| /* |
| * Disk Array driver for HP Smart Array SAS controllers |
| * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Questions/Comments/Bugfixes to iss_storagedev@hp.com |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/fs.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/blktrace_api.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/completion.h> |
| #include <linux/moduleparam.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_tcq.h> |
| #include <linux/cciss_ioctl.h> |
| #include <linux/string.h> |
| #include <linux/bitmap.h> |
| #include <linux/atomic.h> |
| #include <linux/kthread.h> |
| #include <linux/jiffies.h> |
| #include <asm/div64.h> |
| #include "hpsa_cmd.h" |
| #include "hpsa.h" |
| |
| /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ |
| #define HPSA_DRIVER_VERSION "3.4.0-1" |
| #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" |
| #define HPSA "hpsa" |
| |
| /* How long to wait (in milliseconds) for board to go into simple mode */ |
| #define MAX_CONFIG_WAIT 30000 |
| #define MAX_IOCTL_CONFIG_WAIT 1000 |
| |
| /*define how many times we will try a command because of bus resets */ |
| #define MAX_CMD_RETRIES 3 |
| |
| /* Embedded module documentation macros - see modules.h */ |
| MODULE_AUTHOR("Hewlett-Packard Company"); |
| MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ |
| HPSA_DRIVER_VERSION); |
| MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
| MODULE_VERSION(HPSA_DRIVER_VERSION); |
| MODULE_LICENSE("GPL"); |
| |
| static int hpsa_allow_any; |
| module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(hpsa_allow_any, |
| "Allow hpsa driver to access unknown HP Smart Array hardware"); |
| static int hpsa_simple_mode; |
| module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(hpsa_simple_mode, |
| "Use 'simple mode' rather than 'performant mode'"); |
| |
| /* define the PCI info for the cards we can control */ |
| static const struct pci_device_id hpsa_pci_device_id[] = { |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, |
| {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
| PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); |
| |
| /* board_id = Subsystem Device ID & Vendor ID |
| * product = Marketing Name for the board |
| * access = Address of the struct of function pointers |
| */ |
| static struct board_type products[] = { |
| {0x3241103C, "Smart Array P212", &SA5_access}, |
| {0x3243103C, "Smart Array P410", &SA5_access}, |
| {0x3245103C, "Smart Array P410i", &SA5_access}, |
| {0x3247103C, "Smart Array P411", &SA5_access}, |
| {0x3249103C, "Smart Array P812", &SA5_access}, |
| {0x324A103C, "Smart Array P712m", &SA5_access}, |
| {0x324B103C, "Smart Array P711m", &SA5_access}, |
| {0x3350103C, "Smart Array P222", &SA5_access}, |
| {0x3351103C, "Smart Array P420", &SA5_access}, |
| {0x3352103C, "Smart Array P421", &SA5_access}, |
| {0x3353103C, "Smart Array P822", &SA5_access}, |
| {0x3354103C, "Smart Array P420i", &SA5_access}, |
| {0x3355103C, "Smart Array P220i", &SA5_access}, |
| {0x3356103C, "Smart Array P721m", &SA5_access}, |
| {0x1921103C, "Smart Array P830i", &SA5_access}, |
| {0x1922103C, "Smart Array P430", &SA5_access}, |
| {0x1923103C, "Smart Array P431", &SA5_access}, |
| {0x1924103C, "Smart Array P830", &SA5_access}, |
| {0x1926103C, "Smart Array P731m", &SA5_access}, |
| {0x1928103C, "Smart Array P230i", &SA5_access}, |
| {0x1929103C, "Smart Array P530", &SA5_access}, |
| {0x21BD103C, "Smart Array", &SA5_access}, |
| {0x21BE103C, "Smart Array", &SA5_access}, |
| {0x21BF103C, "Smart Array", &SA5_access}, |
| {0x21C0103C, "Smart Array", &SA5_access}, |
| {0x21C1103C, "Smart Array", &SA5_access}, |
| {0x21C2103C, "Smart Array", &SA5_access}, |
| {0x21C3103C, "Smart Array", &SA5_access}, |
| {0x21C4103C, "Smart Array", &SA5_access}, |
| {0x21C5103C, "Smart Array", &SA5_access}, |
| {0x21C7103C, "Smart Array", &SA5_access}, |
| {0x21C8103C, "Smart Array", &SA5_access}, |
| {0x21C9103C, "Smart Array", &SA5_access}, |
| {0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
| }; |
| |
| static int number_of_controllers; |
| |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); |
| static void start_io(struct ctlr_info *h); |
| |
| #ifdef CONFIG_COMPAT |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); |
| #endif |
| |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c); |
| static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); |
| static struct CommandList *cmd_alloc(struct ctlr_info *h); |
| static struct CommandList *cmd_special_alloc(struct ctlr_info *h); |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
| void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, |
| int cmd_type); |
| |
| static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); |
| static void hpsa_scan_start(struct Scsi_Host *); |
| static int hpsa_scan_finished(struct Scsi_Host *sh, |
| unsigned long elapsed_time); |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, |
| int qdepth, int reason); |
| |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); |
| static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); |
| static int hpsa_slave_alloc(struct scsi_device *sdev); |
| static void hpsa_slave_destroy(struct scsi_device *sdev); |
| |
| static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); |
| static int check_for_unit_attention(struct ctlr_info *h, |
| struct CommandList *c); |
| static void check_ioctl_unit_attention(struct ctlr_info *h, |
| struct CommandList *c); |
| /* performant mode helper functions */ |
| static void calc_bucket_map(int *bucket, int num_buckets, |
| int nsgs, int min_blocks, int *bucket_map); |
| static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); |
| static inline u32 next_command(struct ctlr_info *h, u8 q); |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset); |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar); |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
| int wait_for_ready); |
| static inline void finish_cmd(struct CommandList *c); |
| static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h); |
| #define BOARD_NOT_READY 0 |
| #define BOARD_READY 1 |
| static void hpsa_drain_commands(struct ctlr_info *h); |
| static void hpsa_flush_cache(struct ctlr_info *h); |
| |
| static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) |
| { |
| unsigned long *priv = shost_priv(sdev->host); |
| return (struct ctlr_info *) *priv; |
| } |
| |
| static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) |
| { |
| unsigned long *priv = shost_priv(sh); |
| return (struct ctlr_info *) *priv; |
| } |
| |
| static int check_for_unit_attention(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) |
| return 0; |
| |
| switch (c->err_info->SenseInfo[12]) { |
| case STATE_CHANGED: |
| dev_warn(&h->pdev->dev, HPSA "%d: a state change " |
| "detected, command retried\n", h->ctlr); |
| break; |
| case LUN_FAILED: |
| dev_warn(&h->pdev->dev, HPSA "%d: LUN failure " |
| "detected, action required\n", h->ctlr); |
| break; |
| case REPORT_LUNS_CHANGED: |
| dev_warn(&h->pdev->dev, HPSA "%d: report LUN data " |
| "changed, action required\n", h->ctlr); |
| /* |
| * Note: this REPORT_LUNS_CHANGED condition only occurs on the external |
| * target (array) devices. |
| */ |
| break; |
| case POWER_OR_RESET: |
| dev_warn(&h->pdev->dev, HPSA "%d: a power on " |
| "or device reset detected\n", h->ctlr); |
| break; |
| case UNIT_ATTENTION_CLEARED: |
| dev_warn(&h->pdev->dev, HPSA "%d: unit attention " |
| "cleared by another initiator\n", h->ctlr); |
| break; |
| default: |
| dev_warn(&h->pdev->dev, HPSA "%d: unknown " |
| "unit attention detected\n", h->ctlr); |
| break; |
| } |
| return 1; |
| } |
| |
| static int check_for_busy(struct ctlr_info *h, struct CommandList *c) |
| { |
| if (c->err_info->CommandStatus != CMD_TARGET_STATUS || |
| (c->err_info->ScsiStatus != SAM_STAT_BUSY && |
| c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) |
| return 0; |
| dev_warn(&h->pdev->dev, HPSA "device busy"); |
| return 1; |
| } |
| |
| static ssize_t host_store_rescan(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| h = shost_to_hba(shost); |
| hpsa_scan_start(h->scsi_host); |
| return count; |
| } |
| |
| static ssize_t host_show_firmware_revision(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| unsigned char *fwrev; |
| |
| h = shost_to_hba(shost); |
| if (!h->hba_inquiry_data) |
| return 0; |
| fwrev = &h->hba_inquiry_data[32]; |
| return snprintf(buf, 20, "%c%c%c%c\n", |
| fwrev[0], fwrev[1], fwrev[2], fwrev[3]); |
| } |
| |
| static ssize_t host_show_commands_outstanding(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ctlr_info *h = shost_to_hba(shost); |
| |
| return snprintf(buf, 20, "%d\n", h->commands_outstanding); |
| } |
| |
| static ssize_t host_show_transport_mode(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| return snprintf(buf, 20, "%s\n", |
| h->transMethod & CFGTBL_Trans_Performant ? |
| "performant" : "simple"); |
| } |
| |
| /* List of controllers which cannot be hard reset on kexec with reset_devices */ |
| static u32 unresettable_controller[] = { |
| 0x324a103C, /* Smart Array P712m */ |
| 0x324b103C, /* SmartArray P711m */ |
| 0x3223103C, /* Smart Array P800 */ |
| 0x3234103C, /* Smart Array P400 */ |
| 0x3235103C, /* Smart Array P400i */ |
| 0x3211103C, /* Smart Array E200i */ |
| 0x3212103C, /* Smart Array E200 */ |
| 0x3213103C, /* Smart Array E200i */ |
| 0x3214103C, /* Smart Array E200i */ |
| 0x3215103C, /* Smart Array E200i */ |
| 0x3237103C, /* Smart Array E500 */ |
| 0x323D103C, /* Smart Array P700m */ |
| 0x40800E11, /* Smart Array 5i */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| }; |
| |
| /* List of controllers which cannot even be soft reset */ |
| static u32 soft_unresettable_controller[] = { |
| 0x40800E11, /* Smart Array 5i */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| /* Exclude 640x boards. These are two pci devices in one slot |
| * which share a battery backed cache module. One controls the |
| * cache, the other accesses the cache through the one that controls |
| * it. If we reset the one controlling the cache, the other will |
| * likely not be happy. Just forbid resetting this conjoined mess. |
| * The 640x isn't really supported by hpsa anyway. |
| */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| }; |
| |
| static int ctlr_is_hard_resettable(u32 board_id) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) |
| if (unresettable_controller[i] == board_id) |
| return 0; |
| return 1; |
| } |
| |
| static int ctlr_is_soft_resettable(u32 board_id) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) |
| if (soft_unresettable_controller[i] == board_id) |
| return 0; |
| return 1; |
| } |
| |
| static int ctlr_is_resettable(u32 board_id) |
| { |
| return ctlr_is_hard_resettable(board_id) || |
| ctlr_is_soft_resettable(board_id); |
| } |
| |
| static ssize_t host_show_resettable(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct Scsi_Host *shost = class_to_shost(dev); |
| |
| h = shost_to_hba(shost); |
| return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
| } |
| |
| static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) |
| { |
| return (scsi3addr[3] & 0xC0) == 0x40; |
| } |
| |
| static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", |
| "1(ADM)", "UNKNOWN" |
| }; |
| #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) |
| |
| static ssize_t raid_level_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| ssize_t l = 0; |
| unsigned char rlevel; |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| |
| /* Is this even a logical drive? */ |
| if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| l = snprintf(buf, PAGE_SIZE, "N/A\n"); |
| return l; |
| } |
| |
| rlevel = hdev->raid_level; |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (rlevel > RAID_UNKNOWN) |
| rlevel = RAID_UNKNOWN; |
| l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); |
| return l; |
| } |
| |
| static ssize_t lunid_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| unsigned char lunid[8]; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| lunid[0], lunid[1], lunid[2], lunid[3], |
| lunid[4], lunid[5], lunid[6], lunid[7]); |
| } |
| |
| static ssize_t unique_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| unsigned char sn[16]; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| memcpy(sn, hdev->device_id, sizeof(sn)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 16 * 2 + 2, |
| "%02X%02X%02X%02X%02X%02X%02X%02X" |
| "%02X%02X%02X%02X%02X%02X%02X%02X\n", |
| sn[0], sn[1], sn[2], sn[3], |
| sn[4], sn[5], sn[6], sn[7], |
| sn[8], sn[9], sn[10], sn[11], |
| sn[12], sn[13], sn[14], sn[15]); |
| } |
| |
| static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ctlr_info *h; |
| struct scsi_device *sdev; |
| struct hpsa_scsi_dev_t *hdev; |
| unsigned long flags; |
| int offload_enabled; |
| |
| sdev = to_scsi_device(dev); |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->lock, flags); |
| hdev = sdev->hostdata; |
| if (!hdev) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENODEV; |
| } |
| offload_enabled = hdev->offload_enabled; |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "%d\n", offload_enabled); |
| } |
| |
| static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); |
| static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); |
| static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); |
| static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
| static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, |
| host_show_hp_ssd_smart_path_enabled, NULL); |
| static DEVICE_ATTR(firmware_revision, S_IRUGO, |
| host_show_firmware_revision, NULL); |
| static DEVICE_ATTR(commands_outstanding, S_IRUGO, |
| host_show_commands_outstanding, NULL); |
| static DEVICE_ATTR(transport_mode, S_IRUGO, |
| host_show_transport_mode, NULL); |
| static DEVICE_ATTR(resettable, S_IRUGO, |
| host_show_resettable, NULL); |
| |
| static struct device_attribute *hpsa_sdev_attrs[] = { |
| &dev_attr_raid_level, |
| &dev_attr_lunid, |
| &dev_attr_unique_id, |
| &dev_attr_hp_ssd_smart_path_enabled, |
| NULL, |
| }; |
| |
| static struct device_attribute *hpsa_shost_attrs[] = { |
| &dev_attr_rescan, |
| &dev_attr_firmware_revision, |
| &dev_attr_commands_outstanding, |
| &dev_attr_transport_mode, |
| &dev_attr_resettable, |
| NULL, |
| }; |
| |
| static struct scsi_host_template hpsa_driver_template = { |
| .module = THIS_MODULE, |
| .name = HPSA, |
| .proc_name = HPSA, |
| .queuecommand = hpsa_scsi_queue_command, |
| .scan_start = hpsa_scan_start, |
| .scan_finished = hpsa_scan_finished, |
| .change_queue_depth = hpsa_change_queue_depth, |
| .this_id = -1, |
| .use_clustering = ENABLE_CLUSTERING, |
| .eh_abort_handler = hpsa_eh_abort_handler, |
| .eh_device_reset_handler = hpsa_eh_device_reset_handler, |
| .ioctl = hpsa_ioctl, |
| .slave_alloc = hpsa_slave_alloc, |
| .slave_destroy = hpsa_slave_destroy, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = hpsa_compat_ioctl, |
| #endif |
| .sdev_attrs = hpsa_sdev_attrs, |
| .shost_attrs = hpsa_shost_attrs, |
| .max_sectors = 8192, |
| .no_write_same = 1, |
| }; |
| |
| |
| /* Enqueuing and dequeuing functions for cmdlists. */ |
| static inline void addQ(struct list_head *list, struct CommandList *c) |
| { |
| list_add_tail(&c->list, list); |
| } |
| |
| static inline u32 next_command(struct ctlr_info *h, u8 q) |
| { |
| u32 a; |
| struct reply_pool *rq = &h->reply_queue[q]; |
| unsigned long flags; |
| |
| if (h->transMethod & CFGTBL_Trans_io_accel1) |
| return h->access.command_completed(h, q); |
| |
| if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
| return h->access.command_completed(h, q); |
| |
| if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { |
| a = rq->head[rq->current_entry]; |
| rq->current_entry++; |
| spin_lock_irqsave(&h->lock, flags); |
| h->commands_outstanding--; |
| spin_unlock_irqrestore(&h->lock, flags); |
| } else { |
| a = FIFO_EMPTY; |
| } |
| /* Check for wraparound */ |
| if (rq->current_entry == h->max_commands) { |
| rq->current_entry = 0; |
| rq->wraparound ^= 1; |
| } |
| return a; |
| } |
| |
| /* set_performant_mode: Modify the tag for cciss performant |
| * set bit 0 for pull model, bits 3-1 for block fetch |
| * register number |
| */ |
| static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) |
| { |
| if (likely(h->transMethod & CFGTBL_Trans_Performant)) { |
| c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
| if (likely(h->msix_vector > 0)) |
| c->Header.ReplyQueue = |
| raw_smp_processor_id() % h->nreply_queues; |
| } |
| } |
| |
| static int is_firmware_flash_cmd(u8 *cdb) |
| { |
| return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; |
| } |
| |
| /* |
| * During firmware flash, the heartbeat register may not update as frequently |
| * as it should. So we dial down lockup detection during firmware flash. and |
| * dial it back up when firmware flash completes. |
| */ |
| #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) |
| #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) |
| static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (!is_firmware_flash_cmd(c->Request.CDB)) |
| return; |
| atomic_inc(&h->firmware_flash_in_progress); |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; |
| } |
| |
| static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (is_firmware_flash_cmd(c->Request.CDB) && |
| atomic_dec_and_test(&h->firmware_flash_in_progress)) |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
| } |
| |
| static void enqueue_cmd_and_start_io(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| unsigned long flags; |
| |
| set_performant_mode(h, c); |
| dial_down_lockup_detection_during_fw_flash(h, c); |
| spin_lock_irqsave(&h->lock, flags); |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| spin_unlock_irqrestore(&h->lock, flags); |
| start_io(h); |
| } |
| |
| static inline void removeQ(struct CommandList *c) |
| { |
| if (WARN_ON(list_empty(&c->list))) |
| return; |
| list_del_init(&c->list); |
| } |
| |
| static inline int is_hba_lunid(unsigned char scsi3addr[]) |
| { |
| return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; |
| } |
| |
| static inline int is_scsi_rev_5(struct ctlr_info *h) |
| { |
| if (!h->hba_inquiry_data) |
| return 0; |
| if ((h->hba_inquiry_data[2] & 0x07) == 5) |
| return 1; |
| return 0; |
| } |
| |
| static int hpsa_find_target_lun(struct ctlr_info *h, |
| unsigned char scsi3addr[], int bus, int *target, int *lun) |
| { |
| /* finds an unused bus, target, lun for a new physical device |
| * assumes h->devlock is held |
| */ |
| int i, found = 0; |
| DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); |
| |
| bitmap_zero(lun_taken, HPSA_MAX_DEVICES); |
| |
| for (i = 0; i < h->ndevices; i++) { |
| if (h->dev[i]->bus == bus && h->dev[i]->target != -1) |
| __set_bit(h->dev[i]->target, lun_taken); |
| } |
| |
| i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); |
| if (i < HPSA_MAX_DEVICES) { |
| /* *bus = 1; */ |
| *target = i; |
| *lun = 0; |
| found = 1; |
| } |
| return !found; |
| } |
| |
| /* Add an entry into h->dev[] array. */ |
| static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, |
| struct hpsa_scsi_dev_t *device, |
| struct hpsa_scsi_dev_t *added[], int *nadded) |
| { |
| /* assumes h->devlock is held */ |
| int n = h->ndevices; |
| int i; |
| unsigned char addr1[8], addr2[8]; |
| struct hpsa_scsi_dev_t *sd; |
| |
| if (n >= HPSA_MAX_DEVICES) { |
| dev_err(&h->pdev->dev, "too many devices, some will be " |
| "inaccessible.\n"); |
| return -1; |
| } |
| |
| /* physical devices do not have lun or target assigned until now. */ |
| if (device->lun != -1) |
| /* Logical device, lun is already assigned. */ |
| goto lun_assigned; |
| |
| /* If this device a non-zero lun of a multi-lun device |
| * byte 4 of the 8-byte LUN addr will contain the logical |
| * unit no, zero otherise. |
| */ |
| if (device->scsi3addr[4] == 0) { |
| /* This is not a non-zero lun of a multi-lun device */ |
| if (hpsa_find_target_lun(h, device->scsi3addr, |
| device->bus, &device->target, &device->lun) != 0) |
| return -1; |
| goto lun_assigned; |
| } |
| |
| /* This is a non-zero lun of a multi-lun device. |
| * Search through our list and find the device which |
| * has the same 8 byte LUN address, excepting byte 4. |
| * Assign the same bus and target for this new LUN. |
| * Use the logical unit number from the firmware. |
| */ |
| memcpy(addr1, device->scsi3addr, 8); |
| addr1[4] = 0; |
| for (i = 0; i < n; i++) { |
| sd = h->dev[i]; |
| memcpy(addr2, sd->scsi3addr, 8); |
| addr2[4] = 0; |
| /* differ only in byte 4? */ |
| if (memcmp(addr1, addr2, 8) == 0) { |
| device->bus = sd->bus; |
| device->target = sd->target; |
| device->lun = device->scsi3addr[4]; |
| break; |
| } |
| } |
| if (device->lun == -1) { |
| dev_warn(&h->pdev->dev, "physical device with no LUN=0," |
| " suspect firmware bug or unsupported hardware " |
| "configuration.\n"); |
| return -1; |
| } |
| |
| lun_assigned: |
| |
| h->dev[n] = device; |
| h->ndevices++; |
| added[*nadded] = device; |
| (*nadded)++; |
| |
| /* initially, (before registering with scsi layer) we don't |
| * know our hostno and we don't want to print anything first |
| * time anyway (the scsi layer's inquiries will show that info) |
| */ |
| /* if (hostno != -1) */ |
| dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", |
| scsi_device_type(device->devtype), hostno, |
| device->bus, device->target, device->lun); |
| return 0; |
| } |
| |
| /* Update an entry in h->dev[] array. */ |
| static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, |
| int entry, struct hpsa_scsi_dev_t *new_entry) |
| { |
| /* assumes h->devlock is held */ |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| |
| /* Raid level changed. */ |
| h->dev[entry]->raid_level = new_entry->raid_level; |
| |
| /* Raid offload parameters changed. */ |
| h->dev[entry]->offload_config = new_entry->offload_config; |
| h->dev[entry]->offload_enabled = new_entry->offload_enabled; |
| |
| dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", |
