blob: 4c132a87d437ef591d61a581e2b7f92921f3cd34 [file] [log] [blame]
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_quota.h"
#include "xfs_error.h"
#include "xfs_bmap.h"
#include "xfs_rw.h"
#include "xfs_buf_item.h"
#include "xfs_log_priv.h"
#include "xfs_dir2_trace.h"
#include "xfs_extfree_item.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_clnt.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_fsops.h"
#include "xfs_vnodeops.h"
#include "xfs_vfsops.h"
int __init
xfs_init(void)
{
#ifdef XFS_DABUF_DEBUG
extern spinlock_t xfs_dabuf_global_lock;
spin_lock_init(&xfs_dabuf_global_lock);
#endif
/*
* Initialize all of the zone allocators we use.
*/
xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
"xfs_bmap_free_item");
xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
"xfs_btree_cur");
xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
xfs_da_state_zone =
kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state");
xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
xfs_mru_cache_init();
xfs_filestream_init();
/*
* The size of the zone allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_zone =
kmem_zone_init((sizeof(xfs_buf_log_item_t) +
(((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
NBWORD) * sizeof(int))),
"xfs_buf_item");
xfs_efd_zone =
kmem_zone_init((sizeof(xfs_efd_log_item_t) +
((XFS_EFD_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))),
"xfs_efd_item");
xfs_efi_zone =
kmem_zone_init((sizeof(xfs_efi_log_item_t) +
((XFS_EFI_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))),
"xfs_efi_item");
/*
* These zones warrant special memory allocator hints
*/
xfs_inode_zone =
kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
KM_ZONE_SPREAD, NULL);
xfs_ili_zone =
kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
KM_ZONE_SPREAD, NULL);
/*
* Allocate global trace buffers.
*/
#ifdef XFS_ALLOC_TRACE
xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_BMAP_TRACE
xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_BMBT_TRACE
xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_ATTR_TRACE
xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_DIR2_TRACE
xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
#endif
xfs_dir_startup();
#if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
xfs_error_test_init();
#endif /* DEBUG || INDUCE_IO_ERROR */
xfs_init_procfs();
xfs_sysctl_register();
return 0;
}
void __exit
xfs_cleanup(void)
{
extern kmem_zone_t *xfs_inode_zone;
extern kmem_zone_t *xfs_efd_zone;
extern kmem_zone_t *xfs_efi_zone;
xfs_cleanup_procfs();
xfs_sysctl_unregister();
xfs_filestream_uninit();
xfs_mru_cache_uninit();
xfs_acl_zone_destroy(xfs_acl_zone);
#ifdef XFS_DIR2_TRACE
ktrace_free(xfs_dir2_trace_buf);
#endif
#ifdef XFS_ATTR_TRACE
ktrace_free(xfs_attr_trace_buf);
#endif
#ifdef XFS_BMBT_TRACE
ktrace_free(xfs_bmbt_trace_buf);
#endif
#ifdef XFS_BMAP_TRACE
ktrace_free(xfs_bmap_trace_buf);
#endif
#ifdef XFS_ALLOC_TRACE
ktrace_free(xfs_alloc_trace_buf);
#endif
kmem_zone_destroy(xfs_bmap_free_item_zone);
kmem_zone_destroy(xfs_btree_cur_zone);
kmem_zone_destroy(xfs_inode_zone);
kmem_zone_destroy(xfs_trans_zone);
kmem_zone_destroy(xfs_da_state_zone);
kmem_zone_destroy(xfs_dabuf_zone);
kmem_zone_destroy(xfs_buf_item_zone);
kmem_zone_destroy(xfs_efd_zone);
kmem_zone_destroy(xfs_efi_zone);
kmem_zone_destroy(xfs_ifork_zone);
kmem_zone_destroy(xfs_ili_zone);
}
/*
* xfs_start_flags
*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock has _not_ yet been read in.
*/
STATIC int
xfs_start_flags(
struct xfs_mount_args *ap,
struct xfs_mount *mp)
{
/* Values are in BBs */
if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
/*
* At this point the superblock has not been read
* in, therefore we do not know the block size.
* Before the mount call ends we will convert
* these to FSBs.
