| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 - 2017 Intel Deutschland GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <linuxwifi@intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 - 2017 Intel Deutschland GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| *****************************************************************************/ |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/interrupt.h> |
| #include <linux/debugfs.h> |
| #include <linux/sched.h> |
| #include <linux/bitops.h> |
| #include <linux/gfp.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pm_runtime.h> |
| |
| #include "iwl-drv.h" |
| #include "iwl-trans.h" |
| #include "iwl-csr.h" |
| #include "iwl-prph.h" |
| #include "iwl-scd.h" |
| #include "iwl-agn-hw.h" |
| #include "fw/error-dump.h" |
| #include "internal.h" |
| #include "iwl-fh.h" |
| |
| /* extended range in FW SRAM */ |
| #define IWL_FW_MEM_EXTENDED_START 0x40000 |
| #define IWL_FW_MEM_EXTENDED_END 0x57FFF |
| |
| static void iwl_trans_pcie_dump_regs(struct iwl_trans *trans) |
| { |
| #define PCI_DUMP_SIZE 64 |
| #define PREFIX_LEN 32 |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct pci_dev *pdev = trans_pcie->pci_dev; |
| u32 i, pos, alloc_size, *ptr, *buf; |
| char *prefix; |
| |
| if (trans_pcie->pcie_dbg_dumped_once) |
| return; |
| |
| /* Should be a multiple of 4 */ |
| BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3); |
| /* Alloc a max size buffer */ |
| if (PCI_ERR_ROOT_ERR_SRC + 4 > PCI_DUMP_SIZE) |
| alloc_size = PCI_ERR_ROOT_ERR_SRC + 4 + PREFIX_LEN; |
| else |
| alloc_size = PCI_DUMP_SIZE + PREFIX_LEN; |
| buf = kmalloc(alloc_size, GFP_ATOMIC); |
| if (!buf) |
| return; |
| prefix = (char *)buf + alloc_size - PREFIX_LEN; |
| |
| IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n"); |
| |
| /* Print wifi device registers */ |
| sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); |
| IWL_ERR(trans, "iwlwifi device config registers:\n"); |
| for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++) |
| if (pci_read_config_dword(pdev, i, ptr)) |
| goto err_read; |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); |
| |
| IWL_ERR(trans, "iwlwifi device memory mapped registers:\n"); |
| for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++) |
| *ptr = iwl_read32(trans, i); |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); |
| if (pos) { |
| IWL_ERR(trans, "iwlwifi device AER capability structure:\n"); |
| for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++) |
| if (pci_read_config_dword(pdev, pos + i, ptr)) |
| goto err_read; |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, |
| 32, 4, buf, i, 0); |
| } |
| |
| /* Print parent device registers next */ |
| if (!pdev->bus->self) |
| goto out; |
| |
| pdev = pdev->bus->self; |
| sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); |
| |
| IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n", |
| pci_name(pdev)); |
| for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++) |
| if (pci_read_config_dword(pdev, i, ptr)) |
| goto err_read; |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); |
| |
| /* Print root port AER registers */ |
| pos = 0; |
| pdev = pcie_find_root_port(pdev); |
| if (pdev) |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); |
| if (pos) { |
| IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n", |
| pci_name(pdev)); |
| sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); |
| for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++) |
| if (pci_read_config_dword(pdev, pos + i, ptr)) |
| goto err_read; |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, |
| 4, buf, i, 0); |
| } |
| |
| err_read: |
| print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); |
| IWL_ERR(trans, "Read failed at 0x%X\n", i); |
| out: |
| trans_pcie->pcie_dbg_dumped_once = 1; |
| kfree(buf); |
| } |
| |
| static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (!trans_pcie->fw_mon_page) |
| return; |
| |
| dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, DMA_FROM_DEVICE); |
| __free_pages(trans_pcie->fw_mon_page, |
| get_order(trans_pcie->fw_mon_size)); |
| trans_pcie->fw_mon_page = NULL; |
| trans_pcie->fw_mon_phys = 0; |
| trans_pcie->fw_mon_size = 0; |
| } |
| |
| static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct page *page = NULL; |
| dma_addr_t phys; |
| u32 size = 0; |
| u8 power; |
| |
| if (!max_power) { |
| /* default max_power is maximum */ |
| max_power = 26; |
| } else { |
| max_power += 11; |
| } |
| |
| if (WARN(max_power > 26, |
| "External buffer size for monitor is too big %d, check the FW TLV\n", |
| max_power)) |
| return; |
| |
| if (trans_pcie->fw_mon_page) { |
| dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, |
| DMA_FROM_DEVICE); |
| return; |
| } |
| |
| phys = 0; |
| for (power = max_power; power >= 11; power--) { |
| int order; |
| |
| size = BIT(power); |
| order = get_order(size); |
| page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO, |
| order); |
| if (!page) |
| continue; |
| |
| phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, phys)) { |
| __free_pages(page, order); |
| page = NULL; |
| continue; |
| } |
| IWL_INFO(trans, |
| "Allocated 0x%08x bytes (order %d) for firmware monitor.\n", |
| size, order); |
| break; |
| } |
| |
| if (WARN_ON_ONCE(!page)) |
| return; |
| |
| if (power != max_power) |
| IWL_ERR(trans, |
| "Sorry - debug buffer is only %luK while you requested %luK\n", |
| (unsigned long)BIT(power - 10), |
| (unsigned long)BIT(max_power - 10)); |
| |
| trans_pcie->fw_mon_page = page; |
| trans_pcie->fw_mon_phys = phys; |
| trans_pcie->fw_mon_size = size; |
| } |
| |
| static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg) |
| { |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, |
| ((reg & 0x0000ffff) | (2 << 28))); |
| return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG); |
| } |
| |
| static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val) |
| { |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val); |
| iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, |
| ((reg & 0x0000ffff) | (3 << 28))); |
| } |
| |
| static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) |
| { |
| if (trans->cfg->apmg_not_supported) |
| return; |
| |
| if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) |
| iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_PWR_SRC_VAUX, |
| ~APMG_PS_CTRL_MSK_PWR_SRC); |
| else |
| iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, |
| ~APMG_PS_CTRL_MSK_PWR_SRC); |
| } |
| |
| /* PCI registers */ |
| #define PCI_CFG_RETRY_TIMEOUT 0x041 |
| |
| void iwl_pcie_apm_config(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u16 lctl; |
| u16 cap; |
| |
| /* |
| * HW bug W/A for instability in PCIe bus L0S->L1 transition. |
| * Check if BIOS (or OS) enabled L1-ASPM on this device. |
| * If so (likely), disable L0S, so device moves directly L0->L1; |
| * costs negligible amount of power savings. |
| * If not (unlikely), enable L0S, so there is at least some |
| * power savings, even without L1. |
| */ |
| pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); |
| if (lctl & PCI_EXP_LNKCTL_ASPM_L1) |
| iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); |
| else |
| iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); |
| trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); |
| |
| pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap); |
| trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN; |
| IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n", |
| (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis", |
| trans->ltr_enabled ? "En" : "Dis"); |
| } |
| |
| /* |
| * Start up NIC's basic functionality after it has been reset |
| * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) |
| * NOTE: This does not load uCode nor start the embedded processor |
| */ |
| static int iwl_pcie_apm_init(struct iwl_trans *trans) |
| { |
| int ret; |
| |
| IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); |
| |
| /* |
| * Use "set_bit" below rather than "write", to preserve any hardware |
| * bits already set by default after reset. |
| */ |
| |
| /* Disable L0S exit timer (platform NMI Work/Around) */ |
| if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000) |
| iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, |
| CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); |
| |
| /* |
| * Disable L0s without affecting L1; |
| * don't wait for ICH L0s (ICH bug W/A) |
| */ |
| iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, |
| CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); |
| |
| /* Set FH wait threshold to maximum (HW error during stress W/A) */ |
| iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); |
| |
| /* |
| * Enable HAP INTA (interrupt from management bus) to |
| * wake device's PCI Express link L1a -> L0s |
| */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); |
| |
| iwl_pcie_apm_config(trans); |
| |
| /* Configure analog phase-lock-loop before activating to D0A */ |
| if (trans->cfg->base_params->pll_cfg) |
| iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL); |
| |
| /* |
| * Set "initialization complete" bit to move adapter from |
| * D0U* --> D0A* (powered-up active) state. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* |
| * Wait for clock stabilization; once stabilized, access to |
| * device-internal resources is supported, e.g. iwl_write_prph() |
| * and accesses to uCode SRAM. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); |
| if (ret < 0) { |
| IWL_ERR(trans, "Failed to init the card\n"); |
| return ret; |
| } |
| |
| if (trans->cfg->host_interrupt_operation_mode) { |
| /* |
| * This is a bit of an abuse - This is needed for 7260 / 3160 |
| * only check host_interrupt_operation_mode even if this is |
| * not related to host_interrupt_operation_mode. |
| * |
| * Enable the oscillator to count wake up time for L1 exit. This |
| * consumes slightly more power (100uA) - but allows to be sure |
| * that we wake up from L1 on time. |
| * |
| * This looks weird: read twice the same register, discard the |
| * value, set a bit, and yet again, read that same register |
| * just to discard the value. But that's the way the hardware |
| * seems to like it. |
| */ |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL); |
| iwl_read_prph(trans, OSC_CLK); |
| iwl_read_prph(trans, OSC_CLK); |
| } |
| |
| /* |
| * Enable DMA clock and wait for it to stabilize. |
| * |
| * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" |
| * bits do not disable clocks. This preserves any hardware |
| * bits already set by default in "CLK_CTRL_REG" after reset. |
| */ |
| if (!trans->cfg->apmg_not_supported) { |
| iwl_write_prph(trans, APMG_CLK_EN_REG, |
| APMG_CLK_VAL_DMA_CLK_RQT); |
| udelay(20); |
| |
| /* Disable L1-Active */ |
| iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_L1_ACT_DIS); |
| |
| /* Clear the interrupt in APMG if the NIC is in RFKILL */ |
| iwl_write_prph(trans, APMG_RTC_INT_STT_REG, |
