_ROOT; |
| qp->q.fragments_tail = NULL; |
| qp->q.last_run_head = NULL; |
| return 0; |
| |
| out_nomem: |
| net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); |
| err = -ENOMEM; |
| goto out_fail; |
| out_oversize: |
| net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr); |
| out_fail: |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| return err; |
| } |
| |
| /* Process an incoming IP datagram fragment. */ |
| int ip_defrag(struct net *net, struct sk_buff *skb, u32 user) |
| { |
| struct net_device *dev = skb->dev ? : skb_dst(skb)->dev; |
| int vif = l3mdev_master_ifindex_rcu(dev); |
| struct ipq *qp; |
| |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS); |
| skb_orphan(skb); |
| |
| /* Lookup (or create) queue header */ |
| qp = ip_find(net, ip_hdr(skb), user, vif); |
| if (qp) { |
| int ret; |
| |
| spin_lock(&qp->q.lock); |
| |
| ret = ip_frag_queue(qp, skb); |
| |
| spin_unlock(&qp->q.lock); |
| ipq_put(qp); |
| return ret; |
| } |
| |
| __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| kfree_skb(skb); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(ip_defrag); |
| |
| struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) |
| { |
| struct iphdr iph; |
| int netoff; |
| u32 len; |
| |
| if (skb->protocol != htons(ETH_P_IP)) |
| return skb; |
| |
| netoff = skb_network_offset(skb); |
| |
| if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0) |
| return skb; |
| |
| if (iph.ihl < 5 || iph.version != 4) |
| return skb; |
| |
| len = ntohs(iph.tot_len); |
| if (skb->len < netoff + len || len < (iph.ihl * 4)) |
| return skb; |
| |
| if (ip_is_fragment(&iph)) { |
| skb = skb_share_check(skb, GFP_ATOMIC); |
| if (skb) { |
| if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) |
| return skb; |
| if (pskb_trim_rcsum(skb, netoff + len)) |
| return skb; |
| memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); |
| if (ip_defrag(net, skb, user)) |
| return NULL; |
| skb_clear_hash(skb); |
| } |
| } |
| return skb; |
| } |
| EXPORT_SYMBOL(ip_check_defrag); |
| |
| unsigned int inet_frag_rbtree_purge(struct rb_root *root) |
| { |
| struct rb_node *p = rb_first(root); |
| unsigned int sum = 0; |
| |
| while (p) { |
| struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); |
| |
| p = rb_next(p); |
| rb_erase(&skb->rbnode, root); |
| while (skb) { |
| struct sk_buff *next = FRAG_CB(skb)->next_frag; |
| |
| sum += skb->truesize; |
| kfree_skb(skb); |
| skb = next; |
| } |
| } |
| return sum; |
| } |
| EXPORT_SYMBOL(inet_frag_rbtree_purge); |
| |
| #ifdef CONFIG_SYSCTL |
| static int dist_min; |
| |
| static struct ctl_table ip4_frags_ns_ctl_table[] = { |
| { |
| .procname = "ipfrag_high_thresh", |
| .data = &init_net.ipv4.frags.high_thresh, |
| .maxlen = sizeof(unsigned long), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| .extra1 = &init_net.ipv4.frags.low_thresh |
| }, |
| { |
| .procname = "ipfrag_low_thresh", |
| .data = &init_net.ipv4.frags.low_thresh, |
| .maxlen = sizeof(unsigned long), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| .extra2 = &init_net.ipv4.frags.high_thresh |
| }, |
| { |
| .procname = "ipfrag_time", |
| .data = &init_net.ipv4.frags.timeout, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_jiffies, |
| }, |
| { |
| .procname = "ipfrag_max_dist", |
| .data = &init_net.ipv4.frags.max_dist, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = &dist_min, |
| }, |
| { } |
| }; |
| |
| /* secret interval has been deprecated */ |
| static int ip4_frags_secret_interval_unused; |
| static struct ctl_table ip4_frags_ctl_table[] = { |
| { |
| .procname = "ipfrag_secret_interval", |
| .data = &ip4_frags_secret_interval_unused, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_jiffies, |
| }, |
| { } |
| }; |
| |
| static int __net_init ip4_frags_ns_ctl_register(struct net *net) |
| { |
| struct ctl_table *table; |
| struct ctl_table_header *hdr; |
| |
| table = ip4_frags_ns_ctl_table; |
| if (!net_eq(net, &init_net)) { |
| table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); |
| if (!table) |
| goto err_alloc; |
| |
| table[0].data = &net->ipv4.frags.high_thresh; |
| table[0].extra1 = &net->ipv4.frags.low_thresh; |