*/
mp->m_dalign = ap->sunit;
mp->m_swidth = ap->swidth;
}
if (ap->logbufs != -1 &&
ap->logbufs != 0 &&
(ap->logbufs < XLOG_MIN_ICLOGS ||
ap->logbufs > XLOG_MAX_ICLOGS)) {
cmn_err(CE_WARN,
"XFS: invalid logbufs value: %d [not %d-%d]",
ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return XFS_ERROR(EINVAL);
}
mp->m_logbufs = ap->logbufs;
if (ap->logbufsize != -1 &&
ap->logbufsize != 0 &&
(ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(ap->logbufsize))) {
cmn_err(CE_WARN,
"XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
ap->logbufsize);
return XFS_ERROR(EINVAL);
}
mp->m_logbsize = ap->logbufsize;
mp->m_fsname_len = strlen(ap->fsname) + 1;
mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
strcpy(mp->m_fsname, ap->fsname);
if (ap->rtname[0]) {
mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
strcpy(mp->m_rtname, ap->rtname);
}
if (ap->logname[0]) {
mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
strcpy(mp->m_logname, ap->logname);
}
if (ap->flags & XFSMNT_WSYNC)
mp->m_flags |= XFS_MOUNT_WSYNC;
#if XFS_BIG_INUMS
if (ap->flags & XFSMNT_INO64) {
mp->m_flags |= XFS_MOUNT_INO64;
mp->m_inoadd = XFS_INO64_OFFSET;
}
#endif
if (ap->flags & XFSMNT_RETERR)
mp->m_flags |= XFS_MOUNT_RETERR;
if (ap->flags & XFSMNT_NOALIGN)
mp->m_flags |= XFS_MOUNT_NOALIGN;
if (ap->flags & XFSMNT_SWALLOC)
mp->m_flags |= XFS_MOUNT_SWALLOC;
if (ap->flags & XFSMNT_OSYNCISOSYNC)
mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
if (ap->flags & XFSMNT_32BITINODES)
mp->m_flags |= XFS_MOUNT_32BITINODES;
if (ap->flags & XFSMNT_IOSIZE) {
if (ap->iosizelog > XFS_MAX_IO_LOG ||
ap->iosizelog < XFS_MIN_IO_LOG) {
cmn_err(CE_WARN,
"XFS: invalid log iosize: %d [not %d-%d]",
ap->iosizelog, XFS_MIN_IO_LOG,
XFS_MAX_IO_LOG);
return XFS_ERROR(EINVAL);
}
mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
}
if (ap->flags & XFSMNT_IKEEP)
mp->m_flags |= XFS_MOUNT_IKEEP;
if (ap->flags & XFSMNT_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (ap->flags & XFSMNT_ATTR2)
mp->m_flags |= XFS_MOUNT_ATTR2;
if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
/*
* no recovery flag requires a read-only mount
*/
if (ap->flags & XFSMNT_NORECOVERY) {
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
cmn_err(CE_WARN,
"XFS: tried to mount a FS read-write without recovery!");
return XFS_ERROR(EINVAL);
}
mp->m_flags |= XFS_MOUNT_NORECOVERY;
}
if (ap->flags & XFSMNT_NOUUID)
mp->m_flags |= XFS_MOUNT_NOUUID;
if (ap->flags & XFSMNT_BARRIER)
mp->m_flags |= XFS_MOUNT_BARRIER;
else
mp->m_flags &= ~XFS_MOUNT_BARRIER;
if (ap->flags2 & XFSMNT2_FILESTREAMS)
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
if (ap->flags & XFSMNT_DMAPI)
mp->m_flags |= XFS_MOUNT_DMAPI;
return 0;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount_args *ap,
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller then the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if ((ap->logbufsize <= 0) &&
(mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (ap->logbufsize > 0 &&
ap->logbufsize < mp->m_sb.sb_logsunit) {
cmn_err(CE_WARN,
"XFS: logbuf size must be greater than or equal to log stripe size");
return XFS_ERROR(EINVAL);
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
cmn_err(CE_WARN,
"XFS: logbuf size for version 1 logs must be 16K or 32K");
return XFS_ERROR(EINVAL);
}
}
if (xfs_sb_version_hasattr2(&mp->m_sb))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
cmn_err(CE_WARN,
"XFS: cannot mount a read-only filesystem as read-write");
return XFS_ERROR(EROFS);
}
/*
* check for shared mount.