| APMG_RTC_INT_STT_RFKILL); |
| } |
| |
| set_bit(STATUS_DEVICE_ENABLED, &trans->status); |
| |
| return 0; |
| } |
| |
| /* |
| * Enable LP XTAL to avoid HW bug where device may consume much power if |
| * FW is not loaded after device reset. LP XTAL is disabled by default |
| * after device HW reset. Do it only if XTAL is fed by internal source. |
| * Configure device's "persistence" mode to avoid resetting XTAL again when |
| * SHRD_HW_RST occurs in S3. |
| */ |
| static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans) |
| { |
| int ret; |
| u32 apmg_gp1_reg; |
| u32 apmg_xtal_cfg_reg; |
| u32 dl_cfg_reg; |
| |
| /* Force XTAL ON */ |
| __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| |
| iwl_pcie_sw_reset(trans); |
| |
| /* |
| * Set "initialization complete" bit to move adapter from |
| * D0U* --> D0A* (powered-up active) state. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* |
| * Wait for clock stabilization; once stabilized, access to |
| * device-internal resources is possible. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (WARN_ON(ret < 0)) { |
| IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n"); |
| /* Release XTAL ON request */ |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| return; |
| } |
| |
| /* |
| * Clear "disable persistence" to avoid LP XTAL resetting when |
| * SHRD_HW_RST is applied in S3. |
| */ |
| iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_PERSIST_DIS); |
| |
| /* |
| * Force APMG XTAL to be active to prevent its disabling by HW |
| * caused by APMG idle state. |
| */ |
| apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, |
| SHR_APMG_XTAL_CFG_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, |
| apmg_xtal_cfg_reg | |
| SHR_APMG_XTAL_CFG_XTAL_ON_REQ); |
| |
| iwl_pcie_sw_reset(trans); |
| |
| /* Enable LP XTAL by indirect access through CSR */ |
| apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg | |
| SHR_APMG_GP1_WF_XTAL_LP_EN | |
| SHR_APMG_GP1_CHICKEN_BIT_SELECT); |
| |
| /* Clear delay line clock power up */ |
| dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG); |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg & |
| ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP); |
| |
| /* |
| * Enable persistence mode to avoid LP XTAL resetting when |
| * SHRD_HW_RST is applied in S3. |
| */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PERSIST_MODE); |
| |
| /* |
| * Clear "initialization complete" bit to move adapter from |
| * D0A* (powered-up Active) --> D0U* (Uninitialized) state. |
| */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* Activates XTAL resources monitor */ |
| __iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, |
| CSR_MONITOR_XTAL_RESOURCES); |
| |
| /* Release XTAL ON request */ |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_XTAL_ON); |
| udelay(10); |
| |
| /* Release APMG XTAL */ |
| iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, |
| apmg_xtal_cfg_reg & |
| ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ); |
| } |
| |
| void iwl_pcie_apm_stop_master(struct iwl_trans *trans) |
| { |
| int ret; |
| |
| /* stop device's busmaster DMA activity */ |
| iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); |
| |
| ret = iwl_poll_bit(trans, CSR_RESET, |
| CSR_RESET_REG_FLAG_MASTER_DISABLED, |
| CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); |
| if (ret < 0) |
| IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); |
| |
| IWL_DEBUG_INFO(trans, "stop master\n"); |
| } |
| |
| static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave) |
| { |
| IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); |
| |
| if (op_mode_leave) { |
| if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| iwl_pcie_apm_init(trans); |
| |
| /* inform ME that we are leaving */ |
| if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) |
| iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, |
| APMG_PCIDEV_STT_VAL_WAKE_ME); |
| else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) { |
| iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PREPARE | |
| CSR_HW_IF_CONFIG_REG_ENABLE_PME); |
| mdelay(1); |
| iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| } |
| mdelay(5); |
| } |
| |
| clear_bit(STATUS_DEVICE_ENABLED, &trans->status); |
| |
| /* Stop device's DMA activity */ |
| iwl_pcie_apm_stop_master(trans); |
| |
| if (trans->cfg->lp_xtal_workaround) { |
| iwl_pcie_apm_lp_xtal_enable(trans); |
| return; |
| } |
| |
| iwl_pcie_sw_reset(trans); |
| |
| /* |
| * Clear "initialization complete" bit to move adapter from |
| * D0A* (powered-up Active) --> D0U* (Uninitialized) state. |
| */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| } |
| |
| static int iwl_pcie_nic_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| /* nic_init */ |
| spin_lock(&trans_pcie->irq_lock); |
| ret = iwl_pcie_apm_init(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| if (ret) |
| return ret; |
| |
| iwl_pcie_set_pwr(trans, false); |
| |
| iwl_op_mode_nic_config(trans->op_mode); |
| |
| /* Allocate the RX queue, or reset if it is already allocated */ |
| iwl_pcie_rx_init(trans); |
| |
| /* Allocate or reset and init all Tx and Command queues */ |
| if (iwl_pcie_tx_init(trans)) |
| return -ENOMEM; |
| |
| if (trans->cfg->base_params->shadow_reg_enable) { |
| /* enable shadow regs in HW */ |
| iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); |
| IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); |
| } |
| |
| return 0; |
| } |
| |
| #define HW_READY_TIMEOUT (50) |
| |
| /* Note: returns poll_bit return value, which is >= 0 if success */ |
| static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) |
| { |
| int ret; |
| |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); |
| |
| /* See if we got it */ |
| ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, |
| CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, |
| HW_READY_TIMEOUT); |
| |
| if (ret >= 0) |
| iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE); |
| |
| IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); |
| return ret; |
| } |
| |
| /* Note: returns standard 0/-ERROR code */ |
| int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) |
| { |
| int ret; |
| int t = 0; |
| int iter; |
| |
| IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); |
| |
| ret = iwl_pcie_set_hw_ready(trans); |
| /* If the card is ready, exit 0 */ |
| if (ret >= 0) |
| return 0; |
| |
| iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| usleep_range(1000, 2000); |
| |
| for (iter = 0; iter < 10; iter++) { |
| /* If HW is not ready, prepare the conditions to check again */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PREPARE); |
| |
| do { |
| ret = iwl_pcie_set_hw_ready(trans); |
| if (ret >= 0) |
| return 0; |
| |
| usleep_range(200, 1000); |
| t += 200; |
| } while (t < 150000); |
| msleep(25); |
| } |
| |
| IWL_ERR(trans, "Couldn't prepare the card\n"); |
| |
| return ret; |
| } |
| |
| /* |
| * ucode |
| */ |
| static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans, |
| u32 dst_addr, dma_addr_t phy_addr, |
| u32 byte_cnt) |
| { |
| iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); |
| |
| iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), |
| dst_addr); |
| |
| iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), |
| phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); |
| |
| iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), |
| (iwl_get_dma_hi_addr(phy_addr) |
| << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); |
| |
| iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), |
| BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) | |
| BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) | |
| FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); |
| |
| iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | |
| FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | |
| FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); |
| } |
| |
| static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, |
| u32 dst_addr, dma_addr_t phy_addr, |
| u32 byte_cnt) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| int ret; |
| |
| trans_pcie->ucode_write_complete = false; |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| return -EIO; |
| |
| iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr, |
| byte_cnt); |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| ret = wait_event_timeout(trans_pcie->ucode_write_waitq, |
| trans_pcie->ucode_write_complete, 5 * HZ); |
| if (!ret) { |
| IWL_ERR(trans, "Failed to load firmware chunk!\n"); |
| iwl_trans_pcie_dump_regs(trans); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, |
| const struct fw_desc *section) |
| { |
| u8 *v_addr; |
| dma_addr_t p_addr; |
| u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len); |
| int ret = 0; |
| |
| IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", |
| section_num); |
| |
| v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!v_addr) { |
| IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); |
| chunk_sz = PAGE_SIZE; |
| v_addr = dma_alloc_coherent(trans->dev, chunk_sz, |
| &p_addr, GFP_KERNEL); |
| if (!v_addr) |
| return -ENOMEM; |
| } |
| |
| for (offset = 0; offset < section->len; offset += chunk_sz) { |
| u32 copy_size, dst_addr; |
| bool extended_addr = false; |
| |
| copy_size = min_t(u32, chunk_sz, section->len - offset); |
| dst_addr = section->offset + offset; |
| |
| if (dst_addr >= IWL_FW_MEM_EXTENDED_START && |
| dst_addr <= IWL_FW_MEM_EXTENDED_END) |
| extended_addr = true; |
| |
| if (extended_addr) |
| iwl_set_bits_prph(trans, LMPM_CHICK, |
| LMPM_CHICK_EXTENDED_ADDR_SPACE); |
| |
| memcpy(v_addr, (u8 *)section->data + offset, copy_size); |
| ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, |
| copy_size); |
| |
| if (extended_addr) |
| iwl_clear_bits_prph(trans, LMPM_CHICK, |
| LMPM_CHICK_EXTENDED_ADDR_SPACE); |
| |
| if (ret) { |
| IWL_ERR(trans, |
| "Could not load the [%d] uCode section\n", |
| section_num); |
| break; |
| } |
| } |
| |
| dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); |
| return ret; |
| } |
| |
| static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans, |
| const struct fw_img *image, |
| int cpu, |
| int *first_ucode_section) |
| { |
| int shift_param; |
| int i, ret = 0, sec_num = 0x1; |
| u32 val, last_read_idx = 0; |
| |
| if (cpu == 1) { |
| shift_param = 0; |
| *first_ucode_section = 0; |
| } else { |
| shift_param = 16; |
| (*first_ucode_section)++; |
| } |
| |
| for (i = *first_ucode_section; i < image->num_sec; i++) { |
| last_read_idx = i; |
| |
| /* |
| * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between |
| * CPU1 to CPU2. |
| * PAGING_SEPARATOR_SECTION delimiter - separate between |
| * CPU2 non paged to CPU2 paging sec. |
| */ |
| if (!image->sec[i].data || |
| image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || |
| image->sec[i].offset == PAGING_SEPARATOR_SECTION) { |
| IWL_DEBUG_FW(trans, |