| scsi_device_type(new_entry->devtype), hostno, new_entry->bus, |
| new_entry->target, new_entry->lun); |
| } |
| |
| /* Replace an entry from h->dev[] array. */ |
| static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, |
| int entry, struct hpsa_scsi_dev_t *new_entry, |
| struct hpsa_scsi_dev_t *added[], int *nadded, |
| struct hpsa_scsi_dev_t *removed[], int *nremoved) |
| { |
| /* assumes h->devlock is held */ |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| removed[*nremoved] = h->dev[entry]; |
| (*nremoved)++; |
| |
| /* |
| * New physical devices won't have target/lun assigned yet |
| * so we need to preserve the values in the slot we are replacing. |
| */ |
| if (new_entry->target == -1) { |
| new_entry->target = h->dev[entry]->target; |
| new_entry->lun = h->dev[entry]->lun; |
| } |
| |
| h->dev[entry] = new_entry; |
| added[*nadded] = new_entry; |
| (*nadded)++; |
| dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", |
| scsi_device_type(new_entry->devtype), hostno, new_entry->bus, |
| new_entry->target, new_entry->lun); |
| } |
| |
| /* Remove an entry from h->dev[] array. */ |
| static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, |
| struct hpsa_scsi_dev_t *removed[], int *nremoved) |
| { |
| /* assumes h->devlock is held */ |
| int i; |
| struct hpsa_scsi_dev_t *sd; |
| |
| BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
| |
| sd = h->dev[entry]; |
| removed[*nremoved] = h->dev[entry]; |
| (*nremoved)++; |
| |
| for (i = entry; i < h->ndevices-1; i++) |
| h->dev[i] = h->dev[i+1]; |
| h->ndevices--; |
| dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", |
| scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, |
| sd->lun); |
| } |
| |
| #define SCSI3ADDR_EQ(a, b) ( \ |
| (a)[7] == (b)[7] && \ |
| (a)[6] == (b)[6] && \ |
| (a)[5] == (b)[5] && \ |
| (a)[4] == (b)[4] && \ |
| (a)[3] == (b)[3] && \ |
| (a)[2] == (b)[2] && \ |
| (a)[1] == (b)[1] && \ |
| (a)[0] == (b)[0]) |
| |
| static void fixup_botched_add(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *added) |
| { |
| /* called when scsi_add_device fails in order to re-adjust |
| * h->dev[] to match the mid layer's view. |
| */ |
| unsigned long flags; |
| int i, j; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| for (i = 0; i < h->ndevices; i++) { |
| if (h->dev[i] == added) { |
| for (j = i; j < h->ndevices-1; j++) |
| h->dev[j] = h->dev[j+1]; |
| h->ndevices--; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| kfree(added); |
| } |
| |
| static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, |
| struct hpsa_scsi_dev_t *dev2) |
| { |
| /* we compare everything except lun and target as these |
| * are not yet assigned. Compare parts likely |
| * to differ first |
| */ |
| if (memcmp(dev1->scsi3addr, dev2->scsi3addr, |
| sizeof(dev1->scsi3addr)) != 0) |
| return 0; |
| if (memcmp(dev1->device_id, dev2->device_id, |
| sizeof(dev1->device_id)) != 0) |
| return 0; |
| if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) |
| return 0; |
| if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) |
| return 0; |
| if (dev1->devtype != dev2->devtype) |
| return 0; |
| if (dev1->bus != dev2->bus) |
| return 0; |
| return 1; |
| } |
| |
| static inline int device_updated(struct hpsa_scsi_dev_t *dev1, |
| struct hpsa_scsi_dev_t *dev2) |
| { |
| /* Device attributes that can change, but don't mean |
| * that the device is a different device, nor that the OS |
| * needs to be told anything about the change. |
| */ |
| if (dev1->raid_level != dev2->raid_level) |
| return 1; |
| if (dev1->offload_config != dev2->offload_config) |
| return 1; |
| if (dev1->offload_enabled != dev2->offload_enabled) |
| return 1; |
| return 0; |
| } |
| |
| /* Find needle in haystack. If exact match found, return DEVICE_SAME, |
| * and return needle location in *index. If scsi3addr matches, but not |
| * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle |
| * location in *index. |
| * In the case of a minor device attribute change, such as RAID level, just |
| * return DEVICE_UPDATED, along with the updated device's location in index. |
| * If needle not found, return DEVICE_NOT_FOUND. |
| */ |
| static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, |
| struct hpsa_scsi_dev_t *haystack[], int haystack_size, |
| int *index) |
| { |
| int i; |
| #define DEVICE_NOT_FOUND 0 |
| #define DEVICE_CHANGED 1 |
| #define DEVICE_SAME 2 |
| #define DEVICE_UPDATED 3 |
| for (i = 0; i < haystack_size; i++) { |
| if (haystack[i] == NULL) /* previously removed. */ |
| continue; |
| if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { |
| *index = i; |
| if (device_is_the_same(needle, haystack[i])) { |
| if (device_updated(needle, haystack[i])) |
| return DEVICE_UPDATED; |
| return DEVICE_SAME; |
| } else { |
| return DEVICE_CHANGED; |
| } |
| } |
| } |
| *index = -1; |
| return DEVICE_NOT_FOUND; |
| } |
| |
| static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, |
| struct hpsa_scsi_dev_t *sd[], int nsds) |
| { |
| /* sd contains scsi3 addresses and devtypes, and inquiry |
| * data. This function takes what's in sd to be the current |
| * reality and updates h->dev[] to reflect that reality. |
| */ |
| int i, entry, device_change, changes = 0; |
| struct hpsa_scsi_dev_t *csd; |
| unsigned long flags; |
| struct hpsa_scsi_dev_t **added, **removed; |
| int nadded, nremoved; |
| struct Scsi_Host *sh = NULL; |
| |
| added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| |
| if (!added || !removed) { |
| dev_warn(&h->pdev->dev, "out of memory in " |
| "adjust_hpsa_scsi_table\n"); |
| goto free_and_out; |
| } |
| |
| spin_lock_irqsave(&h->devlock, flags); |
| |
| /* find any devices in h->dev[] that are not in |
| * sd[] and remove them from h->dev[], and for any |
| * devices which have changed, remove the old device |
| * info and add the new device info. |
| * If minor device attributes change, just update |
| * the existing device structure. |
| */ |
| i = 0; |
| nremoved = 0; |
| nadded = 0; |
| while (i < h->ndevices) { |
| csd = h->dev[i]; |
| device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); |
| if (device_change == DEVICE_NOT_FOUND) { |
| changes++; |
| hpsa_scsi_remove_entry(h, hostno, i, |
| removed, &nremoved); |
| continue; /* remove ^^^, hence i not incremented */ |
| } else if (device_change == DEVICE_CHANGED) { |
| changes++; |
| hpsa_scsi_replace_entry(h, hostno, i, sd[entry], |
| added, &nadded, removed, &nremoved); |
| /* Set it to NULL to prevent it from being freed |
| * at the bottom of hpsa_update_scsi_devices() |
| */ |
| sd[entry] = NULL; |
| } else if (device_change == DEVICE_UPDATED) { |
| hpsa_scsi_update_entry(h, hostno, i, sd[entry]); |
| } |
| i++; |
| } |
| |
| /* Now, make sure every device listed in sd[] is also |
| * listed in h->dev[], adding them if they aren't found |
| */ |
| |
| for (i = 0; i < nsds; i++) { |
| if (!sd[i]) /* if already added above. */ |
| continue; |
| device_change = hpsa_scsi_find_entry(sd[i], h->dev, |
| h->ndevices, &entry); |
| if (device_change == DEVICE_NOT_FOUND) { |
| changes++; |
| if (hpsa_scsi_add_entry(h, hostno, sd[i], |
| added, &nadded) != 0) |
| break; |
| sd[i] = NULL; /* prevent from being freed later. */ |
| } else if (device_change == DEVICE_CHANGED) { |
| /* should never happen... */ |
| changes++; |
| dev_warn(&h->pdev->dev, |
| "device unexpectedly changed.\n"); |
| /* but if it does happen, we just ignore that device */ |
| } |
| } |
| spin_unlock_irqrestore(&h->devlock, flags); |
| |
| /* Don't notify scsi mid layer of any changes the first time through |
| * (or if there are no changes) scsi_scan_host will do it later the |
| * first time through. |
| */ |
| if (hostno == -1 || !changes) |
| goto free_and_out; |
| |
| sh = h->scsi_host; |
| /* Notify scsi mid layer of any removed devices */ |
| for (i = 0; i < nremoved; i++) { |
| struct scsi_device *sdev = |
| scsi_device_lookup(sh, removed[i]->bus, |
| removed[i]->target, removed[i]->lun); |
| if (sdev != NULL) { |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| } else { |
| /* We don't expect to get here. |
| * future cmds to this device will get selection |
| * timeout as if the device was gone. |
| */ |
| dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " |
| " for removal.", hostno, removed[i]->bus, |
| removed[i]->target, removed[i]->lun); |
| } |
| kfree(removed[i]); |
| removed[i] = NULL; |
| } |
| |
| /* Notify scsi mid layer of any added devices */ |
| for (i = 0; i < nadded; i++) { |
| if (scsi_add_device(sh, added[i]->bus, |
| added[i]->target, added[i]->lun) == 0) |
| continue; |
| dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " |
| "device not added.\n", hostno, added[i]->bus, |
| added[i]->target, added[i]->lun); |
| /* now we have to remove it from h->dev, |
| * since it didn't get added to scsi mid layer |
| */ |
| fixup_botched_add(h, added[i]); |
| } |
| |
| free_and_out: |
| kfree(added); |
| kfree(removed); |
| } |
| |
| /* |
| * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * |
| * Assume's h->devlock is held. |
| */ |
| static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, |
| int bus, int target, int lun) |
| { |
| int i; |
| struct hpsa_scsi_dev_t *sd; |
| |
| for (i = 0; i < h->ndevices; i++) { |
| sd = h->dev[i]; |
| if (sd->bus == bus && sd->target == target && sd->lun == lun) |
| return sd; |
| } |
| return NULL; |
| } |
| |
| /* link sdev->hostdata to our per-device structure. */ |
| static int hpsa_slave_alloc(struct scsi_device *sdev) |
| { |
| struct hpsa_scsi_dev_t *sd; |
| unsigned long flags; |
| struct ctlr_info *h; |
| |
| h = sdev_to_hba(sdev); |
| spin_lock_irqsave(&h->devlock, flags); |
| sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), |
| sdev_id(sdev), sdev->lun); |
| if (sd != NULL) |
| sdev->hostdata = sd; |
| spin_unlock_irqrestore(&h->devlock, flags); |
| return 0; |
| } |
| |
| static void hpsa_slave_destroy(struct scsi_device *sdev) |
| { |
| /* nothing to do. */ |
| } |
| |
| static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (!h->cmd_sg_list) |
| return; |
| for (i = 0; i < h->nr_cmds; i++) { |
| kfree(h->cmd_sg_list[i]); |
| h->cmd_sg_list[i] = NULL; |
| } |
| kfree(h->cmd_sg_list); |
| h->cmd_sg_list = NULL; |
| } |
| |
| static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (h->chainsize <= 0) |
| return 0; |
| |
| h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, |
| GFP_KERNEL); |
| if (!h->cmd_sg_list) |
| return -ENOMEM; |
| for (i = 0; i < h->nr_cmds; i++) { |
| h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * |
| h->chainsize, GFP_KERNEL); |
| if (!h->cmd_sg_list[i]) |
| goto clean; |
| } |
| return 0; |
| |
| clean: |
| hpsa_free_sg_chain_blocks(h); |
| return -ENOMEM; |
| } |
| |
| static int hpsa_map_sg_chain_block(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct SGDescriptor *chain_sg, *chain_block; |
| u64 temp64; |
| |
| chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
| chain_block = h->cmd_sg_list[c->cmdindex]; |
| chain_sg->Ext = HPSA_SG_CHAIN; |
| chain_sg->Len = sizeof(*chain_sg) * |
| (c->Header.SGTotal - h->max_cmd_sg_entries); |
| temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, |
| PCI_DMA_TODEVICE); |
| if (dma_mapping_error(&h->pdev->dev, temp64)) { |
| /* prevent subsequent unmapping */ |
| chain_sg->Addr.lower = 0; |
| chain_sg->Addr.upper = 0; |
| return -1; |
| } |
| chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); |
| chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); |
| return 0; |
| } |
| |
| static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct SGDescriptor *chain_sg; |
| union u64bit temp64; |
| |
| if (c->Header.SGTotal <= h->max_cmd_sg_entries) |
| return; |
| |
| chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
| temp64.val32.lower = chain_sg->Addr.lower; |
| temp64.val32.upper = chain_sg->Addr.upper; |
| pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); |
| } |
| |
| static void complete_scsi_command(struct CommandList *cp) |
| { |
| struct scsi_cmnd *cmd; |
| struct ctlr_info *h; |
| struct ErrorInfo *ei; |
| struct hpsa_scsi_dev_t *dev; |
| |
| unsigned char sense_key; |
| unsigned char asc; /* additional sense code */ |
| unsigned char ascq; /* additional sense code qualifier */ |
| unsigned long sense_data_size; |
| |
| ei = cp->err_info; |
| cmd = (struct scsi_cmnd *) cp->scsi_cmd; |
| h = cp->h; |
| dev = cmd->device->hostdata; |
| |
| scsi_dma_unmap(cmd); /* undo the DMA mappings */ |
| if ((cp->cmd_type == CMD_SCSI) && |
| (cp->Header.SGTotal > h->max_cmd_sg_entries)) |
| hpsa_unmap_sg_chain_block(h, cp); |
| |
| cmd->result = (DID_OK << 16); /* host byte */ |
| cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
| cmd->result |= ei->ScsiStatus; |
| |
| /* copy the sense data whether we need to or not. */ |
| if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) |
| sense_data_size = SCSI_SENSE_BUFFERSIZE; |
| else |
| sense_data_size = sizeof(ei->SenseInfo); |
| if (ei->SenseLen < sense_data_size) |
| sense_data_size = ei->SenseLen; |
| |
| memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); |
| scsi_set_resid(cmd, ei->ResidualCnt); |
| |
| if (ei->CommandStatus == 0) { |
| cmd_free(h, cp); |
| cmd->scsi_done(cmd); |
| return; |
| } |
| |
| /* For I/O accelerator commands, copy over some fields to the normal |
| * CISS header used below for error handling. |
| */ |
| if (cp->cmd_type == CMD_IOACCEL1) { |
| struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; |
| cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd); |
| cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK; |
| cp->Header.Tag.lower = c->Tag.lower; |
| cp->Header.Tag.upper = c->Tag.upper; |
| memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); |
| memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); |
| |
| /* Any RAID offload error results in retry which will use |
| * the normal I/O path so the controller can handle whatever's |
| * wrong. |
| */ |
| if (is_logical_dev_addr_mode(dev->scsi3addr)) { |
| if (ei->CommandStatus == CMD_IOACCEL_DISABLED) |
| dev->offload_enabled = 0; |
| cmd->result = DID_SOFT_ERROR << 16; |
| cmd_free(h, cp); |
| cmd->scsi_done(cmd); |
| return; |
| } |
| } |
| |
| /* an error has occurred */ |
| switch (ei->CommandStatus) { |
| |
| case CMD_TARGET_STATUS: |
| if (ei->ScsiStatus) { |
| /* Get sense key */ |
| sense_key = 0xf & ei->SenseInfo[2]; |
| /* Get additional sense code */ |
| asc = ei->SenseInfo[12]; |
| /* Get addition sense code qualifier */ |
| ascq = ei->SenseInfo[13]; |
| } |
| |
| if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { |
| if (check_for_unit_attention(h, cp)) |
| break; |
| if (sense_key == ILLEGAL_REQUEST) { |
| /* |
| * SCSI REPORT_LUNS is commonly unsupported on |
| * Smart Array. Suppress noisy complaint. |
| */ |
| if (cp->Request.CDB[0] == REPORT_LUNS) |
| break; |
| |
| /* If ASC/ASCQ indicate Logical Unit |
| * Not Supported condition, |
| */ |
| if ((asc == 0x25) && (ascq == 0x0)) { |
| dev_warn(&h->pdev->dev, "cp %p " |
| "has check condition\n", cp); |
| break; |
| } |
| } |
| |
| if (sense_key == NOT_READY) { |
| /* If Sense is Not Ready, Logical Unit |
| * Not ready, Manual Intervention |
| * required |
| */ |
| if ((asc == 0x04) && (ascq == 0x03)) { |
| dev_warn(&h->pdev->dev, "cp %p " |
| "has check condition: unit " |
| "not ready, manual " |
| "intervention required\n", cp); |
| break; |
| } |
| } |
| if (sense_key == ABORTED_COMMAND) { |
| /* Aborted command is retryable */ |
| dev_warn(&h->pdev->dev, "cp %p " |
| "has check condition: aborted command: " |
| "ASC: 0x%x, ASCQ: 0x%x\n", |
| cp, asc, ascq); |
| cmd->result |= DID_SOFT_ERROR << 16; |
| break; |
| } |
| /* Must be some other type of check condition */ |
| dev_dbg(&h->pdev->dev, "cp %p has check condition: " |
| "unknown type: " |
| "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
| "Returning result: 0x%x, " |
| "cmd=[%02x %02x %02x %02x %02x " |
| "%02x %02x %02x %02x %02x %02x " |
| "%02x %02x %02x %02x %02x]\n", |
| cp, sense_key, asc, ascq, |
| cmd->result, |
| cmd->cmnd[0], cmd->cmnd[1], |
| cmd->cmnd[2], cmd->cmnd[3], |
| cmd->cmnd[4], cmd->cmnd[5], |
| cmd->cmnd[6], cmd->cmnd[7], |
| cmd->cmnd[8], cmd->cmnd[9], |
| cmd->cmnd[10], cmd->cmnd[11], |
| cmd->cmnd[12], cmd->cmnd[13], |
| cmd->cmnd[14], cmd->cmnd[15]); |
| break; |
| } |
| |
| |
| /* Problem was not a check condition |
| * Pass it up to the upper layers... |
| */ |
| if (ei->ScsiStatus) { |
| dev_warn(&h->pdev->dev, "cp %p has status 0x%x " |
| "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
| "Returning result: 0x%x\n", |
| cp, ei->ScsiStatus, |
| sense_key, asc, ascq, |
| cmd->result); |
| } else { /* scsi status is zero??? How??? */ |
| dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " |
| "Returning no connection.\n", cp), |
| |
| /* Ordinarily, this case should never happen, |
| * but there is a bug in some released firmware |
| * revisions that allows it to happen if, for |
| * example, a 4100 backplane loses power and |
| * the tape drive is in it. We assume that |
| * it's a fatal error of some kind because we |
| * can't show that it wasn't. We will make it |
| * look like selection timeout since that is |
| * the most common reason for this to occur, |
| * and it's severe enough. |
| */ |
| |
| cmd->result = DID_NO_CONNECT << 16; |
| } |
| break; |
| |
| case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| break; |
| case CMD_DATA_OVERRUN: |
| dev_warn(&h->pdev->dev, "cp %p has" |
| " completed with data overrun " |
| "reported\n", cp); |
| break; |
| case CMD_INVALID: { |
| /* print_bytes(cp, sizeof(*cp), 1, 0); |
| print_cmd(cp); */ |
| /* We get CMD_INVALID if you address a non-existent device |
| * instead of a selection timeout (no response). You will |
| * see this if you yank out a drive, then try to access it. |
| * This is kind of a shame because it means that any other |
| * CMD_INVALID (e.g. driver bug) will get interpreted as a |
| * missing target. */ |
| cmd->result = DID_NO_CONNECT << 16; |
| } |
| break; |
| case CMD_PROTOCOL_ERR: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p has " |
| "protocol error\n", cp); |
| break; |
| case CMD_HARDWARE_ERR: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); |
| break; |
| case CMD_CONNECTION_LOST: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); |
| break; |
| case CMD_ABORTED: |
| cmd->result = DID_ABORT << 16; |
| dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", |
| cp, ei->ScsiStatus); |
| break; |
| case CMD_ABORT_FAILED: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ |
| dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " |
| "abort\n", cp); |
| break; |
| case CMD_TIMEOUT: |
| cmd->result = DID_TIME_OUT << 16; |
| dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); |
| break; |
| case CMD_UNABORTABLE: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "Command unabortable\n"); |
| break; |
| case CMD_IOACCEL_DISABLED: |
| /* This only handles the direct pass-through case since RAID |
| * offload is handled above. Just attempt a retry. |
| */ |
| cmd->result = DID_SOFT_ERROR << 16; |
| dev_warn(&h->pdev->dev, |
| "cp %p had HP SSD Smart Path error\n", cp); |
| break; |
| default: |
| cmd->result = DID_ERROR << 16; |
| dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", |
| cp, ei->CommandStatus); |
| } |
| cmd_free(h, cp); |
| cmd->scsi_done(cmd); |
| } |
| |
| static void hpsa_pci_unmap(struct pci_dev *pdev, |
| struct CommandList *c, int sg_used, int data_direction) |
| { |
| int i; |
| union u64bit addr64; |
| |
| for (i = 0; i < sg_used; i++) { |
| addr64.val32.lower = c->SG[i].Addr.lower; |
| addr64.val32.upper = c->SG[i].Addr.upper; |
| pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, |
| data_direction); |
| } |
| } |
| |
| static int hpsa_map_one(struct pci_dev *pdev, |
| struct CommandList *cp, |
| unsigned char *buf, |
| size_t buflen, |
| int data_direction) |
| { |
| u64 addr64; |
| |
| if (buflen == 0 || data_direction == PCI_DMA_NONE) { |
| cp->Header.SGList = 0; |
| cp->Header.SGTotal = 0; |
| return 0; |
| } |
| |
| addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); |
| if (dma_mapping_error(&pdev->dev, addr64)) { |
| /* Prevent subsequent unmap of something never mapped */ |
| cp->Header.SGList = 0; |
| cp->Header.SGTotal = 0; |
| return -1; |
| } |
| cp->SG[0].Addr.lower = |
| (u32) (addr64 & (u64) 0x00000000FFFFFFFF); |
| cp->SG[0].Addr.upper = |
| (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); |
| cp->SG[0].Len = buflen; |
| cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */ |
| cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ |
| cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ |
| return 0; |
| } |
| |
| static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| c->waiting = &wait; |
| enqueue_cmd_and_start_io(h, c); |
| wait_for_completion(&wait); |
| } |
| |
| static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| unsigned long flags; |
| |
| /* If controller lockup detected, fake a hardware error. */ |
| spin_lock_irqsave(&h->lock, flags); |
| if (unlikely(h->lockup_detected)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| c->err_info->CommandStatus = CMD_HARDWARE_ERR; |
| } else { |
| spin_unlock_irqrestore(&h->lock, flags); |
| hpsa_scsi_do_simple_cmd_core(h, c); |
| } |
| } |
| |
| #define MAX_DRIVER_CMD_RETRIES 25 |
| static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, |
| struct CommandList *c, int data_direction) |
| { |
| int backoff_time = 10, retry_count = 0; |
| |
| do { |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| hpsa_scsi_do_simple_cmd_core(h, c); |
| retry_count++; |
| if (retry_count > 3) { |
| msleep(backoff_time); |
| if (backoff_time < 1000) |
| backoff_time *= 2; |
| } |
| } while ((check_for_unit_attention(h, c) || |
| check_for_busy(h, c)) && |
| retry_count <= MAX_DRIVER_CMD_RETRIES); |
| hpsa_pci_unmap(h->pdev, c, 1, data_direction); |
| } |
| |
| static void hpsa_scsi_interpret_error(struct CommandList *cp) |
| { |
| struct ErrorInfo *ei; |
| struct device *d = &cp->h->pdev->dev; |