*/
if (ap->flags & XFSMNT_SHARED) {
if (!xfs_sb_version_hasshared(&mp->m_sb))
return XFS_ERROR(EINVAL);
/*
* For IRIX 6.5, shared mounts must have the shared
* version bit set, have the persistent readonly
* field set, must be version 0 and can only be mounted
* read-only.
*/
if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
(mp->m_sb.sb_shared_vn != 0))
return XFS_ERROR(EINVAL);
mp->m_flags |= XFS_MOUNT_SHARED;
/*
* Shared XFS V0 can't deal with DMI. Return EINVAL.
*/
if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
return XFS_ERROR(EINVAL);
}
if (ap->flags & XFSMNT_UQUOTA) {
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
if (ap->flags & XFSMNT_UQUOTAENF)
mp->m_qflags |= XFS_UQUOTA_ENFD;
}
if (ap->flags & XFSMNT_GQUOTA) {
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
if (ap->flags & XFSMNT_GQUOTAENF)
mp->m_qflags |= XFS_OQUOTA_ENFD;
} else if (ap->flags & XFSMNT_PQUOTA) {
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
if (ap->flags & XFSMNT_PQUOTAENF)
mp->m_qflags |= XFS_OQUOTA_ENFD;
}
return 0;
}
/*
* xfs_mount
*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
*/
int
xfs_mount(
struct xfs_mount *mp,
struct xfs_mount_args *args,
cred_t *credp)
{
struct block_device *ddev, *logdev, *rtdev;
int flags = 0, error;
ddev = mp->m_super->s_bdev;
logdev = rtdev = NULL;
error = xfs_dmops_get(mp, args);
if (error)
return error;
error = xfs_qmops_get(mp, args);
if (error)
return error;
if (args->flags & XFSMNT_QUIET)
flags |= XFS_MFSI_QUIET;
/*
* Open real time and log devices - order is important.
*/
if (args->logname[0]) {
error = xfs_blkdev_get(mp, args->logname, &logdev);
if (error)
return error;
}
if (args->rtname[0]) {
error = xfs_blkdev_get(mp, args->rtname, &rtdev);
if (error) {
xfs_blkdev_put(logdev);
return error;
}
if (rtdev == ddev || rtdev == logdev) {
cmn_err(CE_WARN,
"XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
xfs_blkdev_put(logdev);
xfs_blkdev_put(rtdev);
return EINVAL;
}
}
/*
* Setup xfs_mount buffer target pointers
*/
error = ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
if (!mp->m_ddev_targp) {
xfs_blkdev_put(logdev);
xfs_blkdev_put(rtdev);
return error;
}
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
if (!mp->m_rtdev_targp) {
xfs_blkdev_put(logdev);
xfs_blkdev_put(rtdev);
goto error0;
}
}
mp->m_logdev_targp = (logdev && logdev != ddev) ?
xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp;
if (!mp->m_logdev_targp) {
xfs_blkdev_put(logdev);
xfs_blkdev_put(rtdev);
goto error0;
}
/*
* Setup flags based on mount(2) options and then the superblock
*/
error = xfs_start_flags(args, mp);
if (error)
goto error1;
error = xfs_readsb(mp, flags);
if (error)
goto error1;
error = xfs_finish_flags(args, mp);
if (error)
goto error2;
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (!error && logdev && logdev != ddev) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
mp->m_sb.sb_blocksize,
log_sector_size);
}
if (!error && rtdev)
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (error)
goto error2;
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_mountfs_check_barriers(mp);
if ((error = xfs_filestream_mount(mp)))
goto error2;
error = xfs_mountfs(mp, flags);
if (error)
goto error2;
XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
return 0;
error2:
if (mp->m_sb_bp)
xfs_freesb(mp);
error1:
xfs_binval(mp->m_ddev_targp);
if (logdev && logdev != ddev)
xfs_binval(mp->m_logdev_targp);
if (rtdev)
xfs_binval(mp->m_rtdev_targp);
error0:
xfs_unmountfs_close(mp, credp);
xfs_qmops_put(mp);
xfs_dmops_put(mp);
return error;
}
int
xfs_unmount(
xfs_mount_t *mp,
int flags,
cred_t *credp)
{
xfs_inode_t *rip;
bhv_vnode_t *rvp;
int unmount_event_wanted = 0;
int unmount_event_flags = 0;
int xfs_unmountfs_needed = 0;
int error;
rip = mp->m_rootip;
rvp = XFS_ITOV(rip);
#ifdef HAVE_DMAPI
if (mp->m_flags & XFS_MOUNT_DMAPI) {
error = XFS_SEND_PREUNMOUNT(mp,
rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL,
NULL, NULL, 0, 0,
(mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
0:DM_FLAGS_UNWANTED);
if (error)
return XFS_ERROR(error);
unmount_event_wanted = 1;
unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
0 : DM_FLAGS_UNWANTED;
}
#endif
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
* here.
