blob: 14c923b3b07f272b03a8726216d036ab6768157a [file] [log] [blame]
/*
* Copyright 2002 Andi Kleen, SuSE Labs.
* Thanks to Ben LaHaise for precious feedback.
*/
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
pte_t *lookup_address(unsigned long address, int *level)
{
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
if (pgd_none(*pgd))
return NULL;
pud = pud_offset(pgd, address);
if (pud_none(*pud))
return NULL;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
return NULL;
*level = 2;
if (pmd_large(*pmd))
return (pte_t *)pmd;
*level = 3;
return pte_offset_kernel(pmd, address);
}
static void set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
{
unsigned long flags;
struct page *page;
/* change init_mm */
set_pte_atomic(kpte, pte);
if (SHARED_KERNEL_PMD)
return;
spin_lock_irqsave(&pgd_lock, flags);
for (page = pgd_list; page; page = (struct page *)page->index) {
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pgd = (pgd_t *)page_address(page) + pgd_index(address);
pud = pud_offset(pgd, address);
pmd = pmd_offset(pud, address);
set_pte_atomic((pte_t *)pmd, pte);
}
spin_unlock_irqrestore(&pgd_lock, flags);
}
static int
split_large_page(pte_t *kpte, unsigned long address, pgprot_t ref_prot)
{
int i, level;
unsigned long addr;
pte_t *pbase, *tmp;
struct page *base;
base = alloc_pages(GFP_KERNEL, 0);
if (!base)
return -ENOMEM;
down_write(&init_mm.mmap_sem);
/*
* Check for races, another CPU might have split this page
* up for us already:
*/
tmp = lookup_address(address, &level);
if (tmp != kpte)
goto out_unlock;
address = __pa(address);
addr = address & LARGE_PAGE_MASK;
pbase = (pte_t *)page_address(base);
paravirt_alloc_pt(&init_mm, page_to_pfn(base));
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE)
set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot));
/*
* Install the new, split up pagetable:
*/
set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
base = NULL;
out_unlock:
up_write(&init_mm.mmap_sem);
if (base)
__free_pages(base, 0);
return 0;
}
static int __change_page_attr(struct page *page, pgprot_t prot)
{
pgprot_t ref_prot = PAGE_KERNEL;
struct page *kpte_page;
unsigned long address;
int level, err = 0;
pgprot_t oldprot;
pte_t *kpte;
BUG_ON(PageHighMem(page));
address = (unsigned long)page_address(page);
repeat:
kpte = lookup_address(address, &level);
if (!kpte)
return -EINVAL;
oldprot = pte_pgprot(*kpte);
kpte_page = virt_to_page(kpte);
BUG_ON(PageLRU(kpte_page));
BUG_ON(PageCompound(kpte_page));
/*
* Better fail early if someone sets the kernel text to NX.
* Does not cover __inittext
*/
BUG_ON(address >= (unsigned long)&_text &&
address < (unsigned long)&_etext &&
(pgprot_val(prot) & _PAGE_NX));
if ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext)
ref_prot = PAGE_KERNEL_EXEC;
ref_prot = canon_pgprot(ref_prot);
prot = canon_pgprot(prot);
if (level == 3) {
set_pte_atomic(kpte, mk_pte(page, prot));
} else {
err = split_large_page(kpte, address, ref_prot);
if (!err)
goto repeat;
}
return err;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* This should be used when a page is mapped with a different caching policy
* than write-back somewhere - some CPUs do not like it when mappings with
* different caching policies exist. This changes the page attributes of the
* in kernel linear mapping too.
*
* The caller needs to ensure that there are no conflicting mappings elsewhere.
* This function only deals with the kernel linear map.
*
* Caller must call global_flush_tlb() after this.
*/
int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
int err = 0, i;
for (i = 0; i < numpages; i++, page++) {
err = __change_page_attr(page, prot);
if (err)
break;
}
return err;
}
EXPORT_SYMBOL(change_page_attr);
int change_page_attr_addr(unsigned long addr, int numpages, pgprot_t prot)
{
int i;
unsigned long pfn = (addr >> PAGE_SHIFT);
for (i = 0; i < numpages; i++) {
if (!pfn_valid(pfn + i)) {
break;
} else {
int level;
pte_t *pte = lookup_address(addr + i*PAGE_SIZE, &level);
BUG_ON(pte && !pte_none(*pte));
}
}
return change_page_attr(virt_to_page(addr), i, prot);
}
static void flush_kernel_map(void *arg)
{
/*
* Flush all to work around Errata in early athlons regarding
* large page flushing.
*/
__flush_tlb_all();
if (boot_cpu_data.x86_model >= 4)
wbinvd();
}
void global_flush_tlb(void)
{
BUG_ON(irqs_disabled());
on_each_cpu(flush_kernel_map, NULL, 1, 1);
}
EXPORT_SYMBOL(global_flush_tlb);
#ifdef CONFIG_DEBUG_PAGEALLOC
void kernel_map_pages(struct page *page, int numpages, int enable)
{
if (PageHighMem(page))
return;
if (!enable) {
debug_check_no_locks_freed(page_address(page),
numpages * PAGE_SIZE);
}
/*
* the return value is ignored - the calls cannot fail,
* large pages are disabled at boot time.
*/
change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
/*
* we should perform an IPI and flush all tlbs,
* but that can deadlock->flush only current cpu.
*/
__flush_tlb_all();
}
#endif