blob: bae680c648ffc9dcd188eefac028028f4f0a2d2f [file] [log] [blame]
/*
*
* Intel Management Engine Interface (Intel MEI) Linux driver
* Copyright (c) 2013-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/irqreturn.h>
#include <linux/mei.h>
#include "mei_dev.h"
#include "hw-txe.h"
#include "client.h"
#include "hbm.h"
/**
* mei_txe_reg_read - Reads 32bit data from the txe device
*
* @base_addr: registers base address
* @offset: register offset
*
* Return: register value
*/
static inline u32 mei_txe_reg_read(void __iomem *base_addr,
unsigned long offset)
{
return ioread32(base_addr + offset);
}
/**
* mei_txe_reg_write - Writes 32bit data to the txe device
*
* @base_addr: registers base address
* @offset: register offset
* @value: the value to write
*/
static inline void mei_txe_reg_write(void __iomem *base_addr,
unsigned long offset, u32 value)
{
iowrite32(value, base_addr + offset);
}
/**
* mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
*
* Doesn't check for aliveness while Reads 32bit data from the SeC BAR
*
* Return: register value
*/
static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
unsigned long offset)
{
return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
}
/**
* mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
*
* Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
*
* Return: register value
*/
static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
unsigned long offset)
{
WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
return mei_txe_sec_reg_read_silent(hw, offset);
}
/**
* mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
* doesn't check for aliveness
*
* @hw: the txe hardware structure
* @offset: register offset
* @value: value to write
*
* Doesn't check for aliveness while writes 32bit data from to the SeC BAR
*/
static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
}
/**
* mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
* @value: value to write
*
* Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
*/
static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
mei_txe_sec_reg_write_silent(hw, offset, value);
}
/**
* mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
*
* @hw: the txe hardware structure
* @offset: offset from which to read the data
*
* Return: the byte read.
*/
static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
unsigned long offset)
{
return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
}
/**
* mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
*
* @hw: the txe hardware structure
* @offset: offset from which to write the data
* @value: the byte to write
*/
static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
}
/**
* mei_txe_aliveness_set - request for aliveness change
*
* @dev: the device structure
* @req: requested aliveness value
*
* Request for aliveness change and returns true if the change is
* really needed and false if aliveness is already
* in the requested state
*
* Locking: called under "dev->device_lock" lock
*
* Return: true if request was send
*/
static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
bool do_req = hw->aliveness != req;
dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
hw->aliveness, req);
if (do_req) {
dev->pg_event = MEI_PG_EVENT_WAIT;
mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
}
return do_req;
}
/**
* mei_txe_aliveness_req_get - get aliveness requested register value
*
* @dev: the device structure
*
* Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
* from HICR_HOST_ALIVENESS_REQ register value
*
* Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
*/
static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg;
reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
}
/**
* mei_txe_aliveness_get - get aliveness response register value
*
* @dev: the device structure
*
* Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
* register
*/
static u32 mei_txe_aliveness_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg;
reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
return reg & HICR_HOST_ALIVENESS_RESP_ACK;
}
/**
* mei_txe_aliveness_poll - waits for aliveness to settle
*
* @dev: the device structure
* @expected: expected aliveness value
*
* Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
*
* Return: 0 if the expected value was received, -ETIME otherwise
*/
static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
ktime_t stop, start;
start = ktime_get();
stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
do {
hw->aliveness = mei_txe_aliveness_get(dev);