*/
xfs_filestream_unmount(mp);
XFS_bflush(mp->m_ddev_targp);
error = xfs_unmount_flush(mp, 0);
if (error)
goto out;
ASSERT(vn_count(rvp) == 1);
/*
* Drop the reference count
*/
VN_RELE(rvp);
/*
* If we're forcing a shutdown, typically because of a media error,
* we want to make sure we invalidate dirty pages that belong to
* referenced vnodes as well.
*/
if (XFS_FORCED_SHUTDOWN(mp)) {
error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
ASSERT(error != EFSCORRUPTED);
}
xfs_unmountfs_needed = 1;
out:
/* Send DMAPI event, if required.
* Then do xfs_unmountfs() if needed.
* Then return error (or zero).
*/
if (unmount_event_wanted) {
/* Note: mp structure must still exist for
* XFS_SEND_UNMOUNT() call.
*/
XFS_SEND_UNMOUNT(mp, error == 0 ? rip : NULL,
DM_RIGHT_NULL, 0, error, unmount_event_flags);
}
if (xfs_unmountfs_needed) {
/*
* Call common unmount function to flush to disk
* and free the super block buffer & mount structures.
*/
xfs_unmountfs(mp, credp);
xfs_qmops_put(mp);
xfs_dmops_put(mp);
kmem_free(mp, sizeof(xfs_mount_t));
}
return XFS_ERROR(error);
}
STATIC int
xfs_quiesce_fs(
xfs_mount_t *mp)
{
int count = 0, pincount;
xfs_flush_buftarg(mp->m_ddev_targp, 0);
xfs_finish_reclaim_all(mp, 0);
/* This loop must run at least twice.
* The first instance of the loop will flush
* most meta data but that will generate more
* meta data (typically directory updates).
* Which then must be flushed and logged before
* we can write the unmount record.
*/
do {
xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
if (!pincount) {
delay(50);
count++;
}
} while (count < 2);
return 0;
}
/*
* Second stage of a quiesce. The data is already synced, now we have to take
* care of the metadata. New transactions are already blocked, so we need to
* wait for any remaining transactions to drain out before proceding.
*/
void
xfs_attr_quiesce(
xfs_mount_t *mp)
{
/* wait for all modifications to complete */
while (atomic_read(&mp->m_active_trans) > 0)
delay(100);
/* flush inodes and push all remaining buffers out to disk */
xfs_quiesce_fs(mp);
ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
/* Push the superblock and write an unmount record */
xfs_log_sbcount(mp, 1);
xfs_log_unmount_write(mp);
xfs_unmountfs_writesb(mp);
}
int
xfs_mntupdate(
struct xfs_mount *mp,
int *flags,
struct xfs_mount_args *args)
{
if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
if (mp->m_flags & XFS_MOUNT_RDONLY)
mp->m_flags &= ~XFS_MOUNT_RDONLY;
if (args->flags & XFSMNT_BARRIER) {
mp->m_flags |= XFS_MOUNT_BARRIER;
xfs_mountfs_check_barriers(mp);
} else {
mp->m_flags &= ~XFS_MOUNT_BARRIER;
}
} else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
xfs_filestream_flush(mp);
xfs_sync(mp, SYNC_DATA_QUIESCE);
xfs_attr_quiesce(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
}
return 0;
}
/*
* xfs_unmount_flush implements a set of flush operation on special
* inodes, which are needed as a separate set of operations so that
* they can be called as part of relocation process.