| "Break since Data not valid or Empty section, sec = %d\n", |
| i); |
| break; |
| } |
| |
| ret = iwl_pcie_load_section(trans, i, &image->sec[i]); |
| if (ret) |
| return ret; |
| |
| /* Notify ucode of loaded section number and status */ |
| val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS); |
| val = val | (sec_num << shift_param); |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val); |
| |
| sec_num = (sec_num << 1) | 0x1; |
| } |
| |
| *first_ucode_section = last_read_idx; |
| |
| iwl_enable_interrupts(trans); |
| |
| if (trans->cfg->use_tfh) { |
| if (cpu == 1) |
| iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, |
| 0xFFFF); |
| else |
| iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, |
| 0xFFFFFFFF); |
| } else { |
| if (cpu == 1) |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, |
| 0xFFFF); |
| else |
| iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, |
| 0xFFFFFFFF); |
| } |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans, |
| const struct fw_img *image, |
| int cpu, |
| int *first_ucode_section) |
| { |
| int i, ret = 0; |
| u32 last_read_idx = 0; |
| |
| if (cpu == 1) |
| *first_ucode_section = 0; |
| else |
| (*first_ucode_section)++; |
| |
| for (i = *first_ucode_section; i < image->num_sec; i++) { |
| last_read_idx = i; |
| |
| /* |
| * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between |
| * CPU1 to CPU2. |
| * PAGING_SEPARATOR_SECTION delimiter - separate between |
| * CPU2 non paged to CPU2 paging sec. |
| */ |
| if (!image->sec[i].data || |
| image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || |
| image->sec[i].offset == PAGING_SEPARATOR_SECTION) { |
| IWL_DEBUG_FW(trans, |
| "Break since Data not valid or Empty section, sec = %d\n", |
| i); |
| break; |
| } |
| |
| ret = iwl_pcie_load_section(trans, i, &image->sec[i]); |
| if (ret) |
| return ret; |
| } |
| |
| *first_ucode_section = last_read_idx; |
| |
| return 0; |
| } |
| |
| void iwl_pcie_apply_destination(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv; |
| int i; |
| |
| if (dest->version) |
| IWL_ERR(trans, |
| "DBG DEST version is %d - expect issues\n", |
| dest->version); |
| |
| IWL_INFO(trans, "Applying debug destination %s\n", |
| get_fw_dbg_mode_string(dest->monitor_mode)); |
| |
| if (dest->monitor_mode == EXTERNAL_MODE) |
| iwl_pcie_alloc_fw_monitor(trans, dest->size_power); |
| else |
| IWL_WARN(trans, "PCI should have external buffer debug\n"); |
| |
| for (i = 0; i < trans->dbg_dest_reg_num; i++) { |
| u32 addr = le32_to_cpu(dest->reg_ops[i].addr); |
| u32 val = le32_to_cpu(dest->reg_ops[i].val); |
| |
| switch (dest->reg_ops[i].op) { |
| case CSR_ASSIGN: |
| iwl_write32(trans, addr, val); |
| break; |
| case CSR_SETBIT: |
| iwl_set_bit(trans, addr, BIT(val)); |
| break; |
| case CSR_CLEARBIT: |
| iwl_clear_bit(trans, addr, BIT(val)); |
| break; |
| case PRPH_ASSIGN: |
| iwl_write_prph(trans, addr, val); |
| break; |
| case PRPH_SETBIT: |
| iwl_set_bits_prph(trans, addr, BIT(val)); |
| break; |
| case PRPH_CLEARBIT: |
| iwl_clear_bits_prph(trans, addr, BIT(val)); |
| break; |
| case PRPH_BLOCKBIT: |
| if (iwl_read_prph(trans, addr) & BIT(val)) { |
| IWL_ERR(trans, |
| "BIT(%u) in address 0x%x is 1, stopping FW configuration\n", |
| val, addr); |
| goto monitor; |
| } |
| break; |
| default: |
| IWL_ERR(trans, "FW debug - unknown OP %d\n", |
| dest->reg_ops[i].op); |
| break; |
| } |
| } |
| |
| monitor: |
| if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) { |
| iwl_write_prph(trans, le32_to_cpu(dest->base_reg), |
| trans_pcie->fw_mon_phys >> dest->base_shift); |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) |
| iwl_write_prph(trans, le32_to_cpu(dest->end_reg), |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size - 256) >> |
| dest->end_shift); |
| else |
| iwl_write_prph(trans, le32_to_cpu(dest->end_reg), |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size) >> |
| dest->end_shift); |
| } |
| } |
| |
| static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, |
| const struct fw_img *image) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret = 0; |
| int first_ucode_section; |
| |
| IWL_DEBUG_FW(trans, "working with %s CPU\n", |
| image->is_dual_cpus ? "Dual" : "Single"); |
| |
| /* load to FW the binary non secured sections of CPU1 */ |
| ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section); |
| if (ret) |
| return ret; |
| |
| if (image->is_dual_cpus) { |
| /* set CPU2 header address */ |
| iwl_write_prph(trans, |
| LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, |
| LMPM_SECURE_CPU2_HDR_MEM_SPACE); |
| |
| /* load to FW the binary sections of CPU2 */ |
| ret = iwl_pcie_load_cpu_sections(trans, image, 2, |
| &first_ucode_section); |
| if (ret) |
| return ret; |
| } |
| |
| /* supported for 7000 only for the moment */ |
| if (iwlwifi_mod_params.fw_monitor && |
| trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) { |
| iwl_pcie_alloc_fw_monitor(trans, 0); |
| |
| if (trans_pcie->fw_mon_size) { |
| iwl_write_prph(trans, MON_BUFF_BASE_ADDR, |
| trans_pcie->fw_mon_phys >> 4); |
| iwl_write_prph(trans, MON_BUFF_END_ADDR, |
| (trans_pcie->fw_mon_phys + |
| trans_pcie->fw_mon_size) >> 4); |
| } |
| } else if (trans->dbg_dest_tlv) { |
| iwl_pcie_apply_destination(trans); |
| } |
| |
| iwl_enable_interrupts(trans); |
| |
| /* release CPU reset */ |
| iwl_write32(trans, CSR_RESET, 0); |
| |
| return 0; |
| } |
| |
| static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans, |
| const struct fw_img *image) |
| { |
| int ret = 0; |
| int first_ucode_section; |
| |
| IWL_DEBUG_FW(trans, "working with %s CPU\n", |
| image->is_dual_cpus ? "Dual" : "Single"); |
| |
| if (trans->dbg_dest_tlv) |
| iwl_pcie_apply_destination(trans); |
| |
| IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n", |
| iwl_read_prph(trans, WFPM_GP2)); |
| |
| /* |
| * Set default value. On resume reading the values that were |
| * zeored can provide debug data on the resume flow. |
| * This is for debugging only and has no functional impact. |
| */ |
| iwl_write_prph(trans, WFPM_GP2, 0x01010101); |
| |
| /* configure the ucode to be ready to get the secured image */ |
| /* release CPU reset */ |
| iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT); |
| |
| /* load to FW the binary Secured sections of CPU1 */ |
| ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, |
| &first_ucode_section); |
| if (ret) |
| return ret; |
| |
| /* load to FW the binary sections of CPU2 */ |
| return iwl_pcie_load_cpu_sections_8000(trans, image, 2, |
| &first_ucode_section); |
| } |
| |
| bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool hw_rfkill = iwl_is_rfkill_set(trans); |
| bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| bool report; |
| |
| if (hw_rfkill) { |
| set_bit(STATUS_RFKILL_HW, &trans->status); |
| set_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| } else { |
| clear_bit(STATUS_RFKILL_HW, &trans->status); |
| if (trans_pcie->opmode_down) |
| clear_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| } |
| |
| report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| |
| if (prev != report) |
| iwl_trans_pcie_rf_kill(trans, report); |
| |
| return hw_rfkill; |
| } |
| |
| struct iwl_causes_list { |
| u32 cause_num; |
| u32 mask_reg; |
| u8 addr; |
| }; |
| |
| static struct iwl_causes_list causes_list[] = { |
| {MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0}, |
| {MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1}, |
| {MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3}, |
| {MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5}, |
| {MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10}, |
| {MSIX_HW_INT_CAUSES_REG_WAKEUP, CSR_MSIX_HW_INT_MASK_AD, 0x11}, |
| {MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16}, |
| {MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17}, |
| {MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18}, |
| {MSIX_HW_INT_CAUSES_REG_SW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x29}, |
| {MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A}, |
| {MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B}, |
| {MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D}, |
| {MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E}, |
| }; |
| |
| static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE; |
| int i; |
| |
| /* |
| * Access all non RX causes and map them to the default irq. |
| * In case we are missing at least one interrupt vector, |
| * the first interrupt vector will serve non-RX and FBQ causes. |
| */ |
| for (i = 0; i < ARRAY_SIZE(causes_list); i++) { |
| iwl_write8(trans, CSR_MSIX_IVAR(causes_list[i].addr), val); |
| iwl_clear_bit(trans, causes_list[i].mask_reg, |
| causes_list[i].cause_num); |
| } |
| } |
| |
| static void iwl_pcie_map_rx_causes(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 offset = |
| trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; |
| u32 val, idx; |
| |
| /* |
| * The first RX queue - fallback queue, which is designated for |
| * management frame, command responses etc, is always mapped to the |
| * first interrupt vector. The other RX queues are mapped to |
| * the other (N - 2) interrupt vectors. |
| */ |
| val = BIT(MSIX_FH_INT_CAUSES_Q(0)); |
| for (idx = 1; idx < trans->num_rx_queues; idx++) { |
| iwl_write8(trans, CSR_MSIX_RX_IVAR(idx), |
| MSIX_FH_INT_CAUSES_Q(idx - offset)); |
| val |= BIT(MSIX_FH_INT_CAUSES_Q(idx)); |
| } |
| iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val); |
| |
| val = MSIX_FH_INT_CAUSES_Q(0); |
| if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) |
| val |= MSIX_NON_AUTO_CLEAR_CAUSE; |
| iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val); |
| |
| if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) |
| iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val); |
| } |
| |
| void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie) |
| { |
| struct iwl_trans *trans = trans_pcie->trans; |
| |
| if (!trans_pcie->msix_enabled) { |
| if (trans->cfg->mq_rx_supported && |
| test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| iwl_write_prph(trans, UREG_CHICK, |
| UREG_CHICK_MSI_ENABLE); |
| return; |
| } |
| /* |
| * The IVAR table needs to be configured again after reset, |
| * but if the device is disabled, we can't write to |
| * prph. |
| */ |
| if (test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE); |
| |
| /* |
| * Each cause from the causes list above and the RX causes is |
| * represented as a byte in the IVAR table. The first nibble |
| * represents the bound interrupt vector of the cause, the second |
| * represents no auto clear for this cause. This will be set if its |
| * interrupt vector is bound to serve other causes. |
| */ |
| iwl_pcie_map_rx_causes(trans); |
| |
| iwl_pcie_map_non_rx_causes(trans); |
| } |
| |
| static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie) |
| { |
| struct iwl_trans *trans = trans_pcie->trans; |
| |
| iwl_pcie_conf_msix_hw(trans_pcie); |
| |
| if (!trans_pcie->msix_enabled) |