if (hw->aliveness == expected) {
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
ktime_to_us(ktime_sub(ktime_get(), start)));
return 0;
}
usleep_range(20, 50);
} while (ktime_before(ktime_get(), stop));
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_err(dev->dev, "aliveness timed out\n");
return -ETIME;
}
/**
* mei_txe_aliveness_wait - waits for aliveness to settle
*
* @dev: the device structure
* @expected: expected aliveness value
*
* Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
*
* Return: 0 on success and < 0 otherwise
*/
static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
const unsigned long timeout =
msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
long err;
int ret;
hw->aliveness = mei_txe_aliveness_get(dev);
if (hw->aliveness == expected)
return 0;
mutex_unlock(&dev->device_lock);
err = wait_event_timeout(hw->wait_aliveness_resp,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
hw->aliveness = mei_txe_aliveness_get(dev);
ret = hw->aliveness == expected ? 0 : -ETIME;
if (ret)
dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
err, hw->aliveness, dev->pg_event);
else
dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
jiffies_to_msecs(timeout - err),
hw->aliveness, dev->pg_event);
dev->pg_event = MEI_PG_EVENT_IDLE;
return ret;
}
/**
* mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
*
* @dev: the device structure
* @req: requested aliveness value
*
* Return: 0 on success and < 0 otherwise
*/
int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
{
if (mei_txe_aliveness_set(dev, req))
return mei_txe_aliveness_wait(dev, req);
return 0;
}
/**
* mei_txe_pg_in_transition - is device now in pg transition
*
* @dev: the device structure
*
* Return: true if in pg transition, false otherwise
*/
static bool mei_txe_pg_in_transition(struct mei_device *dev)
{
return dev->pg_event == MEI_PG_EVENT_WAIT;
}
/**
* mei_txe_pg_is_enabled - detect if PG is supported by HW
*
* @dev: the device structure
*
* Return: true is pg supported, false otherwise
*/
static bool mei_txe_pg_is_enabled(struct mei_device *dev)
{
return true;
}
/**
* mei_txe_pg_state - translate aliveness register value
* to the mei power gating state
*
* @dev: the device structure
*
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
*/
static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
}
/**
* mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
*
* @dev: the device structure
*/
static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 hintmsk;
/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
}
/**
* mei_txe_input_doorbell_set - sets bit 0 in
* SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
*
* @hw: the txe hardware structure
*/
static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
{
/* Clear the interrupt cause */
clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
}
/**
* mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
*
* @hw: the txe hardware structure
*/
static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
{
mei_txe_br_reg_write(hw,
SICR_SEC_IPC_OUTPUT_STATUS_REG,
SEC_IPC_OUTPUT_STATUS_RDY);
}
/**
* mei_txe_is_input_ready - check if TXE is ready for receiving data
*
* @dev: the device structure
*
* Return: true if INPUT STATUS READY bit is set
*/
static bool mei_txe_is_input_ready(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 status;
status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
return !!(SEC_IPC_INPUT_STATUS_RDY & status);
}
/**
* mei_txe_intr_clear - clear all interrupts
*
* @dev: the device structure
*/
static inline void mei_txe_intr_clear(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
SEC_IPC_HOST_INT_STATUS_PENDING);
mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
}
/**
* mei_txe_intr_disable - disable all interrupts
*
* @dev: the device structure
*/
static void mei_txe_intr_disable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, HHIER_REG, 0);
mei_txe_br_reg_write(hw, HIER_REG, 0);
}
/**
* mei_txe_intr_enable - enable all interrupts
*
* @dev: the device structure
*/
static void mei_txe_intr_enable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
}
/**
* mei_txe_pending_interrupts - check if there are pending interrupts
* only Aliveness, Input ready, and output doorbell are of relevance
*
* @dev: the device structure
*
* Checks if there are pending interrupts
* only Aliveness, Readiness, Input ready, and Output doorbell are relevant
*
* Return: true if there are pending interrupts
*/
static bool mei_txe_pending_interrupts(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