*/
int
xfs_unmount_flush(
xfs_mount_t *mp, /* Mount structure we are getting
rid of. */
int relocation) /* Called from vfs relocation. */
{
xfs_inode_t *rip = mp->m_rootip;
xfs_inode_t *rbmip;
xfs_inode_t *rsumip = NULL;
bhv_vnode_t *rvp = XFS_ITOV(rip);
int error;
xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
xfs_iflock(rip);
/*
* Flush out the real time inodes.
*/
if ((rbmip = mp->m_rbmip) != NULL) {
xfs_ilock(rbmip, XFS_ILOCK_EXCL);
xfs_iflock(rbmip);
error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
if (error == EFSCORRUPTED)
goto fscorrupt_out;
ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
rsumip = mp->m_rsumip;
xfs_ilock(rsumip, XFS_ILOCK_EXCL);
xfs_iflock(rsumip);
error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
if (error == EFSCORRUPTED)
goto fscorrupt_out;
ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
}
/*
* Synchronously flush root inode to disk
*/
error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
if (error == EFSCORRUPTED)
goto fscorrupt_out2;
if (vn_count(rvp) != 1 && !relocation) {
xfs_iunlock(rip, XFS_ILOCK_EXCL);
return XFS_ERROR(EBUSY);
}
/*
* Release dquot that rootinode, rbmino and rsumino might be holding,
* flush and purge the quota inodes.
*/
error = XFS_QM_UNMOUNT(mp);
if (error == EFSCORRUPTED)
goto fscorrupt_out2;
if (rbmip) {
VN_RELE(XFS_ITOV(rbmip));
VN_RELE(XFS_ITOV(rsumip));
}
xfs_iunlock(rip, XFS_ILOCK_EXCL);
return 0;
fscorrupt_out:
xfs_ifunlock(rip);
fscorrupt_out2:
xfs_iunlock(rip, XFS_ILOCK_EXCL);
return XFS_ERROR(EFSCORRUPTED);
}
/*
* xfs_sync flushes any pending I/O to file system vfsp.
*
* This routine is called by vfs_sync() to make sure that things make it
* out to disk eventually, on sync() system calls to flush out everything,
* and when the file system is unmounted. For the vfs_sync() case, all
* we really need to do is sync out the log to make all of our meta-data
* updates permanent (except for timestamps). For calls from pflushd(),
* dirty pages are kept moving by calling pdflush() on the inodes
* containing them. We also flush the inodes that we can lock without
* sleeping and the superblock if we can lock it without sleeping from
* vfs_sync() so that items at the tail of the log are always moving out.
*
* Flags:
* SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
* to sleep if we can help it. All we really need
* to do is ensure that the log is synced at least
* periodically. We also push the inodes and
* superblock if we can lock them without sleeping
* and they are not pinned.
* SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
* set, then we really want to lock each inode and flush
* it.
* SYNC_WAIT - All the flushes that take place in this call should
* be synchronous.
* SYNC_DELWRI - This tells us to push dirty pages associated with
* inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
* determine if they should be flushed sync, async, or
* delwri.
* SYNC_CLOSE - This flag is passed when the system is being
* unmounted. We should sync and invalidate everything.
* SYNC_FSDATA - This indicates that the caller would like to make
* sure the superblock is safe on disk. We can ensure
* this by simply making sure the log gets flushed
* if SYNC_BDFLUSH is set, and by actually writing it
* out otherwise.
* SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete
* before we return (including direct I/O). Forms the drain
* side of the write barrier needed to safely quiesce the
* filesystem.
*
*/
int
xfs_sync(
xfs_mount_t *mp,
int flags)
{
int error;
/*
* Get the Quota Manager to flush the dquots.
*
* If XFS quota support is not enabled or this filesystem
* instance does not use quotas XFS_QM_DQSYNC will always
* return zero.
*/
error = XFS_QM_DQSYNC(mp, flags);
if (error) {
/*
* If we got an IO error, we will be shutting down.
* So, there's nothing more for us to do here.
*/
ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp));
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(error);
}
if (flags & SYNC_IOWAIT)
xfs_filestream_flush(mp);
return xfs_syncsub(mp, flags, NULL);
}
/*
* xfs sync routine for internal use
*
* This routine supports all of the flags defined for the generic vfs_sync
* interface as explained above under xfs_sync.