| return; |
| |
| trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD); |
| trans_pcie->fh_mask = trans_pcie->fh_init_mask; |
| trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD); |
| trans_pcie->hw_mask = trans_pcie->hw_init_mask; |
| } |
| |
| static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| if (trans_pcie->is_down) |
| return; |
| |
| trans_pcie->is_down = true; |
| |
| /* tell the device to stop sending interrupts */ |
| iwl_disable_interrupts(trans); |
| |
| /* device going down, Stop using ICT table */ |
| iwl_pcie_disable_ict(trans); |
| |
| /* |
| * If a HW restart happens during firmware loading, |
| * then the firmware loading might call this function |
| * and later it might be called again due to the |
| * restart. So don't process again if the device is |
| * already dead. |
| */ |
| if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) { |
| IWL_DEBUG_INFO(trans, |
| "DEVICE_ENABLED bit was set and is now cleared\n"); |
| iwl_pcie_tx_stop(trans); |
| iwl_pcie_rx_stop(trans); |
| |
| /* Power-down device's busmaster DMA clocks */ |
| if (!trans->cfg->apmg_not_supported) { |
| iwl_write_prph(trans, APMG_CLK_DIS_REG, |
| APMG_CLK_VAL_DMA_CLK_RQT); |
| udelay(5); |
| } |
| } |
| |
| /* Make sure (redundant) we've released our request to stay awake */ |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| |
| /* Stop the device, and put it in low power state */ |
| iwl_pcie_apm_stop(trans, false); |
| |
| iwl_pcie_sw_reset(trans); |
| |
| /* |
| * Upon stop, the IVAR table gets erased, so msi-x won't |
| * work. This causes a bug in RF-KILL flows, since the interrupt |
| * that enables radio won't fire on the correct irq, and the |
| * driver won't be able to handle the interrupt. |
| * Configure the IVAR table again after reset. |
| */ |
| iwl_pcie_conf_msix_hw(trans_pcie); |
| |
| /* |
| * Upon stop, the APM issues an interrupt if HW RF kill is set. |
| * This is a bug in certain verions of the hardware. |
| * Certain devices also keep sending HW RF kill interrupt all |
| * the time, unless the interrupt is ACKed even if the interrupt |
| * should be masked. Re-ACK all the interrupts here. |
| */ |
| iwl_disable_interrupts(trans); |
| |
| /* clear all status bits */ |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| clear_bit(STATUS_INT_ENABLED, &trans->status); |
| clear_bit(STATUS_TPOWER_PMI, &trans->status); |
| |
| /* |
| * Even if we stop the HW, we still want the RF kill |
| * interrupt |
| */ |
| iwl_enable_rfkill_int(trans); |
| |
| /* re-take ownership to prevent other users from stealing the device */ |
| iwl_pcie_prepare_card_hw(trans); |
| } |
| |
| void iwl_pcie_synchronize_irqs(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (trans_pcie->msix_enabled) { |
| int i; |
| |
| for (i = 0; i < trans_pcie->alloc_vecs; i++) |
| synchronize_irq(trans_pcie->msix_entries[i].vector); |
| } else { |
| synchronize_irq(trans_pcie->pci_dev->irq); |
| } |
| } |
| |
| static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, |
| const struct fw_img *fw, bool run_in_rfkill) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool hw_rfkill; |
| int ret; |
| |
| /* This may fail if AMT took ownership of the device */ |
| if (iwl_pcie_prepare_card_hw(trans)) { |
| IWL_WARN(trans, "Exit HW not ready\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| iwl_enable_rfkill_int(trans); |
| |
| iwl_write32(trans, CSR_INT, 0xFFFFFFFF); |
| |
| /* |
| * We enabled the RF-Kill interrupt and the handler may very |
| * well be running. Disable the interrupts to make sure no other |
| * interrupt can be fired. |
| */ |
| iwl_disable_interrupts(trans); |
| |
| /* Make sure it finished running */ |
| iwl_pcie_synchronize_irqs(trans); |
| |
| mutex_lock(&trans_pcie->mutex); |
| |
| /* If platform's RF_KILL switch is NOT set to KILL */ |
| hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); |
| if (hw_rfkill && !run_in_rfkill) { |
| ret = -ERFKILL; |
| goto out; |
| } |
| |
| /* Someone called stop_device, don't try to start_fw */ |
| if (trans_pcie->is_down) { |
| IWL_WARN(trans, |
| "Can't start_fw since the HW hasn't been started\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* make sure rfkill handshake bits are cleared */ |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, |
| CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); |
| |
| /* clear (again), then enable host interrupts */ |
| iwl_write32(trans, CSR_INT, 0xFFFFFFFF); |
| |
| ret = iwl_pcie_nic_init(trans); |
| if (ret) { |
| IWL_ERR(trans, "Unable to init nic\n"); |
| goto out; |
| } |
| |
| /* |
| * Now, we load the firmware and don't want to be interrupted, even |
| * by the RF-Kill interrupt (hence mask all the interrupt besides the |
| * FH_TX interrupt which is needed to load the firmware). If the |
| * RF-Kill switch is toggled, we will find out after having loaded |
| * the firmware and return the proper value to the caller. |
| */ |
| iwl_enable_fw_load_int(trans); |
| |
| /* really make sure rfkill handshake bits are cleared */ |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); |
| |
| /* Load the given image to the HW */ |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) |
| ret = iwl_pcie_load_given_ucode_8000(trans, fw); |
| else |
| ret = iwl_pcie_load_given_ucode(trans, fw); |
| |
| /* re-check RF-Kill state since we may have missed the interrupt */ |
| hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); |
| if (hw_rfkill && !run_in_rfkill) |
| ret = -ERFKILL; |
| |
| out: |
| mutex_unlock(&trans_pcie->mutex); |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) |
| { |
| iwl_pcie_reset_ict(trans); |
| iwl_pcie_tx_start(trans, scd_addr); |
| } |
| |
| void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, |
| bool was_in_rfkill) |
| { |
| bool hw_rfkill; |
| |
| /* |
| * Check again since the RF kill state may have changed while |
| * all the interrupts were disabled, in this case we couldn't |
| * receive the RF kill interrupt and update the state in the |
| * op_mode. |
| * Don't call the op_mode if the rkfill state hasn't changed. |
| * This allows the op_mode to call stop_device from the rfkill |
| * notification without endless recursion. Under very rare |
| * circumstances, we might have a small recursion if the rfkill |
| * state changed exactly now while we were called from stop_device. |
| * This is very unlikely but can happen and is supported. |
| */ |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| if (hw_rfkill) { |
| set_bit(STATUS_RFKILL_HW, &trans->status); |
| set_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| } else { |
| clear_bit(STATUS_RFKILL_HW, &trans->status); |
| clear_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| } |
| if (hw_rfkill != was_in_rfkill) |
| iwl_trans_pcie_rf_kill(trans, hw_rfkill); |
| } |
| |
| static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool was_in_rfkill; |
| |
| mutex_lock(&trans_pcie->mutex); |
| trans_pcie->opmode_down = true; |
| was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| _iwl_trans_pcie_stop_device(trans, low_power); |
| iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill); |
| mutex_unlock(&trans_pcie->mutex); |
| } |
| |
| void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state) |
| { |
| struct iwl_trans_pcie __maybe_unused *trans_pcie = |
| IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| IWL_WARN(trans, "reporting RF_KILL (radio %s)\n", |
| state ? "disabled" : "enabled"); |
| if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) { |
| if (trans->cfg->gen2) |
| _iwl_trans_pcie_gen2_stop_device(trans, true); |
| else |
| _iwl_trans_pcie_stop_device(trans, true); |
| } |
| } |
| |
| static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, |
| bool reset) |
| { |
| if (!reset) { |
| /* Enable persistence mode to avoid reset */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_PERSIST_MODE); |
| } |
| |
| iwl_disable_interrupts(trans); |
| |
| /* |
| * in testing mode, the host stays awake and the |
| * hardware won't be reset (not even partially) |
| */ |
| if (test) |
| return; |
| |
| iwl_pcie_disable_ict(trans); |
| |
| iwl_pcie_synchronize_irqs(trans); |
| |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| iwl_pcie_enable_rx_wake(trans, false); |
| |
| if (reset) { |
| /* |
| * reset TX queues -- some of their registers reset during S3 |
| * so if we don't reset everything here the D3 image would try |
| * to execute some invalid memory upon resume |
| */ |
| iwl_trans_pcie_tx_reset(trans); |
| } |
| |
| iwl_pcie_set_pwr(trans, true); |
| } |
| |
| static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, |
| enum iwl_d3_status *status, |
| bool test, bool reset) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 val; |
| int ret; |
| |
| if (test) { |
| iwl_enable_interrupts(trans); |
| *status = IWL_D3_STATUS_ALIVE; |
| return 0; |
| } |
| |
| iwl_pcie_enable_rx_wake(trans, true); |
| |
| /* |
| * Reconfigure IVAR table in case of MSIX or reset ict table in |
| * MSI mode since HW reset erased it. |
| * Also enables interrupts - none will happen as |
| * the device doesn't know we're waking it up, only when |
| * the opmode actually tells it after this call. |
| */ |
| iwl_pcie_conf_msix_hw(trans_pcie); |
| if (!trans_pcie->msix_enabled) |
| iwl_pcie_reset_ict(trans); |
| iwl_enable_interrupts(trans); |
| |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) |
| udelay(2); |
| |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (ret < 0) { |
| IWL_ERR(trans, "Failed to resume the device (mac ready)\n"); |
| return ret; |
| } |
| |
| iwl_pcie_set_pwr(trans, false); |
| |
| if (!reset) { |
| iwl_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| } else { |
| iwl_trans_pcie_tx_reset(trans); |
| |
| ret = iwl_pcie_rx_init(trans); |
| if (ret) { |
| IWL_ERR(trans, |
| "Failed to resume the device (RX reset)\n"); |
| return ret; |
| } |
| } |
| |
| IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n", |
| iwl_read_prph(trans, WFPM_GP2)); |
| |
| val = iwl_read32(trans, CSR_RESET); |
| if (val & CSR_RESET_REG_FLAG_NEVO_RESET) |
| *status = IWL_D3_STATUS_RESET; |
| else |
| *status = IWL_D3_STATUS_ALIVE; |
| |
| return 0; |
| } |
| |
| static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev, |
| struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int max_irqs, num_irqs, i, ret, nr_online_cpus; |
| u16 pci_cmd; |
| |
| if (!trans->cfg->mq_rx_supported) |
| goto enable_msi; |
| |
| nr_online_cpus = num_online_cpus(); |
| max_irqs = min_t(u32, nr_online_cpus + 2, IWL_MAX_RX_HW_QUEUES); |
| for (i = 0; i < max_irqs; i++) |
| trans_pcie->msix_entries[i].entry = i; |
| |
| num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries, |
| MSIX_MIN_INTERRUPT_VECTORS, |
| max_irqs); |
| if (num_irqs < 0) { |
| IWL_DEBUG_INFO(trans, |
| "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n", |
| num_irqs); |
| goto enable_msi; |
| } |
| trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0; |
| |
| IWL_DEBUG_INFO(trans, |