| |
| ei = cp->err_info; |
| switch (ei->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| dev_warn(d, "cmd %p has completed with errors\n", cp); |
| dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, |
| ei->ScsiStatus); |
| if (ei->ScsiStatus == 0) |
| dev_warn(d, "SCSI status is abnormally zero. " |
| "(probably indicates selection timeout " |
| "reported incorrectly due to a known " |
| "firmware bug, circa July, 2001.)\n"); |
| break; |
| case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| dev_info(d, "UNDERRUN\n"); |
| break; |
| case CMD_DATA_OVERRUN: |
| dev_warn(d, "cp %p has completed with data overrun\n", cp); |
| break; |
| case CMD_INVALID: { |
| /* controller unfortunately reports SCSI passthru's |
| * to non-existent targets as invalid commands. |
| */ |
| dev_warn(d, "cp %p is reported invalid (probably means " |
| "target device no longer present)\n", cp); |
| /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); |
| print_cmd(cp); */ |
| } |
| break; |
| case CMD_PROTOCOL_ERR: |
| dev_warn(d, "cp %p has protocol error \n", cp); |
| break; |
| case CMD_HARDWARE_ERR: |
| /* cmd->result = DID_ERROR << 16; */ |
| dev_warn(d, "cp %p had hardware error\n", cp); |
| break; |
| case CMD_CONNECTION_LOST: |
| dev_warn(d, "cp %p had connection lost\n", cp); |
| break; |
| case CMD_ABORTED: |
| dev_warn(d, "cp %p was aborted\n", cp); |
| break; |
| case CMD_ABORT_FAILED: |
| dev_warn(d, "cp %p reports abort failed\n", cp); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); |
| break; |
| case CMD_TIMEOUT: |
| dev_warn(d, "cp %p timed out\n", cp); |
| break; |
| case CMD_UNABORTABLE: |
| dev_warn(d, "Command unabortable\n"); |
| break; |
| default: |
| dev_warn(d, "cp %p returned unknown status %x\n", cp, |
| ei->CommandStatus); |
| } |
| } |
| |
| static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, |
| unsigned char page, unsigned char *buf, |
| unsigned char bufsize) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_special_alloc(h); |
| |
| if (c == NULL) { /* trouble... */ |
| dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| return -ENOMEM; |
| } |
| |
| if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, |
| page, scsi3addr, TYPE_CMD)) { |
| rc = -1; |
| goto out; |
| } |
| hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(c); |
| rc = -1; |
| } |
| out: |
| cmd_special_free(h, c); |
| return rc; |
| } |
| |
| static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_special_alloc(h); |
| |
| if (c == NULL) { /* trouble... */ |
| dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| return -ENOMEM; |
| } |
| |
| /* fill_cmd can't fail here, no data buffer to map. */ |
| (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, |
| NULL, 0, 0, scsi3addr, TYPE_MSG); |
| hpsa_scsi_do_simple_cmd_core(h, c); |
| /* no unmap needed here because no data xfer. */ |
| |
| ei = c->err_info; |
| if (ei->CommandStatus != 0) { |
| hpsa_scsi_interpret_error(c); |
| rc = -1; |
| } |
| cmd_special_free(h, c); |
| return rc; |
| } |
| |
| static void hpsa_get_raid_level(struct ctlr_info *h, |
| unsigned char *scsi3addr, unsigned char *raid_level) |
| { |
| int rc; |
| unsigned char *buf; |
| |
| *raid_level = RAID_UNKNOWN; |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); |
| if (rc == 0) |
| *raid_level = buf[8]; |
| if (*raid_level > RAID_UNKNOWN) |
| *raid_level = RAID_UNKNOWN; |
| kfree(buf); |
| return; |
| } |
| |
| #define HPSA_MAP_DEBUG |
| #ifdef HPSA_MAP_DEBUG |
| static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, |
| struct raid_map_data *map_buff) |
| { |
| struct raid_map_disk_data *dd = &map_buff->data[0]; |
| int map, row, col; |
| u16 map_cnt, row_cnt, disks_per_row; |
| |
| if (rc != 0) |
| return; |
| |
| dev_info(&h->pdev->dev, "structure_size = %u\n", |
| le32_to_cpu(map_buff->structure_size)); |
| dev_info(&h->pdev->dev, "volume_blk_size = %u\n", |
| le32_to_cpu(map_buff->volume_blk_size)); |
| dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", |
| le64_to_cpu(map_buff->volume_blk_cnt)); |
| dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", |
| map_buff->phys_blk_shift); |
| dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", |
| map_buff->parity_rotation_shift); |
| dev_info(&h->pdev->dev, "strip_size = %u\n", |
| le16_to_cpu(map_buff->strip_size)); |
| dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", |
| le64_to_cpu(map_buff->disk_starting_blk)); |
| dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", |
| le64_to_cpu(map_buff->disk_blk_cnt)); |
| dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", |
| le16_to_cpu(map_buff->data_disks_per_row)); |
| dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", |
| le16_to_cpu(map_buff->metadata_disks_per_row)); |
| dev_info(&h->pdev->dev, "row_cnt = %u\n", |
| le16_to_cpu(map_buff->row_cnt)); |
| dev_info(&h->pdev->dev, "layout_map_count = %u\n", |
| le16_to_cpu(map_buff->layout_map_count)); |
| |
| map_cnt = le16_to_cpu(map_buff->layout_map_count); |
| for (map = 0; map < map_cnt; map++) { |
| dev_info(&h->pdev->dev, "Map%u:\n", map); |
| row_cnt = le16_to_cpu(map_buff->row_cnt); |
| for (row = 0; row < row_cnt; row++) { |
| dev_info(&h->pdev->dev, " Row%u:\n", row); |
| disks_per_row = |
| le16_to_cpu(map_buff->data_disks_per_row); |
| for (col = 0; col < disks_per_row; col++, dd++) |
| dev_info(&h->pdev->dev, |
| " D%02u: h=0x%04x xor=%u,%u\n", |
| col, dd->ioaccel_handle, |
| dd->xor_mult[0], dd->xor_mult[1]); |
| disks_per_row = |
| le16_to_cpu(map_buff->metadata_disks_per_row); |
| for (col = 0; col < disks_per_row; col++, dd++) |
| dev_info(&h->pdev->dev, |
| " M%02u: h=0x%04x xor=%u,%u\n", |
| col, dd->ioaccel_handle, |
| dd->xor_mult[0], dd->xor_mult[1]); |
| } |
| } |
| } |
| #else |
| static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, |
| __attribute__((unused)) int rc, |
| __attribute__((unused)) struct raid_map_data *map_buff) |
| { |
| } |
| #endif |
| |
| static int hpsa_get_raid_map(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
| { |
| int rc = 0; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| |
| c = cmd_special_alloc(h); |
| if (c == NULL) { |
| dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| return -ENOMEM; |
| } |
| if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, |
| sizeof(this_device->raid_map), 0, |
| scsi3addr, TYPE_CMD)) { |
| dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n"); |
| cmd_special_free(h, c); |
| return -ENOMEM; |
| } |
| hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(c); |
| cmd_special_free(h, c); |
| return -1; |
| } |
| cmd_special_free(h, c); |
| |
| /* @todo in the future, dynamically allocate RAID map memory */ |
| if (le32_to_cpu(this_device->raid_map.structure_size) > |
| sizeof(this_device->raid_map)) { |
| dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); |
| rc = -1; |
| } |
| hpsa_debug_map_buff(h, rc, &this_device->raid_map); |
| return rc; |
| } |
| |
| static void hpsa_get_ioaccel_status(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
| { |
| int rc; |
| unsigned char *buf; |
| u8 ioaccel_status; |
| |
| this_device->offload_config = 0; |
| this_device->offload_enabled = 0; |
| |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
| HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); |
| if (rc != 0) |
| goto out; |
| |
| #define IOACCEL_STATUS_BYTE 4 |
| #define OFFLOAD_CONFIGURED_BIT 0x01 |
| #define OFFLOAD_ENABLED_BIT 0x02 |
| ioaccel_status = buf[IOACCEL_STATUS_BYTE]; |
| this_device->offload_config = |
| !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); |
| if (this_device->offload_config) { |
| this_device->offload_enabled = |
| !!(ioaccel_status & OFFLOAD_ENABLED_BIT); |
| if (hpsa_get_raid_map(h, scsi3addr, this_device)) |
| this_device->offload_enabled = 0; |
| } |
| out: |
| kfree(buf); |
| return; |
| } |
| |
| /* Get the device id from inquiry page 0x83 */ |
| static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, |
| unsigned char *device_id, int buflen) |
| { |
| int rc; |
| unsigned char *buf; |
| |
| if (buflen > 16) |
| buflen = 16; |
| buf = kzalloc(64, GFP_KERNEL); |
| if (!buf) |
| return -1; |
| rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); |
| if (rc == 0) |
| memcpy(device_id, &buf[8], buflen); |
| kfree(buf); |
| return rc != 0; |
| } |
| |
| static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, |
| struct ReportLUNdata *buf, int bufsize, |
| int extended_response) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| unsigned char scsi3addr[8]; |
| struct ErrorInfo *ei; |
| |
| c = cmd_special_alloc(h); |
| if (c == NULL) { /* trouble... */ |
| dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| return -1; |
| } |
| /* address the controller */ |
| memset(scsi3addr, 0, sizeof(scsi3addr)); |
| if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, |
| buf, bufsize, 0, scsi3addr, TYPE_CMD)) { |
| rc = -1; |
| goto out; |
| } |
| if (extended_response) |
| c->Request.CDB[1] = extended_response; |
| hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); |
| ei = c->err_info; |
| if (ei->CommandStatus != 0 && |
| ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| hpsa_scsi_interpret_error(c); |
| rc = -1; |
| } else { |
| if (buf->extended_response_flag != extended_response) { |
| dev_err(&h->pdev->dev, |
| "report luns requested format %u, got %u\n", |
| extended_response, |
| buf->extended_response_flag); |
| rc = -1; |
| } |
| } |
| out: |
| cmd_special_free(h, c); |
| return rc; |
| } |
| |
| static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, |
| struct ReportLUNdata *buf, |
| int bufsize, int extended_response) |
| { |
| return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); |
| } |
| |
| static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, |
| struct ReportLUNdata *buf, int bufsize) |
| { |
| return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); |
| } |
| |
| static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, |
| int bus, int target, int lun) |
| { |
| device->bus = bus; |
| device->target = target; |
| device->lun = lun; |
| } |
| |
| static int hpsa_update_device_info(struct ctlr_info *h, |
| unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, |
| unsigned char *is_OBDR_device) |
| { |
| |
| #define OBDR_SIG_OFFSET 43 |
| #define OBDR_TAPE_SIG "$DR-10" |
| #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) |
| #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) |
| |
| unsigned char *inq_buff; |
| unsigned char *obdr_sig; |
| |
| inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
| if (!inq_buff) |
| goto bail_out; |
| |
| /* Do an inquiry to the device to see what it is. */ |
| if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, |
| (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { |
| /* Inquiry failed (msg printed already) */ |
| dev_err(&h->pdev->dev, |
| "hpsa_update_device_info: inquiry failed\n"); |
| goto bail_out; |
| } |
| |
| this_device->devtype = (inq_buff[0] & 0x1f); |
| memcpy(this_device->scsi3addr, scsi3addr, 8); |
| memcpy(this_device->vendor, &inq_buff[8], |
| sizeof(this_device->vendor)); |
| memcpy(this_device->model, &inq_buff[16], |
| sizeof(this_device->model)); |
| memset(this_device->device_id, 0, |
| sizeof(this_device->device_id)); |
| hpsa_get_device_id(h, scsi3addr, this_device->device_id, |
| sizeof(this_device->device_id)); |
| |
| if (this_device->devtype == TYPE_DISK && |
| is_logical_dev_addr_mode(scsi3addr)) { |
| hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); |
| if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) |
| hpsa_get_ioaccel_status(h, scsi3addr, this_device); |
| } else { |
| this_device->raid_level = RAID_UNKNOWN; |
| this_device->offload_config = 0; |
| this_device->offload_enabled = 0; |
| } |
| |
| if (is_OBDR_device) { |
| /* See if this is a One-Button-Disaster-Recovery device |
| * by looking for "$DR-10" at offset 43 in inquiry data. |
| */ |
| obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; |
| *is_OBDR_device = (this_device->devtype == TYPE_ROM && |
| strncmp(obdr_sig, OBDR_TAPE_SIG, |
| OBDR_SIG_LEN) == 0); |
| } |
| |
| kfree(inq_buff); |
| return 0; |
| |
| bail_out: |
| kfree(inq_buff); |
| return 1; |
| } |
| |
| static unsigned char *ext_target_model[] = { |
| "MSA2012", |
| "MSA2024", |
| "MSA2312", |
| "MSA2324", |
| "P2000 G3 SAS", |
| "MSA 2040 SAS", |
| NULL, |
| }; |
| |
| static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) |
| { |
| int i; |
| |
| for (i = 0; ext_target_model[i]; i++) |
| if (strncmp(device->model, ext_target_model[i], |
| strlen(ext_target_model[i])) == 0) |
| return 1; |
| return 0; |
| } |
| |
| /* Helper function to assign bus, target, lun mapping of devices. |
| * Puts non-external target logical volumes on bus 0, external target logical |
| * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. |
| * Logical drive target and lun are assigned at this time, but |
| * physical device lun and target assignment are deferred (assigned |
| * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) |
| */ |
| static void figure_bus_target_lun(struct ctlr_info *h, |
| u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) |
| { |
| u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); |
| |
| if (!is_logical_dev_addr_mode(lunaddrbytes)) { |
| /* physical device, target and lun filled in later */ |
| if (is_hba_lunid(lunaddrbytes)) |
| hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); |
| else |
| /* defer target, lun assignment for physical devices */ |
| hpsa_set_bus_target_lun(device, 2, -1, -1); |
| return; |
| } |
| /* It's a logical device */ |
| if (is_ext_target(h, device)) { |
| /* external target way, put logicals on bus 1 |
| * and match target/lun numbers box |
| * reports, other smart array, bus 0, target 0, match lunid |
| */ |
| hpsa_set_bus_target_lun(device, |
| 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); |
| return; |
| } |
| hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); |
| } |
| |
| /* |
| * If there is no lun 0 on a target, linux won't find any devices. |
| * For the external targets (arrays), we have to manually detect the enclosure |
| * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report |
| * it for some reason. *tmpdevice is the target we're adding, |
| * this_device is a pointer into the current element of currentsd[] |
| * that we're building up in update_scsi_devices(), below. |
| * lunzerobits is a bitmap that tracks which targets already have a |
| * lun 0 assigned. |
| * Returns 1 if an enclosure was added, 0 if not. |
| */ |
| static int add_ext_target_dev(struct ctlr_info *h, |
| struct hpsa_scsi_dev_t *tmpdevice, |
| struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, |
| unsigned long lunzerobits[], int *n_ext_target_devs) |
| { |
| unsigned char scsi3addr[8]; |
| |
| if (test_bit(tmpdevice->target, lunzerobits)) |
| return 0; /* There is already a lun 0 on this target. */ |
| |
| if (!is_logical_dev_addr_mode(lunaddrbytes)) |
| return 0; /* It's the logical targets that may lack lun 0. */ |
| |
| if (!is_ext_target(h, tmpdevice)) |
| return 0; /* Only external target devices have this problem. */ |
| |
| if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ |
| return 0; |
| |
| memset(scsi3addr, 0, 8); |
| scsi3addr[3] = tmpdevice->target; |
| if (is_hba_lunid(scsi3addr)) |
| return 0; /* Don't add the RAID controller here. */ |
| |
| if (is_scsi_rev_5(h)) |
| return 0; /* p1210m doesn't need to do this. */ |
| |
| if (*n_ext_target_devs >= MAX_EXT_TARGETS) { |
| dev_warn(&h->pdev->dev, "Maximum number of external " |
| "target devices exceeded. Check your hardware " |
| "configuration."); |
| return 0; |
| } |
| |
| if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) |
| return 0; |
| (*n_ext_target_devs)++; |
| hpsa_set_bus_target_lun(this_device, |
| tmpdevice->bus, tmpdevice->target, 0); |
| set_bit(tmpdevice->target, lunzerobits); |
| return 1; |
| } |
| |
| /* |
| * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, |
| * logdev. The number of luns in physdev and logdev are returned in |
| * *nphysicals and *nlogicals, respectively. |
| * Returns 0 on success, -1 otherwise. |
| */ |
| static int hpsa_gather_lun_info(struct ctlr_info *h, |
| int reportlunsize, |
| struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode, |
| struct ReportLUNdata *logdev, u32 *nlogicals) |
| { |
| int physical_entry_size = 8; |
| |
| *physical_mode = 0; |
| |
| /* For I/O accelerator mode we need to read physical device handles */ |
| if (h->transMethod & CFGTBL_Trans_io_accel1) { |
| *physical_mode = HPSA_REPORT_PHYS_EXTENDED; |
| physical_entry_size = 24; |
| } |
| if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, |
| *physical_mode)) { |
| dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); |
| return -1; |
| } |
| *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / |
| physical_entry_size; |
| if (*nphysicals > HPSA_MAX_PHYS_LUN) { |
| dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." |
| " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
| *nphysicals - HPSA_MAX_PHYS_LUN); |
| *nphysicals = HPSA_MAX_PHYS_LUN; |
| } |
| if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { |
| dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); |
| return -1; |
| } |
| *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; |
| /* Reject Logicals in excess of our max capability. */ |
| if (*nlogicals > HPSA_MAX_LUN) { |
| dev_warn(&h->pdev->dev, |
| "maximum logical LUNs (%d) exceeded. " |
| "%d LUNs ignored.\n", HPSA_MAX_LUN, |
| *nlogicals - HPSA_MAX_LUN); |
| *nlogicals = HPSA_MAX_LUN; |
| } |
| if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { |
| dev_warn(&h->pdev->dev, |
| "maximum logical + physical LUNs (%d) exceeded. " |
| "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
| *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); |
| *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; |
| } |
| return 0; |
| } |
| |
| u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, |
| int nphysicals, int nlogicals, |
| struct ReportExtendedLUNdata *physdev_list, |
| struct ReportLUNdata *logdev_list) |
| { |
| /* Helper function, figure out where the LUN ID info is coming from |
| * given index i, lists of physical and logical devices, where in |
| * the list the raid controller is supposed to appear (first or last) |
| */ |
| |
| int logicals_start = nphysicals + (raid_ctlr_position == 0); |
| int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); |
| |
| if (i == raid_ctlr_position) |
| return RAID_CTLR_LUNID; |
| |
| if (i < logicals_start) |
| return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; |
| |
| if (i < last_device) |
| return &logdev_list->LUN[i - nphysicals - |
| (raid_ctlr_position == 0)][0]; |
| BUG(); |
| return NULL; |
| } |
| |
| static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) |
| { |
| /* the idea here is we could get notified |
| * that some devices have changed, so we do a report |
| * physical luns and report logical luns cmd, and adjust |
| * our list of devices accordingly. |
| * |
| * The scsi3addr's of devices won't change so long as the |
| * adapter is not reset. That means we can rescan and |
| * tell which devices we already know about, vs. new |
| * devices, vs. disappearing devices. |
| */ |
| struct ReportExtendedLUNdata *physdev_list = NULL; |
| struct ReportLUNdata *logdev_list = NULL; |
| u32 nphysicals = 0; |
| u32 nlogicals = 0; |
| int physical_mode = 0; |
| u32 ndev_allocated = 0; |
| struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; |
| int ncurrent = 0; |
| int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24; |
| int i, n_ext_target_devs, ndevs_to_allocate; |
| int raid_ctlr_position; |
| DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); |
| |
| currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); |
| physdev_list = kzalloc(reportlunsize, GFP_KERNEL); |
| logdev_list = kzalloc(reportlunsize, GFP_KERNEL); |
| tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); |
| |
| if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { |
| dev_err(&h->pdev->dev, "out of memory\n"); |
| goto out; |
| } |
| memset(lunzerobits, 0, sizeof(lunzerobits)); |
| |
| if (hpsa_gather_lun_info(h, reportlunsize, |
| (struct ReportLUNdata *) physdev_list, &nphysicals, |
| &physical_mode, logdev_list, &nlogicals)) |
| goto out; |
| |
| /* We might see up to the maximum number of logical and physical disks |
| * plus external target devices, and a device for the local RAID |
| * controller. |
| */ |
| ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; |
| |
| /* Allocate the per device structures */ |
| for (i = 0; i < ndevs_to_allocate; i++) { |
| if (i >= HPSA_MAX_DEVICES) { |
| dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." |
| " %d devices ignored.\n", HPSA_MAX_DEVICES, |
| ndevs_to_allocate - HPSA_MAX_DEVICES); |
| break; |
| } |
| |
| currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); |
| if (!currentsd[i]) { |
| dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", |
| __FILE__, __LINE__); |
| goto out; |
| } |
| ndev_allocated++; |
| } |
| |
| if (unlikely(is_scsi_rev_5(h))) |
| raid_ctlr_position = 0; |
| else |
| raid_ctlr_position = nphysicals + nlogicals; |
| |
| /* adjust our table of devices */ |
| n_ext_target_devs = 0; |
| for (i = 0; i < nphysicals + nlogicals + 1; i++) { |
| u8 *lunaddrbytes, is_OBDR = 0; |
| |
| /* Figure out where the LUN ID info is coming from */ |
| lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, |
| i, nphysicals, nlogicals, physdev_list, logdev_list); |
| /* skip masked physical devices. */ |
| if (lunaddrbytes[3] & 0xC0 && |
| i < nphysicals + (raid_ctlr_position == 0)) |
| continue; |
| |
| /* Get device type, vendor, model, device id */ |
| if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, |
| &is_OBDR)) |
| continue; /* skip it if we can't talk to it. */ |
| figure_bus_target_lun(h, lunaddrbytes, tmpdevice); |
| this_device = currentsd[ncurrent]; |
| |
| /* |
| * For external target devices, we have to insert a LUN 0 which |