*
*/
int
xfs_sync_inodes(
xfs_mount_t *mp,
int flags,
int *bypassed)
{
xfs_inode_t *ip = NULL;
bhv_vnode_t *vp = NULL;
int error;
int last_error;
uint64_t fflag;
uint lock_flags;
uint base_lock_flags;
boolean_t mount_locked;
boolean_t vnode_refed;
int preempt;
xfs_iptr_t *ipointer;
#ifdef DEBUG
boolean_t ipointer_in = B_FALSE;
#define IPOINTER_SET ipointer_in = B_TRUE
#define IPOINTER_CLR ipointer_in = B_FALSE
#else
#define IPOINTER_SET
#define IPOINTER_CLR
#endif
/* Insert a marker record into the inode list after inode ip. The list
* must be locked when this is called. After the call the list will no
* longer be locked.
*/
#define IPOINTER_INSERT(ip, mp) { \
ASSERT(ipointer_in == B_FALSE); \
ipointer->ip_mnext = ip->i_mnext; \
ipointer->ip_mprev = ip; \
ip->i_mnext = (xfs_inode_t *)ipointer; \
ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
preempt = 0; \
XFS_MOUNT_IUNLOCK(mp); \
mount_locked = B_FALSE; \
IPOINTER_SET; \
}
/* Remove the marker from the inode list. If the marker was the only item
* in the list then there are no remaining inodes and we should zero out
* the whole list. If we are the current head of the list then move the head
* past us.
*/
#define IPOINTER_REMOVE(ip, mp) { \
ASSERT(ipointer_in == B_TRUE); \
if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
ip = ipointer->ip_mnext; \
ip->i_mprev = ipointer->ip_mprev; \
ipointer->ip_mprev->i_mnext = ip; \
if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
mp->m_inodes = ip; \
} \
} else { \
ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
mp->m_inodes = NULL; \
ip = NULL; \
} \
IPOINTER_CLR; \
}
#define XFS_PREEMPT_MASK 0x7f
ASSERT(!(flags & SYNC_BDFLUSH));
if (bypassed)
*bypassed = 0;
if (mp->m_flags & XFS_MOUNT_RDONLY)
return 0;
error = 0;
last_error = 0;
preempt = 0;
/* Allocate a reference marker */
ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
fflag = XFS_B_ASYNC; /* default is don't wait */
if (flags & SYNC_DELWRI)
fflag = XFS_B_DELWRI;
if (flags & SYNC_WAIT)
fflag = 0; /* synchronous overrides all */
base_lock_flags = XFS_ILOCK_SHARED;
if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
/*
* We need the I/O lock if we're going to call any of
* the flush/inval routines.
*/
base_lock_flags |= XFS_IOLOCK_SHARED;
}
XFS_MOUNT_ILOCK(mp);
ip = mp->m_inodes;
mount_locked = B_TRUE;
vnode_refed = B_FALSE;
IPOINTER_CLR;
do {
ASSERT(ipointer_in == B_FALSE);
ASSERT(vnode_refed == B_FALSE);
lock_flags = base_lock_flags;
/*
* There were no inodes in the list, just break out
* of the loop.
*/
if (ip == NULL) {
break;
}
/*
* We found another sync thread marker - skip it
*/
if (ip->i_mount == NULL) {
ip = ip->i_mnext;
continue;
}
vp = XFS_ITOV_NULL(ip);
/*
* If the vnode is gone then this is being torn down,
* call reclaim if it is flushed, else let regular flush
* code deal with it later in the loop.
*/
if (vp == NULL) {
/* Skip ones already in reclaim */
if (ip->i_flags & XFS_IRECLAIM) {
ip = ip->i_mnext;
continue;
}
if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
ip = ip->i_mnext;
} else if ((xfs_ipincount(ip) == 0) &&
xfs_iflock_nowait(ip)) {
IPOINTER_INSERT(ip, mp);
xfs_finish_reclaim(ip, 1,
XFS_IFLUSH_DELWRI_ELSE_ASYNC);
XFS_MOUNT_ILOCK(mp);
mount_locked = B_TRUE;
IPOINTER_REMOVE(ip, mp);
} else {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
ip = ip->i_mnext;
}
continue;
}
if (VN_BAD(vp)) {
ip = ip->i_mnext;
continue;
}
if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
XFS_MOUNT_IUNLOCK(mp);
kmem_free(ipointer, sizeof(xfs_iptr_t));
return 0;
}
/*
* Try to lock without sleeping. We're out of order with
* the inode list lock here, so if we fail we need to drop
* the mount lock and try again. If we're called from
* bdflush() here, then don't bother.