TXE_INTR_ALIVENESS |
TXE_INTR_IN_READY |
TXE_INTR_OUT_DB));
if (ret) {
dev_dbg(dev->dev,
"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
!!(hw->intr_cause & TXE_INTR_IN_READY),
!!(hw->intr_cause & TXE_INTR_READINESS),
!!(hw->intr_cause & TXE_INTR_ALIVENESS),
!!(hw->intr_cause & TXE_INTR_OUT_DB));
}
return ret;
}
/**
* mei_txe_input_payload_write - write a dword to the host buffer
* at offset idx
*
* @dev: the device structure
* @idx: index in the host buffer
* @value: value
*/
static void mei_txe_input_payload_write(struct mei_device *dev,
unsigned long idx, u32 value)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
(idx * sizeof(u32)), value);
}
/**
* mei_txe_out_data_read - read dword from the device buffer
* at offset idx
*
* @dev: the device structure
* @idx: index in the device buffer
*
* Return: register value at index
*/
static u32 mei_txe_out_data_read(const struct mei_device *dev,
unsigned long idx)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return mei_txe_br_reg_read(hw,
BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
}
/* Readiness */
/**
* mei_txe_readiness_set_host_rdy - set host readiness bit
*
* @dev: the device structure
*/
static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw,
SICR_HOST_IPC_READINESS_REQ_REG,
SICR_HOST_IPC_READINESS_HOST_RDY);
}
/**
* mei_txe_readiness_clear - clear host readiness bit
*
* @dev: the device structure
*/
static void mei_txe_readiness_clear(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
SICR_HOST_IPC_READINESS_RDY_CLR);
}
/**
* mei_txe_readiness_get - Reads and returns
* the HICR_SEC_IPC_READINESS register value
*
* @dev: the device structure
*
* Return: the HICR_SEC_IPC_READINESS register value
*/
static u32 mei_txe_readiness_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
}
/**
* mei_txe_readiness_is_sec_rdy - check readiness
* for HICR_SEC_IPC_READINESS_SEC_RDY
*
* @readiness: cached readiness state
*
* Return: true if readiness bit is set
*/
static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
{
return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
}
/**
* mei_txe_hw_is_ready - check if the hw is ready
*
* @dev: the device structure
*
* Return: true if sec is ready
*/
static bool mei_txe_hw_is_ready(struct mei_device *dev)
{
u32 readiness = mei_txe_readiness_get(dev);
return mei_txe_readiness_is_sec_rdy(readiness);
}
/**
* mei_txe_host_is_ready - check if the host is ready
*
* @dev: the device structure
*
* Return: true if host is ready
*/
static inline bool mei_txe_host_is_ready(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
}
/**
* mei_txe_readiness_wait - wait till readiness settles
*
* @dev: the device structure
*
* Return: 0 on success and -ETIME on timeout
*/
static int mei_txe_readiness_wait(struct mei_device *dev)
{
if (mei_txe_hw_is_ready(dev))
return 0;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
mutex_lock(&dev->device_lock);
if (!dev->recvd_hw_ready) {
dev_err(dev->dev, "wait for readiness failed\n");
return -ETIME;
}
dev->recvd_hw_ready = false;
return 0;
}
static const struct mei_fw_status mei_txe_fw_sts = {
.count = 2,
.status[0] = PCI_CFG_TXE_FW_STS0,
.status[1] = PCI_CFG_TXE_FW_STS1
};
/**
* mei_txe_fw_status - read fw status register from pci config space
*
* @dev: mei device
* @fw_status: fw status register values
*
* Return: 0 on success, error otherwise
*/
static int mei_txe_fw_status(struct mei_device *dev,
struct mei_fw_status *fw_status)
{
const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
struct pci_dev *pdev = to_pci_dev(dev->dev);
int ret;
int i;
if (!fw_status)
return -EINVAL;
fw_status->count = fw_src->count;
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
ret = pci_read_config_dword(pdev,
fw_src->status[i], &fw_status->status[i]);
if (ret)
return ret;
}
return 0;
}
/**
* mei_txe_hw_config - configure hardware at the start of the devices
*
* @dev: the device structure
*
* Configure hardware at the start of the device should be done only
* once at the device probe time
*/
static void mei_txe_hw_config(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
/* Doesn't change in runtime */
dev->hbuf_depth = PAYLOAD_SIZE / 4;
hw->aliveness = mei_txe_aliveness_get(dev);
hw->readiness = mei_txe_readiness_get(dev);
dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
hw->aliveness, hw->readiness);
}
/**
* mei_txe_write - writes a message to device.
*
* @dev: the device structure
* @header: header of message
* @buf: message buffer will be written
*
* Return: 0 if success, <0 - otherwise.