| * doesn't show up in CCISS_REPORT_PHYSICAL data, but there |
| * is nonetheless an enclosure device there. We have to |
| * present that otherwise linux won't find anything if |
| * there is no lun 0. |
| */ |
| if (add_ext_target_dev(h, tmpdevice, this_device, |
| lunaddrbytes, lunzerobits, |
| &n_ext_target_devs)) { |
| ncurrent++; |
| this_device = currentsd[ncurrent]; |
| } |
| |
| *this_device = *tmpdevice; |
| |
| switch (this_device->devtype) { |
| case TYPE_ROM: |
| /* We don't *really* support actual CD-ROM devices, |
| * just "One Button Disaster Recovery" tape drive |
| * which temporarily pretends to be a CD-ROM drive. |
| * So we check that the device is really an OBDR tape |
| * device by checking for "$DR-10" in bytes 43-48 of |
| * the inquiry data. |
| */ |
| if (is_OBDR) |
| ncurrent++; |
| break; |
| case TYPE_DISK: |
| if (i >= nphysicals) { |
| ncurrent++; |
| break; |
| } |
| if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) { |
| memcpy(&this_device->ioaccel_handle, |
| &lunaddrbytes[20], |
| sizeof(this_device->ioaccel_handle)); |
| ncurrent++; |
| } |
| break; |
| case TYPE_TAPE: |
| case TYPE_MEDIUM_CHANGER: |
| ncurrent++; |
| break; |
| case TYPE_RAID: |
| /* Only present the Smartarray HBA as a RAID controller. |
| * If it's a RAID controller other than the HBA itself |
| * (an external RAID controller, MSA500 or similar) |
| * don't present it. |
| */ |
| if (!is_hba_lunid(lunaddrbytes)) |
| break; |
| ncurrent++; |
| break; |
| default: |
| break; |
| } |
| if (ncurrent >= HPSA_MAX_DEVICES) |
| break; |
| } |
| adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); |
| out: |
| kfree(tmpdevice); |
| for (i = 0; i < ndev_allocated; i++) |
| kfree(currentsd[i]); |
| kfree(currentsd); |
| kfree(physdev_list); |
| kfree(logdev_list); |
| } |
| |
| /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci |
| * dma mapping and fills in the scatter gather entries of the |
| * hpsa command, cp. |
| */ |
| static int hpsa_scatter_gather(struct ctlr_info *h, |
| struct CommandList *cp, |
| struct scsi_cmnd *cmd) |
| { |
| unsigned int len; |
| struct scatterlist *sg; |
| u64 addr64; |
| int use_sg, i, sg_index, chained; |
| struct SGDescriptor *curr_sg; |
| |
| BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
| |
| use_sg = scsi_dma_map(cmd); |
| if (use_sg < 0) |
| return use_sg; |
| |
| if (!use_sg) |
| goto sglist_finished; |
| |
| curr_sg = cp->SG; |
| chained = 0; |
| sg_index = 0; |
| scsi_for_each_sg(cmd, sg, use_sg, i) { |
| if (i == h->max_cmd_sg_entries - 1 && |
| use_sg > h->max_cmd_sg_entries) { |
| chained = 1; |
| curr_sg = h->cmd_sg_list[cp->cmdindex]; |
| sg_index = 0; |
| } |
| addr64 = (u64) sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); |
| curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); |
| curr_sg->Len = len; |
| curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST; |
| curr_sg++; |
| } |
| |
| if (use_sg + chained > h->maxSG) |
| h->maxSG = use_sg + chained; |
| |
| if (chained) { |
| cp->Header.SGList = h->max_cmd_sg_entries; |
| cp->Header.SGTotal = (u16) (use_sg + 1); |
| if (hpsa_map_sg_chain_block(h, cp)) { |
| scsi_dma_unmap(cmd); |
| return -1; |
| } |
| return 0; |
| } |
| |
| sglist_finished: |
| |
| cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ |
| cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ |
| return 0; |
| } |
| |
| #define IO_ACCEL_INELIGIBLE (1) |
| static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) |
| { |
| int is_write = 0; |
| u32 block; |
| u32 block_cnt; |
| |
| /* Perform some CDB fixups if needed using 10 byte reads/writes only */ |
| switch (cdb[0]) { |
| case WRITE_6: |
| case WRITE_12: |
| is_write = 1; |
| case READ_6: |
| case READ_12: |
| if (*cdb_len == 6) { |
| block = (((u32) cdb[2]) << 8) | cdb[3]; |
| block_cnt = cdb[4]; |
| } else { |
| BUG_ON(*cdb_len != 12); |
| block = (((u32) cdb[2]) << 24) | |
| (((u32) cdb[3]) << 16) | |
| (((u32) cdb[4]) << 8) | |
| cdb[5]; |
| block_cnt = |
| (((u32) cdb[6]) << 24) | |
| (((u32) cdb[7]) << 16) | |
| (((u32) cdb[8]) << 8) | |
| cdb[9]; |
| } |
| if (block_cnt > 0xffff) |
| return IO_ACCEL_INELIGIBLE; |
| |
| cdb[0] = is_write ? WRITE_10 : READ_10; |
| cdb[1] = 0; |
| cdb[2] = (u8) (block >> 24); |
| cdb[3] = (u8) (block >> 16); |
| cdb[4] = (u8) (block >> 8); |
| cdb[5] = (u8) (block); |
| cdb[6] = 0; |
| cdb[7] = (u8) (block_cnt >> 8); |
| cdb[8] = (u8) (block_cnt); |
| cdb[9] = 0; |
| *cdb_len = 10; |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Queue a command to the I/O accelerator path. |
| */ |
| static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, |
| struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
| u8 *scsi3addr) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; |
| unsigned int len; |
| unsigned int total_len = 0; |
| struct scatterlist *sg; |
| u64 addr64; |
| int use_sg, i; |
| struct SGDescriptor *curr_sg; |
| u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; |
| |
| /* TODO: implement chaining support */ |
| if (scsi_sg_count(cmd) > h->ioaccel_maxsg) |
| return IO_ACCEL_INELIGIBLE; |
| |
| BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); |
| |
| if (fixup_ioaccel_cdb(cdb, &cdb_len)) |
| return IO_ACCEL_INELIGIBLE; |
| |
| c->cmd_type = CMD_IOACCEL1; |
| |
| /* Adjust the DMA address to point to the accelerated command buffer */ |
| c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + |
| (c->cmdindex * sizeof(*cp)); |
| BUG_ON(c->busaddr & 0x0000007F); |
| |
| use_sg = scsi_dma_map(cmd); |
| if (use_sg < 0) |
| return use_sg; |
| |
| if (use_sg) { |
| curr_sg = cp->SG; |
| scsi_for_each_sg(cmd, sg, use_sg, i) { |
| addr64 = (u64) sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| total_len += len; |
| curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); |
| curr_sg->Addr.upper = |
| (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); |
| curr_sg->Len = len; |
| |
| if (i == (scsi_sg_count(cmd) - 1)) |
| curr_sg->Ext = HPSA_SG_LAST; |
| else |
| curr_sg->Ext = 0; /* we are not chaining */ |
| curr_sg++; |
| } |
| |
| switch (cmd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| control |= IOACCEL1_CONTROL_DATA_OUT; |
| break; |
| case DMA_FROM_DEVICE: |
| control |= IOACCEL1_CONTROL_DATA_IN; |
| break; |
| case DMA_NONE: |
| control |= IOACCEL1_CONTROL_NODATAXFER; |
| break; |
| default: |
| dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| cmd->sc_data_direction); |
| BUG(); |
| break; |
| } |
| } else { |
| control |= IOACCEL1_CONTROL_NODATAXFER; |
| } |
| |
| /* Fill out the command structure to submit */ |
| cp->dev_handle = ioaccel_handle & 0xFFFF; |
| cp->transfer_len = total_len; |
| cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ | |
| (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK); |
| cp->control = control; |
| memcpy(cp->CDB, cdb, cdb_len); |
| memcpy(cp->CISS_LUN, scsi3addr, 8); |
| |
| /* Tell the controller to post the reply to the queue for this |
| * processor. This seems to give the best I/O throughput. |
| */ |
| cp->ReplyQueue = smp_processor_id() % h->nreply_queues; |
| |
| /* Set the bits in the address sent down to include: |
| * - performant mode bit (bit 0) |
| * - pull count (bits 1-3) |
| * - command type (bits 4-6) |
| */ |
| c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[use_sg] << 1) | |
| IOACCEL1_BUSADDR_CMDTYPE; |
| enqueue_cmd_and_start_io(h, c); |
| return 0; |
| } |
| |
| /* |
| * Queue a command directly to a device behind the controller using the |
| * I/O accelerator path. |
| */ |
| static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| |
| return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, |
| cmd->cmnd, cmd->cmd_len, dev->scsi3addr); |
| } |
| |
| /* |
| * Attempt to perform offload RAID mapping for a logical volume I/O. |
| */ |
| static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| struct scsi_cmnd *cmd = c->scsi_cmd; |
| struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
| struct raid_map_data *map = &dev->raid_map; |
| struct raid_map_disk_data *dd = &map->data[0]; |
| int is_write = 0; |
| u32 map_index; |
| u64 first_block, last_block; |
| u32 block_cnt; |
| u32 blocks_per_row; |
| u64 first_row, last_row; |
| u32 first_row_offset, last_row_offset; |
| u32 first_column, last_column; |
| u32 map_row; |
| u32 disk_handle; |
| u64 disk_block; |
| u32 disk_block_cnt; |
| u8 cdb[16]; |
| u8 cdb_len; |
| #if BITS_PER_LONG == 32 |
| u64 tmpdiv; |
| #endif |
| |
| BUG_ON(!(dev->offload_config && dev->offload_enabled)); |
| |
| /* check for valid opcode, get LBA and block count */ |
| switch (cmd->cmnd[0]) { |
| case WRITE_6: |
| is_write = 1; |
| case READ_6: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 8) | |
| cmd->cmnd[3]; |
| block_cnt = cmd->cmnd[4]; |
| break; |
| case WRITE_10: |
| is_write = 1; |
| case READ_10: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 24) | |
| (((u64) cmd->cmnd[3]) << 16) | |
| (((u64) cmd->cmnd[4]) << 8) | |
| cmd->cmnd[5]; |
| block_cnt = |
| (((u32) cmd->cmnd[7]) << 8) | |
| cmd->cmnd[8]; |
| break; |
| case WRITE_12: |
| is_write = 1; |
| case READ_12: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 24) | |
| (((u64) cmd->cmnd[3]) << 16) | |
| (((u64) cmd->cmnd[4]) << 8) | |
| cmd->cmnd[5]; |
| block_cnt = |
| (((u32) cmd->cmnd[6]) << 24) | |
| (((u32) cmd->cmnd[7]) << 16) | |
| (((u32) cmd->cmnd[8]) << 8) | |
| cmd->cmnd[9]; |
| break; |
| case WRITE_16: |
| is_write = 1; |
| case READ_16: |
| first_block = |
| (((u64) cmd->cmnd[2]) << 56) | |
| (((u64) cmd->cmnd[3]) << 48) | |
| (((u64) cmd->cmnd[4]) << 40) | |
| (((u64) cmd->cmnd[5]) << 32) | |
| (((u64) cmd->cmnd[6]) << 24) | |
| (((u64) cmd->cmnd[7]) << 16) | |
| (((u64) cmd->cmnd[8]) << 8) | |
| cmd->cmnd[9]; |
| block_cnt = |
| (((u32) cmd->cmnd[10]) << 24) | |
| (((u32) cmd->cmnd[11]) << 16) | |
| (((u32) cmd->cmnd[12]) << 8) | |
| cmd->cmnd[13]; |
| break; |
| default: |
| return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ |
| } |
| BUG_ON(block_cnt == 0); |
| last_block = first_block + block_cnt - 1; |
| |
| /* check for write to non-RAID-0 */ |
| if (is_write && dev->raid_level != 0) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* check for invalid block or wraparound */ |
| if (last_block >= map->volume_blk_cnt || last_block < first_block) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* calculate stripe information for the request */ |
| blocks_per_row = map->data_disks_per_row * map->strip_size; |
| #if BITS_PER_LONG == 32 |
| tmpdiv = first_block; |
| (void) do_div(tmpdiv, blocks_per_row); |
| first_row = tmpdiv; |
| tmpdiv = last_block; |
| (void) do_div(tmpdiv, blocks_per_row); |
| last_row = tmpdiv; |
| first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
| last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
| tmpdiv = first_row_offset; |
| (void) do_div(tmpdiv, map->strip_size); |
| first_column = tmpdiv; |
| tmpdiv = last_row_offset; |
| (void) do_div(tmpdiv, map->strip_size); |
| last_column = tmpdiv; |
| #else |
| first_row = first_block / blocks_per_row; |
| last_row = last_block / blocks_per_row; |
| first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
| last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
| first_column = first_row_offset / map->strip_size; |
| last_column = last_row_offset / map->strip_size; |
| #endif |
| |
| /* if this isn't a single row/column then give to the controller */ |
| if ((first_row != last_row) || (first_column != last_column)) |
| return IO_ACCEL_INELIGIBLE; |
| |
| /* proceeding with driver mapping */ |
| map_row = ((u32)(first_row >> map->parity_rotation_shift)) % |
| map->row_cnt; |
| map_index = (map_row * (map->data_disks_per_row + |
| map->metadata_disks_per_row)) + first_column; |
| if (dev->raid_level == 2) { |
| /* simple round-robin balancing of RAID 1+0 reads across |
| * primary and mirror members. this is appropriate for SSD |
| * but not optimal for HDD. |
| */ |
| if (dev->offload_to_mirror) |
| map_index += map->data_disks_per_row; |
| dev->offload_to_mirror = !dev->offload_to_mirror; |
| } |
| disk_handle = dd[map_index].ioaccel_handle; |
| disk_block = map->disk_starting_blk + (first_row * map->strip_size) + |
| (first_row_offset - (first_column * map->strip_size)); |
| disk_block_cnt = block_cnt; |
| |
| /* handle differing logical/physical block sizes */ |
| if (map->phys_blk_shift) { |
| disk_block <<= map->phys_blk_shift; |
| disk_block_cnt <<= map->phys_blk_shift; |
| } |
| BUG_ON(disk_block_cnt > 0xffff); |
| |
| /* build the new CDB for the physical disk I/O */ |
| if (disk_block > 0xffffffff) { |
| cdb[0] = is_write ? WRITE_16 : READ_16; |
| cdb[1] = 0; |
| cdb[2] = (u8) (disk_block >> 56); |
| cdb[3] = (u8) (disk_block >> 48); |
| cdb[4] = (u8) (disk_block >> 40); |
| cdb[5] = (u8) (disk_block >> 32); |
| cdb[6] = (u8) (disk_block >> 24); |
| cdb[7] = (u8) (disk_block >> 16); |
| cdb[8] = (u8) (disk_block >> 8); |
| cdb[9] = (u8) (disk_block); |
| cdb[10] = (u8) (disk_block_cnt >> 24); |
| cdb[11] = (u8) (disk_block_cnt >> 16); |
| cdb[12] = (u8) (disk_block_cnt >> 8); |
| cdb[13] = (u8) (disk_block_cnt); |
| cdb[14] = 0; |
| cdb[15] = 0; |
| cdb_len = 16; |
| } else { |
| cdb[0] = is_write ? WRITE_10 : READ_10; |
| cdb[1] = 0; |
| cdb[2] = (u8) (disk_block >> 24); |
| cdb[3] = (u8) (disk_block >> 16); |
| cdb[4] = (u8) (disk_block >> 8); |
| cdb[5] = (u8) (disk_block); |
| cdb[6] = 0; |
| cdb[7] = (u8) (disk_block_cnt >> 8); |
| cdb[8] = (u8) (disk_block_cnt); |
| cdb[9] = 0; |
| cdb_len = 10; |
| } |
| return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, |
| dev->scsi3addr); |
| } |
| |
| static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, |
| void (*done)(struct scsi_cmnd *)) |
| { |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| unsigned char scsi3addr[8]; |
| struct CommandList *c; |
| unsigned long flags; |
| int rc = 0; |
| |
| /* Get the ptr to our adapter structure out of cmd->host. */ |
| h = sdev_to_hba(cmd->device); |
| dev = cmd->device->hostdata; |
| if (!dev) { |
| cmd->result = DID_NO_CONNECT << 16; |
| done(cmd); |
| return 0; |
| } |
| memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (unlikely(h->lockup_detected)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| cmd->result = DID_ERROR << 16; |
| done(cmd); |
| return 0; |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| c = cmd_alloc(h); |
| if (c == NULL) { /* trouble... */ |
| dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| |
| /* Fill in the command list header */ |
| |
| cmd->scsi_done = done; /* save this for use by completion code */ |
| |
| /* save c in case we have to abort it */ |
| cmd->host_scribble = (unsigned char *) c; |
| |
| c->cmd_type = CMD_SCSI; |
| c->scsi_cmd = cmd; |
| |
| /* Call alternate submit routine for I/O accelerated commands. |
| * Retries always go down the normal I/O path. |
| */ |
| if (likely(cmd->retries == 0 && |
| cmd->request->cmd_type == REQ_TYPE_FS)) { |
| if (dev->offload_enabled) { |
| rc = hpsa_scsi_ioaccel_raid_map(h, c); |
| if (rc == 0) |
| return 0; /* Sent on ioaccel path */ |
| if (rc < 0) { /* scsi_dma_map failed. */ |
| cmd_free(h, c); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| } else if (dev->ioaccel_handle) { |
| rc = hpsa_scsi_ioaccel_direct_map(h, c); |
| if (rc == 0) |
| return 0; /* Sent on direct map path */ |
| if (rc < 0) { /* scsi_dma_map failed. */ |
| cmd_free(h, c); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| } |
| } |
| |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); |
| c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); |
| c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; |
| |
| /* Fill in the request block... */ |
| |
| c->Request.Timeout = 0; |
| memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); |
| BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); |
| c->Request.CDBLen = cmd->cmd_len; |
| memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); |
| c->Request.Type.Type = TYPE_CMD; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| switch (cmd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| c->Request.Type.Direction = XFER_WRITE; |
| break; |
| case DMA_FROM_DEVICE: |
| c->Request.Type.Direction = XFER_READ; |
| break; |
| case DMA_NONE: |
| c->Request.Type.Direction = XFER_NONE; |
| break; |
| case DMA_BIDIRECTIONAL: |
| /* This can happen if a buggy application does a scsi passthru |
| * and sets both inlen and outlen to non-zero. ( see |
| * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) |
| */ |
| |
| c->Request.Type.Direction = XFER_RSVD; |
| /* This is technically wrong, and hpsa controllers should |
| * reject it with CMD_INVALID, which is the most correct |
| * response, but non-fibre backends appear to let it |
| * slide by, and give the same results as if this field |
| * were set correctly. Either way is acceptable for |
| * our purposes here. |
| */ |
| |
| break; |
| |
| default: |
| dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| cmd->sc_data_direction); |
| BUG(); |
| break; |
| } |
| |
| if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ |
| cmd_free(h, c); |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| enqueue_cmd_and_start_io(h, c); |
| /* the cmd'll come back via intr handler in complete_scsi_command() */ |
| return 0; |
| } |
| |
| static DEF_SCSI_QCMD(hpsa_scsi_queue_command) |
| |
| static int do_not_scan_if_controller_locked_up(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| |
| /* |
| * Don't let rescans be initiated on a controller known |
| * to be locked up. If the controller locks up *during* |
| * a rescan, that thread is probably hosed, but at least |
| * we can prevent new rescan threads from piling up on a |
| * locked up controller. |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| if (unlikely(h->lockup_detected)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| spin_lock_irqsave(&h->scan_lock, flags); |
| h->scan_finished = 1; |
| wake_up_all(&h->scan_wait_queue); |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| return 1; |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return 0; |
| } |
| |
| static void hpsa_scan_start(struct Scsi_Host *sh) |
| { |
| struct ctlr_info *h = shost_to_hba(sh); |
| unsigned long flags; |
| |
| if (do_not_scan_if_controller_locked_up(h)) |
| return; |
| |
| /* wait until any scan already in progress is finished. */ |
| while (1) { |
| spin_lock_irqsave(&h->scan_lock, flags); |
| if (h->scan_finished) |
| break; |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| wait_event(h->scan_wait_queue, h->scan_finished); |
| /* Note: We don't need to worry about a race between this |
| * thread and driver unload because the midlayer will |
| * have incremented the reference count, so unload won't |
| * happen if we're in here. |
| */ |
| } |
| h->scan_finished = 0; /* mark scan as in progress */ |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| |
| if (do_not_scan_if_controller_locked_up(h)) |
| return; |
| |
| hpsa_update_scsi_devices(h, h->scsi_host->host_no); |
| |
| spin_lock_irqsave(&h->scan_lock, flags); |
| h->scan_finished = 1; /* mark scan as finished. */ |
| wake_up_all(&h->scan_wait_queue); |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| } |
| |
| static int hpsa_scan_finished(struct Scsi_Host *sh, |
| unsigned long elapsed_time) |
| { |
| struct ctlr_info *h = shost_to_hba(sh); |
| unsigned long flags; |
| int finished; |
| |
| spin_lock_irqsave(&h->scan_lock, flags); |
| finished = h->scan_finished; |
| spin_unlock_irqrestore(&h->scan_lock, flags); |
| return finished; |
| } |
| |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, |
| int qdepth, int reason) |
| { |
| struct ctlr_info *h = sdev_to_hba(sdev); |
| |
| if (reason != SCSI_QDEPTH_DEFAULT) |
| return -ENOTSUPP; |
| |
| if (qdepth < 1) |
| qdepth = 1; |
| else |
| if (qdepth > h->nr_cmds) |
| qdepth = h->nr_cmds; |
| scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); |
| return sdev->queue_depth; |
| } |
| |
| static void hpsa_unregister_scsi(struct ctlr_info *h) |
| { |
| /* we are being forcibly unloaded, and may not refuse. */ |
| scsi_remove_host(h->scsi_host); |
| scsi_host_put(h->scsi_host); |
| h->scsi_host = NULL; |
| } |
| |
| static int hpsa_register_scsi(struct ctlr_info *h) |
| { |
| struct Scsi_Host *sh; |
| int error; |
| |
| sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); |
| if (sh == NULL) |
| goto fail; |
| |
| sh->io_port = 0; |
| sh->n_io_port = 0; |
| sh->this_id = -1; |
| sh->max_channel = 3; |
| sh->max_cmd_len = MAX_COMMAND_SIZE; |
| sh->max_lun = HPSA_MAX_LUN; |
| sh->max_id = HPSA_MAX_LUN; |
| sh->can_queue = h->nr_cmds; |
| sh->cmd_per_lun = h->nr_cmds; |
| sh->sg_tablesize = h->maxsgentries; |
| h->scsi_host = sh; |
| sh->hostdata[0] = (unsigned long) h; |
| sh->irq = h->intr[h->intr_mode]; |
| sh->unique_id = sh->irq; |
| error = scsi_add_host(sh, &h->pdev->dev); |
| if (error) |
| goto fail_host_put; |
| scsi_scan_host(sh); |
| return 0; |
| |
| fail_host_put: |
| dev_err(&h->pdev->dev, "%s: scsi_add_host" |
| " failed for controller %d\n", __func__, h->ctlr); |
| scsi_host_put(sh); |
| return error; |
| fail: |
| dev_err(&h->pdev->dev, "%s: scsi_host_alloc" |
| " failed for controller %d\n", __func__, h->ctlr); |
| return -ENOMEM; |
| } |
| |
| static int wait_for_device_to_become_ready(struct ctlr_info *h, |
| unsigned char lunaddr[]) |
| { |
| int rc = 0; |
| int count = 0; |
| int waittime = 1; /* seconds */ |
| struct CommandList *c; |
| |
| c = cmd_special_alloc(h); |
| if (!c) { |
| dev_warn(&h->pdev->dev, "out of memory in " |
| "wait_for_device_to_become_ready.\n"); |
| return IO_ERROR; |
| } |
| |
| /* Send test unit ready until device ready, or give up. */ |
| while (count < HPSA_TUR_RETRY_LIMIT) { |
| |
| /* Wait for a bit. do this first, because if we send |
| * the TUR right away, the reset will just abort it. |
| */ |
| msleep(1000 * waittime); |
| count++; |
| |
| /* Increase wait time with each try, up to a point. */ |
| if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) |
| waittime = waittime * 2; |
