| /* Generic associative array implementation. |
| * |
| * See Documentation/core-api/assoc_array.rst for information. |
| * |
| * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| //#define DEBUG |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/assoc_array_priv.h> |
| |
| /* |
| * Iterate over an associative array. The caller must hold the RCU read lock |
| * or better. |
| */ |
| static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, |
| const struct assoc_array_ptr *stop, |
| int (*iterator)(const void *leaf, |
| void *iterator_data), |
| void *iterator_data) |
| { |
| const struct assoc_array_shortcut *shortcut; |
| const struct assoc_array_node *node; |
| const struct assoc_array_ptr *cursor, *ptr, *parent; |
| unsigned long has_meta; |
| int slot, ret; |
| |
| cursor = root; |
| |
| begin_node: |
| if (assoc_array_ptr_is_shortcut(cursor)) { |
| /* Descend through a shortcut */ |
| shortcut = assoc_array_ptr_to_shortcut(cursor); |
| cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
| } |
| |
| node = assoc_array_ptr_to_node(cursor); |
| slot = 0; |
| |
| /* We perform two passes of each node. |
| * |
| * The first pass does all the leaves in this node. This means we |
| * don't miss any leaves if the node is split up by insertion whilst |
| * we're iterating over the branches rooted here (we may, however, see |
| * some leaves twice). |
| */ |
| has_meta = 0; |
| for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
| has_meta |= (unsigned long)ptr; |
| if (ptr && assoc_array_ptr_is_leaf(ptr)) { |
| /* We need a barrier between the read of the pointer, |
| * which is supplied by the above READ_ONCE(). |
| */ |
| /* Invoke the callback */ |
| ret = iterator(assoc_array_ptr_to_leaf(ptr), |
| iterator_data); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* The second pass attends to all the metadata pointers. If we follow |
| * one of these we may find that we don't come back here, but rather go |
| * back to a replacement node with the leaves in a different layout. |
| * |
| * We are guaranteed to make progress, however, as the slot number for |
| * a particular portion of the key space cannot change - and we |
| * continue at the back pointer + 1. |
| */ |
| if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) |
| goto finished_node; |
| slot = 0; |
| |
| continue_node: |
| node = assoc_array_ptr_to_node(cursor); |
| for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
| if (assoc_array_ptr_is_meta(ptr)) { |
| cursor = ptr; |
| goto begin_node; |
| } |
| } |
| |
| finished_node: |
| /* Move up to the parent (may need to skip back over a shortcut) */ |
| parent = READ_ONCE(node->back_pointer); /* Address dependency. */ |
| slot = node->parent_slot; |
| if (parent == stop) |
| return 0; |
| |
| if (assoc_array_ptr_is_shortcut(parent)) { |
| shortcut = assoc_array_ptr_to_shortcut(parent); |
| cursor = parent; |
| parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ |
| slot = shortcut->parent_slot; |
| if (parent == stop) |
| return 0; |
| } |
| |
| /* Ascend to next slot in parent node */ |
| cursor = parent; |
| slot++; |
| goto continue_node; |
| } |
| |
| /** |
| * assoc_array_iterate - Pass all objects in the array to a callback |
| * @array: The array to iterate over. |
| * @iterator: The callback function. |
| * @iterator_data: Private data for the callback function. |
| * |
| * Iterate over all the objects in an associative array. Each one will be |
| * presented to the iterator function. |
| * |
| * If the array is being modified concurrently with the iteration then it is |
| * possible that some objects in the array will be passed to the iterator |
| * callback more than once - though every object should be passed at least |
| * once. If this is undesirable then the caller must lock against modification |
| * for the duration of this function. |
| * |
| * The function will return 0 if no objects were in the array or else it will |
| * return the result of the last iterator function called. Iteration stops |
| * immediately if any call to the iteration function results in a non-zero |
| * return. |
| * |
| * The caller should hold the RCU read lock or better if concurrent |
| * modification is possible. |
| */ |
| int assoc_array_iterate(const struct assoc_array *array, |
| int (*iterator)(const void *object, |
| void *iterator_data), |
| void *iterator_data) |
| { |
| struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ |
| |
| if (!root) |
| return 0; |
| return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); |
| } |
| |
| enum assoc_array_walk_status { |
| assoc_array_walk_tree_empty, |
| assoc_array_walk_found_terminal_node, |
| assoc_array_walk_found_wrong_shortcut, |
| }; |
| |
| struct assoc_array_walk_result { |
| struct { |
| struct assoc_array_node *node; /* Node in which leaf might be found */ |
| int level; |
| int slot; |
| } terminal_node; |
| struct { |
| struct assoc_array_shortcut *shortcut; |
| int level; |
| int sc_level; |
| unsigned long sc_segments; |
| unsigned long dissimilarity; |
| } wrong_shortcut; |
| }; |
| |
| /* |
| * Navigate through the internal tree looking for the closest node to the key. |
| */ |
| static enum assoc_array_walk_status |
| assoc_array_walk(const struct assoc_array *array, |
| const struct assoc_array_ops *ops, |
| const void *index_key, |
| struct assoc_array_walk_result *result) |
| { |
| struct assoc_array_shortcut *shortcut; |
| struct assoc_array_node *node; |
| struct assoc_array_ptr *cursor, *ptr; |
| unsigned long sc_segments, dissimilarity; |
| unsigned long segments; |
| int level, sc_level, next_sc_level; |
| int slot; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| cursor = READ_ONCE(array->root); /* Address dependency. */ |
| if (!cursor) |
| return assoc_array_walk_tree_empty; |
| |
| level = 0; |
| |
| /* Use segments from the key for the new leaf to navigate through the |
| * internal tree, skipping through nodes and shortcuts that are on |
| * route to the destination. Eventually we'll come to a slot that is |
| * either empty or contains a leaf at which point we've found a node in |
| * which the leaf we're looking for might be found or into which it |
| * should be inserted. |
| */ |
| jumped: |
| segments = ops->get_key_chunk(index_key, level); |
| pr_devel("segments[%d]: %lx\n", level, segments); |
| |
| if (assoc_array_ptr_is_shortcut(cursor)) |
| goto follow_shortcut; |
| |
| consider_node: |
| node = assoc_array_ptr_to_node(cursor); |
| slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); |
| slot &= ASSOC_ARRAY_FAN_MASK; |
| ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
| |
| pr_devel("consider slot %x [ix=%d type=%lu]\n", |
| slot, level, (unsigned long)ptr & 3); |
| |
| if (!assoc_array_ptr_is_meta(ptr)) { |
| /* The node doesn't have a node/shortcut pointer in the slot |
| * corresponding to the index key that we have to follow. |
| */ |
| result->terminal_node.node = node; |
| result->terminal_node.level = level; |