*/
static int mei_txe_write(struct mei_device *dev,
struct mei_msg_hdr *header, unsigned char *buf)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
unsigned long rem;
unsigned long length;
int slots = dev->hbuf_depth;
u32 *reg_buf = (u32 *)buf;
u32 dw_cnt;
int i;
if (WARN_ON(!header || !buf))
return -EINVAL;
length = header->length;
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
dw_cnt = mei_data2slots(length);
if (dw_cnt > slots)
return -EMSGSIZE;
if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
return -EAGAIN;
/* Enable Input Ready Interrupt. */
mei_txe_input_ready_interrupt_enable(dev);
if (!mei_txe_is_input_ready(dev)) {
char fw_sts_str[MEI_FW_STATUS_STR_SZ];
mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
return -EAGAIN;
}
mei_txe_input_payload_write(dev, 0, *((u32 *)header));
for (i = 0; i < length / 4; i++)
mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
rem = length & 0x3;
if (rem > 0) {
u32 reg = 0;
memcpy(&reg, &buf[length - rem], rem);
mei_txe_input_payload_write(dev, i + 1, reg);
}
/* after each write the whole buffer is consumed */
hw->slots = 0;
/* Set Input-Doorbell */
mei_txe_input_doorbell_set(hw);
return 0;
}
/**
* mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
*
* @dev: the device structure
*
* Return: the PAYLOAD_SIZE - 4
*/
static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
{
return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
}
/**
* mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
*
* @dev: the device structure
*
* Return: always hbuf_depth
*/
static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return hw->slots;
}
/**
* mei_txe_count_full_read_slots - mimics the me device circular buffer
*
* @dev: the device structure
*
* Return: always buffer size in dwords count
*/
static int mei_txe_count_full_read_slots(struct mei_device *dev)
{
/* read buffers has static size */
return PAYLOAD_SIZE / 4;
}
/**
* mei_txe_read_hdr - read message header which is always in 4 first bytes
*
* @dev: the device structure
*
* Return: mei message header
*/
static u32 mei_txe_read_hdr(const struct mei_device *dev)
{
return mei_txe_out_data_read(dev, 0);
}
/**
* mei_txe_read - reads a message from the txe device.
*
* @dev: the device structure
* @buf: message buffer will be written
* @len: message size will be read
*
* Return: -EINVAL on error wrong argument and 0 on success
*/
static int mei_txe_read(struct mei_device *dev,
unsigned char *buf, unsigned long len)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 *reg_buf, reg;
u32 rem;
u32 i;
if (WARN_ON(!buf || !len))
return -EINVAL;
reg_buf = (u32 *)buf;
rem = len & 0x3;
dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
len, mei_txe_out_data_read(dev, 0));
for (i = 0; i < len / 4; i++) {
/* skip header: index starts from 1 */
reg = mei_txe_out_data_read(dev, i + 1);
dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
*reg_buf++ = reg;
}
if (rem) {
reg = mei_txe_out_data_read(dev, i + 1);
memcpy(reg_buf, &reg, rem);
}
mei_txe_output_ready_set(hw);
return 0;
}
/**
* mei_txe_hw_reset - resets host and fw.
*
* @dev: the device structure
* @intr_enable: if interrupt should be enabled after reset.
*
* Return: 0 on success and < 0 in case of error
*/
static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 aliveness_req;
/*
* read input doorbell to ensure consistency between Bridge and SeC
* return value might be garbage return
*/
(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
aliveness_req = mei_txe_aliveness_req_get(dev);
hw->aliveness = mei_txe_aliveness_get(dev);
/* Disable interrupts in this stage we will poll */
mei_txe_intr_disable(dev);
/*
* If Aliveness Request and Aliveness Response are not equal then
* wait for them to be equal
* Since we might have interrupts disabled - poll for it
*/
if (aliveness_req != hw->aliveness)
if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
return -EIO;
}
/*
* If Aliveness Request and Aliveness Response are set then clear them
*/
if (aliveness_req) {
mei_txe_aliveness_set(dev, 0);
if (mei_txe_aliveness_poll(dev, 0) < 0) {
dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
return -EIO;
}
}
/*
* Set readiness RDY_CLR bit
*/
mei_txe_readiness_clear(dev);
return 0;
}
/**
* mei_txe_hw_start - start the hardware after reset
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_txe_hw_start(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
int ret;
u32 hisr;
/* bring back interrupts */
mei_txe_intr_enable(dev);
ret = mei_txe_readiness_wait(dev);
if (ret < 0) {
dev_err(dev->dev, "waiting for readiness failed\n");
return ret;
}
/*
* If HISR.INT2_STS interrupt status bit is set then clear it.