| |
| /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ |
| (void) fill_cmd(c, TEST_UNIT_READY, h, |
| NULL, 0, 0, lunaddr, TYPE_CMD); |
| hpsa_scsi_do_simple_cmd_core(h, c); |
| /* no unmap needed here because no data xfer. */ |
| |
| if (c->err_info->CommandStatus == CMD_SUCCESS) |
| break; |
| |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && |
| (c->err_info->SenseInfo[2] == NO_SENSE || |
| c->err_info->SenseInfo[2] == UNIT_ATTENTION)) |
| break; |
| |
| dev_warn(&h->pdev->dev, "waiting %d secs " |
| "for device to become ready.\n", waittime); |
| rc = 1; /* device not ready. */ |
| } |
| |
| if (rc) |
| dev_warn(&h->pdev->dev, "giving up on device.\n"); |
| else |
| dev_warn(&h->pdev->dev, "device is ready.\n"); |
| |
| cmd_special_free(h, c); |
| return rc; |
| } |
| |
| /* Need at least one of these error handlers to keep ../scsi/hosts.c from |
| * complaining. Doing a host- or bus-reset can't do anything good here. |
| */ |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) |
| { |
| int rc; |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| |
| /* find the controller to which the command to be aborted was sent */ |
| h = sdev_to_hba(scsicmd->device); |
| if (h == NULL) /* paranoia */ |
| return FAILED; |
| dev = scsicmd->device->hostdata; |
| if (!dev) { |
| dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " |
| "device lookup failed.\n"); |
| return FAILED; |
| } |
| dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", |
| h->scsi_host->host_no, dev->bus, dev->target, dev->lun); |
| /* send a reset to the SCSI LUN which the command was sent to */ |
| rc = hpsa_send_reset(h, dev->scsi3addr); |
| if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) |
| return SUCCESS; |
| |
| dev_warn(&h->pdev->dev, "resetting device failed.\n"); |
| return FAILED; |
| } |
| |
| static void swizzle_abort_tag(u8 *tag) |
| { |
| u8 original_tag[8]; |
| |
| memcpy(original_tag, tag, 8); |
| tag[0] = original_tag[3]; |
| tag[1] = original_tag[2]; |
| tag[2] = original_tag[1]; |
| tag[3] = original_tag[0]; |
| tag[4] = original_tag[7]; |
| tag[5] = original_tag[6]; |
| tag[6] = original_tag[5]; |
| tag[7] = original_tag[4]; |
| } |
| |
| static void hpsa_get_tag(struct ctlr_info *h, |
| struct CommandList *c, u32 *taglower, u32 *tagupper) |
| { |
| if (c->cmd_type == CMD_IOACCEL1) { |
| struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) |
| &h->ioaccel_cmd_pool[c->cmdindex]; |
| *tagupper = cm1->Tag.upper; |
| *taglower = cm1->Tag.lower; |
| } else { |
| *tagupper = c->Header.Tag.upper; |
| *taglower = c->Header.Tag.lower; |
| } |
| } |
| |
| static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, |
| struct CommandList *abort, int swizzle) |
| { |
| int rc = IO_OK; |
| struct CommandList *c; |
| struct ErrorInfo *ei; |
| u32 tagupper, taglower; |
| |
| c = cmd_special_alloc(h); |
| if (c == NULL) { /* trouble... */ |
| dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| return -ENOMEM; |
| } |
| |
| /* fill_cmd can't fail here, no buffer to map */ |
| (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort, |
| 0, 0, scsi3addr, TYPE_MSG); |
| if (swizzle) |
| swizzle_abort_tag(&c->Request.CDB[4]); |
| hpsa_scsi_do_simple_cmd_core(h, c); |
| hpsa_get_tag(h, abort, &taglower, &tagupper); |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", |
| __func__, tagupper, taglower); |
| /* no unmap needed here because no data xfer. */ |
| |
| ei = c->err_info; |
| switch (ei->CommandStatus) { |
| case CMD_SUCCESS: |
| break; |
| case CMD_UNABORTABLE: /* Very common, don't make noise. */ |
| rc = -1; |
| break; |
| default: |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", |
| __func__, tagupper, taglower); |
| hpsa_scsi_interpret_error(c); |
| rc = -1; |
| break; |
| } |
| cmd_special_free(h, c); |
| dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, |
| abort->Header.Tag.upper, abort->Header.Tag.lower); |
| return rc; |
| } |
| |
| /* |
| * hpsa_find_cmd_in_queue |
| * |
| * Used to determine whether a command (find) is still present |
| * in queue_head. Optionally excludes the last element of queue_head. |
| * |
| * This is used to avoid unnecessary aborts. Commands in h->reqQ have |
| * not yet been submitted, and so can be aborted by the driver without |
| * sending an abort to the hardware. |
| * |
| * Returns pointer to command if found in queue, NULL otherwise. |
| */ |
| static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, |
| struct scsi_cmnd *find, struct list_head *queue_head) |
| { |
| unsigned long flags; |
| struct CommandList *c = NULL; /* ptr into cmpQ */ |
| |
| if (!find) |
| return 0; |
| spin_lock_irqsave(&h->lock, flags); |
| list_for_each_entry(c, queue_head, list) { |
| if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ |
| continue; |
| if (c->scsi_cmd == find) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return c; |
| } |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return NULL; |
| } |
| |
| static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, |
| u8 *tag, struct list_head *queue_head) |
| { |
| unsigned long flags; |
| struct CommandList *c; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| list_for_each_entry(c, queue_head, list) { |
| if (memcmp(&c->Header.Tag, tag, 8) != 0) |
| continue; |
| spin_unlock_irqrestore(&h->lock, flags); |
| return c; |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return NULL; |
| } |
| |
| /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to |
| * tell which kind we're dealing with, so we send the abort both ways. There |
| * shouldn't be any collisions between swizzled and unswizzled tags due to the |
| * way we construct our tags but we check anyway in case the assumptions which |
| * make this true someday become false. |
| */ |
| static int hpsa_send_abort_both_ways(struct ctlr_info *h, |
| unsigned char *scsi3addr, struct CommandList *abort) |
| { |
| u8 swizzled_tag[8]; |
| struct CommandList *c; |
| int rc = 0, rc2 = 0; |
| |
| /* we do not expect to find the swizzled tag in our queue, but |
| * check anyway just to be sure the assumptions which make this |
| * the case haven't become wrong. |
| */ |
| memcpy(swizzled_tag, &abort->Request.CDB[4], 8); |
| swizzle_abort_tag(swizzled_tag); |
| c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); |
| if (c != NULL) { |
| dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); |
| return hpsa_send_abort(h, scsi3addr, abort, 0); |
| } |
| rc = hpsa_send_abort(h, scsi3addr, abort, 0); |
| |
| /* if the command is still in our queue, we can't conclude that it was |
| * aborted (it might have just completed normally) but in any case |
| * we don't need to try to abort it another way. |
| */ |
| c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); |
| if (c) |
| rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); |
| return rc && rc2; |
| } |
| |
| /* Send an abort for the specified command. |
| * If the device and controller support it, |
| * send a task abort request. |
| */ |
| static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) |
| { |
| |
| int i, rc; |
| struct ctlr_info *h; |
| struct hpsa_scsi_dev_t *dev; |
| struct CommandList *abort; /* pointer to command to be aborted */ |
| struct CommandList *found; |
| struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ |
| char msg[256]; /* For debug messaging. */ |
| int ml = 0; |
| u32 tagupper, taglower; |
| |
| /* Find the controller of the command to be aborted */ |
| h = sdev_to_hba(sc->device); |
| if (WARN(h == NULL, |
| "ABORT REQUEST FAILED, Controller lookup failed.\n")) |
| return FAILED; |
| |
| /* Check that controller supports some kind of task abort */ |
| if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && |
| !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) |
| return FAILED; |
| |
| memset(msg, 0, sizeof(msg)); |
| ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ", |
| h->scsi_host->host_no, sc->device->channel, |
| sc->device->id, sc->device->lun); |
| |
| /* Find the device of the command to be aborted */ |
| dev = sc->device->hostdata; |
| if (!dev) { |
| dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", |
| msg); |
| return FAILED; |
| } |
| |
| /* Get SCSI command to be aborted */ |
| abort = (struct CommandList *) sc->host_scribble; |
| if (abort == NULL) { |
| dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", |
| msg); |
| return FAILED; |
| } |
| hpsa_get_tag(h, abort, &taglower, &tagupper); |
| ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); |
| as = (struct scsi_cmnd *) abort->scsi_cmd; |
| if (as != NULL) |
| ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", |
| as->cmnd[0], as->serial_number); |
| dev_dbg(&h->pdev->dev, "%s\n", msg); |
| dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", |
| h->scsi_host->host_no, dev->bus, dev->target, dev->lun); |
| |
| /* Search reqQ to See if command is queued but not submitted, |
| * if so, complete the command with aborted status and remove |
| * it from the reqQ. |
| */ |
| found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); |
| if (found) { |
| found->err_info->CommandStatus = CMD_ABORTED; |
| finish_cmd(found); |
| dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", |
| msg); |
| return SUCCESS; |
| } |
| |
| /* not in reqQ, if also not in cmpQ, must have already completed */ |
| found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); |
| if (!found) { |
| dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n", |
| msg); |
| return SUCCESS; |
| } |
| |
| /* |
| * Command is in flight, or possibly already completed |
| * by the firmware (but not to the scsi mid layer) but we can't |
| * distinguish which. Send the abort down. |
| */ |
| rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); |
| if (rc != 0) { |
| dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); |
| dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", |
| h->scsi_host->host_no, |
| dev->bus, dev->target, dev->lun); |
| return FAILED; |
| } |
| dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); |
| |
| /* If the abort(s) above completed and actually aborted the |
| * command, then the command to be aborted should already be |
| * completed. If not, wait around a bit more to see if they |
| * manage to complete normally. |
| */ |
| #define ABORT_COMPLETE_WAIT_SECS 30 |
| for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { |
| found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); |
| if (!found) |
| return SUCCESS; |
| msleep(100); |
| } |
| dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", |
| msg, ABORT_COMPLETE_WAIT_SECS); |
| return FAILED; |
| } |
| |
| |
| /* |
| * For operations that cannot sleep, a command block is allocated at init, |
| * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
| * which ones are free or in use. Lock must be held when calling this. |
| * cmd_free() is the complement. |
| */ |
| static struct CommandList *cmd_alloc(struct ctlr_info *h) |
| { |
| struct CommandList *c; |
| int i; |
| union u64bit temp64; |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| do { |
| i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); |
| if (i == h->nr_cmds) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return NULL; |
| } |
| } while (test_and_set_bit |
| (i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| c = h->cmd_pool + i; |
| memset(c, 0, sizeof(*c)); |
| cmd_dma_handle = h->cmd_pool_dhandle |
| + i * sizeof(*c); |
| c->err_info = h->errinfo_pool + i; |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| err_dma_handle = h->errinfo_pool_dhandle |
| + i * sizeof(*c->err_info); |
| |
| c->cmdindex = i; |
| |
| INIT_LIST_HEAD(&c->list); |
| c->busaddr = (u32) cmd_dma_handle; |
| temp64.val = (u64) err_dma_handle; |
| c->ErrDesc.Addr.lower = temp64.val32.lower; |
| c->ErrDesc.Addr.upper = temp64.val32.upper; |
| c->ErrDesc.Len = sizeof(*c->err_info); |
| |
| c->h = h; |
| return c; |
| } |
| |
| /* For operations that can wait for kmalloc to possibly sleep, |
| * this routine can be called. Lock need not be held to call |
| * cmd_special_alloc. cmd_special_free() is the complement. |
| */ |
| static struct CommandList *cmd_special_alloc(struct ctlr_info *h) |
| { |
| struct CommandList *c; |
| union u64bit temp64; |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| |
| c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); |
| if (c == NULL) |
| return NULL; |
| memset(c, 0, sizeof(*c)); |
| |
| c->cmd_type = CMD_SCSI; |
| c->cmdindex = -1; |
| |
| c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), |
| &err_dma_handle); |
| |
| if (c->err_info == NULL) { |
| pci_free_consistent(h->pdev, |
| sizeof(*c), c, cmd_dma_handle); |
| return NULL; |
| } |
| memset(c->err_info, 0, sizeof(*c->err_info)); |
| |
| INIT_LIST_HEAD(&c->list); |
| c->busaddr = (u32) cmd_dma_handle; |
| temp64.val = (u64) err_dma_handle; |
| c->ErrDesc.Addr.lower = temp64.val32.lower; |
| c->ErrDesc.Addr.upper = temp64.val32.upper; |
| c->ErrDesc.Len = sizeof(*c->err_info); |
| |
| c->h = h; |
| return c; |
| } |
| |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c) |
| { |
| int i; |
| unsigned long flags; |
| |
| i = c - h->cmd_pool; |
| spin_lock_irqsave(&h->lock, flags); |
| clear_bit(i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) |
| { |
| union u64bit temp64; |
| |
| temp64.val32.lower = c->ErrDesc.Addr.lower; |
| temp64.val32.upper = c->ErrDesc.Addr.upper; |
| pci_free_consistent(h->pdev, sizeof(*c->err_info), |
| c->err_info, (dma_addr_t) temp64.val); |
| pci_free_consistent(h->pdev, sizeof(*c), |
| c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) |
| { |
| IOCTL32_Command_struct __user *arg32 = |
| (IOCTL32_Command_struct __user *) arg; |
| IOCTL_Command_struct arg64; |
| IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); |
| if (err) |
| return err; |
| err |= copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, |
| int cmd, void *arg) |
| { |
| BIG_IOCTL32_Command_struct __user *arg32 = |
| (BIG_IOCTL32_Command_struct __user *) arg; |
| BIG_IOCTL_Command_struct arg64; |
| BIG_IOCTL_Command_struct __user *p = |
| compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); |
| if (err) |
| return err; |
| err |= copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) |
| { |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| case CCISS_GETINTINFO: |
| case CCISS_SETINTINFO: |
| case CCISS_GETNODENAME: |
| case CCISS_SETNODENAME: |
| case CCISS_GETHEARTBEAT: |
| case CCISS_GETBUSTYPES: |
| case CCISS_GETFIRMVER: |
| case CCISS_GETDRIVVER: |
| case CCISS_REVALIDVOLS: |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| case CCISS_RESCANDISK: |
| case CCISS_GETLUNINFO: |
| return hpsa_ioctl(dev, cmd, arg); |
| |
| case CCISS_PASSTHRU32: |
| return hpsa_ioctl32_passthru(dev, cmd, arg); |
| case CCISS_BIG_PASSTHRU32: |
| return hpsa_ioctl32_big_passthru(dev, cmd, arg); |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| #endif |
| |
| static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| struct hpsa_pci_info pciinfo; |
| |
| if (!argp) |
| return -EINVAL; |
| pciinfo.domain = pci_domain_nr(h->pdev->bus); |
| pciinfo.bus = h->pdev->bus->number; |
| pciinfo.dev_fn = h->pdev->devfn; |
| pciinfo.board_id = h->board_id; |
| if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| DriverVer_type DriverVer; |
| unsigned char vmaj, vmin, vsubmin; |
| int rc; |
| |
| rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", |
| &vmaj, &vmin, &vsubmin); |
| if (rc != 3) { |
| dev_info(&h->pdev->dev, "driver version string '%s' " |
| "unrecognized.", HPSA_DRIVER_VERSION); |
| vmaj = 0; |
| vmin = 0; |
| vsubmin = 0; |
| } |
| DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; |
| if (!argp) |
| return -EINVAL; |
| if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| IOCTL_Command_struct iocommand; |
| struct CommandList *c; |
| char *buff = NULL; |
| union u64bit temp64; |
| int rc = 0; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| if (copy_from_user(&iocommand, argp, sizeof(iocommand))) |
| return -EFAULT; |
| if ((iocommand.buf_size < 1) && |
| (iocommand.Request.Type.Direction != XFER_NONE)) { |
| return -EINVAL; |
| } |
| if (iocommand.buf_size > 0) { |
| buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
| if (buff == NULL) |
| return -EFAULT; |
| if (iocommand.Request.Type.Direction == XFER_WRITE) { |
| /* Copy the data into the buffer we created */ |
| if (copy_from_user(buff, iocommand.buf, |
| iocommand.buf_size)) { |
| rc = -EFAULT; |
| goto out_kfree; |
| } |
| } else { |
| memset(buff, 0, iocommand.buf_size); |
| } |
| } |
| c = cmd_special_alloc(h); |
| if (c == NULL) { |
| rc = -ENOMEM; |
| goto out_kfree; |
| } |
| /* Fill in the command type */ |
| c->cmd_type = CMD_IOCTL_PEND; |
| /* Fill in Command Header */ |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| if (iocommand.buf_size > 0) { /* buffer to fill */ |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else { /* no buffers to fill */ |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); |
| /* use the kernel address the cmd block for tag */ |
| c->Header.Tag.lower = c->busaddr; |
| |
| /* Fill in Request block */ |
| memcpy(&c->Request, &iocommand.Request, |
| sizeof(c->Request)); |
| |
| /* Fill in the scatter gather information */ |
| if (iocommand.buf_size > 0) { |
| temp64.val = pci_map_single(h->pdev, buff, |
| iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(&h->pdev->dev, temp64.val)) { |
| c->SG[0].Addr.lower = 0; |
| c->SG[0].Addr.upper = 0; |
| c->SG[0].Len = 0; |
| rc = -ENOMEM; |
| goto out; |
| } |
| c->SG[0].Addr.lower = temp64.val32.lower; |
| c->SG[0].Addr.upper = temp64.val32.upper; |
| c->SG[0].Len = iocommand.buf_size; |
| c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/ |
| } |
| hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); |
| if (iocommand.buf_size > 0) |
| hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); |
| check_ioctl_unit_attention(h, c); |
| |
| /* Copy the error information out */ |
| memcpy(&iocommand.error_info, c->err_info, |
| sizeof(iocommand.error_info)); |
| if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { |
| rc = -EFAULT; |
| goto out; |
| } |
| if (iocommand.Request.Type.Direction == XFER_READ && |
| iocommand.buf_size > 0) { |
| /* Copy the data out of the buffer we created */ |
| if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
| rc = -EFAULT; |
| goto out; |
| } |
| } |
| out: |
| cmd_special_free(h, c); |
| out_kfree: |
| kfree(buff); |
| return rc; |
| } |
| |
| static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| { |
| BIG_IOCTL_Command_struct *ioc; |
| struct CommandList *c; |
| unsigned char **buff = NULL; |
| int *buff_size = NULL; |
| union u64bit temp64; |
| BYTE sg_used = 0; |
| int status = 0; |
| int i; |
| u32 left; |
| u32 sz; |
| BYTE __user *data_ptr; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| ioc = (BIG_IOCTL_Command_struct *) |
| kmalloc(sizeof(*ioc), GFP_KERNEL); |
| if (!ioc) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if ((ioc->buf_size < 1) && |
| (ioc->Request.Type.Direction != XFER_NONE)) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| /* Check kmalloc limits using all SGs */ |
| if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); |
| if (!buff) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); |
| if (!buff_size) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| left = ioc->buf_size; |
| data_ptr = ioc->buf; |
| while (left) { |
| sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
| buff_size[sg_used] = sz; |
| buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
| if (buff[sg_used] == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction == XFER_WRITE) { |
| if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| } else |
| memset(buff[sg_used], 0, sz); |
| left -= sz; |
| data_ptr += sz; |
| sg_used++; |
| } |
| c = cmd_special_alloc(h); |
| if (c == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| c->Header.SGList = c->Header.SGTotal = sg_used; |
| memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); |
| c->Header.Tag.lower = c->busaddr; |
| memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); |
| if (ioc->buf_size > 0) { |
| int i; |
| for (i = 0; i < sg_used; i++) { |
| temp64.val = pci_map_single(h->pdev, buff[i], |
| buff_size[i], PCI_DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(&h->pdev->dev, temp64.val)) { |
| c->SG[i].Addr.lower = 0; |
| c->SG[i].Addr.upper = 0; |
| c->SG[i].Len = 0; |
| hpsa_pci_unmap(h->pdev, c, i, |
| PCI_DMA_BIDIRECTIONAL); |
| status = -ENOMEM; |
| goto cleanup0; |
| } |
| c->SG[i].Addr.lower = temp64.val32.lower; |
| c->SG[i].Addr.upper = temp64.val32.upper; |
| c->SG[i].Len = buff_size[i]; |
| c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST; |
| } |
| } |
| hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); |
| if (sg_used) |
| hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); |
| check_ioctl_unit_attention(h, c); |
| /* Copy the error information out */ |
| memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); |
| if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup0; |
| } |
| if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { |
| /* Copy the data out of the buffer we created */ |
| BYTE __user *ptr = ioc->buf; |
| for (i = 0; i < sg_used; i++) { |
| if (copy_to_user(ptr, buff[i], buff_size[i])) { |
| status = -EFAULT; |
| goto cleanup0; |
| } |
| ptr += buff_size[i]; |
| } |
| } |
| status = 0; |
| cleanup0: |
| cmd_special_free(h, c); |
| cleanup1: |
| if (buff) { |
| for (i = 0; i < sg_used; i++) |
| kfree(buff[i]); |
| kfree(buff); |
| } |
| kfree(buff_size); |
| kfree(ioc); |
| return status; |
| } |
| |
| static void check_ioctl_unit_attention(struct ctlr_info *h, |
| struct CommandList *c) |
| { |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
| (void) check_for_unit_attention(h, c); |
| } |
| |
| static int increment_passthru_count(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->passthru_count_lock, flags); |
| if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) { |