| result->terminal_node.slot = slot; |
| pr_devel("<--%s() = terminal_node\n", __func__); |
| return assoc_array_walk_found_terminal_node; |
| } |
| |
| if (assoc_array_ptr_is_node(ptr)) { |
| /* There is a pointer to a node in the slot corresponding to |
| * this index key segment, so we need to follow it. |
| */ |
| cursor = ptr; |
| level += ASSOC_ARRAY_LEVEL_STEP; |
| if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) |
| goto consider_node; |
| goto jumped; |
| } |
| |
| /* There is a shortcut in the slot corresponding to the index key |
| * segment. We follow the shortcut if its partial index key matches |
| * this leaf's. Otherwise we need to split the shortcut. |
| */ |
| cursor = ptr; |
| follow_shortcut: |
| shortcut = assoc_array_ptr_to_shortcut(cursor); |
| pr_devel("shortcut to %d\n", shortcut->skip_to_level); |
| sc_level = level + ASSOC_ARRAY_LEVEL_STEP; |
| BUG_ON(sc_level > shortcut->skip_to_level); |
| |
| do { |
| /* Check the leaf against the shortcut's index key a word at a |
| * time, trimming the final word (the shortcut stores the index |
| * key completely from the root to the shortcut's target). |
| */ |
| if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) |
| segments = ops->get_key_chunk(index_key, sc_level); |
| |
| sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; |
| dissimilarity = segments ^ sc_segments; |
| |
| if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { |
| /* Trim segments that are beyond the shortcut */ |
| int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; |
| dissimilarity &= ~(ULONG_MAX << shift); |
| next_sc_level = shortcut->skip_to_level; |
| } else { |
| next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; |
| next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| } |
| |
| if (dissimilarity != 0) { |
| /* This shortcut points elsewhere */ |
| result->wrong_shortcut.shortcut = shortcut; |
| result->wrong_shortcut.level = level; |
| result->wrong_shortcut.sc_level = sc_level; |
| result->wrong_shortcut.sc_segments = sc_segments; |
| result->wrong_shortcut.dissimilarity = dissimilarity; |
| return assoc_array_walk_found_wrong_shortcut; |
| } |
| |
| sc_level = next_sc_level; |
| } while (sc_level < shortcut->skip_to_level); |
| |
| /* The shortcut matches the leaf's index to this point. */ |
| cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
| if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { |
| level = sc_level; |
| goto jumped; |
| } else { |
| level = sc_level; |
| goto consider_node; |
| } |
| } |
| |
| /** |
| * assoc_array_find - Find an object by index key |
| * @array: The associative array to search. |
| * @ops: The operations to use. |
| * @index_key: The key to the object. |
| * |
| * Find an object in an associative array by walking through the internal tree |
| * to the node that should contain the object and then searching the leaves |
| * there. NULL is returned if the requested object was not found in the array. |
| * |
| * The caller must hold the RCU read lock or better. |
| */ |
| void *assoc_array_find(const struct assoc_array *array, |
| const struct assoc_array_ops *ops, |
| const void *index_key) |
| { |
| struct assoc_array_walk_result result; |
| const struct assoc_array_node *node; |
| const struct assoc_array_ptr *ptr; |
| const void *leaf; |
| int slot; |
| |
| if (assoc_array_walk(array, ops, index_key, &result) != |
| assoc_array_walk_found_terminal_node) |
| return NULL; |
| |
| node = result.terminal_node.node; |
| |
| /* If the target key is available to us, it's has to be pointed to by |
| * the terminal node. |
| */ |
| for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
| if (ptr && assoc_array_ptr_is_leaf(ptr)) { |
| /* We need a barrier between the read of the pointer |
| * and dereferencing the pointer - but only if we are |
| * actually going to dereference it. |
| */ |
| leaf = assoc_array_ptr_to_leaf(ptr); |
| if (ops->compare_object(leaf, index_key)) |
| return (void *)leaf; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Destructively iterate over an associative array. The caller must prevent |
| * other simultaneous accesses. |
| */ |
| static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, |
| const struct assoc_array_ops *ops) |
| { |
| struct assoc_array_shortcut *shortcut; |
| struct assoc_array_node *node; |
| struct assoc_array_ptr *cursor, *parent = NULL; |
| int slot = -1; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| cursor = root; |
| if (!cursor) { |
| pr_devel("empty\n"); |
| return; |
| } |
| |
| move_to_meta: |
| if (assoc_array_ptr_is_shortcut(cursor)) { |
| /* Descend through a shortcut */ |
| pr_devel("[%d] shortcut\n", slot); |
| BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); |
| shortcut = assoc_array_ptr_to_shortcut(cursor); |
| BUG_ON(shortcut->back_pointer != parent); |
| BUG_ON(slot != -1 && shortcut->parent_slot != slot); |
| parent = cursor; |
| cursor = shortcut->next_node; |
| slot = -1; |
| BUG_ON(!assoc_array_ptr_is_node(cursor)); |
| } |
| |
| pr_devel("[%d] node\n", slot); |
| node = assoc_array_ptr_to_node(cursor); |
| BUG_ON(node->back_pointer != parent); |
| BUG_ON(slot != -1 && node->parent_slot != slot); |
| slot = 0; |
| |
| continue_node: |
| pr_devel("Node %p [back=%p]\n", node, node->back_pointer); |
| for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| struct assoc_array_ptr *ptr = node->slots[slot]; |
| if (!ptr) |
| continue; |
| if (assoc_array_ptr_is_meta(ptr)) { |
| parent = cursor; |
| cursor = ptr; |
| goto move_to_meta; |
| } |
| |
| if (ops) { |
| pr_devel("[%d] free leaf\n", slot); |
| ops->free_object(assoc_array_ptr_to_leaf(ptr)); |
| } |
| } |
| |
| parent = node->back_pointer; |
| slot = node->parent_slot; |
| pr_devel("free node\n"); |
| kfree(node); |
| if (!parent) |
| return; /* Done */ |
| |
| /* Move back up to the parent (may need to free a shortcut on |
| * the way up) */ |
| if (assoc_array_ptr_is_shortcut(parent)) { |
| shortcut = assoc_array_ptr_to_shortcut(parent); |
| BUG_ON(shortcut->next_node != cursor); |
| cursor = parent; |
| parent = shortcut->back_pointer; |
| slot = shortcut->parent_slot; |
| pr_devel("free shortcut\n"); |
| kfree(shortcut); |
| if (!parent) |
| return; |
| |
| BUG_ON(!assoc_array_ptr_is_node(parent)); |
| } |
| |
| /* Ascend to next slot in parent node */ |
| pr_devel("ascend to %p[%d]\n", parent, slot); |
| cursor = parent; |
| node = assoc_array_ptr_to_node(cursor); |
| slot++; |
| goto continue_node; |
| } |
| |
| /** |
| * assoc_array_destroy - Destroy an associative array |
| * @array: The array to destroy. |
| * @ops: The operations to use. |
| * |
| * Discard all metadata and free all objects in an associative array. The |
| * array will be empty and ready to use again upon completion. This function |
| * cannot fail. |
| * |
| * The caller must prevent all other accesses whilst this takes place as no |
| * attempt is made to adjust pointers gracefully to permit RCU readlock-holding |