| "MSI-X enabled. %d interrupt vectors were allocated\n", |
| num_irqs); |
| |
| /* |
| * In case the OS provides fewer interrupts than requested, different |
| * causes will share the same interrupt vector as follows: |
| * One interrupt less: non rx causes shared with FBQ. |
| * Two interrupts less: non rx causes shared with FBQ and RSS. |
| * More than two interrupts: we will use fewer RSS queues. |
| */ |
| if (num_irqs <= nr_online_cpus) { |
| trans_pcie->trans->num_rx_queues = num_irqs + 1; |
| trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX | |
| IWL_SHARED_IRQ_FIRST_RSS; |
| } else if (num_irqs == nr_online_cpus + 1) { |
| trans_pcie->trans->num_rx_queues = num_irqs; |
| trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX; |
| } else { |
| trans_pcie->trans->num_rx_queues = num_irqs - 1; |
| } |
| |
| trans_pcie->alloc_vecs = num_irqs; |
| trans_pcie->msix_enabled = true; |
| return; |
| |
| enable_msi: |
| ret = pci_enable_msi(pdev); |
| if (ret) { |
| dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret); |
| /* enable rfkill interrupt: hw bug w/a */ |
| pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); |
| if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { |
| pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; |
| pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); |
| } |
| } |
| } |
| |
| static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans) |
| { |
| int iter_rx_q, i, ret, cpu, offset; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1; |
| iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i; |
| offset = 1 + i; |
| for (; i < iter_rx_q ; i++) { |
| /* |
| * Get the cpu prior to the place to search |
| * (i.e. return will be > i - 1). |
| */ |
| cpu = cpumask_next(i - offset, cpu_online_mask); |
| cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]); |
| ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector, |
| &trans_pcie->affinity_mask[i]); |
| if (ret) |
| IWL_ERR(trans_pcie->trans, |
| "Failed to set affinity mask for IRQ %d\n", |
| i); |
| } |
| } |
| |
| static const char *queue_name(struct device *dev, |
| struct iwl_trans_pcie *trans_p, int i) |
| { |
| if (trans_p->shared_vec_mask) { |
| int vec = trans_p->shared_vec_mask & |
| IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; |
| |
| if (i == 0) |
| return DRV_NAME ": shared IRQ"; |
| |
| return devm_kasprintf(dev, GFP_KERNEL, |
| DRV_NAME ": queue %d", i + vec); |
| } |
| if (i == 0) |
| return DRV_NAME ": default queue"; |
| |
| if (i == trans_p->alloc_vecs - 1) |
| return DRV_NAME ": exception"; |
| |
| return devm_kasprintf(dev, GFP_KERNEL, |
| DRV_NAME ": queue %d", i); |
| } |
| |
| static int iwl_pcie_init_msix_handler(struct pci_dev *pdev, |
| struct iwl_trans_pcie *trans_pcie) |
| { |
| int i; |
| |
| for (i = 0; i < trans_pcie->alloc_vecs; i++) { |
| int ret; |
| struct msix_entry *msix_entry; |
| const char *qname = queue_name(&pdev->dev, trans_pcie, i); |
| |
| if (!qname) |
| return -ENOMEM; |
| |
| msix_entry = &trans_pcie->msix_entries[i]; |
| ret = devm_request_threaded_irq(&pdev->dev, |
| msix_entry->vector, |
| iwl_pcie_msix_isr, |
| (i == trans_pcie->def_irq) ? |
| iwl_pcie_irq_msix_handler : |
| iwl_pcie_irq_rx_msix_handler, |
| IRQF_SHARED, |
| qname, |
| msix_entry); |
| if (ret) { |
| IWL_ERR(trans_pcie->trans, |
| "Error allocating IRQ %d\n", i); |
| |
| return ret; |
| } |
| } |
| iwl_pcie_irq_set_affinity(trans_pcie->trans); |
| |
| return 0; |
| } |
| |
| static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int err; |
| |
| lockdep_assert_held(&trans_pcie->mutex); |
| |
| err = iwl_pcie_prepare_card_hw(trans); |
| if (err) { |
| IWL_ERR(trans, "Error while preparing HW: %d\n", err); |
| return err; |
| } |
| |
| iwl_pcie_sw_reset(trans); |
| |
| err = iwl_pcie_apm_init(trans); |
| if (err) |
| return err; |
| |
| iwl_pcie_init_msix(trans_pcie); |
| |
| /* From now on, the op_mode will be kept updated about RF kill state */ |
| iwl_enable_rfkill_int(trans); |
| |
| trans_pcie->opmode_down = false; |
| |
| /* Set is_down to false here so that...*/ |
| trans_pcie->is_down = false; |
| |
| /* ...rfkill can call stop_device and set it false if needed */ |
| iwl_pcie_check_hw_rf_kill(trans); |
| |
| /* Make sure we sync here, because we'll need full access later */ |
| if (low_power) |
| pm_runtime_resume(trans->dev); |
| |
| return 0; |
| } |
| |
| static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret; |
| |
| mutex_lock(&trans_pcie->mutex); |
| ret = _iwl_trans_pcie_start_hw(trans, low_power); |
| mutex_unlock(&trans_pcie->mutex); |
| |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| mutex_lock(&trans_pcie->mutex); |
| |
| /* disable interrupts - don't enable HW RF kill interrupt */ |
| iwl_disable_interrupts(trans); |
| |
| iwl_pcie_apm_stop(trans, true); |
| |
| iwl_disable_interrupts(trans); |
| |
| iwl_pcie_disable_ict(trans); |
| |
| mutex_unlock(&trans_pcie->mutex); |
| |
| iwl_pcie_synchronize_irqs(trans); |
| } |
| |
| static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) |
| { |
| writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) |
| { |
| writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) |
| { |
| return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); |
| } |
| |
| static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) |
| { |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, |
| ((reg & 0x000FFFFF) | (3 << 24))); |
| return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); |
| } |
| |
| static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, |
| u32 val) |
| { |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, |
| ((addr & 0x000FFFFF) | (3 << 24))); |
| iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); |
| } |
| |
| static void iwl_trans_pcie_configure(struct iwl_trans *trans, |
| const struct iwl_trans_config *trans_cfg) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->cmd_queue = trans_cfg->cmd_queue; |
| trans_pcie->cmd_fifo = trans_cfg->cmd_fifo; |
| trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout; |
| if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) |
| trans_pcie->n_no_reclaim_cmds = 0; |
| else |
| trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; |
| if (trans_pcie->n_no_reclaim_cmds) |
| memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, |
| trans_pcie->n_no_reclaim_cmds * sizeof(u8)); |
| |
| trans_pcie->rx_buf_size = trans_cfg->rx_buf_size; |
| trans_pcie->rx_page_order = |
| iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size); |
| |
| trans_pcie->bc_table_dword = trans_cfg->bc_table_dword; |
| trans_pcie->scd_set_active = trans_cfg->scd_set_active; |
| trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx; |
| |
| trans_pcie->page_offs = trans_cfg->cb_data_offs; |
| trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *); |
| |
| trans->command_groups = trans_cfg->command_groups; |
| trans->command_groups_size = trans_cfg->command_groups_size; |
| |
| /* Initialize NAPI here - it should be before registering to mac80211 |
| * in the opmode but after the HW struct is allocated. |
| * As this function may be called again in some corner cases don't |
| * do anything if NAPI was already initialized. |
| */ |
| if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY) |
| init_dummy_netdev(&trans_pcie->napi_dev); |
| } |
| |
| void iwl_trans_pcie_free(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| iwl_pcie_synchronize_irqs(trans); |
| |
| if (trans->cfg->gen2) |
| iwl_pcie_gen2_tx_free(trans); |
| else |
| iwl_pcie_tx_free(trans); |
| iwl_pcie_rx_free(trans); |
| |
| if (trans_pcie->rba.alloc_wq) { |
| destroy_workqueue(trans_pcie->rba.alloc_wq); |
| trans_pcie->rba.alloc_wq = NULL; |
| } |
| |
| if (trans_pcie->msix_enabled) { |
| for (i = 0; i < trans_pcie->alloc_vecs; i++) { |
| irq_set_affinity_hint( |
| trans_pcie->msix_entries[i].vector, |
| NULL); |
| } |
| |
| trans_pcie->msix_enabled = false; |
| } else { |
| iwl_pcie_free_ict(trans); |
| } |
| |
| iwl_pcie_free_fw_monitor(trans); |
| |
| for_each_possible_cpu(i) { |
| struct iwl_tso_hdr_page *p = |
| per_cpu_ptr(trans_pcie->tso_hdr_page, i); |
| |
| if (p->page) |
| __free_page(p->page); |
| } |
| |
| free_percpu(trans_pcie->tso_hdr_page); |
| mutex_destroy(&trans_pcie->mutex); |
| iwl_trans_free(trans); |
| } |
| |
| static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) |
| { |
| if (state) |
| set_bit(STATUS_TPOWER_PMI, &trans->status); |
| else |
| clear_bit(STATUS_TPOWER_PMI, &trans->status); |
| } |
| |
| static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, |
| unsigned long *flags) |
| { |
| int ret; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, *flags); |
| |
| if (trans_pcie->cmd_hold_nic_awake) |
| goto out; |
| |
| /* this bit wakes up the NIC */ |
| __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) |
| udelay(2); |
| |
| /* |
| * These bits say the device is running, and should keep running for |
| * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), |
| * but they do not indicate that embedded SRAM is restored yet; |
| * HW with volatile SRAM must save/restore contents to/from |
| * host DRAM when sleeping/waking for power-saving. |
| * Each direction takes approximately 1/4 millisecond; with this |
| * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a |
| * series of register accesses are expected (e.g. reading Event Log), |
| * to keep device from sleeping. |
| * |
| * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that |
| * SRAM is okay/restored. We don't check that here because this call |
| * is just for hardware register access; but GP1 MAC_SLEEP |
| * check is a good idea before accessing the SRAM of HW with |
| * volatile SRAM (e.g. reading Event Log). |
| * |
| * 5000 series and later (including 1000 series) have non-volatile SRAM, |
| * and do not save/restore SRAM when power cycling. |
| */ |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, |
| (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | |
| CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); |
| if (unlikely(ret < 0)) { |
| iwl_trans_pcie_dump_regs(trans); |
| iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); |
| WARN_ONCE(1, |
| "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", |
| iwl_read32(trans, CSR_GP_CNTRL)); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); |
| return false; |
| } |
| |
| out: |
| /* |
| * Fool sparse by faking we release the lock - sparse will |
| * track nic_access anyway. |
| */ |
| __release(&trans_pcie->reg_lock); |
| return true; |
| } |
| |
| static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans, |
| unsigned long *flags) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| lockdep_assert_held(&trans_pcie->reg_lock); |
| |
| /* |
| * Fool sparse by faking we acquiring the lock - sparse will |
| * track nic_access anyway. |
| */ |
| __acquire(&trans_pcie->reg_lock); |
| |
| if (trans_pcie->cmd_hold_nic_awake) |
| goto out; |
| |
| __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| /* |