*
* The inode lock here actually coordinates with the
* almost spurious inode lock in xfs_ireclaim() to prevent
* the vnode we handle here without a reference from
* being freed while we reference it. If we lock the inode
* while it's on the mount list here, then the spurious inode
* lock in xfs_ireclaim() after the inode is pulled from
* the mount list will sleep until we release it here.
* This keeps the vnode from being freed while we reference
* it.
*/
if (xfs_ilock_nowait(ip, lock_flags) == 0) {
if (vp == NULL) {
ip = ip->i_mnext;
continue;
}
vp = vn_grab(vp);
if (vp == NULL) {
ip = ip->i_mnext;
continue;
}
IPOINTER_INSERT(ip, mp);
xfs_ilock(ip, lock_flags);
ASSERT(vp == XFS_ITOV(ip));
ASSERT(ip->i_mount == mp);
vnode_refed = B_TRUE;
}
/* From here on in the loop we may have a marker record
* in the inode list.
*/
/*
* If we have to flush data or wait for I/O completion
* we need to drop the ilock that we currently hold.
* If we need to drop the lock, insert a marker if we
* have not already done so.
*/
if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) ||
((flags & SYNC_DELWRI) && VN_DIRTY(vp))) {
if (mount_locked) {
IPOINTER_INSERT(ip, mp);
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (flags & SYNC_CLOSE) {
/* Shutdown case. Flush and invalidate. */
if (XFS_FORCED_SHUTDOWN(mp))
xfs_tosspages(ip, 0, -1,
FI_REMAPF);
else
error = xfs_flushinval_pages(ip,
0, -1, FI_REMAPF);
} else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) {
error = xfs_flush_pages(ip, 0,
-1, fflag, FI_NONE);
}
/*
* When freezing, we need to wait ensure all I/O (including direct
* I/O) is complete to ensure no further data modification can take
* place after this point
*/
if (flags & SYNC_IOWAIT)
vn_iowait(ip);
xfs_ilock(ip, XFS_ILOCK_SHARED);
}
if ((flags & SYNC_ATTR) &&
(ip->i_update_core ||
(ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) {
if (mount_locked)
IPOINTER_INSERT(ip, mp);
if (flags & SYNC_WAIT) {
xfs_iflock(ip);
error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
/*
* If we can't acquire the flush lock, then the inode
* is already being flushed so don't bother waiting.
*
* If we can lock it then do a delwri flush so we can
* combine multiple inode flushes in each disk write.
*/
} else if (xfs_iflock_nowait(ip)) {
error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
} else if (bypassed) {
(*bypassed)++;
}
}
if (lock_flags != 0) {
xfs_iunlock(ip, lock_flags);
}
if (vnode_refed) {
/*
* If we had to take a reference on the vnode
* above, then wait until after we've unlocked
* the inode to release the reference. This is
* because we can be already holding the inode
* lock when VN_RELE() calls xfs_inactive().
*
* Make sure to drop the mount lock before calling
* VN_RELE() so that we don't trip over ourselves if
* we have to go for the mount lock again in the
* inactive code.
*/
if (mount_locked) {
IPOINTER_INSERT(ip, mp);
}
VN_RELE(vp);
vnode_refed = B_FALSE;
}
if (error) {
last_error = error;
}
/*
* bail out if the filesystem is corrupted.
*/
if (error == EFSCORRUPTED) {
if (!mount_locked) {
XFS_MOUNT_ILOCK(mp);
IPOINTER_REMOVE(ip, mp);
}
XFS_MOUNT_IUNLOCK(mp);
ASSERT(ipointer_in == B_FALSE);
kmem_free(ipointer, sizeof(xfs_iptr_t));
return XFS_ERROR(error);
}
/* Let other threads have a chance at the mount lock
* if we have looped many times without dropping the
* lock.