| * accesses to continue. On the other hand, no memory allocation is required. |
| */ |
| void assoc_array_destroy(struct assoc_array *array, |
| const struct assoc_array_ops *ops) |
| { |
| assoc_array_destroy_subtree(array->root, ops); |
| array->root = NULL; |
| } |
| |
| /* |
| * Handle insertion into an empty tree. |
| */ |
| static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) |
| { |
| struct assoc_array_node *new_n0; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n0) |
| return false; |
| |
| edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); |
| edit->leaf_p = &new_n0->slots[0]; |
| edit->adjust_count_on = new_n0; |
| edit->set[0].ptr = &edit->array->root; |
| edit->set[0].to = assoc_array_node_to_ptr(new_n0); |
| |
| pr_devel("<--%s() = ok [no root]\n", __func__); |
| return true; |
| } |
| |
| /* |
| * Handle insertion into a terminal node. |
| */ |
| static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, |
| const struct assoc_array_ops *ops, |
| const void *index_key, |
| struct assoc_array_walk_result *result) |
| { |
| struct assoc_array_shortcut *shortcut, *new_s0; |
| struct assoc_array_node *node, *new_n0, *new_n1, *side; |
| struct assoc_array_ptr *ptr; |
| unsigned long dissimilarity, base_seg, blank; |
| size_t keylen; |
| bool have_meta; |
| int level, diff; |
| int slot, next_slot, free_slot, i, j; |
| |
| node = result->terminal_node.node; |
| level = result->terminal_node.level; |
| edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| /* We arrived at a node which doesn't have an onward node or shortcut |
| * pointer that we have to follow. This means that (a) the leaf we |
| * want must go here (either by insertion or replacement) or (b) we |
| * need to split this node and insert in one of the fragments. |
| */ |
| free_slot = -1; |
| |
| /* Firstly, we have to check the leaves in this node to see if there's |
| * a matching one we should replace in place. |
| */ |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| ptr = node->slots[i]; |
| if (!ptr) { |
| free_slot = i; |
| continue; |
| } |
| if (assoc_array_ptr_is_leaf(ptr) && |
| ops->compare_object(assoc_array_ptr_to_leaf(ptr), |
| index_key)) { |
| pr_devel("replace in slot %d\n", i); |
| edit->leaf_p = &node->slots[i]; |
| edit->dead_leaf = node->slots[i]; |
| pr_devel("<--%s() = ok [replace]\n", __func__); |
| return true; |
| } |
| } |
| |
| /* If there is a free slot in this node then we can just insert the |
| * leaf here. |
| */ |
| if (free_slot >= 0) { |
| pr_devel("insert in free slot %d\n", free_slot); |
| edit->leaf_p = &node->slots[free_slot]; |
| edit->adjust_count_on = node; |
| pr_devel("<--%s() = ok [insert]\n", __func__); |
| return true; |
| } |
| |
| /* The node has no spare slots - so we're either going to have to split |
| * it or insert another node before it. |
| * |
| * Whatever, we're going to need at least two new nodes - so allocate |
| * those now. We may also need a new shortcut, but we deal with that |
| * when we need it. |
| */ |
| new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n0) |
| return false; |
| edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); |
| new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n1) |
| return false; |
| edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); |
| |
| /* We need to find out how similar the leaves are. */ |
| pr_devel("no spare slots\n"); |
| have_meta = false; |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| ptr = node->slots[i]; |
| if (assoc_array_ptr_is_meta(ptr)) { |
| edit->segment_cache[i] = 0xff; |
| have_meta = true; |
| continue; |
| } |
| base_seg = ops->get_object_key_chunk( |
| assoc_array_ptr_to_leaf(ptr), level); |
| base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; |
| edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; |
| } |
| |
| if (have_meta) { |
| pr_devel("have meta\n"); |
| goto split_node; |
| } |
| |
| /* The node contains only leaves */ |
| dissimilarity = 0; |
| base_seg = edit->segment_cache[0]; |
| for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) |
| dissimilarity |= edit->segment_cache[i] ^ base_seg; |
| |
| pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); |
| |
| if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { |
| /* The old leaves all cluster in the same slot. We will need |
| * to insert a shortcut if the new node wants to cluster with them. |
| */ |
| if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) |
| goto all_leaves_cluster_together; |
| |
| /* Otherwise all the old leaves cluster in the same slot, but |
| * the new leaf wants to go into a different slot - so we |
| * create a new node (n0) to hold the new leaf and a pointer to |
| * a new node (n1) holding all the old leaves. |
| * |
| * This can be done by falling through to the node splitting |
| * path. |
| */ |
| pr_devel("present leaves cluster but not new leaf\n"); |
| } |
| |
| split_node: |
| pr_devel("split node\n"); |
| |
| /* We need to split the current node. The node must contain anything |
| * from a single leaf (in the one leaf case, this leaf will cluster |
| * with the new leaf) and the rest meta-pointers, to all leaves, some |
| * of which may cluster. |
| * |
| * It won't contain the case in which all the current leaves plus the |
| * new leaves want to cluster in the same slot. |
| * |
| * We need to expel at least two leaves out of a set consisting of the |
| * leaves in the node and the new leaf. The current meta pointers can |
| * just be copied as they shouldn't cluster with any of the leaves. |
| * |
| * We need a new node (n0) to replace the current one and a new node to |
| * take the expelled nodes (n1). |
| */ |
| edit->set[0].to = assoc_array_node_to_ptr(new_n0); |
| new_n0->back_pointer = node->back_pointer; |
| new_n0->parent_slot = node->parent_slot; |
| new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); |
| new_n1->parent_slot = -1; /* Need to calculate this */ |
| |
| do_split_node: |
| pr_devel("do_split_node\n"); |
| |
| new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; |
| new_n1->nr_leaves_on_branch = 0; |
| |
| /* Begin by finding two matching leaves. There have to be at least two |
| * that match - even if there are meta pointers - because any leaf that |
| * would match a slot with a meta pointer in it must be somewhere |
| * behind that meta pointer and cannot be here. Further, given N |
| * remaining leaf slots, we now have N+1 leaves to go in them. |
| */ |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| slot = edit->segment_cache[i]; |
| if (slot != 0xff) |
| for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) |
| if (edit->segment_cache[j] == slot) |
| goto found_slot_for_multiple_occupancy; |
| } |
| found_slot_for_multiple_occupancy: |
| pr_devel("same slot: %x %x [%02x]\n", i, j, slot); |
| BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); |
| BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); |
| BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); |
| |
| new_n1->parent_slot = slot; |
| |
| /* Metadata pointers cannot change slot */ |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) |
| if (assoc_array_ptr_is_meta(node->slots[i])) |
| new_n0->slots[i] = node->slots[i]; |
| else |
| new_n0->slots[i] = NULL; |
| BUG_ON(new_n0->slots[slot] != NULL); |
| new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); |
| |
| /* Filter the leaf pointers between the new nodes */ |
| free_slot = -1; |
| next_slot = 0; |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| if (assoc_array_ptr_is_meta(node->slots[i])) |
| continue; |
| if (edit->segment_cache[i] == slot) { |
| new_n1->slots[next_slot++] = node->slots[i]; |
| new_n1->nr_leaves_on_branch++; |
| } else { |
| do { |
| free_slot++; |
| } while (new_n0->slots[free_slot] != NULL); |
| new_n0->slots[free_slot] = node->slots[i]; |
| } |
| } |
| |
| pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); |
| |
| if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { |
| do { |
| free_slot++; |
| } while (new_n0->slots[free_slot] != NULL); |
| edit->leaf_p = &new_n0->slots[free_slot]; |
| edit->adjust_count_on = new_n0; |
| } else { |
| edit->leaf_p = &new_n1->slots[next_slot++]; |
| edit->adjust_count_on = new_n1; |
| } |
| |
| BUG_ON(next_slot <= 1); |
| |
| edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| if (edit->segment_cache[i] == 0xff) { |
| ptr = node->slots[i]; |
| BUG_ON(assoc_array_ptr_is_leaf(ptr)); |
| if (assoc_array_ptr_is_node(ptr)) { |
| side = assoc_array_ptr_to_node(ptr); |
| edit->set_backpointers[i] = &side->back_pointer; |
| } else { |
| shortcut = assoc_array_ptr_to_shortcut(ptr); |
| edit->set_backpointers[i] = &shortcut->back_pointer; |
| } |
| } |
| } |
| |
| ptr = node->back_pointer; |
| if (!ptr) |
| edit->set[0].ptr = &edit->array->root; |
| else if (assoc_array_ptr_is_node(ptr)) |
| edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; |
| else |
| edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; |
| edit->excised_meta[0] = assoc_array_node_to_ptr(node); |
| pr_devel("<--%s() = ok [split node]\n", __func__); |
| return true; |
| |
| all_leaves_cluster_together: |
| /* All the leaves, new and old, want to cluster together in this node |
| * in the same slot, so we have to replace this node with a shortcut to |
| * skip over the identical parts of the key and then place a pair of |
| * nodes, one inside the other, at the end of the shortcut and |
| * distribute the keys between them. |
| * |
| * Firstly we need to work out where the leaves start diverging as a |
| * bit position into their keys so that we know how big the shortcut |
| * needs to be. |
| * |
| * We only need to make a single pass of N of the N+1 leaves because if |
| * any keys differ between themselves at bit X then at least one of |
| * them must also differ with the base key at bit X or before. |
| */ |
| pr_devel("all leaves cluster together\n"); |
| diff = INT_MAX; |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), |
| index_key); |
| if (x < diff) { |
| BUG_ON(x < 0); |
| diff = x; |
| } |
| } |
| BUG_ON(diff == INT_MAX); |
| BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); |
| |
| keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; |
| |
| new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + |
| keylen * sizeof(unsigned long), GFP_KERNEL); |
| if (!new_s0) |
| return false; |
| edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); |
| |
| edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); |
| new_s0->back_pointer = node->back_pointer; |
| new_s0->parent_slot = node->parent_slot; |
| new_s0->next_node = assoc_array_node_to_ptr(new_n0); |
| new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); |
| new_n0->parent_slot = 0; |
| new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); |
| new_n1->parent_slot = -1; /* Need to calculate this */ |
| |
| new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; |
| pr_devel("skip_to_level = %d [diff %d]\n", level, diff); |
| BUG_ON(level <= 0); |
| |
| for (i = 0; i < keylen; i++) |
| new_s0->index_key[i] = |
| ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| |
| if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) { |
| blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); |
| pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); |
| new_s0->index_key[keylen - 1] &= ~blank; |
| } |
| |
| /* This now reduces to a node splitting exercise for which we'll need |
| * to regenerate the disparity table. |
| */ |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| ptr = node->slots[i]; |
| base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), |
| level); |
| base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; |
| edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; |
| } |
| |
| base_seg = ops->get_key_chunk(index_key, level); |
| base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; |
| edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; |
| goto do_split_node; |
| } |
| |
| /* |
| * Handle insertion into the middle of a shortcut. |
| */ |
| static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, |
| const struct assoc_array_ops *ops, |
| struct assoc_array_walk_result *result) |
| { |
| struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; |
| struct assoc_array_node *node, *new_n0, *side; |
| unsigned long sc_segments, dissimilarity, blank; |
| size_t keylen; |
| int level, sc_level, diff; |
| int sc_slot; |
| |
| shortcut = result->wrong_shortcut.shortcut; |
| level = result->wrong_shortcut.level; |
| sc_level = result->wrong_shortcut.sc_level; |
| sc_segments = result->wrong_shortcut.sc_segments; |
| dissimilarity = result->wrong_shortcut.dissimilarity; |
| |
| pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", |
| __func__, level, dissimilarity, sc_level); |
| |
| /* We need to split a shortcut and insert a node between the two |
| * pieces. Zero-length pieces will be dispensed with entirely. |
| * |
| * First of all, we need to find out in which level the first |
| * difference was. |
| */ |
| diff = __ffs(dissimilarity); |
| diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; |
| diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; |
| pr_devel("diff=%d\n", diff); |
| |
| if (!shortcut->back_pointer) { |
| edit->set[0].ptr = &edit->array->root; |
| } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { |
| node = assoc_array_ptr_to_node(shortcut->back_pointer); |
| edit->set[0].ptr = &node->slots[shortcut->parent_slot]; |
| } else { |
| BUG(); |
| } |
| |
| edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); |
| |
| /* Create a new node now since we're going to need it anyway */ |
| new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n0) |
| return false; |
| edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); |
| edit->adjust_count_on = new_n0; |
| |
| /* Insert a new shortcut before the new node if this segment isn't of |