| * Above we read the CSR_GP_CNTRL register, which will flush |
| * any previous writes, but we need the write that clears the |
| * MAC_ACCESS_REQ bit to be performed before any other writes |
| * scheduled on different CPUs (after we drop reg_lock). |
| */ |
| mmiowb(); |
| out: |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); |
| } |
| |
| static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, |
| void *buf, int dwords) |
| { |
| unsigned long flags; |
| int offs, ret = 0; |
| u32 *vals = buf; |
| |
| if (iwl_trans_grab_nic_access(trans, &flags)) { |
| iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr); |
| for (offs = 0; offs < dwords; offs++) |
| vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); |
| iwl_trans_release_nic_access(trans, &flags); |
| } else { |
| ret = -EBUSY; |
| } |
| return ret; |
| } |
| |
| static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, |
| const void *buf, int dwords) |
| { |
| unsigned long flags; |
| int offs, ret = 0; |
| const u32 *vals = buf; |
| |
| if (iwl_trans_grab_nic_access(trans, &flags)) { |
| iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); |
| for (offs = 0; offs < dwords; offs++) |
| iwl_write32(trans, HBUS_TARG_MEM_WDAT, |
| vals ? vals[offs] : 0); |
| iwl_trans_release_nic_access(trans, &flags); |
| } else { |
| ret = -EBUSY; |
| } |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans, |
| unsigned long txqs, |
| bool freeze) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int queue; |
| |
| for_each_set_bit(queue, &txqs, BITS_PER_LONG) { |
| struct iwl_txq *txq = trans_pcie->txq[queue]; |
| unsigned long now; |
| |
| spin_lock_bh(&txq->lock); |
| |
| now = jiffies; |
| |
| if (txq->frozen == freeze) |
| goto next_queue; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", |
| freeze ? "Freezing" : "Waking", queue); |
| |
| txq->frozen = freeze; |
| |
| if (txq->read_ptr == txq->write_ptr) |
| goto next_queue; |
| |
| if (freeze) { |
| if (unlikely(time_after(now, |
| txq->stuck_timer.expires))) { |
| /* |
| * The timer should have fired, maybe it is |
| * spinning right now on the lock. |
| */ |
| goto next_queue; |
| } |
| /* remember how long until the timer fires */ |
| txq->frozen_expiry_remainder = |
| txq->stuck_timer.expires - now; |
| del_timer(&txq->stuck_timer); |
| goto next_queue; |
| } |
| |
| /* |
| * Wake a non-empty queue -> arm timer with the |
| * remainder before it froze |
| */ |
| mod_timer(&txq->stuck_timer, |
| now + txq->frozen_expiry_remainder); |
| |
| next_queue: |
| spin_unlock_bh(&txq->lock); |
| } |
| } |
| |
| static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { |
| struct iwl_txq *txq = trans_pcie->txq[i]; |
| |
| if (i == trans_pcie->cmd_queue) |
| continue; |
| |
| spin_lock_bh(&txq->lock); |
| |
| if (!block && !(WARN_ON_ONCE(!txq->block))) { |
| txq->block--; |
| if (!txq->block) { |
| iwl_write32(trans, HBUS_TARG_WRPTR, |
| txq->write_ptr | (i << 8)); |
| } |
| } else if (block) { |
| txq->block++; |
| } |
| |
| spin_unlock_bh(&txq->lock); |
| } |
| } |
| |
| #define IWL_FLUSH_WAIT_MS 2000 |
| |
| void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| u32 txq_id = txq->id; |
| u32 status; |
| bool active; |
| u8 fifo; |
| |
| if (trans->cfg->use_tfh) { |
| IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id, |
| txq->read_ptr, txq->write_ptr); |
| /* TODO: access new SCD registers and dump them */ |
| return; |
| } |
| |
| status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id)); |
| fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; |
| active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); |
| |
| IWL_ERR(trans, |
| "Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n", |
| txq_id, active ? "" : "in", fifo, |
| jiffies_to_msecs(txq->wd_timeout), |
| txq->read_ptr, txq->write_ptr, |
| iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) & |
| (TFD_QUEUE_SIZE_MAX - 1), |
| iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) & |
| (TFD_QUEUE_SIZE_MAX - 1), |
| iwl_read_direct32(trans, FH_TX_TRB_REG(fifo))); |
| } |
| |
| static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq; |
| unsigned long now = jiffies; |
| u8 wr_ptr; |
| |
| if (!test_bit(txq_idx, trans_pcie->queue_used)) |
| return -EINVAL; |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx); |
| txq = trans_pcie->txq[txq_idx]; |
| wr_ptr = READ_ONCE(txq->write_ptr); |
| |
| while (txq->read_ptr != READ_ONCE(txq->write_ptr) && |
| !time_after(jiffies, |
| now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) { |
| u8 write_ptr = READ_ONCE(txq->write_ptr); |
| |
| if (WARN_ONCE(wr_ptr != write_ptr, |
| "WR pointer moved while flushing %d -> %d\n", |
| wr_ptr, write_ptr)) |
| return -ETIMEDOUT; |
| usleep_range(1000, 2000); |
| } |
| |
| if (txq->read_ptr != txq->write_ptr) { |
| IWL_ERR(trans, |
| "fail to flush all tx fifo queues Q %d\n", txq_idx); |
| iwl_trans_pcie_log_scd_error(trans, txq); |
| return -ETIMEDOUT; |
| } |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx); |
| |
| return 0; |
| } |
| |
| static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int cnt; |
| int ret = 0; |
| |
| /* waiting for all the tx frames complete might take a while */ |
| for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { |
| |
| if (cnt == trans_pcie->cmd_queue) |
| continue; |
| if (!test_bit(cnt, trans_pcie->queue_used)) |
| continue; |
| if (!(BIT(cnt) & txq_bm)) |
| continue; |
| |
| ret = iwl_trans_pcie_wait_txq_empty(trans, cnt); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, |
| u32 mask, u32 value) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| } |
| |
| static void iwl_trans_pcie_ref(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (iwlwifi_mod_params.d0i3_disable) |
| return; |
| |
| pm_runtime_get(&trans_pcie->pci_dev->dev); |
| |
| #ifdef CONFIG_PM |
| IWL_DEBUG_RPM(trans, "runtime usage count: %d\n", |
| atomic_read(&trans_pcie->pci_dev->dev.power.usage_count)); |
| #endif /* CONFIG_PM */ |
| } |
| |
| static void iwl_trans_pcie_unref(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (iwlwifi_mod_params.d0i3_disable) |
| return; |
| |
| pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev); |
| pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev); |
| |
| #ifdef CONFIG_PM |
| IWL_DEBUG_RPM(trans, "runtime usage count: %d\n", |
| atomic_read(&trans_pcie->pci_dev->dev.power.usage_count)); |
| #endif /* CONFIG_PM */ |
| } |
| |
| static const char *get_csr_string(int cmd) |
| { |
| #define IWL_CMD(x) case x: return #x |
| switch (cmd) { |
| IWL_CMD(CSR_HW_IF_CONFIG_REG); |
| IWL_CMD(CSR_INT_COALESCING); |
| IWL_CMD(CSR_INT); |
| IWL_CMD(CSR_INT_MASK); |
| IWL_CMD(CSR_FH_INT_STATUS); |
| IWL_CMD(CSR_GPIO_IN); |
| IWL_CMD(CSR_RESET); |
| IWL_CMD(CSR_GP_CNTRL); |
| IWL_CMD(CSR_HW_REV); |
| IWL_CMD(CSR_EEPROM_REG); |
| IWL_CMD(CSR_EEPROM_GP); |
| IWL_CMD(CSR_OTP_GP_REG); |
| IWL_CMD(CSR_GIO_REG); |
| IWL_CMD(CSR_GP_UCODE_REG); |
| IWL_CMD(CSR_GP_DRIVER_REG); |
| IWL_CMD(CSR_UCODE_DRV_GP1); |
| IWL_CMD(CSR_UCODE_DRV_GP2); |
| IWL_CMD(CSR_LED_REG); |
| IWL_CMD(CSR_DRAM_INT_TBL_REG); |
| IWL_CMD(CSR_GIO_CHICKEN_BITS); |
| IWL_CMD(CSR_ANA_PLL_CFG); |
| IWL_CMD(CSR_HW_REV_WA_REG); |
| IWL_CMD(CSR_MONITOR_STATUS_REG); |
| IWL_CMD(CSR_DBG_HPET_MEM_REG); |
| default: |
| return "UNKNOWN"; |
| } |
| #undef IWL_CMD |
| } |
| |
| void iwl_pcie_dump_csr(struct iwl_trans *trans) |
| { |
| int i; |
| static const u32 csr_tbl[] = { |
| CSR_HW_IF_CONFIG_REG, |
| CSR_INT_COALESCING, |
| CSR_INT, |
| CSR_INT_MASK, |
| CSR_FH_INT_STATUS, |
| CSR_GPIO_IN, |
| CSR_RESET, |
| CSR_GP_CNTRL, |
| CSR_HW_REV, |
| CSR_EEPROM_REG, |
| CSR_EEPROM_GP, |
| CSR_OTP_GP_REG, |
| CSR_GIO_REG, |
| CSR_GP_UCODE_REG, |
| CSR_GP_DRIVER_REG, |
| CSR_UCODE_DRV_GP1, |
| CSR_UCODE_DRV_GP2, |
| CSR_LED_REG, |
| CSR_DRAM_INT_TBL_REG, |
| CSR_GIO_CHICKEN_BITS, |
| CSR_ANA_PLL_CFG, |
| CSR_MONITOR_STATUS_REG, |
| CSR_HW_REV_WA_REG, |
| CSR_DBG_HPET_MEM_REG |
| }; |
| IWL_ERR(trans, "CSR values:\n"); |
| IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " |
| "CSR_INT_PERIODIC_REG)\n"); |
| for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) { |
| IWL_ERR(trans, " %25s: 0X%08x\n", |
| get_csr_string(csr_tbl[i]), |
| iwl_read32(trans, csr_tbl[i])); |
| } |
| } |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| /* create and remove of files */ |
| #define DEBUGFS_ADD_FILE(name, parent, mode) do { \ |
| if (!debugfs_create_file(#name, mode, parent, trans, \ |
| &iwl_dbgfs_##name##_ops)) \ |
| goto err; \ |
| } while (0) |
| |
| /* file operation */ |
| #define DEBUGFS_READ_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .read = iwl_dbgfs_##name##_read, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| #define DEBUGFS_WRITE_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .write = iwl_dbgfs_##name##_write, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| #define DEBUGFS_READ_WRITE_FILE_OPS(name) \ |
| static const struct file_operations iwl_dbgfs_##name##_ops = { \ |
| .write = iwl_dbgfs_##name##_write, \ |
| .read = iwl_dbgfs_##name##_read, \ |
| .open = simple_open, \ |
| .llseek = generic_file_llseek, \ |
| }; |
| |
| static ssize_t iwl_dbgfs_tx_queue_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq; |
| char *buf; |
| int pos = 0; |
| int cnt; |
| int ret; |
| size_t bufsz; |
| |
| bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues; |
| |
| if (!trans_pcie->txq_memory) |
| return -EAGAIN; |
| |
| buf = kzalloc(bufsz, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { |
| txq = trans_pcie->txq[cnt]; |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n", |
| cnt, txq->read_ptr, txq->write_ptr, |
| !!test_bit(cnt, trans_pcie->queue_used), |
| !!test_bit(cnt, trans_pcie->queue_stopped), |
| txq->need_update, txq->frozen, |
| (cnt == trans_pcie->cmd_queue ? " HCMD" : "")); |
| } |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| kfree(buf); |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| char *buf; |
| int pos = 0, i, ret; |
| size_t bufsz = sizeof(buf); |
| |
| bufsz = sizeof(char) * 121 * trans->num_rx_queues; |
| |
| if (!trans_pcie->rxq) |
| return -EAGAIN; |
| |
| buf = kzalloc(bufsz, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n", |
| i); |
| pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n", |
| rxq->read); |
| pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n", |
| rxq->write); |
| pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n", |
| rxq->write_actual); |
| pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n", |
| rxq->need_update); |
| pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n", |
| rxq->free_count); |
| if (rxq->rb_stts) { |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "\tclosed_rb_num: %u\n", |
| le16_to_cpu(rxq->rb_stts->closed_rb_num) & |
| 0x0FFF); |
| } else { |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "\tclosed_rb_num: Not Allocated\n"); |
| } |
| } |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_interrupt_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| |