| spin_unlock_irqrestore(&h->passthru_count_lock, flags); |
| return -1; |
| } |
| h->passthru_count++; |
| spin_unlock_irqrestore(&h->passthru_count_lock, flags); |
| return 0; |
| } |
| |
| static void decrement_passthru_count(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->passthru_count_lock, flags); |
| if (h->passthru_count <= 0) { |
| spin_unlock_irqrestore(&h->passthru_count_lock, flags); |
| /* not expecting to get here. */ |
| dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n"); |
| return; |
| } |
| h->passthru_count--; |
| spin_unlock_irqrestore(&h->passthru_count_lock, flags); |
| } |
| |
| /* |
| * ioctl |
| */ |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) |
| { |
| struct ctlr_info *h; |
| void __user *argp = (void __user *)arg; |
| int rc; |
| |
| h = sdev_to_hba(dev); |
| |
| switch (cmd) { |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| hpsa_scan_start(h->scsi_host); |
| return 0; |
| case CCISS_GETPCIINFO: |
| return hpsa_getpciinfo_ioctl(h, argp); |
| case CCISS_GETDRIVVER: |
| return hpsa_getdrivver_ioctl(h, argp); |
| case CCISS_PASSTHRU: |
| if (increment_passthru_count(h)) |
| return -EAGAIN; |
| rc = hpsa_passthru_ioctl(h, argp); |
| decrement_passthru_count(h); |
| return rc; |
| case CCISS_BIG_PASSTHRU: |
| if (increment_passthru_count(h)) |
| return -EAGAIN; |
| rc = hpsa_big_passthru_ioctl(h, argp); |
| decrement_passthru_count(h); |
| return rc; |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, |
| u8 reset_type) |
| { |
| struct CommandList *c; |
| |
| c = cmd_alloc(h); |
| if (!c) |
| return -ENOMEM; |
| /* fill_cmd can't fail here, no data buffer to map */ |
| (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, |
| RAID_CTLR_LUNID, TYPE_MSG); |
| c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ |
| c->waiting = NULL; |
| enqueue_cmd_and_start_io(h, c); |
| /* Don't wait for completion, the reset won't complete. Don't free |
| * the command either. This is the last command we will send before |
| * re-initializing everything, so it doesn't matter and won't leak. |
| */ |
| return 0; |
| } |
| |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
| void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, |
| int cmd_type) |
| { |
| int pci_dir = XFER_NONE; |
| struct CommandList *a; /* for commands to be aborted */ |
| |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| if (buff != NULL && size > 0) { |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.Tag.lower = c->busaddr; |
| memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
| |
| c->Request.Type.Type = cmd_type; |
| if (cmd_type == TYPE_CMD) { |
| switch (cmd) { |
| case HPSA_INQUIRY: |
| /* are we trying to read a vital product page */ |
| if (page_code != 0) { |
| c->Request.CDB[1] = 0x01; |
| c->Request.CDB[2] = page_code; |
| } |
| c->Request.CDBLen = 6; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = HPSA_INQUIRY; |
| c->Request.CDB[4] = size & 0xFF; |
| break; |
| case HPSA_REPORT_LOG: |
| case HPSA_REPORT_PHYS: |
| /* Talking to controller so It's a physical command |
| mode = 00 target = 0. Nothing to write. |
| */ |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| case HPSA_CACHE_FLUSH: |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_WRITE; |
| c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
| c->Request.CDB[7] = (size >> 8) & 0xFF; |
| c->Request.CDB[8] = size & 0xFF; |
| break; |
| case TEST_UNIT_READY: |
| c->Request.CDBLen = 6; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_NONE; |
| c->Request.Timeout = 0; |
| break; |
| case HPSA_GET_RAID_MAP: |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = HPSA_CISS_READ; |
| c->Request.CDB[1] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); |
| BUG(); |
| return -1; |
| } |
| } else if (cmd_type == TYPE_MSG) { |
| switch (cmd) { |
| |
| case HPSA_DEVICE_RESET_MSG: |
| c->Request.CDBLen = 16; |
| c->Request.Type.Type = 1; /* It is a MSG not a CMD */ |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_NONE; |
| c->Request.Timeout = 0; /* Don't time out */ |
| memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; |
| /* If bytes 4-7 are zero, it means reset the */ |
| /* LunID device */ |
| c->Request.CDB[4] = 0x00; |
| c->Request.CDB[5] = 0x00; |
| c->Request.CDB[6] = 0x00; |
| c->Request.CDB[7] = 0x00; |
| break; |
| case HPSA_ABORT_MSG: |
| a = buff; /* point to command to be aborted */ |
| dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n", |
| a->Header.Tag.upper, a->Header.Tag.lower, |
| c->Header.Tag.upper, c->Header.Tag.lower); |
| c->Request.CDBLen = 16; |
| c->Request.Type.Type = TYPE_MSG; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; /* Don't time out */ |
| c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; |
| c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; |
| c->Request.CDB[2] = 0x00; /* reserved */ |
| c->Request.CDB[3] = 0x00; /* reserved */ |
| /* Tag to abort goes in CDB[4]-CDB[11] */ |
| c->Request.CDB[4] = a->Header.Tag.lower & 0xFF; |
| c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF; |
| c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF; |
| c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF; |
| c->Request.CDB[8] = a->Header.Tag.upper & 0xFF; |
| c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF; |
| c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF; |
| c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF; |
| c->Request.CDB[12] = 0x00; /* reserved */ |
| c->Request.CDB[13] = 0x00; /* reserved */ |
| c->Request.CDB[14] = 0x00; /* reserved */ |
| c->Request.CDB[15] = 0x00; /* reserved */ |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "unknown message type %d\n", |
| cmd); |
| BUG(); |
| } |
| } else { |
| dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
| BUG(); |
| } |
| |
| switch (c->Request.Type.Direction) { |
| case XFER_READ: |
| pci_dir = PCI_DMA_FROMDEVICE; |
| break; |
| case XFER_WRITE: |
| pci_dir = PCI_DMA_TODEVICE; |
| break; |
| case XFER_NONE: |
| pci_dir = PCI_DMA_NONE; |
| break; |
| default: |
| pci_dir = PCI_DMA_BIDIRECTIONAL; |
| } |
| if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) |
| return -1; |
| return 0; |
| } |
| |
| /* |
| * Map (physical) PCI mem into (virtual) kernel space |
| */ |
| static void __iomem *remap_pci_mem(ulong base, ulong size) |
| { |
| ulong page_base = ((ulong) base) & PAGE_MASK; |
| ulong page_offs = ((ulong) base) - page_base; |
| void __iomem *page_remapped = ioremap_nocache(page_base, |
| page_offs + size); |
| |
| return page_remapped ? (page_remapped + page_offs) : NULL; |
| } |
| |
| /* Takes cmds off the submission queue and sends them to the hardware, |
| * then puts them on the queue of cmds waiting for completion. |
| */ |
| static void start_io(struct ctlr_info *h) |
| { |
| struct CommandList *c; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| while (!list_empty(&h->reqQ)) { |
| c = list_entry(h->reqQ.next, struct CommandList, list); |
| /* can't do anything if fifo is full */ |
| if ((h->access.fifo_full(h))) { |
| h->fifo_recently_full = 1; |
| dev_warn(&h->pdev->dev, "fifo full\n"); |
| break; |
| } |
| h->fifo_recently_full = 0; |
| |
| /* Get the first entry from the Request Q */ |
| removeQ(c); |
| h->Qdepth--; |
| |
| /* Put job onto the completed Q */ |
| addQ(&h->cmpQ, c); |
| |
| /* Must increment commands_outstanding before unlocking |
| * and submitting to avoid race checking for fifo full |
| * condition. |
| */ |
| h->commands_outstanding++; |
| if (h->commands_outstanding > h->max_outstanding) |
| h->max_outstanding = h->commands_outstanding; |
| |
| /* Tell the controller execute command */ |
| spin_unlock_irqrestore(&h->lock, flags); |
| h->access.submit_command(h, c); |
| spin_lock_irqsave(&h->lock, flags); |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) |
| { |
| return h->access.command_completed(h, q); |
| } |
| |
| static inline bool interrupt_pending(struct ctlr_info *h) |
| { |
| return h->access.intr_pending(h); |
| } |
| |
| static inline long interrupt_not_for_us(struct ctlr_info *h) |
| { |
| return (h->access.intr_pending(h) == 0) || |
| (h->interrupts_enabled == 0); |
| } |
| |
| static inline int bad_tag(struct ctlr_info *h, u32 tag_index, |
| u32 raw_tag) |
| { |
| if (unlikely(tag_index >= h->nr_cmds)) { |
| dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void finish_cmd(struct CommandList *c) |
| { |
| unsigned long flags; |
| int io_may_be_stalled = 0; |
| struct ctlr_info *h = c->h; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| removeQ(c); |
| |
| /* |
| * Check for possibly stalled i/o. |
| * |
| * If a fifo_full condition is encountered, requests will back up |
| * in h->reqQ. This queue is only emptied out by start_io which is |
| * only called when a new i/o request comes in. If no i/o's are |
| * forthcoming, the i/o's in h->reqQ can get stuck. So we call |
| * start_io from here if we detect such a danger. |
| * |
| * Normally, we shouldn't hit this case, but pounding on the |
| * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if |
| * commands_outstanding is low. We want to avoid calling |
| * start_io from in here as much as possible, and esp. don't |
| * want to get in a cycle where we call start_io every time |
| * through here. |
| */ |
| if (unlikely(h->fifo_recently_full) && |
| h->commands_outstanding < 5) |
| io_may_be_stalled = 1; |
| |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| dial_up_lockup_detection_on_fw_flash_complete(c->h, c); |
| if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI)) |
| complete_scsi_command(c); |
| else if (c->cmd_type == CMD_IOCTL_PEND) |
| complete(c->waiting); |
| if (unlikely(io_may_be_stalled)) |
| start_io(h); |
| } |
| |
| static inline u32 hpsa_tag_contains_index(u32 tag) |
| { |
| return tag & DIRECT_LOOKUP_BIT; |
| } |
| |
| static inline u32 hpsa_tag_to_index(u32 tag) |
| { |
| return tag >> DIRECT_LOOKUP_SHIFT; |
| } |
| |
| |
| static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) |
| { |
| #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) |
| #define HPSA_SIMPLE_ERROR_BITS 0x03 |
| if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
| return tag & ~HPSA_SIMPLE_ERROR_BITS; |
| return tag & ~HPSA_PERF_ERROR_BITS; |
| } |
| |
| /* process completion of an indexed ("direct lookup") command */ |
| static inline void process_indexed_cmd(struct ctlr_info *h, |
| u32 raw_tag) |
| { |
| u32 tag_index; |
| struct CommandList *c; |
| |
| tag_index = hpsa_tag_to_index(raw_tag); |
| if (!bad_tag(h, tag_index, raw_tag)) { |
| c = h->cmd_pool + tag_index; |
| finish_cmd(c); |
| } |
| } |
| |
| /* process completion of a non-indexed command */ |
| static inline void process_nonindexed_cmd(struct ctlr_info *h, |
| u32 raw_tag) |
| { |
| u32 tag; |
| struct CommandList *c = NULL; |
| unsigned long flags; |
| |
| tag = hpsa_tag_discard_error_bits(h, raw_tag); |
| spin_lock_irqsave(&h->lock, flags); |
| list_for_each_entry(c, &h->cmpQ, list) { |
| if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| finish_cmd(c); |
| return; |
| } |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| bad_tag(h, h->nr_cmds + 1, raw_tag); |
| } |
| |
| /* Some controllers, like p400, will give us one interrupt |
| * after a soft reset, even if we turned interrupts off. |
| * Only need to check for this in the hpsa_xxx_discard_completions |
| * functions. |
| */ |
| static int ignore_bogus_interrupt(struct ctlr_info *h) |
| { |
| if (likely(!reset_devices)) |
| return 0; |
| |
| if (likely(h->interrupts_enabled)) |
| return 0; |
| |
| dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " |
| "(known firmware bug.) Ignoring.\n"); |
| |
| return 1; |
| } |
| |
| /* |
| * Convert &h->q[x] (passed to interrupt handlers) back to h. |
| * Relies on (h-q[x] == x) being true for x such that |
| * 0 <= x < MAX_REPLY_QUEUES. |
| */ |
| static struct ctlr_info *queue_to_hba(u8 *queue) |
| { |
| return container_of((queue - *queue), struct ctlr_info, q[0]); |
| } |
| |
| static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u8 q = *(u8 *) queue; |
| u32 raw_tag; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| h->last_intr_timestamp = get_jiffies_64(); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h, q); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| h->last_intr_timestamp = get_jiffies_64(); |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h, q); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba((u8 *) queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| h->last_intr_timestamp = get_jiffies_64(); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) { |
| if (likely(hpsa_tag_contains_index(raw_tag))) |
| process_indexed_cmd(h, raw_tag); |
| else |
| process_nonindexed_cmd(h, raw_tag); |
| raw_tag = next_command(h, q); |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) |
| { |
| struct ctlr_info *h = queue_to_hba(queue); |
| u32 raw_tag; |
| u8 q = *(u8 *) queue; |
| |
| h->last_intr_timestamp = get_jiffies_64(); |
| raw_tag = get_next_completion(h, q); |
| while (raw_tag != FIFO_EMPTY) { |
| if (likely(hpsa_tag_contains_index(raw_tag))) |
| process_indexed_cmd(h, raw_tag); |
| else |
| process_nonindexed_cmd(h, raw_tag); |
| raw_tag = next_command(h, q); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* Send a message CDB to the firmware. Careful, this only works |
| * in simple mode, not performant mode due to the tag lookup. |
| * We only ever use this immediately after a controller reset. |
| */ |
| static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, |
| unsigned char type) |
| { |
| struct Command { |
| struct CommandListHeader CommandHeader; |
| struct RequestBlock Request; |
| struct ErrDescriptor ErrorDescriptor; |
| }; |
| struct Command *cmd; |
| static const size_t cmd_sz = sizeof(*cmd) + |
| sizeof(cmd->ErrorDescriptor); |
| dma_addr_t paddr64; |
| uint32_t paddr32, tag; |
| void __iomem *vaddr; |
| int i, err; |
| |
| vaddr = pci_ioremap_bar(pdev, 0); |
| if (vaddr == NULL) |
| return -ENOMEM; |
| |
| /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
| * CCISS commands, so they must be allocated from the lower 4GiB of |
| * memory. |
| */ |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
| if (cmd == NULL) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| /* This must fit, because of the 32-bit consistent DMA mask. Also, |
| * although there's no guarantee, we assume that the address is at |
| * least 4-byte aligned (most likely, it's page-aligned). |
| */ |
| paddr32 = paddr64; |
| |
| cmd->CommandHeader.ReplyQueue = 0; |
| cmd->CommandHeader.SGList = 0; |
| cmd->CommandHeader.SGTotal = 0; |
| cmd->CommandHeader.Tag.lower = paddr32; |
| cmd->CommandHeader.Tag.upper = 0; |
| memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
| |
| cmd->Request.CDBLen = 16; |
| cmd->Request.Type.Type = TYPE_MSG; |
| cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; |
| cmd->Request.Type.Direction = XFER_NONE; |
| cmd->Request.Timeout = 0; /* Don't time out */ |
| cmd->Request.CDB[0] = opcode; |
| cmd->Request.CDB[1] = type; |
| memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ |
| cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); |
| cmd->ErrorDescriptor.Addr.upper = 0; |
| cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); |
| |
| writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); |
| |
| for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { |
| tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
| if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) |
| break; |
| msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); |
| } |
| |
| iounmap(vaddr); |
| |
| /* we leak the DMA buffer here ... no choice since the controller could |
| * still complete the command. |
| */ |
| if (i == HPSA_MSG_SEND_RETRY_LIMIT) { |
| dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", |
| opcode, type); |
| return -ETIMEDOUT; |
| } |
| |
| pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
| |
| if (tag & HPSA_ERROR_BIT) { |
| dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
| opcode, type); |
| return -EIO; |
| } |
| |
| dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
| opcode, type); |
| return 0; |
| } |
| |
| #define hpsa_noop(p) hpsa_message(p, 3, 0) |
| |
| static int hpsa_controller_hard_reset(struct pci_dev *pdev, |
| void * __iomem vaddr, u32 use_doorbell) |
| { |
| u16 pmcsr; |
| int pos; |
| |
| if (use_doorbell) { |
| /* For everything after the P600, the PCI power state method |
| * of resetting the controller doesn't work, so we have this |
| * other way using the doorbell register. |
| */ |
| dev_info(&pdev->dev, "using doorbell to reset controller\n"); |
| writel(use_doorbell, vaddr + SA5_DOORBELL); |
| |
| /* PMC hardware guys tell us we need a 5 second delay after |
| * doorbell reset and before any attempt to talk to the board |
| * at all to ensure that this actually works and doesn't fall |
| * over in some weird corner cases. |
| */ |
| msleep(5000); |
| } else { /* Try to do it the PCI power state way */ |
| |
| /* Quoting from the Open CISS Specification: "The Power |
| * Management Control/Status Register (CSR) controls the power |
| * state of the device. The normal operating state is D0, |
| * CSR=00h. The software off state is D3, CSR=03h. To reset |
| * the controller, place the interface device in D3 then to D0, |
| * this causes a secondary PCI reset which will reset the |
| * controller." */ |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (pos == 0) { |
| dev_err(&pdev->dev, |
| "hpsa_reset_controller: " |
| "PCI PM not supported\n"); |
| return -ENODEV; |
| } |
| dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
| /* enter the D3hot power management state */ |
| pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D3hot; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| msleep(500); |
| |
| /* enter the D0 power management state */ |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D0; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| /* |
| * The P600 requires a small delay when changing states. |
| * Otherwise we may think the board did not reset and we bail. |
| * This for kdump only and is particular to the P600. |
| */ |
| msleep(500); |
| } |
| return 0; |
| } |
| |
| static void init_driver_version(char *driver_version, int len) |
| { |
| memset(driver_version, 0, len); |
| strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); |
| } |
| |
| static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) |
| { |
| char *driver_version; |
| int i, size = sizeof(cfgtable->driver_version); |
| |
| driver_version = kmalloc(size, GFP_KERNEL); |
| if (!driver_version) |
| return -ENOMEM; |
| |
| init_driver_version(driver_version, size); |
| for (i = 0; i < size; i++) |
| writeb(driver_version[i], &cfgtable->driver_version[i]); |
| kfree(driver_version); |
| return 0; |
| } |
| |
| static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, |
| unsigned char *driver_ver) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(cfgtable->driver_version); i++) |
| driver_ver[i] = readb(&cfgtable->driver_version[i]); |
| } |
| |
| static int controller_reset_failed(struct CfgTable __iomem *cfgtable) |
| { |
| |
| char *driver_ver, *old_driver_ver; |
| int rc, size = sizeof(cfgtable->driver_version); |
| |
| old_driver_ver = kmalloc(2 * size, GFP_KERNEL); |
| if (!old_driver_ver) |
| return -ENOMEM; |
| driver_ver = old_driver_ver + size; |
| |
| /* After a reset, the 32 bytes of "driver version" in the cfgtable |
| * should have been changed, otherwise we know the reset failed. |
| */ |
| init_driver_version(old_driver_ver, size); |
| read_driver_ver_from_cfgtable(cfgtable, driver_ver); |
| rc = !memcmp(driver_ver, old_driver_ver, size); |
| kfree(old_driver_ver); |
| return rc; |
| } |
| /* This does a hard reset of the controller using PCI power management |
| * states or the using the doorbell register. |
| */ |
| static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| void __iomem *vaddr; |
| unsigned long paddr; |
| u32 misc_fw_support; |
| int rc; |
| struct CfgTable __iomem *cfgtable; |
| u32 use_doorbell; |
| u32 board_id; |
| u16 command_register; |
| |
| /* For controllers as old as the P600, this is very nearly |
| * the same thing as |
| * |
| * pci_save_state(pci_dev); |
| * pci_set_power_state(pci_dev, PCI_D3hot); |
| * pci_set_power_state(pci_dev, PCI_D0); |
| * pci_restore_state(pci_dev); |
| * |
| * For controllers newer than the P600, the pci power state |
| * method of resetting doesn't work so we have another way |
| * using the doorbell register. |
| */ |
| |
| rc = hpsa_lookup_board_id(pdev, &board_id); |
| if (rc < 0 || !ctlr_is_resettable(board_id)) { |
| dev_warn(&pdev->dev, "Not resetting device.\n"); |
| return -ENODEV; |
| } |
| |
| /* if controller is soft- but not hard resettable... */ |
| if (!ctlr_is_hard_resettable(board_id)) |
| return -ENOTSUPP; /* try soft reset later. */ |
| |
| /* Save the PCI command register */ |
| pci_read_config_word(pdev, 4, &command_register); |
| /* Turn the board off. This is so that later pci_restore_state() |
| * won't turn the board on before the rest of config space is ready. |
| */ |
| pci_disable_device(pdev); |
| pci_save_state(pdev); |
| |
| /* find the first memory BAR, so we can find the cfg table */ |
| rc = hpsa_pci_find_memory_BAR(pdev, &paddr); |
| if (rc) |
| return rc; |
| vaddr = remap_pci_mem(paddr, 0x250); |
| if (!vaddr) |
| return -ENOMEM; |
| |
| /* find cfgtable in order to check if reset via doorbell is supported */ |
| rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| goto unmap_vaddr; |
| cfgtable = remap_pci_mem(pci_resource_start(pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); |
| if (!cfgtable) { |
| rc = -ENOMEM; |
| goto unmap_vaddr; |
| } |
| rc = write_driver_ver_to_cfgtable(cfgtable); |
| if (rc) |
| goto unmap_vaddr; |
| |
| /* If reset via doorbell register is supported, use that. |
| * There are two such methods. Favor the newest method. |
| */ |
| misc_fw_support = readl(&cfgtable->misc_fw_support); |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