| * zero length - otherwise we just connect the new node directly to the |
| * parent. |
| */ |
| level += ASSOC_ARRAY_LEVEL_STEP; |
| if (diff > level) { |
| pr_devel("pre-shortcut %d...%d\n", level, diff); |
| keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; |
| |
| new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + |
| keylen * sizeof(unsigned long), GFP_KERNEL); |
| if (!new_s0) |
| return false; |
| edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); |
| edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); |
| new_s0->back_pointer = shortcut->back_pointer; |
| new_s0->parent_slot = shortcut->parent_slot; |
| new_s0->next_node = assoc_array_node_to_ptr(new_n0); |
| new_s0->skip_to_level = diff; |
| |
| new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); |
| new_n0->parent_slot = 0; |
| |
| memcpy(new_s0->index_key, shortcut->index_key, |
| keylen * sizeof(unsigned long)); |
| |
| blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); |
| pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); |
| new_s0->index_key[keylen - 1] &= ~blank; |
| } else { |
| pr_devel("no pre-shortcut\n"); |
| edit->set[0].to = assoc_array_node_to_ptr(new_n0); |
| new_n0->back_pointer = shortcut->back_pointer; |
| new_n0->parent_slot = shortcut->parent_slot; |
| } |
| |
| side = assoc_array_ptr_to_node(shortcut->next_node); |
| new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; |
| |
| /* We need to know which slot in the new node is going to take a |
| * metadata pointer. |
| */ |
| sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); |
| sc_slot &= ASSOC_ARRAY_FAN_MASK; |
| |
| pr_devel("new slot %lx >> %d -> %d\n", |
| sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); |
| |
| /* Determine whether we need to follow the new node with a replacement |
| * for the current shortcut. We could in theory reuse the current |
| * shortcut if its parent slot number doesn't change - but that's a |
| * 1-in-16 chance so not worth expending the code upon. |
| */ |
| level = diff + ASSOC_ARRAY_LEVEL_STEP; |
| if (level < shortcut->skip_to_level) { |
| pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); |
| keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; |
| |
| new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + |
| keylen * sizeof(unsigned long), GFP_KERNEL); |
| if (!new_s1) |
| return false; |
| edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); |
| |
| new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); |
| new_s1->parent_slot = sc_slot; |
| new_s1->next_node = shortcut->next_node; |
| new_s1->skip_to_level = shortcut->skip_to_level; |
| |
| new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); |
| |
| memcpy(new_s1->index_key, shortcut->index_key, |
| keylen * sizeof(unsigned long)); |
| |
| edit->set[1].ptr = &side->back_pointer; |
| edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); |
| } else { |
| pr_devel("no post-shortcut\n"); |
| |
| /* We don't have to replace the pointed-to node as long as we |
| * use memory barriers to make sure the parent slot number is |
| * changed before the back pointer (the parent slot number is |
| * irrelevant to the old parent shortcut). |
| */ |
| new_n0->slots[sc_slot] = shortcut->next_node; |
| edit->set_parent_slot[0].p = &side->parent_slot; |
| edit->set_parent_slot[0].to = sc_slot; |
| edit->set[1].ptr = &side->back_pointer; |
| edit->set[1].to = assoc_array_node_to_ptr(new_n0); |
| } |
| |
| /* Install the new leaf in a spare slot in the new node. */ |
| if (sc_slot == 0) |
| edit->leaf_p = &new_n0->slots[1]; |
| else |
| edit->leaf_p = &new_n0->slots[0]; |
| |
| pr_devel("<--%s() = ok [split shortcut]\n", __func__); |
| return edit; |
| } |
| |
| /** |
| * assoc_array_insert - Script insertion of an object into an associative array |
| * @array: The array to insert into. |
| * @ops: The operations to use. |
| * @index_key: The key to insert at. |
| * @object: The object to insert. |
| * |
| * Precalculate and preallocate a script for the insertion or replacement of an |
| * object in an associative array. This results in an edit script that can |
| * either be applied or cancelled. |
| * |
| * The function returns a pointer to an edit script or -ENOMEM. |
| * |
| * The caller should lock against other modifications and must continue to hold |
| * the lock until assoc_array_apply_edit() has been called. |
| * |
| * Accesses to the tree may take place concurrently with this function, |
| * provided they hold the RCU read lock. |
| */ |
| struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, |
| const struct assoc_array_ops *ops, |
| const void *index_key, |
| void *object) |
| { |
| struct assoc_array_walk_result result; |
| struct assoc_array_edit *edit; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| /* The leaf pointer we're given must not have the bottom bit set as we |
| * use those for type-marking the pointer. NULL pointers are also not |
| * allowed as they indicate an empty slot but we have to allow them |
| * here as they can be updated later. |
| */ |
| BUG_ON(assoc_array_ptr_is_meta(object)); |
| |
| edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); |
| if (!edit) |
| return ERR_PTR(-ENOMEM); |
| edit->array = array; |
| edit->ops = ops; |
| edit->leaf = assoc_array_leaf_to_ptr(object); |
| edit->adjust_count_by = 1; |
| |
| switch (assoc_array_walk(array, ops, index_key, &result)) { |
| case assoc_array_walk_tree_empty: |
| /* Allocate a root node if there isn't one yet */ |
| if (!assoc_array_insert_in_empty_tree(edit)) |
| goto enomem; |
| return edit; |
| |
| case assoc_array_walk_found_terminal_node: |
| /* We found a node that doesn't have a node/shortcut pointer in |
| * the slot corresponding to the index key that we have to |
| * follow. |
| */ |
| if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, |
| &result)) |
| goto enomem; |
| return edit; |
| |
| case assoc_array_walk_found_wrong_shortcut: |
| /* We found a shortcut that didn't match our key in a slot we |
| * needed to follow. |
| */ |
| if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) |
| goto enomem; |
| return edit; |
| } |
| |
| enomem: |
| /* Clean up after an out of memory error */ |
| pr_devel("enomem\n"); |
| assoc_array_cancel_edit(edit); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /** |
| * assoc_array_insert_set_object - Set the new object pointer in an edit script |
| * @edit: The edit script to modify. |
| * @object: The object pointer to set. |
| * |
| * Change the object to be inserted in an edit script. The object pointed to |
| * by the old object is not freed. This must be done prior to applying the |
| * script. |
| */ |
| void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) |
| { |
| BUG_ON(!object); |
| edit->leaf = assoc_array_leaf_to_ptr(object); |
| } |
| |
| struct assoc_array_delete_collapse_context { |
| struct assoc_array_node *node; |
| const void *skip_leaf; |