| int pos = 0; |
| char *buf; |
| int bufsz = 24 * 64; /* 24 items * 64 char per item */ |
| ssize_t ret; |
| |
| buf = kzalloc(bufsz, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "Interrupt Statistics Report:\n"); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", |
| isr_stats->hw); |
| pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", |
| isr_stats->sw); |
| if (isr_stats->sw || isr_stats->hw) { |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "\tLast Restarting Code: 0x%X\n", |
| isr_stats->err_code); |
| } |
| #ifdef CONFIG_IWLWIFI_DEBUG |
| pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", |
| isr_stats->sch); |
| pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", |
| isr_stats->alive); |
| #endif |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", |
| isr_stats->ctkill); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", |
| isr_stats->wakeup); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, |
| "Rx command responses:\t\t %u\n", isr_stats->rx); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", |
| isr_stats->tx); |
| |
| pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", |
| isr_stats->unhandled); |
| |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| kfree(buf); |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_interrupt_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| u32 reset_flag; |
| int ret; |
| |
| ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag); |
| if (ret) |
| return ret; |
| if (reset_flag == 0) |
| memset(isr_stats, 0, sizeof(*isr_stats)); |
| |
| return count; |
| } |
| |
| static ssize_t iwl_dbgfs_csr_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| |
| iwl_pcie_dump_csr(trans); |
| |
| return count; |
| } |
| |
| static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| char *buf = NULL; |
| ssize_t ret; |
| |
| ret = iwl_dump_fh(trans, &buf); |
| if (ret < 0) |
| return ret; |
| if (!buf) |
| return -EINVAL; |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); |
| kfree(buf); |
| return ret; |
| } |
| |
| static ssize_t iwl_dbgfs_rfkill_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| char buf[100]; |
| int pos; |
| |
| pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n", |
| trans_pcie->debug_rfkill, |
| !(iwl_read32(trans, CSR_GP_CNTRL) & |
| CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)); |
| |
| return simple_read_from_buffer(user_buf, count, ppos, buf, pos); |
| } |
| |
| static ssize_t iwl_dbgfs_rfkill_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct iwl_trans *trans = file->private_data; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| bool old = trans_pcie->debug_rfkill; |
| int ret; |
| |
| ret = kstrtobool_from_user(user_buf, count, &trans_pcie->debug_rfkill); |
| if (ret) |
| return ret; |
| if (old == trans_pcie->debug_rfkill) |
| return count; |
| IWL_WARN(trans, "changing debug rfkill %d->%d\n", |
| old, trans_pcie->debug_rfkill); |
| iwl_pcie_handle_rfkill_irq(trans); |
| |
| return count; |
| } |
| |
| DEBUGFS_READ_WRITE_FILE_OPS(interrupt); |
| DEBUGFS_READ_FILE_OPS(fh_reg); |
| DEBUGFS_READ_FILE_OPS(rx_queue); |
| DEBUGFS_READ_FILE_OPS(tx_queue); |
| DEBUGFS_WRITE_FILE_OPS(csr); |
| DEBUGFS_READ_WRITE_FILE_OPS(rfkill); |
| |
| /* Create the debugfs files and directories */ |
| int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) |
| { |
| struct dentry *dir = trans->dbgfs_dir; |
| |
| DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR); |
| DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR); |
| DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR); |
| DEBUGFS_ADD_FILE(csr, dir, S_IWUSR); |
| DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR); |
| DEBUGFS_ADD_FILE(rfkill, dir, S_IWUSR | S_IRUSR); |
| return 0; |
| |
| err: |
| IWL_ERR(trans, "failed to create the trans debugfs entry\n"); |
| return -ENOMEM; |
| } |
| #endif /*CONFIG_IWLWIFI_DEBUGFS */ |
| |
| static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 cmdlen = 0; |
| int i; |
| |
| for (i = 0; i < trans_pcie->max_tbs; i++) |
| cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i); |
| |
| return cmdlen; |
| } |
| |
| static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data, |
| int allocated_rb_nums) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int max_len = PAGE_SIZE << trans_pcie->rx_page_order; |
| /* Dump RBs is supported only for pre-9000 devices (1 queue) */ |
| struct iwl_rxq *rxq = &trans_pcie->rxq[0]; |
| u32 i, r, j, rb_len = 0; |
| |
| spin_lock(&rxq->lock); |
| |
| r = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; |
| |
| for (i = rxq->read, j = 0; |
| i != r && j < allocated_rb_nums; |
| i = (i + 1) & RX_QUEUE_MASK, j++) { |
| struct iwl_rx_mem_buffer *rxb = rxq->queue[i]; |
| struct iwl_fw_error_dump_rb *rb; |
| |
| dma_unmap_page(trans->dev, rxb->page_dma, max_len, |
| DMA_FROM_DEVICE); |
| |
| rb_len += sizeof(**data) + sizeof(*rb) + max_len; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB); |
| (*data)->len = cpu_to_le32(sizeof(*rb) + max_len); |
| rb = (void *)(*data)->data; |
| rb->index = cpu_to_le32(i); |
| memcpy(rb->data, page_address(rxb->page), max_len); |
| /* remap the page for the free benefit */ |
| rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0, |
| max_len, |
| DMA_FROM_DEVICE); |
| |
| *data = iwl_fw_error_next_data(*data); |
| } |
| |
| spin_unlock(&rxq->lock); |
| |
| return rb_len; |
| } |
| #define IWL_CSR_TO_DUMP (0x250) |
| |
| static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data) |
| { |
| u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP; |
| __le32 *val; |
| int i; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR); |
| (*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP); |
| val = (void *)(*data)->data; |
| |
| for (i = 0; i < IWL_CSR_TO_DUMP; i += 4) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); |
| |
| *data = iwl_fw_error_next_data(*data); |
| |
| return csr_len; |
| } |
| |
| static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data) |
| { |
| u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND; |
| unsigned long flags; |
| __le32 *val; |
| int i; |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| return 0; |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS); |
| (*data)->len = cpu_to_le32(fh_regs_len); |
| val = (void *)(*data)->data; |
| |
| if (!trans->cfg->gen2) |
| for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; |
| i += sizeof(u32)) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); |
| else |
| for (i = FH_MEM_LOWER_BOUND_GEN2; i < FH_MEM_UPPER_BOUND_GEN2; |
| i += sizeof(u32)) |
| *val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans, |
| i)); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| *data = iwl_fw_error_next_data(*data); |
| |
| return sizeof(**data) + fh_regs_len; |
| } |
| |
| static u32 |
| iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_fw_mon *fw_mon_data, |
| u32 monitor_len) |
| { |
| u32 buf_size_in_dwords = (monitor_len >> 2); |
| u32 *buffer = (u32 *)fw_mon_data->data; |
| unsigned long flags; |
| u32 i; |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| return 0; |
| |
| iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1); |
| for (i = 0; i < buf_size_in_dwords; i++) |
| buffer[i] = iwl_read_prph_no_grab(trans, |
| MON_DMARB_RD_DATA_ADDR); |
| iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| return monitor_len; |
| } |
| |
| static u32 |
| iwl_trans_pcie_dump_monitor(struct iwl_trans *trans, |
| struct iwl_fw_error_dump_data **data, |
| u32 monitor_len) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 len = 0; |
| |
| if ((trans_pcie->fw_mon_page && |
| trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) || |
| trans->dbg_dest_tlv) { |
| struct iwl_fw_error_dump_fw_mon *fw_mon_data; |
| u32 base, write_ptr, wrap_cnt; |
| |
| /* If there was a dest TLV - use the values from there */ |
| if (trans->dbg_dest_tlv) { |
| write_ptr = |
| le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg); |
| wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count); |
| base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); |
| } else { |
| base = MON_BUFF_BASE_ADDR; |
| write_ptr = MON_BUFF_WRPTR; |
| wrap_cnt = MON_BUFF_CYCLE_CNT; |
| } |
| |
| (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR); |
| fw_mon_data = (void *)(*data)->data; |
| fw_mon_data->fw_mon_wr_ptr = |
| cpu_to_le32(iwl_read_prph(trans, write_ptr)); |
| fw_mon_data->fw_mon_cycle_cnt = |
| cpu_to_le32(iwl_read_prph(trans, wrap_cnt)); |
| fw_mon_data->fw_mon_base_ptr = |
| cpu_to_le32(iwl_read_prph(trans, base)); |
| |
| len += sizeof(**data) + sizeof(*fw_mon_data); |
| if (trans_pcie->fw_mon_page) { |
| /* |
| * The firmware is now asserted, it won't write anything |
| * to the buffer. CPU can take ownership to fetch the |
| * data. The buffer will be handed back to the device |
| * before the firmware will be restarted. |
| */ |
| dma_sync_single_for_cpu(trans->dev, |
| trans_pcie->fw_mon_phys, |
| trans_pcie->fw_mon_size, |
| DMA_FROM_DEVICE); |
| memcpy(fw_mon_data->data, |
| page_address(trans_pcie->fw_mon_page), |
| trans_pcie->fw_mon_size); |
| |
| monitor_len = trans_pcie->fw_mon_size; |
| } else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) { |
| /* |
| * Update pointers to reflect actual values after |
| * shifting |
| */ |
| base = iwl_read_prph(trans, base) << |
| trans->dbg_dest_tlv->base_shift; |
| iwl_trans_read_mem(trans, base, fw_mon_data->data, |
| monitor_len / sizeof(u32)); |
| } else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) { |
| monitor_len = |
| iwl_trans_pci_dump_marbh_monitor(trans, |
| fw_mon_data, |
| monitor_len); |
| } else { |
| /* Didn't match anything - output no monitor data */ |
| monitor_len = 0; |
| } |
| |
| len += monitor_len; |
| (*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data)); |
| } |
| |
| return len; |
| } |
| |
| static struct iwl_trans_dump_data |
| *iwl_trans_pcie_dump_data(struct iwl_trans *trans, |
| const struct iwl_fw_dbg_trigger_tlv *trigger) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_fw_error_dump_data *data; |
| struct iwl_txq *cmdq = trans_pcie->txq[trans_pcie->cmd_queue]; |
| struct iwl_fw_error_dump_txcmd *txcmd; |
| struct iwl_trans_dump_data *dump_data; |
| u32 len, num_rbs; |
| u32 monitor_len; |
| int i, ptr; |
| bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) && |
| !trans->cfg->mq_rx_supported; |
| |
| /* transport dump header */ |
| len = sizeof(*dump_data); |
| |
| /* host commands */ |
| len += sizeof(*data) + |
| cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE); |
| |
| /* FW monitor */ |
| if (trans_pcie->fw_mon_page) { |
| len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + |
| trans_pcie->fw_mon_size; |
| monitor_len = trans_pcie->fw_mon_size; |
| } else if (trans->dbg_dest_tlv) { |
| u32 base, end; |
| |
| base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); |
| end = le32_to_cpu(trans->dbg_dest_tlv->end_reg); |