| if (use_doorbell) { |
| use_doorbell = DOORBELL_CTLR_RESET2; |
| } else { |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; |
| if (use_doorbell) { |
| dev_warn(&pdev->dev, "Soft reset not supported. " |
| "Firmware update is required.\n"); |
| rc = -ENOTSUPP; /* try soft reset */ |
| goto unmap_cfgtable; |
| } |
| } |
| |
| rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); |
| if (rc) |
| goto unmap_cfgtable; |
| |
| pci_restore_state(pdev); |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_warn(&pdev->dev, "failed to enable device.\n"); |
| goto unmap_cfgtable; |
| } |
| pci_write_config_word(pdev, 4, command_register); |
| |
| /* Some devices (notably the HP Smart Array 5i Controller) |
| need a little pause here */ |
| msleep(HPSA_POST_RESET_PAUSE_MSECS); |
| |
| rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); |
| if (rc) { |
| dev_warn(&pdev->dev, |
| "failed waiting for board to become ready " |
| "after hard reset\n"); |
| goto unmap_cfgtable; |
| } |
| |
| rc = controller_reset_failed(vaddr); |
| if (rc < 0) |
| goto unmap_cfgtable; |
| if (rc) { |
| dev_warn(&pdev->dev, "Unable to successfully reset " |
| "controller. Will try soft reset.\n"); |
| rc = -ENOTSUPP; |
| } else { |
| dev_info(&pdev->dev, "board ready after hard reset.\n"); |
| } |
| |
| unmap_cfgtable: |
| iounmap(cfgtable); |
| |
| unmap_vaddr: |
| iounmap(vaddr); |
| return rc; |
| } |
| |
| /* |
| * We cannot read the structure directly, for portability we must use |
| * the io functions. |
| * This is for debug only. |
| */ |
| static void print_cfg_table(struct device *dev, struct CfgTable *tb) |
| { |
| #ifdef HPSA_DEBUG |
| int i; |
| char temp_name[17]; |
| |
| dev_info(dev, "Controller Configuration information\n"); |
| dev_info(dev, "------------------------------------\n"); |
| for (i = 0; i < 4; i++) |
| temp_name[i] = readb(&(tb->Signature[i])); |
| temp_name[4] = '\0'; |
| dev_info(dev, " Signature = %s\n", temp_name); |
| dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); |
| dev_info(dev, " Transport methods supported = 0x%x\n", |
| readl(&(tb->TransportSupport))); |
| dev_info(dev, " Transport methods active = 0x%x\n", |
| readl(&(tb->TransportActive))); |
| dev_info(dev, " Requested transport Method = 0x%x\n", |
| readl(&(tb->HostWrite.TransportRequest))); |
| dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntDelay))); |
| dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntCount))); |
| dev_info(dev, " Max outstanding commands = 0x%d\n", |
| readl(&(tb->CmdsOutMax))); |
| dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); |
| for (i = 0; i < 16; i++) |
| temp_name[i] = readb(&(tb->ServerName[i])); |
| temp_name[16] = '\0'; |
| dev_info(dev, " Server Name = %s\n", temp_name); |
| dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", |
| readl(&(tb->HeartBeat))); |
| #endif /* HPSA_DEBUG */ |
| } |
| |
| static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
| { |
| int i, offset, mem_type, bar_type; |
| |
| if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
| return 0; |
| offset = 0; |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
| if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
| offset += 4; |
| else { |
| mem_type = pci_resource_flags(pdev, i) & |
| PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
| switch (mem_type) { |
| case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
| offset += 4; /* 32 bit */ |
| break; |
| case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| offset += 8; |
| break; |
| default: /* reserved in PCI 2.2 */ |
| dev_warn(&pdev->dev, |
| "base address is invalid\n"); |
| return -1; |
| break; |
| } |
| } |
| if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
| return i + 1; |
| } |
| return -1; |
| } |
| |
| /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
| * controllers that are capable. If not, we use IO-APIC mode. |
| */ |
| |
| static void hpsa_interrupt_mode(struct ctlr_info *h) |
| { |
| #ifdef CONFIG_PCI_MSI |
| int err, i; |
| struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; |
| |
| for (i = 0; i < MAX_REPLY_QUEUES; i++) { |
| hpsa_msix_entries[i].vector = 0; |
| hpsa_msix_entries[i].entry = i; |
| } |
| |
| /* Some boards advertise MSI but don't really support it */ |
| if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || |
| (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) |
| goto default_int_mode; |
| if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { |
| dev_info(&h->pdev->dev, "MSIX\n"); |
| h->msix_vector = MAX_REPLY_QUEUES; |
| err = pci_enable_msix(h->pdev, hpsa_msix_entries, |
| h->msix_vector); |
| if (err > 0) { |
| dev_warn(&h->pdev->dev, "only %d MSI-X vectors " |
| "available\n", err); |
| h->msix_vector = err; |
| err = pci_enable_msix(h->pdev, hpsa_msix_entries, |
| h->msix_vector); |
| } |
| if (!err) { |
| for (i = 0; i < h->msix_vector; i++) |
| h->intr[i] = hpsa_msix_entries[i].vector; |
| return; |
| } else { |
| dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", |
| err); |
| h->msix_vector = 0; |
| goto default_int_mode; |
| } |
| } |
| if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { |
| dev_info(&h->pdev->dev, "MSI\n"); |
| if (!pci_enable_msi(h->pdev)) |
| h->msi_vector = 1; |
| else |
| dev_warn(&h->pdev->dev, "MSI init failed\n"); |
| } |
| default_int_mode: |
| #endif /* CONFIG_PCI_MSI */ |
| /* if we get here we're going to use the default interrupt mode */ |
| h->intr[h->intr_mode] = h->pdev->irq; |
| } |
| |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) |
| { |
| int i; |
| u32 subsystem_vendor_id, subsystem_device_id; |
| |
| subsystem_vendor_id = pdev->subsystem_vendor; |
| subsystem_device_id = pdev->subsystem_device; |
| *board_id = ((subsystem_device_id << 16) & 0xffff0000) | |
| subsystem_vendor_id; |
| |
| for (i = 0; i < ARRAY_SIZE(products); i++) |
| if (*board_id == products[i].board_id) |
| return i; |
| |
| if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && |
| subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || |
| !hpsa_allow_any) { |
| dev_warn(&pdev->dev, "unrecognized board ID: " |
| "0x%08x, ignoring.\n", *board_id); |
| return -ENODEV; |
| } |
| return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ |
| } |
| |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar) |
| { |
| int i; |
| |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
| if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
| /* addressing mode bits already removed */ |
| *memory_bar = pci_resource_start(pdev, i); |
| dev_dbg(&pdev->dev, "memory BAR = %lx\n", |
| *memory_bar); |
| return 0; |
| } |
| dev_warn(&pdev->dev, "no memory BAR found\n"); |
| return -ENODEV; |
| } |
| |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
| int wait_for_ready) |
| { |
| int i, iterations; |
| u32 scratchpad; |
| if (wait_for_ready) |
| iterations = HPSA_BOARD_READY_ITERATIONS; |
| else |
| iterations = HPSA_BOARD_NOT_READY_ITERATIONS; |
| |
| for (i = 0; i < iterations; i++) { |
| scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); |
| if (wait_for_ready) { |
| if (scratchpad == HPSA_FIRMWARE_READY) |
| return 0; |
| } else { |
| if (scratchpad != HPSA_FIRMWARE_READY) |
| return 0; |
| } |
| msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); |
| } |
| dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
| return -ENODEV; |
| } |
| |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset) |
| { |
| *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); |
| *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); |
| *cfg_base_addr &= (u32) 0x0000ffff; |
| *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); |
| if (*cfg_base_addr_index == -1) { |
| dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int hpsa_find_cfgtables(struct ctlr_info *h) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| u32 trans_offset; |
| int rc; |
| |
| rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| return rc; |
| h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); |
| if (!h->cfgtable) |
| return -ENOMEM; |
| rc = write_driver_ver_to_cfgtable(h->cfgtable); |
| if (rc) |
| return rc; |
| /* Find performant mode table. */ |
| trans_offset = readl(&h->cfgtable->TransMethodOffset); |
| h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index)+cfg_offset+trans_offset, |
| sizeof(*h->transtable)); |
| if (!h->transtable) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) |
| { |
| h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); |
| |
| /* Limit commands in memory limited kdump scenario. */ |
| if (reset_devices && h->max_commands > 32) |
| h->max_commands = 32; |
| |
| if (h->max_commands < 16) { |
| dev_warn(&h->pdev->dev, "Controller reports " |
| "max supported commands of %d, an obvious lie. " |
| "Using 16. Ensure that firmware is up to date.\n", |
| h->max_commands); |
| h->max_commands = 16; |
| } |
| } |
| |
| /* Interrogate the hardware for some limits: |
| * max commands, max SG elements without chaining, and with chaining, |
| * SG chain block size, etc. |
| */ |
| static void hpsa_find_board_params(struct ctlr_info *h) |
| { |
| hpsa_get_max_perf_mode_cmds(h); |
| h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ |
| h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); |
| h->fw_support = readl(&(h->cfgtable->misc_fw_support)); |
| /* |
| * Limit in-command s/g elements to 32 save dma'able memory. |
| * Howvever spec says if 0, use 31 |
| */ |
| h->max_cmd_sg_entries = 31; |
| if (h->maxsgentries > 512) { |
| h->max_cmd_sg_entries = 32; |
| h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; |
| h->maxsgentries--; /* save one for chain pointer */ |
| } else { |
| h->maxsgentries = 31; /* default to traditional values */ |
| h->chainsize = 0; |
| } |
| |
| /* Find out what task management functions are supported and cache */ |
| h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); |
| } |
| |
| static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) |
| { |
| if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { |
| dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) |
| { |
| u32 driver_support; |
| |
| #ifdef CONFIG_X86 |
| /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
| driver_support = readl(&(h->cfgtable->driver_support)); |
| driver_support |= ENABLE_SCSI_PREFETCH; |
| #endif |
| driver_support |= ENABLE_UNIT_ATTN; |
| writel(driver_support, &(h->cfgtable->driver_support)); |
| } |
| |
| /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
| * in a prefetch beyond physical memory. |
| */ |
| static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) |
| { |
| u32 dma_prefetch; |
| |
| if (h->board_id != 0x3225103C) |
| return; |
| dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
| dma_prefetch |= 0x8000; |
| writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
| } |
| |
| static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) |
| { |
| int i; |
| u32 doorbell_value; |
| unsigned long flags; |
| /* wait until the clear_event_notify bit 6 is cleared by controller. */ |
| for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
| spin_lock_irqsave(&h->lock, flags); |
| doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) |
| break; |
| /* delay and try again */ |
| msleep(20); |
| } |
| } |
| |
| static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h) |
| { |
| int i; |
| u32 doorbell_value; |
| unsigned long flags; |
| |
| /* under certain very rare conditions, this can take awhile. |
| * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
| * as we enter this code.) |
| */ |
| for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
| spin_lock_irqsave(&h->lock, flags); |
| doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (!(doorbell_value & CFGTBL_ChangeReq)) |
| break; |
| /* delay and try again */ |
| usleep_range(10000, 20000); |
| } |
| } |
| |
| static int hpsa_enter_simple_mode(struct ctlr_info *h) |
| { |
| u32 trans_support; |
| |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & SIMPLE_MODE)) |
| return -ENOTSUPP; |
| |
| h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
| |
| /* Update the field, and then ring the doorbell */ |
| writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_mode_change_ack(h); |
| print_cfg_table(&h->pdev->dev, h->cfgtable); |
| if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) |
| goto error; |
| h->transMethod = CFGTBL_Trans_Simple; |
| return 0; |
| error: |
| dev_warn(&h->pdev->dev, "unable to get board into simple mode\n"); |
| return -ENODEV; |
| } |
| |
| static int hpsa_pci_init(struct ctlr_info *h) |
| { |
| int prod_index, err; |
| |
| prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); |
| if (prod_index < 0) |
| return -ENODEV; |
| h->product_name = products[prod_index].product_name; |
| h->access = *(products[prod_index].access); |
| |
| pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
| PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); |
| |
| err = pci_enable_device(h->pdev); |
| if (err) { |
| dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); |
| return err; |
| } |
| |
| /* Enable bus mastering (pci_disable_device may disable this) */ |
| pci_set_master(h->pdev); |
| |
| err = pci_request_regions(h->pdev, HPSA); |
| if (err) { |
| dev_err(&h->pdev->dev, |
| "cannot obtain PCI resources, aborting\n"); |
| return err; |
| } |
| hpsa_interrupt_mode(h); |
| err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); |
| if (err) |
| goto err_out_free_res; |
| h->vaddr = remap_pci_mem(h->paddr, 0x250); |
| if (!h->vaddr) { |
| err = -ENOMEM; |
| goto err_out_free_res; |
| } |
| err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
| if (err) |
| goto err_out_free_res; |
| err = hpsa_find_cfgtables(h); |
| if (err) |
| goto err_out_free_res; |
| hpsa_find_board_params(h); |
| |
| if (!hpsa_CISS_signature_present(h)) { |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| hpsa_set_driver_support_bits(h); |
| hpsa_p600_dma_prefetch_quirk(h); |
| err = hpsa_enter_simple_mode(h); |
| if (err) |
| goto err_out_free_res; |
| return 0; |
| |
| err_out_free_res: |
| if (h->transtable) |
| iounmap(h->transtable); |
| if (h->cfgtable) |
| iounmap(h->cfgtable); |
| if (h->vaddr) |
| iounmap(h->vaddr); |
| pci_disable_device(h->pdev); |
| pci_release_regions(h->pdev); |
| return err; |
| } |
| |
| static void hpsa_hba_inquiry(struct ctlr_info *h) |
| { |
| int rc; |
| |
| #define HBA_INQUIRY_BYTE_COUNT 64 |
| h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); |
| if (!h->hba_inquiry_data) |
| return; |
| rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, |
| h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); |
| if (rc != 0) { |
| kfree(h->hba_inquiry_data); |
| h->hba_inquiry_data = NULL; |
| } |
| } |
| |
| static int hpsa_init_reset_devices(struct pci_dev *pdev) |
| { |
| int rc, i; |
| |
| if (!reset_devices) |
| return 0; |
| |
| /* Reset the controller with a PCI power-cycle or via doorbell */ |
| rc = hpsa_kdump_hard_reset_controller(pdev); |
| |
| /* -ENOTSUPP here means we cannot reset the controller |
| * but it's already (and still) up and running in |
| * "performant mode". Or, it might be 640x, which can't reset |
| * due to concerns about shared bbwc between 6402/6404 pair. |
| */ |
| if (rc == -ENOTSUPP) |
| return rc; /* just try to do the kdump anyhow. */ |
| if (rc) |
| return -ENODEV; |
| |
| /* Now try to get the controller to respond to a no-op */ |
| dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
| for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { |
| if (hpsa_noop(pdev) == 0) |
| break; |
| else |
| dev_warn(&pdev->dev, "no-op failed%s\n", |
| (i < 11 ? "; re-trying" : "")); |
| } |
| return 0; |
| } |
| |
| static int hpsa_allocate_cmd_pool(struct ctlr_info *h) |
| { |
| h->cmd_pool_bits = kzalloc( |
| DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * |
| sizeof(unsigned long), GFP_KERNEL); |
| h->cmd_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->cmd_pool), |
| &(h->cmd_pool_dhandle)); |
| h->errinfo_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->errinfo_pool), |
| &(h->errinfo_pool_dhandle)); |
| if ((h->cmd_pool_bits == NULL) |
| || (h->cmd_pool == NULL) |
| || (h->errinfo_pool == NULL)) { |
| dev_err(&h->pdev->dev, "out of memory in %s", __func__); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void hpsa_free_cmd_pool(struct ctlr_info *h) |
| { |
| kfree(h->cmd_pool_bits); |
| if (h->cmd_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct CommandList), |
| h->cmd_pool, h->cmd_pool_dhandle); |
| if (h->errinfo_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct ErrorInfo), |
| h->errinfo_pool, |
| h->errinfo_pool_dhandle); |
| if (h->ioaccel_cmd_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct io_accel1_cmd), |
| h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); |
| } |
| |
| static int hpsa_request_irq(struct ctlr_info *h, |
| irqreturn_t (*msixhandler)(int, void *), |
| irqreturn_t (*intxhandler)(int, void *)) |
| { |
| int rc, i; |
| |
| /* |
| * initialize h->q[x] = x so that interrupt handlers know which |
| * queue to process. |
| */ |
| for (i = 0; i < MAX_REPLY_QUEUES; i++) |
| h->q[i] = (u8) i; |
| |
| if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { |
| /* If performant mode and MSI-X, use multiple reply queues */ |
| for (i = 0; i < h->msix_vector; i++) |
| rc = request_irq(h->intr[i], msixhandler, |
| 0, h->devname, |
| &h->q[i]); |
| } else { |
| /* Use single reply pool */ |
| if (h->msix_vector > 0 || h->msi_vector) { |
| rc = request_irq(h->intr[h->intr_mode], |
| msixhandler, 0, h->devname, |
| &h->q[h->intr_mode]); |
| } else { |
| rc = request_irq(h->intr[h->intr_mode], |
| intxhandler, IRQF_SHARED, h->devname, |
| &h->q[h->intr_mode]); |
| } |
| } |
| if (rc) { |
| dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", |
| h->intr[h->intr_mode], h->devname); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int hpsa_kdump_soft_reset(struct ctlr_info *h) |
| { |
| if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, |
| HPSA_RESET_TYPE_CONTROLLER)) { |
| dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); |
| return -EIO; |
| } |
| |
| dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); |
| if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { |
| dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); |
| return -1; |
| } |
| |
| dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); |
| if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { |
| dev_warn(&h->pdev->dev, "Board failed to become ready " |
| "after soft reset.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void free_irqs(struct ctlr_info *h) |
| { |
| int i; |
| |
| if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { |
| /* Single reply queue, only one irq to free */ |
| i = h->intr_mode; |
| free_irq(h->intr[i], &h->q[i]); |
| return; |
| } |
| |
| for (i = 0; i < h->msix_vector; i++) |
| free_irq(h->intr[i], &h->q[i]); |
| } |
| |
| static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) |
| { |
| free_irqs(h); |
| #ifdef CONFIG_PCI_MSI |
| if (h->msix_vector) { |
| if (h->pdev->msix_enabled) |
| pci_disable_msix(h->pdev); |
| } else if (h->msi_vector) { |
| if (h->pdev->msi_enabled) |
| pci_disable_msi(h->pdev); |
| } |
| #endif /* CONFIG_PCI_MSI */ |
| } |
| |
| static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) |
| { |
| hpsa_free_irqs_and_disable_msix(h); |
| hpsa_free_sg_chain_blocks(h); |
| hpsa_free_cmd_pool(h); |
| kfree(h->ioaccel1_blockFetchTable); |
| kfree(h->blockFetchTable); |
| pci_free_consistent(h->pdev, h->reply_pool_size, |
| h->reply_pool, h->reply_pool_dhandle); |
| if (h->vaddr) |
| iounmap(h->vaddr); |
| if (h->transtable) |
| iounmap(h->transtable); |
| if (h->cfgtable) |
| iounmap(h->cfgtable); |
| pci_release_regions(h->pdev); |
| kfree(h); |
| } |
| |
| /* Called when controller lockup detected. */ |
| static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) |
| { |
| struct CommandList *c = NULL; |
| |
| assert_spin_locked(&h->lock); |
| /* Mark all outstanding commands as failed and complete them. */ |
| while (!list_empty(list)) { |
| c = list_entry(list->next, struct CommandList, list); |
| c->err_info->CommandStatus = CMD_HARDWARE_ERR; |
| finish_cmd(c); |
| } |
| } |
| |
| static void controller_lockup_detected(struct ctlr_info *h) |
| { |
| unsigned long flags; |
| |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| spin_lock_irqsave(&h->lock, flags); |
| h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); |
| spin_unlock_irqrestore(&h->lock, flags); |
| dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", |
| h->lockup_detected); |
| pci_disable_device(h->pdev); |
| spin_lock_irqsave(&h->lock, flags); |
| fail_all_cmds_on_list(h, &h->cmpQ); |
| fail_all_cmds_on_list(h, &h->reqQ); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static void detect_controller_lockup(struct ctlr_info *h) |
| { |
| u64 now; |
| u32 heartbeat; |
| unsigned long flags; |
| |
| now = get_jiffies_64(); |
| /* If we've received an interrupt recently, we're ok. */ |
| if (time_after64(h->last_intr_timestamp + |
| (h->heartbeat_sample_interval), now)) |
| return; |
| |
| /* |
| * If we've already checked the heartbeat recently, we're ok. |
| * This could happen if someone sends us a signal. We |
| * otherwise don't care about signals in this thread. |
| */ |
| if (time_after64(h->last_heartbeat_timestamp + |
| (h->heartbeat_sample_interval), now)) |
| return; |
| |
| /* If heartbeat has not changed since we last looked, we're not ok. */ |
| spin_lock_irqsave(&h->lock, flags); |
| heartbeat = readl(&h->cfgtable->HeartBeat); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (h->last_heartbeat == heartbeat) { |
| controller_lockup_detected(h); |
| return; |
| } |
| |
| /* We're ok. */ |
| h->last_heartbeat = heartbeat; |
| h->last_heartbeat_timestamp = now; |
| } |
| |
| static int hpsa_kickoff_rescan(struct ctlr_info *h) |
| { |
| int i; |
| char *event_type; |
| |