| int slot; |
| }; |
| |
| /* |
| * Subtree collapse to node iterator. |
| */ |
| static int assoc_array_delete_collapse_iterator(const void *leaf, |
| void *iterator_data) |
| { |
| struct assoc_array_delete_collapse_context *collapse = iterator_data; |
| |
| if (leaf == collapse->skip_leaf) |
| return 0; |
| |
| BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); |
| |
| collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); |
| return 0; |
| } |
| |
| /** |
| * assoc_array_delete - Script deletion of an object from an associative array |
| * @array: The array to search. |
| * @ops: The operations to use. |
| * @index_key: The key to the object. |
| * |
| * Precalculate and preallocate a script for the deletion of an object from an |
| * associative array. This results in an edit script that can either be |
| * applied or cancelled. |
| * |
| * The function returns a pointer to an edit script if the object was found, |
| * NULL if the object was not found or -ENOMEM. |
| * |
| * The caller should lock against other modifications and must continue to hold |
| * the lock until assoc_array_apply_edit() has been called. |
| * |
| * Accesses to the tree may take place concurrently with this function, |
| * provided they hold the RCU read lock. |
| */ |
| struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, |
| const struct assoc_array_ops *ops, |
| const void *index_key) |
| { |
| struct assoc_array_delete_collapse_context collapse; |
| struct assoc_array_walk_result result; |
| struct assoc_array_node *node, *new_n0; |
| struct assoc_array_edit *edit; |
| struct assoc_array_ptr *ptr; |
| bool has_meta; |
| int slot, i; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); |
| if (!edit) |
| return ERR_PTR(-ENOMEM); |
| edit->array = array; |
| edit->ops = ops; |
| edit->adjust_count_by = -1; |
| |
| switch (assoc_array_walk(array, ops, index_key, &result)) { |
| case assoc_array_walk_found_terminal_node: |
| /* We found a node that should contain the leaf we've been |
| * asked to remove - *if* it's in the tree. |
| */ |
| pr_devel("terminal_node\n"); |
| node = result.terminal_node.node; |
| |
| for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = node->slots[slot]; |
| if (ptr && |
| assoc_array_ptr_is_leaf(ptr) && |
| ops->compare_object(assoc_array_ptr_to_leaf(ptr), |
| index_key)) |
| goto found_leaf; |
| } |
| /* fall through */ |
| case assoc_array_walk_tree_empty: |
| case assoc_array_walk_found_wrong_shortcut: |
| default: |
| assoc_array_cancel_edit(edit); |
| pr_devel("not found\n"); |
| return NULL; |
| } |
| |
| found_leaf: |
| BUG_ON(array->nr_leaves_on_tree <= 0); |
| |
| /* In the simplest form of deletion we just clear the slot and release |
| * the leaf after a suitable interval. |
| */ |
| edit->dead_leaf = node->slots[slot]; |
| edit->set[0].ptr = &node->slots[slot]; |
| edit->set[0].to = NULL; |
| edit->adjust_count_on = node; |
| |
| /* If that concludes erasure of the last leaf, then delete the entire |
| * internal array. |
| */ |
| if (array->nr_leaves_on_tree == 1) { |
| edit->set[1].ptr = &array->root; |
| edit->set[1].to = NULL; |
| edit->adjust_count_on = NULL; |
| edit->excised_subtree = array->root; |
| pr_devel("all gone\n"); |
| return edit; |
| } |
| |
| /* However, we'd also like to clear up some metadata blocks if we |
| * possibly can. |
| * |
| * We go for a simple algorithm of: if this node has FAN_OUT or fewer |
| * leaves in it, then attempt to collapse it - and attempt to |
| * recursively collapse up the tree. |
| * |
| * We could also try and collapse in partially filled subtrees to take |
| * up space in this node. |
| */ |
| if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { |
| struct assoc_array_node *parent, *grandparent; |
| struct assoc_array_ptr *ptr; |
| |
| /* First of all, we need to know if this node has metadata so |
| * that we don't try collapsing if all the leaves are already |
| * here. |
| */ |
| has_meta = false; |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| ptr = node->slots[i]; |
| if (assoc_array_ptr_is_meta(ptr)) { |
| has_meta = true; |
| break; |
| } |
| } |
| |
| pr_devel("leaves: %ld [m=%d]\n", |
| node->nr_leaves_on_branch - 1, has_meta); |
| |
| /* Look further up the tree to see if we can collapse this node |
| * into a more proximal node too. |
| */ |
| parent = node; |
| collapse_up: |
| pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); |
| |
| ptr = parent->back_pointer; |
| if (!ptr) |
| goto do_collapse; |
| if (assoc_array_ptr_is_shortcut(ptr)) { |
| struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); |
| ptr = s->back_pointer; |
| if (!ptr) |
| goto do_collapse; |
| } |
| |
| grandparent = assoc_array_ptr_to_node(ptr); |
| if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { |
| parent = grandparent; |
| goto collapse_up; |
| } |
| |
| do_collapse: |
| /* There's no point collapsing if the original node has no meta |
| * pointers to discard and if we didn't merge into one of that |
| * node's ancestry. |
| */ |
| if (has_meta || parent != node) { |
| node = parent; |
| |
| /* Create a new node to collapse into */ |
| new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n0) |
| goto enomem; |
| edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); |
| |
| new_n0->back_pointer = node->back_pointer; |
| new_n0->parent_slot = node->parent_slot; |
| new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; |
| edit->adjust_count_on = new_n0; |
| |
| collapse.node = new_n0; |
| collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); |
| collapse.slot = 0; |
| assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), |
| node->back_pointer, |
| assoc_array_delete_collapse_iterator, |
| &collapse); |
| pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); |
| BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); |
| |
| if (!node->back_pointer) { |
| edit->set[1].ptr = &array->root; |
| } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { |
| BUG(); |
| } else if (assoc_array_ptr_is_node(node->back_pointer)) { |
| struct assoc_array_node *p = |
| assoc_array_ptr_to_node(node->back_pointer); |
| edit->set[1].ptr = &p->slots[node->parent_slot]; |
| } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { |
| struct assoc_array_shortcut *s = |
| assoc_array_ptr_to_shortcut(node->back_pointer); |
| edit->set[1].ptr = &s->next_node; |
| } |
| edit->set[1].to = assoc_array_node_to_ptr(new_n0); |
| edit->excised_subtree = assoc_array_node_to_ptr(node); |
| } |
| } |
| |
| return edit; |
| |
| enomem: |
| /* Clean up after an out of memory error */ |
| pr_devel("enomem\n"); |
| assoc_array_cancel_edit(edit); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /** |
| * assoc_array_clear - Script deletion of all objects from an associative array |
| * @array: The array to clear. |
| * @ops: The operations to use. |
| * |
| * Precalculate and preallocate a script for the deletion of all the objects |