*/
hisr = mei_txe_br_reg_read(hw, HISR_REG);
if (hisr & HISR_INT_2_STS)
mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
/* Clear the interrupt cause of OutputDoorbell */
clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
ret = mei_txe_aliveness_set_sync(dev, 1);
if (ret < 0) {
dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
return ret;
}
/* enable input ready interrupts:
* SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
*/
mei_txe_input_ready_interrupt_enable(dev);
/* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
mei_txe_output_ready_set(hw);
/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
*/
mei_txe_readiness_set_host_rdy(dev);
return 0;
}
/**
* mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
* single bit mask and acknowledge the interrupts
*
* @dev: the device structure
* @do_ack: acknowledge interrupts
*
* Return: true if found interrupts to process.
*/
static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 hisr;
u32 hhisr;
u32 ipc_isr;
u32 aliveness;
bool generated;
/* read interrupt registers */
hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
generated = (hhisr & IPC_HHIER_MSK);
if (!generated)
goto out;
hisr = mei_txe_br_reg_read(hw, HISR_REG);
aliveness = mei_txe_aliveness_get(dev);
if (hhisr & IPC_HHIER_SEC && aliveness)
ipc_isr = mei_txe_sec_reg_read_silent(hw,
SEC_IPC_HOST_INT_STATUS_REG);
else
ipc_isr = 0;
generated = generated ||
(hisr & HISR_INT_STS_MSK) ||
(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
if (generated && do_ack) {
/* Save the interrupt causes */
hw->intr_cause |= hisr & HISR_INT_STS_MSK;
if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
hw->intr_cause |= TXE_INTR_IN_READY;
mei_txe_intr_disable(dev);
/* Clear the interrupts in hierarchy:
* IPC and Bridge, than the High Level */
mei_txe_sec_reg_write_silent(hw,
SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
mei_txe_br_reg_write(hw, HISR_REG, hisr);
mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
}
out:
return generated;
}
/**
* mei_txe_irq_quick_handler - The ISR of the MEI device
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: IRQ_WAKE_THREAD if interrupt is designed for the device
* IRQ_NONE otherwise
*/
irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
{
struct mei_device *dev = dev_id;
if (mei_txe_check_and_ack_intrs(dev, true))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
/**
* mei_txe_irq_thread_handler - txe interrupt thread
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: IRQ_HANDLED
*/
irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
struct mei_txe_hw *hw = to_txe_hw(dev);
struct mei_cl_cb complete_list;
s32 slots;
int rets = 0;
dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
mei_txe_br_reg_read(hw, HHISR_REG),
mei_txe_br_reg_read(hw, HISR_REG),
mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
/* initialize our complete list */
mutex_lock(&dev->device_lock);
mei_io_list_init(&complete_list);
if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
mei_txe_check_and_ack_intrs(dev, true);
/* show irq events */
mei_txe_pending_interrupts(dev);
hw->aliveness = mei_txe_aliveness_get(dev);
hw->readiness = mei_txe_readiness_get(dev);
/* Readiness:
* Detection of TXE driver going through reset
* or TXE driver resetting the HECI interface.
*/
if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
/* Check if SeC is going through reset */
if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
dev_dbg(dev->dev, "we need to start the dev.\n");
dev->recvd_hw_ready = true;
} else {
dev->recvd_hw_ready = false;
if (dev->dev_state != MEI_DEV_RESETTING) {
dev_warn(dev->dev, "FW not ready: resetting.\n");
schedule_work(&dev->reset_work);
goto end;
}
}
wake_up(&dev->wait_hw_ready);
}
/************************************************************/
/* Check interrupt cause:
* Aliveness: Detection of SeC acknowledge of host request that
* it remain alive or host cancellation of that request.