*/
if ((++preempt & XFS_PREEMPT_MASK) == 0) {
if (mount_locked) {
IPOINTER_INSERT(ip, mp);
}
}
if (mount_locked == B_FALSE) {
XFS_MOUNT_ILOCK(mp);
mount_locked = B_TRUE;
IPOINTER_REMOVE(ip, mp);
continue;
}
ASSERT(ipointer_in == B_FALSE);
ip = ip->i_mnext;
} while (ip != mp->m_inodes);
XFS_MOUNT_IUNLOCK(mp);
ASSERT(ipointer_in == B_FALSE);
kmem_free(ipointer, sizeof(xfs_iptr_t));
return XFS_ERROR(last_error);
}
/*
* xfs sync routine for internal use
*
* This routine supports all of the flags defined for the generic vfs_sync
* interface as explained above under xfs_sync.
*
*/
int
xfs_syncsub(
xfs_mount_t *mp,
int flags,
int *bypassed)
{
int error = 0;
int last_error = 0;
uint log_flags = XFS_LOG_FORCE;
xfs_buf_t *bp;
xfs_buf_log_item_t *bip;
/*
* Sync out the log. This ensures that the log is periodically
* flushed even if there is not enough activity to fill it up.
*/
if (flags & SYNC_WAIT)
log_flags |= XFS_LOG_SYNC;
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
if (flags & SYNC_BDFLUSH)
xfs_finish_reclaim_all(mp, 1);
else
error = xfs_sync_inodes(mp, flags, bypassed);
}
/*
* Flushing out dirty data above probably generated more
* log activity, so if this isn't vfs_sync() then flush
* the log again.
*/
if (flags & SYNC_DELWRI) {
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
}
if (flags & SYNC_FSDATA) {
/*
* If this is vfs_sync() then only sync the superblock
* if we can lock it without sleeping and it is not pinned.
*/
if (flags & SYNC_BDFLUSH) {
bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
if (bp != NULL) {
bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
if ((bip != NULL) &&
xfs_buf_item_dirty(bip)) {
if (!(XFS_BUF_ISPINNED(bp))) {
XFS_BUF_ASYNC(bp);
error = xfs_bwrite(mp, bp);
} else {
xfs_buf_relse(bp);
}
} else {
xfs_buf_relse(bp);
}
}
} else {
bp = xfs_getsb(mp, 0);
/*
* If the buffer is pinned then push on the log so
* we won't get stuck waiting in the write for
* someone, maybe ourselves, to flush the log.
* Even though we just pushed the log above, we
* did not have the superblock buffer locked at
* that point so it can become pinned in between
* there and here.
*/
if (XFS_BUF_ISPINNED(bp))
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
if (flags & SYNC_WAIT)
XFS_BUF_UNASYNC(bp);
else
XFS_BUF_ASYNC(bp);
error = xfs_bwrite(mp, bp);
}
if (error) {
last_error = error;
}
}
/*
* If asked, update the disk superblock with incore counter values if we
* are using non-persistent counters so that they don't get too far out
* of sync if we crash or get a forced shutdown. We don't want to force
* this to disk, just get a transaction into the iclogs....
*/
if (flags & SYNC_SUPER)
xfs_log_sbcount(mp, 0);
/*
* Now check to see if the log needs a "dummy" transaction.
*/
if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
xfs_trans_t *tp;
xfs_inode_t *ip;
/*
* Put a dummy transaction in the log to tell
* recovery that all others are OK.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
if ((error = xfs_trans_reserve(tp, 0,
XFS_ICHANGE_LOG_RES(mp),
0, 0, 0))) {
xfs_trans_cancel(tp, 0);
return error;
}
ip = mp->m_rootip;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
error = xfs_trans_commit(tp, 0);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
}
/*
* When shutting down, we need to insure that the AIL is pushed
* to disk or the filesystem can appear corrupt from the PROM.
*/
if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
XFS_bflush(mp->m_ddev_targp);
if (mp->m_rtdev_targp) {
XFS_bflush(mp->m_rtdev_targp);
}
}
return XFS_ERROR(last_error);
}