| * from an associative array. This results in an edit script that can either |
| * be applied or cancelled. |
| * |
| * The function returns a pointer to an edit script if there are objects to be |
| * deleted, NULL if there are no objects in the array or -ENOMEM. |
| * |
| * The caller should lock against other modifications and must continue to hold |
| * the lock until assoc_array_apply_edit() has been called. |
| * |
| * Accesses to the tree may take place concurrently with this function, |
| * provided they hold the RCU read lock. |
| */ |
| struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, |
| const struct assoc_array_ops *ops) |
| { |
| struct assoc_array_edit *edit; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| if (!array->root) |
| return NULL; |
| |
| edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); |
| if (!edit) |
| return ERR_PTR(-ENOMEM); |
| edit->array = array; |
| edit->ops = ops; |
| edit->set[1].ptr = &array->root; |
| edit->set[1].to = NULL; |
| edit->excised_subtree = array->root; |
| edit->ops_for_excised_subtree = ops; |
| pr_devel("all gone\n"); |
| return edit; |
| } |
| |
| /* |
| * Handle the deferred destruction after an applied edit. |
| */ |
| static void assoc_array_rcu_cleanup(struct rcu_head *head) |
| { |
| struct assoc_array_edit *edit = |
| container_of(head, struct assoc_array_edit, rcu); |
| int i; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| if (edit->dead_leaf) |
| edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); |
| for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) |
| if (edit->excised_meta[i]) |
| kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); |
| |
| if (edit->excised_subtree) { |
| BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); |
| if (assoc_array_ptr_is_node(edit->excised_subtree)) { |
| struct assoc_array_node *n = |
| assoc_array_ptr_to_node(edit->excised_subtree); |
| n->back_pointer = NULL; |
| } else { |
| struct assoc_array_shortcut *s = |
| assoc_array_ptr_to_shortcut(edit->excised_subtree); |
| s->back_pointer = NULL; |
| } |
| assoc_array_destroy_subtree(edit->excised_subtree, |
| edit->ops_for_excised_subtree); |
| } |
| |
| kfree(edit); |
| } |
| |
| /** |
| * assoc_array_apply_edit - Apply an edit script to an associative array |
| * @edit: The script to apply. |
| * |
| * Apply an edit script to an associative array to effect an insertion, |
| * deletion or clearance. As the edit script includes preallocated memory, |
| * this is guaranteed not to fail. |
| * |
| * The edit script, dead objects and dead metadata will be scheduled for |
| * destruction after an RCU grace period to permit those doing read-only |
| * accesses on the array to continue to do so under the RCU read lock whilst |
| * the edit is taking place. |
| */ |
| void assoc_array_apply_edit(struct assoc_array_edit *edit) |
| { |
| struct assoc_array_shortcut *shortcut; |
| struct assoc_array_node *node; |
| struct assoc_array_ptr *ptr; |
| int i; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| smp_wmb(); |
| if (edit->leaf_p) |
| *edit->leaf_p = edit->leaf; |
| |
| smp_wmb(); |
| for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) |
| if (edit->set_parent_slot[i].p) |
| *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; |
| |
| smp_wmb(); |
| for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) |
| if (edit->set_backpointers[i]) |
| *edit->set_backpointers[i] = edit->set_backpointers_to; |
| |
| smp_wmb(); |
| for (i = 0; i < ARRAY_SIZE(edit->set); i++) |
| if (edit->set[i].ptr) |
| *edit->set[i].ptr = edit->set[i].to; |
| |
| if (edit->array->root == NULL) { |
| edit->array->nr_leaves_on_tree = 0; |
| } else if (edit->adjust_count_on) { |
| node = edit->adjust_count_on; |
| for (;;) { |
| node->nr_leaves_on_branch += edit->adjust_count_by; |
| |
| ptr = node->back_pointer; |
| if (!ptr) |
| break; |
| if (assoc_array_ptr_is_shortcut(ptr)) { |
| shortcut = assoc_array_ptr_to_shortcut(ptr); |
| ptr = shortcut->back_pointer; |
| if (!ptr) |
| break; |
| } |
| BUG_ON(!assoc_array_ptr_is_node(ptr)); |
| node = assoc_array_ptr_to_node(ptr); |
| } |
| |
| edit->array->nr_leaves_on_tree += edit->adjust_count_by; |
| } |
| |
| call_rcu(&edit->rcu, assoc_array_rcu_cleanup); |
| } |
| |
| /** |
| * assoc_array_cancel_edit - Discard an edit script. |
| * @edit: The script to discard. |
| * |
| * Free an edit script and all the preallocated data it holds without making |
| * any changes to the associative array it was intended for. |
| * |
| * NOTE! In the case of an insertion script, this does _not_ release the leaf |
| * that was to be inserted. That is left to the caller. |
| */ |
| void assoc_array_cancel_edit(struct assoc_array_edit *edit) |
| { |
| struct assoc_array_ptr *ptr; |
| int i; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| /* Clean up after an out of memory error */ |
| for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { |
| ptr = edit->new_meta[i]; |
| if (ptr) { |
| if (assoc_array_ptr_is_node(ptr)) |
| kfree(assoc_array_ptr_to_node(ptr)); |
| else |
| kfree(assoc_array_ptr_to_shortcut(ptr)); |
| } |
| } |
| kfree(edit); |
| } |
| |
| /** |
| * assoc_array_gc - Garbage collect an associative array. |
| * @array: The array to clean. |
| * @ops: The operations to use. |
| * @iterator: A callback function to pass judgement on each object. |
| * @iterator_data: Private data for the callback function. |
| * |
| * Collect garbage from an associative array and pack down the internal tree to |
| * save memory. |
| * |
| * The iterator function is asked to pass judgement upon each object in the |
| * array. If it returns false, the object is discard and if it returns true, |
| * the object is kept. If it returns true, it must increment the object's |
| * usage count (or whatever it needs to do to retain it) before returning. |
| * |
| * This function returns 0 if successful or -ENOMEM if out of memory. In the |
| * latter case, the array is not changed. |
| * |
| * The caller should lock against other modifications and must continue to hold |
| * the lock until assoc_array_apply_edit() has been called. |
| * |
| * Accesses to the tree may take place concurrently with this function, |
| * provided they hold the RCU read lock. |
| */ |
| int assoc_array_gc(struct assoc_array *array, |
| const struct assoc_array_ops *ops, |
| bool (*iterator)(void *object, void *iterator_data), |
| void *iterator_data) |
| { |
| struct assoc_array_shortcut *shortcut, *new_s; |
| struct assoc_array_node *node, *new_n; |
| struct assoc_array_edit *edit; |
| struct assoc_array_ptr *cursor, *ptr; |
| struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; |
| unsigned long nr_leaves_on_tree; |
| int keylen, slot, nr_free, next_slot, i; |
| |
| pr_devel("-->%s()\n", __func__); |
| |
| if (!array->root) |
| return 0; |
| |
| edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); |
| if (!edit) |
| return -ENOMEM; |
| edit->array = array; |
| edit->ops = ops; |