*/
if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
/* Clear the interrupt cause */
dev_dbg(dev->dev,
"Aliveness Interrupt: Status: %d\n", hw->aliveness);
dev->pg_event = MEI_PG_EVENT_RECEIVED;
if (waitqueue_active(&hw->wait_aliveness_resp))
wake_up(&hw->wait_aliveness_resp);
}
/* Output Doorbell:
* Detection of SeC having sent output to host
*/
slots = mei_count_full_read_slots(dev);
if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
/* Read from TXE */
rets = mei_irq_read_handler(dev, &complete_list, &slots);
if (rets && dev->dev_state != MEI_DEV_RESETTING) {
dev_err(dev->dev,
"mei_irq_read_handler ret = %d.\n", rets);
schedule_work(&dev->reset_work);
goto end;
}
}
/* Input Ready: Detection if host can write to SeC */
if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
dev->hbuf_is_ready = true;
hw->slots = dev->hbuf_depth;
}
if (hw->aliveness && dev->hbuf_is_ready) {
/* get the real register value */
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
rets = mei_irq_write_handler(dev, &complete_list);
if (rets && rets != -EMSGSIZE)
dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
rets);
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
}
mei_irq_compl_handler(dev, &complete_list);
end:
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
mutex_unlock(&dev->device_lock);
mei_enable_interrupts(dev);
return IRQ_HANDLED;
}
static const struct mei_hw_ops mei_txe_hw_ops = {
.host_is_ready = mei_txe_host_is_ready,
.fw_status = mei_txe_fw_status,
.pg_state = mei_txe_pg_state,
.hw_is_ready = mei_txe_hw_is_ready,
.hw_reset = mei_txe_hw_reset,
.hw_config = mei_txe_hw_config,
.hw_start = mei_txe_hw_start,
.pg_in_transition = mei_txe_pg_in_transition,
.pg_is_enabled = mei_txe_pg_is_enabled,
.intr_clear = mei_txe_intr_clear,
.intr_enable = mei_txe_intr_enable,
.intr_disable = mei_txe_intr_disable,
.hbuf_free_slots = mei_txe_hbuf_empty_slots,
.hbuf_is_ready = mei_txe_is_input_ready,
.hbuf_max_len = mei_txe_hbuf_max_len,
.write = mei_txe_write,
.rdbuf_full_slots = mei_txe_count_full_read_slots,
.read_hdr = mei_txe_read_hdr,
.read = mei_txe_read,
};
/**
* mei_txe_dev_init - allocates and initializes txe hardware specific structure
*
* @pdev: pci device
*
* Return: struct mei_device * on success or NULL
*/
struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
{
struct mei_device *dev;
struct mei_txe_hw *hw;
dev = kzalloc(sizeof(struct mei_device) +
sizeof(struct mei_txe_hw), GFP_KERNEL);
if (!dev)
return NULL;
mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
hw = to_txe_hw(dev);
init_waitqueue_head(&hw->wait_aliveness_resp);
return dev;
}
/**
* mei_txe_setup_satt2 - SATT2 configuration for DMA support.
*
* @dev: the device structure
* @addr: physical address start of the range
* @range: physical range size
*
* Return: 0 on success an error code otherwise
*/
int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 lo32 = lower_32_bits(addr);
u32 hi32 = upper_32_bits(addr);
u32 ctrl;
/* SATT is limited to 36 Bits */
if (hi32 & ~0xF)
return -EINVAL;
/* SATT has to be 16Byte aligned */
if (lo32 & 0xF)
return -EINVAL;
/* SATT range has to be 4Bytes aligned */
if (range & 0x4)
return -EINVAL;
/* SATT is limited to 32 MB range*/
if (range > SATT_RANGE_MAX)
return -EINVAL;
ctrl = SATT2_CTRL_VALID_MSK;
ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
range, lo32, ctrl);
return 0;
}