| table[0].extra2 = &init_net.ipv4.frags.high_thresh; |
| table[1].data = &net->ipv4.frags.low_thresh; |
| table[1].extra2 = &net->ipv4.frags.high_thresh; |
| table[2].data = &net->ipv4.frags.timeout; |
| table[3].data = &net->ipv4.frags.max_dist; |
| } |
| |
| hdr = register_net_sysctl(net, "net/ipv4", table); |
| if (!hdr) |
| goto err_reg; |
| |
| net->ipv4.frags_hdr = hdr; |
| return 0; |
| |
| err_reg: |
| if (!net_eq(net, &init_net)) |
| kfree(table); |
| err_alloc: |
| return -ENOMEM; |
| } |
| |
| static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) |
| { |
| struct ctl_table *table; |
| |
| table = net->ipv4.frags_hdr->ctl_table_arg; |
| unregister_net_sysctl_table(net->ipv4.frags_hdr); |
| kfree(table); |
| } |
| |
| static void __init ip4_frags_ctl_register(void) |
| { |
| register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table); |
| } |
| #else |
| static int ip4_frags_ns_ctl_register(struct net *net) |
| { |
| return 0; |
| } |
| |
| static void ip4_frags_ns_ctl_unregister(struct net *net) |
| { |
| } |
| |
| static void __init ip4_frags_ctl_register(void) |
| { |
| } |
| #endif |
| |
| static int __net_init ipv4_frags_init_net(struct net *net) |
| { |
| int res; |
| |
| /* Fragment cache limits. |
| * |
| * The fragment memory accounting code, (tries to) account for |
| * the real memory usage, by measuring both the size of frag |
| * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue)) |
| * and the SKB's truesize. |
| * |
| * A 64K fragment consumes 129736 bytes (44*2944)+200 |
| * (1500 truesize == 2944, sizeof(struct ipq) == 200) |
| * |
| * We will commit 4MB at one time. Should we cross that limit |
| * we will prune down to 3MB, making room for approx 8 big 64K |
| * fragments 8x128k. |
| */ |
| net->ipv4.frags.high_thresh = 4 * 1024 * 1024; |
| net->ipv4.frags.low_thresh = 3 * 1024 * 1024; |
| /* |
| * Important NOTE! Fragment queue must be destroyed before MSL expires. |
| * RFC791 is wrong proposing to prolongate timer each fragment arrival |
| * by TTL. |
| */ |
| net->ipv4.frags.timeout = IP_FRAG_TIME; |
| |
| net->ipv4.frags.max_dist = 64; |
| net->ipv4.frags.f = &ip4_frags; |
| |
| res = inet_frags_init_net(&net->ipv4.frags); |
| if (res < 0) |
| return res; |
| res = ip4_frags_ns_ctl_register(net); |
| if (res < 0) |
| inet_frags_exit_net(&net->ipv4.frags); |
| return res; |
| } |
| |
| static void __net_exit ipv4_frags_exit_net(struct net *net) |
| { |
| ip4_frags_ns_ctl_unregister(net); |
| inet_frags_exit_net(&net->ipv4.frags); |
| } |
| |
| static struct pernet_operations ip4_frags_ops = { |
| .init = ipv4_frags_init_net, |
| .exit = ipv4_frags_exit_net, |
| }; |
| |
| |
| static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed) |
| { |
| return jhash2(data, |
| sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); |
| } |
| |
| static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed) |
| { |
| const struct inet_frag_queue *fq = data; |
| |
| return jhash2((const u32 *)&fq->key.v4, |
| sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); |
| } |
| |
| static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) |
| { |
| const struct frag_v4_compare_key *key = arg->key; |
| const struct inet_frag_queue *fq = ptr; |
| |
| return !!memcmp(&fq->key, key, sizeof(*key)); |
| } |
| |
| static const struct rhashtable_params ip4_rhash_params = { |
| .head_offset = offsetof(struct inet_frag_queue, node), |
| .key_offset = offsetof(struct inet_frag_queue, key), |
| .key_len = sizeof(struct frag_v4_compare_key), |
| .hashfn = ip4_key_hashfn, |
| .obj_hashfn = ip4_obj_hashfn, |
| .obj_cmpfn = ip4_obj_cmpfn, |
| .automatic_shrinking = true, |
| }; |
| |
| void __init ipfrag_init(void) |
| { |
| ip4_frags.constructor = ip4_frag_init; |
| ip4_frags.destructor = ip4_frag_free; |
| ip4_frags.qsize = sizeof(struct ipq); |
| ip4_frags.frag_expire = ip_expire; |
| ip4_frags.frags_cache_name = ip_frag_cache_name; |
| ip4_frags.rhash_params = ip4_rhash_params; |
| if (inet_frags_init(&ip4_frags)) |
| panic("IP: failed to allocate ip4_frags cache\n"); |
| ip4_frags_ctl_register(); |
| register_pernet_subsys(&ip4_frags_ops); |
| } |