| /* Ask the controller to clear the events we're handling. */ |
| if (h->transMethod & (CFGTBL_Trans_io_accel1) && |
| (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || |
| h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { |
| |
| if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) |
| event_type = "state change"; |
| if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) |
| event_type = "configuration change"; |
| /* Stop sending new RAID offload reqs via the IO accelerator */ |
| scsi_block_requests(h->scsi_host); |
| for (i = 0; i < h->ndevices; i++) |
| h->dev[i]->offload_enabled = 0; |
| hpsa_drain_commands(h); |
| /* Set 'accelerator path config change' bit */ |
| dev_warn(&h->pdev->dev, |
| "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", |
| h->events, event_type); |
| writel(h->events, &(h->cfgtable->clear_event_notify)); |
| /* Set the "clear event notify field update" bit 6 */ |
| writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
| /* Wait until ctlr clears 'clear event notify field', bit 6 */ |
| hpsa_wait_for_clear_event_notify_ack(h); |
| scsi_unblock_requests(h->scsi_host); |
| } else { |
| /* Acknowledge controller notification events. */ |
| writel(h->events, &(h->cfgtable->clear_event_notify)); |
| writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_clear_event_notify_ack(h); |
| #if 0 |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_mode_change_ack(h); |
| #endif |
| } |
| |
| /* Something in the device list may have changed to trigger |
| * the event, so do a rescan. |
| */ |
| hpsa_scan_start(h->scsi_host); |
| /* release reference taken on scsi host in check_controller_events */ |
| scsi_host_put(h->scsi_host); |
| return 0; |
| } |
| |
| /* Check a register on the controller to see if there are configuration |
| * changes (added/changed/removed logical drives, etc.) which mean that |
| * we should rescan the controller for devices. If so, add the controller |
| * to the list of controllers needing to be rescanned, and gets a |
| * reference to the associated scsi_host. |
| */ |
| static void hpsa_ctlr_needs_rescan(struct ctlr_info *h) |
| { |
| if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) |
| return; |
| |
| h->events = readl(&(h->cfgtable->event_notify)); |
| if (!h->events) |
| return; |
| |
| /* |
| * Take a reference on scsi host for the duration of the scan |
| * Release in hpsa_kickoff_rescan(). No lock needed for scan_list |
| * as only a single thread accesses this list. |
| */ |
| scsi_host_get(h->scsi_host); |
| hpsa_kickoff_rescan(h); |
| } |
| |
| static void hpsa_monitor_ctlr_worker(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct ctlr_info *h = container_of(to_delayed_work(work), |
| struct ctlr_info, monitor_ctlr_work); |
| detect_controller_lockup(h); |
| if (h->lockup_detected) |
| return; |
| hpsa_ctlr_needs_rescan(h); |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->remove_in_progress) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return; |
| } |
| schedule_delayed_work(&h->monitor_ctlr_work, |
| h->heartbeat_sample_interval); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| int dac, rc; |
| struct ctlr_info *h; |
| int try_soft_reset = 0; |
| unsigned long flags; |
| |
| if (number_of_controllers == 0) |
| printk(KERN_INFO DRIVER_NAME "\n"); |
| |
| rc = hpsa_init_reset_devices(pdev); |
| if (rc) { |
| if (rc != -ENOTSUPP) |
| return rc; |
| /* If the reset fails in a particular way (it has no way to do |
| * a proper hard reset, so returns -ENOTSUPP) we can try to do |
| * a soft reset once we get the controller configured up to the |
| * point that it can accept a command. |
| */ |
| try_soft_reset = 1; |
| rc = 0; |
| } |
| |
| reinit_after_soft_reset: |
| |
| /* Command structures must be aligned on a 32-byte boundary because |
| * the 5 lower bits of the address are used by the hardware. and by |
| * the driver. See comments in hpsa.h for more info. |
| */ |
| #define COMMANDLIST_ALIGNMENT 128 |
| BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); |
| h = kzalloc(sizeof(*h), GFP_KERNEL); |
| if (!h) |
| return -ENOMEM; |
| |
| h->pdev = pdev; |
| h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
| INIT_LIST_HEAD(&h->cmpQ); |
| INIT_LIST_HEAD(&h->reqQ); |
| spin_lock_init(&h->lock); |
| spin_lock_init(&h->scan_lock); |
| spin_lock_init(&h->passthru_count_lock); |
| rc = hpsa_pci_init(h); |
| if (rc != 0) |
| goto clean1; |
| |
| sprintf(h->devname, HPSA "%d", number_of_controllers); |
| h->ctlr = number_of_controllers; |
| number_of_controllers++; |
| |
| /* configure PCI DMA stuff */ |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (rc == 0) { |
| dac = 1; |
| } else { |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (rc == 0) { |
| dac = 0; |
| } else { |
| dev_err(&pdev->dev, "no suitable DMA available\n"); |
| goto clean1; |
| } |
| } |
| |
| /* make sure the board interrupts are off */ |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| |
| if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) |
| goto clean2; |
| dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", |
| h->devname, pdev->device, |
| h->intr[h->intr_mode], dac ? "" : " not"); |
| if (hpsa_allocate_cmd_pool(h)) |
| goto clean4; |
| if (hpsa_allocate_sg_chain_blocks(h)) |
| goto clean4; |
| init_waitqueue_head(&h->scan_wait_queue); |
| h->scan_finished = 1; /* no scan currently in progress */ |
| |
| pci_set_drvdata(pdev, h); |
| h->ndevices = 0; |
| h->scsi_host = NULL; |
| spin_lock_init(&h->devlock); |
| hpsa_put_ctlr_into_performant_mode(h); |
| |
| /* At this point, the controller is ready to take commands. |
| * Now, if reset_devices and the hard reset didn't work, try |
| * the soft reset and see if that works. |
| */ |
| if (try_soft_reset) { |
| |
| /* This is kind of gross. We may or may not get a completion |
| * from the soft reset command, and if we do, then the value |
| * from the fifo may or may not be valid. So, we wait 10 secs |
| * after the reset throwing away any completions we get during |
| * that time. Unregister the interrupt handler and register |
| * fake ones to scoop up any residual completions. |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| spin_unlock_irqrestore(&h->lock, flags); |
| free_irqs(h); |
| rc = hpsa_request_irq(h, hpsa_msix_discard_completions, |
| hpsa_intx_discard_completions); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Failed to request_irq after " |
| "soft reset.\n"); |
| goto clean4; |
| } |
| |
| rc = hpsa_kdump_soft_reset(h); |
| if (rc) |
| /* Neither hard nor soft reset worked, we're hosed. */ |
| goto clean4; |
| |
| dev_info(&h->pdev->dev, "Board READY.\n"); |
| dev_info(&h->pdev->dev, |
| "Waiting for stale completions to drain.\n"); |
| h->access.set_intr_mask(h, HPSA_INTR_ON); |
| msleep(10000); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| |
| rc = controller_reset_failed(h->cfgtable); |
| if (rc) |
| dev_info(&h->pdev->dev, |
| "Soft reset appears to have failed.\n"); |
| |
| /* since the controller's reset, we have to go back and re-init |
| * everything. Easiest to just forget what we've done and do it |
| * all over again. |
| */ |
| hpsa_undo_allocations_after_kdump_soft_reset(h); |
| try_soft_reset = 0; |
| if (rc) |
| /* don't go to clean4, we already unallocated */ |
| return -ENODEV; |
| |
| goto reinit_after_soft_reset; |
| } |
| |
| /* Turn the interrupts on so we can service requests */ |
| h->access.set_intr_mask(h, HPSA_INTR_ON); |
| |
| hpsa_hba_inquiry(h); |
| hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ |
| |
| /* Monitor the controller for firmware lockups */ |
| h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
| INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); |
| schedule_delayed_work(&h->monitor_ctlr_work, |
| h->heartbeat_sample_interval); |
| return 0; |
| |
| clean4: |
| hpsa_free_sg_chain_blocks(h); |
| hpsa_free_cmd_pool(h); |
| free_irqs(h); |
| clean2: |
| clean1: |
| kfree(h); |
| return rc; |
| } |
| |
| static void hpsa_flush_cache(struct ctlr_info *h) |
| { |
| char *flush_buf; |
| struct CommandList *c; |
| unsigned long flags; |
| |
| /* Don't bother trying to flush the cache if locked up */ |
| spin_lock_irqsave(&h->lock, flags); |
| if (unlikely(h->lockup_detected)) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return; |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| flush_buf = kzalloc(4, GFP_KERNEL); |
| if (!flush_buf) |
| return; |
| |
| c = cmd_special_alloc(h); |
| if (!c) { |
| dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| goto out_of_memory; |
| } |
| if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, |
| RAID_CTLR_LUNID, TYPE_CMD)) { |
| goto out; |
| } |
| hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); |
| if (c->err_info->CommandStatus != 0) |
| out: |
| dev_warn(&h->pdev->dev, |
| "error flushing cache on controller\n"); |
| cmd_special_free(h, c); |
| out_of_memory: |
| kfree(flush_buf); |
| } |
| |
| static void hpsa_shutdown(struct pci_dev *pdev) |
| { |
| struct ctlr_info *h; |
| |
| h = pci_get_drvdata(pdev); |
| /* Turn board interrupts off and send the flush cache command |
| * sendcmd will turn off interrupt, and send the flush... |
| * To write all data in the battery backed cache to disks |
| */ |
| hpsa_flush_cache(h); |
| h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| hpsa_free_irqs_and_disable_msix(h); |
| } |
| |
| static void hpsa_free_device_info(struct ctlr_info *h) |
| { |
| int i; |
| |
| for (i = 0; i < h->ndevices; i++) |
| kfree(h->dev[i]); |
| } |
| |
| static void hpsa_remove_one(struct pci_dev *pdev) |
| { |
| struct ctlr_info *h; |
| unsigned long flags; |
| |
| if (pci_get_drvdata(pdev) == NULL) { |
| dev_err(&pdev->dev, "unable to remove device\n"); |
| return; |
| } |
| h = pci_get_drvdata(pdev); |
| |
| /* Get rid of any controller monitoring work items */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->remove_in_progress = 1; |
| cancel_delayed_work(&h->monitor_ctlr_work); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ |
| hpsa_shutdown(pdev); |
| iounmap(h->vaddr); |
| iounmap(h->transtable); |
| iounmap(h->cfgtable); |
| hpsa_free_device_info(h); |
| hpsa_free_sg_chain_blocks(h); |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct CommandList), |
| h->cmd_pool, h->cmd_pool_dhandle); |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(struct ErrorInfo), |
| h->errinfo_pool, h->errinfo_pool_dhandle); |
| pci_free_consistent(h->pdev, h->reply_pool_size, |
| h->reply_pool, h->reply_pool_dhandle); |
| kfree(h->cmd_pool_bits); |
| kfree(h->blockFetchTable); |
| kfree(h->ioaccel1_blockFetchTable); |
| kfree(h->hba_inquiry_data); |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| kfree(h); |
| } |
| |
| static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, |
| __attribute__((unused)) pm_message_t state) |
| { |
| return -ENOSYS; |
| } |
| |
| static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) |
| { |
| return -ENOSYS; |
| } |
| |
| static struct pci_driver hpsa_pci_driver = { |
| .name = HPSA, |
| .probe = hpsa_init_one, |
| .remove = hpsa_remove_one, |
| .id_table = hpsa_pci_device_id, /* id_table */ |
| .shutdown = hpsa_shutdown, |
| .suspend = hpsa_suspend, |
| .resume = hpsa_resume, |
| }; |
| |
| /* Fill in bucket_map[], given nsgs (the max number of |
| * scatter gather elements supported) and bucket[], |
| * which is an array of 8 integers. The bucket[] array |
| * contains 8 different DMA transfer sizes (in 16 |
| * byte increments) which the controller uses to fetch |
| * commands. This function fills in bucket_map[], which |
| * maps a given number of scatter gather elements to one of |
| * the 8 DMA transfer sizes. The point of it is to allow the |
| * controller to only do as much DMA as needed to fetch the |
| * command, with the DMA transfer size encoded in the lower |
| * bits of the command address. |
| */ |
| static void calc_bucket_map(int bucket[], int num_buckets, |
| int nsgs, int min_blocks, int *bucket_map) |
| { |
| int i, j, b, size; |
| |
| /* Note, bucket_map must have nsgs+1 entries. */ |
| for (i = 0; i <= nsgs; i++) { |
| /* Compute size of a command with i SG entries */ |
| size = i + min_blocks; |
| b = num_buckets; /* Assume the biggest bucket */ |
| /* Find the bucket that is just big enough */ |
| for (j = 0; j < num_buckets; j++) { |
| if (bucket[j] >= size) { |
| b = j; |
| break; |
| } |
| } |
| /* for a command with i SG entries, use bucket b. */ |
| bucket_map[i] = b; |
| } |
| } |
| |
| static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) |
| { |
| int i; |
| unsigned long register_value; |
| unsigned long transMethod = CFGTBL_Trans_Performant | |
| (trans_support & CFGTBL_Trans_use_short_tags) | |
| CFGTBL_Trans_enable_directed_msix | |
| (trans_support & CFGTBL_Trans_io_accel1); |
| |
| struct access_method access = SA5_performant_access; |
| |
| /* This is a bit complicated. There are 8 registers on |
| * the controller which we write to to tell it 8 different |
| * sizes of commands which there may be. It's a way of |
| * reducing the DMA done to fetch each command. Encoded into |
| * each command's tag are 3 bits which communicate to the controller |
| * which of the eight sizes that command fits within. The size of |
| * each command depends on how many scatter gather entries there are. |
| * Each SG entry requires 16 bytes. The eight registers are programmed |
| * with the number of 16-byte blocks a command of that size requires. |
| * The smallest command possible requires 5 such 16 byte blocks. |
| * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte |
| * blocks. Note, this only extends to the SG entries contained |
| * within the command block, and does not extend to chained blocks |
| * of SG elements. bft[] contains the eight values we write to |
| * the registers. They are not evenly distributed, but have more |
| * sizes for small commands, and fewer sizes for larger commands. |
| */ |
| int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; |
| BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); |
| /* 5 = 1 s/g entry or 4k |
| * 6 = 2 s/g entry or 8k |
| * 8 = 4 s/g entry or 16k |
| * 10 = 6 s/g entry or 24k |
| */ |
| |
| /* Controller spec: zero out this buffer. */ |
| memset(h->reply_pool, 0, h->reply_pool_size); |
| |
| bft[7] = SG_ENTRIES_IN_CMD + 4; |
| calc_bucket_map(bft, ARRAY_SIZE(bft), |
| SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); |
| for (i = 0; i < 8; i++) |
| writel(bft[i], &h->transtable->BlockFetch[i]); |
| |
| /* size of controller ring buffer */ |
| writel(h->max_commands, &h->transtable->RepQSize); |
| writel(h->nreply_queues, &h->transtable->RepQCount); |
| writel(0, &h->transtable->RepQCtrAddrLow32); |
| writel(0, &h->transtable->RepQCtrAddrHigh32); |
| |
| for (i = 0; i < h->nreply_queues; i++) { |
| writel(0, &h->transtable->RepQAddr[i].upper); |
| writel(h->reply_pool_dhandle + |
| (h->max_commands * sizeof(u64) * i), |
| &h->transtable->RepQAddr[i].lower); |
| } |
| |
| writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); |
| /* |
| * enable outbound interrupt coalescing in accelerator mode; |
| */ |
| if (trans_support & CFGTBL_Trans_io_accel1) { |
| access = SA5_ioaccel_mode1_access; |
| writel(10, &h->cfgtable->HostWrite.CoalIntDelay); |
| writel(4, &h->cfgtable->HostWrite.CoalIntCount); |
| } |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| hpsa_wait_for_mode_change_ack(h); |
| register_value = readl(&(h->cfgtable->TransportActive)); |
| if (!(register_value & CFGTBL_Trans_Performant)) { |
| dev_warn(&h->pdev->dev, "unable to get board into" |
| " performant mode\n"); |
| return; |
| } |
| /* Change the access methods to the performant access methods */ |
| h->access = access; |
| h->transMethod = transMethod; |
| |
| if (!(trans_support & CFGTBL_Trans_io_accel1)) |
| return; |
| |
| /* Set up I/O accelerator mode */ |
| for (i = 0; i < h->nreply_queues; i++) { |
| writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); |
| h->reply_queue[i].current_entry = |
| readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); |
| } |
| bft[7] = h->ioaccel_maxsg + 8; |
| calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, |
| h->ioaccel1_blockFetchTable); |
| |
| /* initialize all reply queue entries to unused */ |
| memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED, |
| h->reply_pool_size); |
| |
| /* set all the constant fields in the accelerator command |
| * frames once at init time to save CPU cycles later. |
| */ |
| for (i = 0; i < h->nr_cmds; i++) { |
| struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; |
| |
| cp->function = IOACCEL1_FUNCTION_SCSIIO; |
| cp->err_info = (u32) (h->errinfo_pool_dhandle + |
| (i * sizeof(struct ErrorInfo))); |
| cp->err_info_len = sizeof(struct ErrorInfo); |
| cp->sgl_offset = IOACCEL1_SGLOFFSET; |
| cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT; |
| cp->timeout_sec = 0; |
| cp->ReplyQueue = 0; |
| cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) | DIRECT_LOOKUP_BIT; |
| cp->Tag.upper = 0; |
| cp->host_addr.lower = (u32) (h->ioaccel_cmd_pool_dhandle + |
| (i * sizeof(struct io_accel1_cmd))); |
| cp->host_addr.upper = 0; |
| } |
| } |
| |
| static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h) |
| { |
| h->ioaccel_maxsg = |
| readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); |
| if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) |
| h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; |
| |
| /* Command structures must be aligned on a 128-byte boundary |
| * because the 7 lower bits of the address are used by the |
| * hardware. |
| */ |
| #define IOACCEL1_COMMANDLIST_ALIGNMENT 128 |
| BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % |
| IOACCEL1_COMMANDLIST_ALIGNMENT); |
| h->ioaccel_cmd_pool = |
| pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
| &(h->ioaccel_cmd_pool_dhandle)); |
| |
| h->ioaccel1_blockFetchTable = |
| kmalloc(((h->ioaccel_maxsg + 1) * |
| sizeof(u32)), GFP_KERNEL); |
| |
| if ((h->ioaccel_cmd_pool == NULL) || |
| (h->ioaccel1_blockFetchTable == NULL)) |
| goto clean_up; |
| |
| memset(h->ioaccel_cmd_pool, 0, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); |
| return 0; |
| |
| clean_up: |
| if (h->ioaccel_cmd_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
| h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); |
| kfree(h->ioaccel1_blockFetchTable); |
| return 1; |
| } |
| |
| static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) |
| { |
| u32 trans_support; |
| unsigned long transMethod = CFGTBL_Trans_Performant | |
| CFGTBL_Trans_use_short_tags; |
| int i; |
| |
| if (hpsa_simple_mode) |
| return; |
| |
| /* Check for I/O accelerator mode support */ |
| if (trans_support & CFGTBL_Trans_io_accel1) { |
| transMethod |= CFGTBL_Trans_io_accel1 | |
| CFGTBL_Trans_enable_directed_msix; |
| if (hpsa_alloc_ioaccel_cmd_and_bft(h)) |
| goto clean_up; |
| } |
| |
| /* TODO, check that this next line h->nreply_queues is correct */ |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & PERFORMANT_MODE)) |
| return; |
| |
| h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; |
| hpsa_get_max_perf_mode_cmds(h); |
| /* Performant mode ring buffer and supporting data structures */ |
| h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues; |
| h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, |
| &(h->reply_pool_dhandle)); |
| |
| for (i = 0; i < h->nreply_queues; i++) { |
| h->reply_queue[i].head = &h->reply_pool[h->max_commands * i]; |
| h->reply_queue[i].size = h->max_commands; |
| h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ |
| h->reply_queue[i].current_entry = 0; |
| } |
| |
| /* Need a block fetch table for performant mode */ |
| h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * |
| sizeof(u32)), GFP_KERNEL); |
| |
| if ((h->reply_pool == NULL) |
| || (h->blockFetchTable == NULL)) |
| goto clean_up; |
| |
| hpsa_enter_performant_mode(h, trans_support); |
| return; |
| |
| clean_up: |
| if (h->reply_pool) |
| pci_free_consistent(h->pdev, h->reply_pool_size, |
| h->reply_pool, h->reply_pool_dhandle); |
| kfree(h->blockFetchTable); |
| } |
| |
| static void hpsa_drain_commands(struct ctlr_info *h) |
| { |
| int cmds_out; |
| unsigned long flags; |
| |
| do { /* wait for all outstanding commands to drain out */ |
| spin_lock_irqsave(&h->lock, flags); |
| cmds_out = h->commands_outstanding; |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (cmds_out <= 0) |
| break; |
| msleep(100); |
| } while (1); |
| } |
| |
| /* |
| * This is it. Register the PCI driver information for the cards we control |
| * the OS will call our registered routines when it finds one of our cards. |
| */ |
| static int __init hpsa_init(void) |
| { |
| return pci_register_driver(&hpsa_pci_driver); |
| } |
| |
| static void __exit hpsa_cleanup(void) |
| { |
| pci_unregister_driver(&hpsa_pci_driver); |
| } |
| |
| static void __attribute__((unused)) verify_offsets(void) |
| { |
| #define VERIFY_OFFSET(member, offset) \ |
| BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) |
| |
| VERIFY_OFFSET(dev_handle, 0x00); |
| VERIFY_OFFSET(reserved1, 0x02); |
| VERIFY_OFFSET(function, 0x03); |
| VERIFY_OFFSET(reserved2, 0x04); |
| VERIFY_OFFSET(err_info, 0x0C); |
| VERIFY_OFFSET(reserved3, 0x10); |
| VERIFY_OFFSET(err_info_len, 0x12); |
| VERIFY_OFFSET(reserved4, 0x13); |
| VERIFY_OFFSET(sgl_offset, 0x14); |
| VERIFY_OFFSET(reserved5, 0x15); |
| VERIFY_OFFSET(transfer_len, 0x1C); |
| VERIFY_OFFSET(reserved6, 0x20); |
| VERIFY_OFFSET(io_flags, 0x24); |
| VERIFY_OFFSET(reserved7, 0x26); |
| VERIFY_OFFSET(LUN, 0x34); |
| VERIFY_OFFSET(control, 0x3C); |
| VERIFY_OFFSET(CDB, 0x40); |
| VERIFY_OFFSET(reserved8, 0x50); |
| VERIFY_OFFSET(host_context_flags, 0x60); |
| VERIFY_OFFSET(timeout_sec, 0x62); |
| VERIFY_OFFSET(ReplyQueue, 0x64); |
| VERIFY_OFFSET(reserved9, 0x65); |
| VERIFY_OFFSET(Tag, 0x68); |
| VERIFY_OFFSET(host_addr, 0x70); |
| VERIFY_OFFSET(CISS_LUN, 0x78); |
| VERIFY_OFFSET(SG, 0x78 + 8); |
| #undef VERIFY_OFFSET |
| } |
| |
| module_init(hpsa_init); |
| module_exit(hpsa_cleanup); |