| edit->ops_for_excised_subtree = ops; |
| edit->set[0].ptr = &array->root; |
| edit->excised_subtree = array->root; |
| |
| new_root = new_parent = NULL; |
| new_ptr_pp = &new_root; |
| cursor = array->root; |
| |
| descend: |
| /* If this point is a shortcut, then we need to duplicate it and |
| * advance the target cursor. |
| */ |
| if (assoc_array_ptr_is_shortcut(cursor)) { |
| shortcut = assoc_array_ptr_to_shortcut(cursor); |
| keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); |
| keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; |
| new_s = kmalloc(sizeof(struct assoc_array_shortcut) + |
| keylen * sizeof(unsigned long), GFP_KERNEL); |
| if (!new_s) |
| goto enomem; |
| pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); |
| memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + |
| keylen * sizeof(unsigned long))); |
| new_s->back_pointer = new_parent; |
| new_s->parent_slot = shortcut->parent_slot; |
| *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); |
| new_ptr_pp = &new_s->next_node; |
| cursor = shortcut->next_node; |
| } |
| |
| /* Duplicate the node at this position */ |
| node = assoc_array_ptr_to_node(cursor); |
| new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); |
| if (!new_n) |
| goto enomem; |
| pr_devel("dup node %p -> %p\n", node, new_n); |
| new_n->back_pointer = new_parent; |
| new_n->parent_slot = node->parent_slot; |
| *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); |
| new_ptr_pp = NULL; |
| slot = 0; |
| |
| continue_node: |
| /* Filter across any leaves and gc any subtrees */ |
| for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = node->slots[slot]; |
| if (!ptr) |
| continue; |
| |
| if (assoc_array_ptr_is_leaf(ptr)) { |
| if (iterator(assoc_array_ptr_to_leaf(ptr), |
| iterator_data)) |
| /* The iterator will have done any reference |
| * counting on the object for us. |
| */ |
| new_n->slots[slot] = ptr; |
| continue; |
| } |
| |
| new_ptr_pp = &new_n->slots[slot]; |
| cursor = ptr; |
| goto descend; |
| } |
| |
| pr_devel("-- compress node %p --\n", new_n); |
| |
| /* Count up the number of empty slots in this node and work out the |
| * subtree leaf count. |
| */ |
| new_n->nr_leaves_on_branch = 0; |
| nr_free = 0; |
| for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| ptr = new_n->slots[slot]; |
| if (!ptr) |
| nr_free++; |
| else if (assoc_array_ptr_is_leaf(ptr)) |
| new_n->nr_leaves_on_branch++; |
| } |
| pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); |
| |
| /* See what we can fold in */ |
| next_slot = 0; |
| for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
| struct assoc_array_shortcut *s; |
| struct assoc_array_node *child; |
| |
| ptr = new_n->slots[slot]; |
| if (!ptr || assoc_array_ptr_is_leaf(ptr)) |
| continue; |
| |
| s = NULL; |
| if (assoc_array_ptr_is_shortcut(ptr)) { |
| s = assoc_array_ptr_to_shortcut(ptr); |
| ptr = s->next_node; |
| } |
| |
| child = assoc_array_ptr_to_node(ptr); |
| new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; |
| |
| if (child->nr_leaves_on_branch <= nr_free + 1) { |
| /* Fold the child node into this one */ |
| pr_devel("[%d] fold node %lu/%d [nx %d]\n", |
| slot, child->nr_leaves_on_branch, nr_free + 1, |
| next_slot); |
| |
| /* We would already have reaped an intervening shortcut |
| * on the way back up the tree. |
| */ |
| BUG_ON(s); |
| |
| new_n->slots[slot] = NULL; |
| nr_free++; |
| if (slot < next_slot) |
| next_slot = slot; |
| for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { |
| struct assoc_array_ptr *p = child->slots[i]; |
| if (!p) |
| continue; |
| BUG_ON(assoc_array_ptr_is_meta(p)); |
| while (new_n->slots[next_slot]) |
| next_slot++; |
| BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); |
| new_n->slots[next_slot++] = p; |
| nr_free--; |
| } |
| kfree(child); |
| } else { |
| pr_devel("[%d] retain node %lu/%d [nx %d]\n", |
| slot, child->nr_leaves_on_branch, nr_free + 1, |
| next_slot); |
| } |
| } |
| |
| pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); |
| |
| nr_leaves_on_tree = new_n->nr_leaves_on_branch; |
| |
| /* Excise this node if it is singly occupied by a shortcut */ |
| if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { |
| for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) |
| if ((ptr = new_n->slots[slot])) |
| break; |
| |
| if (assoc_array_ptr_is_meta(ptr) && |
| assoc_array_ptr_is_shortcut(ptr)) { |
| pr_devel("excise node %p with 1 shortcut\n", new_n); |
| new_s = assoc_array_ptr_to_shortcut(ptr); |
| new_parent = new_n->back_pointer; |
| slot = new_n->parent_slot; |
| kfree(new_n); |
| if (!new_parent) { |
| new_s->back_pointer = NULL; |
| new_s->parent_slot = 0; |
| new_root = ptr; |
| goto gc_complete; |
| } |
| |
| if (assoc_array_ptr_is_shortcut(new_parent)) { |
| /* We can discard any preceding shortcut also */ |
| struct assoc_array_shortcut *s = |
| assoc_array_ptr_to_shortcut(new_parent); |
| |
| pr_devel("excise preceding shortcut\n"); |
| |
| new_parent = new_s->back_pointer = s->back_pointer; |
| slot = new_s->parent_slot = s->parent_slot; |
| kfree(s); |
| if (!new_parent) { |
| new_s->back_pointer = NULL; |
| new_s->parent_slot = 0; |
| new_root = ptr; |
| goto gc_complete; |
| } |
| } |
| |
| new_s->back_pointer = new_parent; |
| new_s->parent_slot = slot; |
| new_n = assoc_array_ptr_to_node(new_parent); |
| new_n->slots[slot] = ptr; |
| goto ascend_old_tree; |
| } |
| } |
| |
| /* Excise any shortcuts we might encounter that point to nodes that |
| * only contain leaves. |
| */ |
| ptr = new_n->back_pointer; |
| if (!ptr) |
| goto gc_complete; |
| |
| if (assoc_array_ptr_is_shortcut(ptr)) { |
| new_s = assoc_array_ptr_to_shortcut(ptr); |
| new_parent = new_s->back_pointer; |
| slot = new_s->parent_slot; |
| |
| if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { |
| struct assoc_array_node *n; |
| |
| pr_devel("excise shortcut\n"); |
| new_n->back_pointer = new_parent; |
| new_n->parent_slot = slot; |
| kfree(new_s); |
| if (!new_parent) { |
| new_root = assoc_array_node_to_ptr(new_n); |
| goto gc_complete; |
| } |
| |
| n = assoc_array_ptr_to_node(new_parent); |
| n->slots[slot] = assoc_array_node_to_ptr(new_n); |
| } |
| } else { |
| new_parent = ptr; |
| } |
| new_n = assoc_array_ptr_to_node(new_parent); |
| |
| ascend_old_tree: |
| ptr = node->back_pointer; |
| if (assoc_array_ptr_is_shortcut(ptr)) { |
| shortcut = assoc_array_ptr_to_shortcut(ptr); |
| slot = shortcut->parent_slot; |
| cursor = shortcut->back_pointer; |
| if (!cursor) |
| goto gc_complete; |
| } else { |
| slot = node->parent_slot; |
| cursor = ptr; |
| } |
| BUG_ON(!cursor); |
| node = assoc_array_ptr_to_node(cursor); |
| slot++; |
| goto continue_node; |
| |
| gc_complete: |
| edit->set[0].to = new_root; |
| assoc_array_apply_edit(edit); |
| array->nr_leaves_on_tree = nr_leaves_on_tree; |
| return 0; |
| |
| enomem: |
| pr_devel("enomem\n"); |
| assoc_array_destroy_subtree(new_root, edit->ops); |
| kfree(edit); |
| return -ENOMEM; |
| } |