| |
| base = iwl_read_prph(trans, base) << |
| trans->dbg_dest_tlv->base_shift; |
| end = iwl_read_prph(trans, end) << |
| trans->dbg_dest_tlv->end_shift; |
| |
| /* Make "end" point to the actual end */ |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000 || |
| trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) |
| end += (1 << trans->dbg_dest_tlv->end_shift); |
| monitor_len = end - base; |
| len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + |
| monitor_len; |
| } else { |
| monitor_len = 0; |
| } |
| |
| if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) { |
| dump_data = vzalloc(len); |
| if (!dump_data) |
| return NULL; |
| |
| data = (void *)dump_data->data; |
| len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); |
| dump_data->len = len; |
| |
| return dump_data; |
| } |
| |
| /* CSR registers */ |
| len += sizeof(*data) + IWL_CSR_TO_DUMP; |
| |
| /* FH registers */ |
| if (trans->cfg->gen2) |
| len += sizeof(*data) + |
| (FH_MEM_UPPER_BOUND_GEN2 - FH_MEM_LOWER_BOUND_GEN2); |
| else |
| len += sizeof(*data) + |
| (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND); |
| |
| if (dump_rbs) { |
| /* Dump RBs is supported only for pre-9000 devices (1 queue) */ |
| struct iwl_rxq *rxq = &trans_pcie->rxq[0]; |
| /* RBs */ |
| num_rbs = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) |
| & 0x0FFF; |
| num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK; |
| len += num_rbs * (sizeof(*data) + |
| sizeof(struct iwl_fw_error_dump_rb) + |
| (PAGE_SIZE << trans_pcie->rx_page_order)); |
| } |
| |
| /* Paged memory for gen2 HW */ |
| if (trans->cfg->gen2) |
| for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) |
| len += sizeof(*data) + |
| sizeof(struct iwl_fw_error_dump_paging) + |
| trans_pcie->init_dram.paging[i].size; |
| |
| dump_data = vzalloc(len); |
| if (!dump_data) |
| return NULL; |
| |
| len = 0; |
| data = (void *)dump_data->data; |
| data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD); |
| txcmd = (void *)data->data; |
| spin_lock_bh(&cmdq->lock); |
| ptr = cmdq->write_ptr; |
| for (i = 0; i < cmdq->n_window; i++) { |
| u8 idx = iwl_pcie_get_cmd_index(cmdq, ptr); |
| u32 caplen, cmdlen; |
| |
| cmdlen = iwl_trans_pcie_get_cmdlen(trans, cmdq->tfds + |
| trans_pcie->tfd_size * ptr); |
| caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen); |
| |
| if (cmdlen) { |
| len += sizeof(*txcmd) + caplen; |
| txcmd->cmdlen = cpu_to_le32(cmdlen); |
| txcmd->caplen = cpu_to_le32(caplen); |
| memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen); |
| txcmd = (void *)((u8 *)txcmd->data + caplen); |
| } |
| |
| ptr = iwl_queue_dec_wrap(ptr); |
| } |
| spin_unlock_bh(&cmdq->lock); |
| |
| data->len = cpu_to_le32(len); |
| len += sizeof(*data); |
| data = iwl_fw_error_next_data(data); |
| |
| len += iwl_trans_pcie_dump_csr(trans, &data); |
| len += iwl_trans_pcie_fh_regs_dump(trans, &data); |
| if (dump_rbs) |
| len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs); |
| |
| /* Paged memory for gen2 HW */ |
| if (trans->cfg->gen2) { |
| for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) { |
| struct iwl_fw_error_dump_paging *paging; |
| dma_addr_t addr = |
| trans_pcie->init_dram.paging[i].physical; |
| u32 page_len = trans_pcie->init_dram.paging[i].size; |
| |
| data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING); |
| data->len = cpu_to_le32(sizeof(*paging) + page_len); |
| paging = (void *)data->data; |
| paging->index = cpu_to_le32(i); |
| dma_sync_single_for_cpu(trans->dev, addr, page_len, |
| DMA_BIDIRECTIONAL); |
| memcpy(paging->data, |
| trans_pcie->init_dram.paging[i].block, page_len); |
| data = iwl_fw_error_next_data(data); |
| |
| len += sizeof(*data) + sizeof(*paging) + page_len; |
| } |
| } |
| |
| len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); |
| |
| dump_data->len = len; |
| |
| return dump_data; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int iwl_trans_pcie_suspend(struct iwl_trans *trans) |
| { |
| if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 && |
| (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3)) |
| return iwl_pci_fw_enter_d0i3(trans); |
| |
| return 0; |
| } |
| |
| static void iwl_trans_pcie_resume(struct iwl_trans *trans) |
| { |
| if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 && |
| (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3)) |
| iwl_pci_fw_exit_d0i3(trans); |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| #define IWL_TRANS_COMMON_OPS \ |
| .op_mode_leave = iwl_trans_pcie_op_mode_leave, \ |
| .write8 = iwl_trans_pcie_write8, \ |
| .write32 = iwl_trans_pcie_write32, \ |
| .read32 = iwl_trans_pcie_read32, \ |
| .read_prph = iwl_trans_pcie_read_prph, \ |
| .write_prph = iwl_trans_pcie_write_prph, \ |
| .read_mem = iwl_trans_pcie_read_mem, \ |
| .write_mem = iwl_trans_pcie_write_mem, \ |
| .configure = iwl_trans_pcie_configure, \ |
| .set_pmi = iwl_trans_pcie_set_pmi, \ |
| .grab_nic_access = iwl_trans_pcie_grab_nic_access, \ |
| .release_nic_access = iwl_trans_pcie_release_nic_access, \ |
| .set_bits_mask = iwl_trans_pcie_set_bits_mask, \ |
| .ref = iwl_trans_pcie_ref, \ |
| .unref = iwl_trans_pcie_unref, \ |
| .dump_data = iwl_trans_pcie_dump_data, \ |
| .dump_regs = iwl_trans_pcie_dump_regs, \ |
| .d3_suspend = iwl_trans_pcie_d3_suspend, \ |
| .d3_resume = iwl_trans_pcie_d3_resume |
| |
| #ifdef CONFIG_PM_SLEEP |
| #define IWL_TRANS_PM_OPS \ |
| .suspend = iwl_trans_pcie_suspend, \ |
| .resume = iwl_trans_pcie_resume, |
| #else |
| #define IWL_TRANS_PM_OPS |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static const struct iwl_trans_ops trans_ops_pcie = { |
| IWL_TRANS_COMMON_OPS, |
| IWL_TRANS_PM_OPS |
| .start_hw = iwl_trans_pcie_start_hw, |
| .fw_alive = iwl_trans_pcie_fw_alive, |
| .start_fw = iwl_trans_pcie_start_fw, |
| .stop_device = iwl_trans_pcie_stop_device, |
| |
| .send_cmd = iwl_trans_pcie_send_hcmd, |
| |
| .tx = iwl_trans_pcie_tx, |
| .reclaim = iwl_trans_pcie_reclaim, |
| |
| .txq_disable = iwl_trans_pcie_txq_disable, |
| .txq_enable = iwl_trans_pcie_txq_enable, |
| |
| .txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode, |
| |
| .wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty, |
| |
| .freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer, |
| .block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs, |
| }; |
| |
| static const struct iwl_trans_ops trans_ops_pcie_gen2 = { |
| IWL_TRANS_COMMON_OPS, |
| IWL_TRANS_PM_OPS |
| .start_hw = iwl_trans_pcie_start_hw, |
| .fw_alive = iwl_trans_pcie_gen2_fw_alive, |
| .start_fw = iwl_trans_pcie_gen2_start_fw, |
| .stop_device = iwl_trans_pcie_gen2_stop_device, |
| |
| .send_cmd = iwl_trans_pcie_gen2_send_hcmd, |
| |
| .tx = iwl_trans_pcie_gen2_tx, |
| .reclaim = iwl_trans_pcie_reclaim, |
| |
| .txq_alloc = iwl_trans_pcie_dyn_txq_alloc, |
| .txq_free = iwl_trans_pcie_dyn_txq_free, |
| .wait_txq_empty = iwl_trans_pcie_wait_txq_empty, |
| }; |
| |
| struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, |
| const struct pci_device_id *ent, |
| const struct iwl_cfg *cfg) |
| { |
| struct iwl_trans_pcie *trans_pcie; |
| struct iwl_trans *trans; |
| int ret, addr_size; |
| |
| ret = pcim_enable_device(pdev); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (cfg->gen2) |
| trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), |
| &pdev->dev, cfg, &trans_ops_pcie_gen2); |
| else |
| trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), |
| &pdev->dev, cfg, &trans_ops_pcie); |
| if (!trans) |
| return ERR_PTR(-ENOMEM); |
| |
| trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->trans = trans; |
| trans_pcie->opmode_down = true; |
| spin_lock_init(&trans_pcie->irq_lock); |
| spin_lock_init(&trans_pcie->reg_lock); |
| mutex_init(&trans_pcie->mutex); |
| init_waitqueue_head(&trans_pcie->ucode_write_waitq); |
| trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page); |
| if (!trans_pcie->tso_hdr_page) { |
| ret = -ENOMEM; |
| goto out_no_pci; |
| } |
| |
| |
| if (!cfg->base_params->pcie_l1_allowed) { |
| /* |
| * W/A - seems to solve weird behavior. We need to remove this |
| * if we don't want to stay in L1 all the time. This wastes a |
| * lot of power. |
| */ |
| pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | |
| PCIE_LINK_STATE_L1 | |
| PCIE_LINK_STATE_CLKPM); |
| } |
| |
| if (cfg->use_tfh) { |
| addr_size = 64; |
| trans_pcie->max_tbs = IWL_TFH_NUM_TBS; |
| trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd); |
| } else { |
| addr_size = 36; |
| trans_pcie->max_tbs = IWL_NUM_OF_TBS; |
| trans_pcie->tfd_size = sizeof(struct iwl_tfd); |
| } |
| trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie); |
| |
| pci_set_master(pdev); |
| |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size)); |
| if (!ret) |
| ret = pci_set_consistent_dma_mask(pdev, |
| DMA_BIT_MASK(addr_size)); |
| if (ret) { |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (!ret) |
| ret = pci_set_consistent_dma_mask(pdev, |
| DMA_BIT_MASK(32)); |
| /* both attempts failed: */ |
| if (ret) { |
| dev_err(&pdev->dev, "No suitable DMA available\n"); |
| goto out_no_pci; |
| } |
| } |
| |
| ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME); |
| if (ret) { |
| dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n"); |
| goto out_no_pci; |
| } |
| |
| trans_pcie->hw_base = pcim_iomap_table(pdev)[0]; |
| if (!trans_pcie->hw_base) { |
| dev_err(&pdev->dev, "pcim_iomap_table failed\n"); |
| ret = -ENODEV; |
| goto out_no_pci; |
| } |
| |
| /* We disable the RETRY_TIMEOUT register (0x41) to keep |
| * PCI Tx retries from interfering with C3 CPU state */ |
| pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); |
| |
| trans_pcie->pci_dev = pdev; |
| iwl_disable_interrupts(trans); |
| |
| trans->hw_rev = iwl_read32(trans, CSR_HW_REV); |
| /* |
| * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have |
| * changed, and now the revision step also includes bit 0-1 (no more |
| * "dash" value). To keep hw_rev backwards compatible - we'll store it |
| * in the old format. |
| */ |
| if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) { |
| unsigned long flags; |
| |
| trans->hw_rev = (trans->hw_rev & 0xfff0) | |
| (CSR_HW_REV_STEP(trans->hw_rev << 2) << 2); |
| |
| ret = iwl_pcie_prepare_card_hw(trans); |
| if (ret) { |
| IWL_WARN(trans, "Exit HW not ready\n"); |
| goto out_no_pci; |
| } |
| |
| /* |
| * in-order to recognize C step driver should read chip version |
| * id located at the AUX bus MISC address space. |
| */ |
| iwl_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| udelay(2); |
| |
| ret = iwl_poll_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (ret < 0) { |
| IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n"); |
| goto out_no_pci; |
| } |
| |
| if (iwl_trans_grab_nic_access(trans, &flags)) { |
| u32 hw_step; |
| |
| hw_step = iwl_read_prph_no_grab(trans, WFPM_CTRL_REG); |
| hw_step |= ENABLE_WFPM; |
| iwl_write_prph_no_grab(trans, WFPM_CTRL_REG, hw_step); |
| hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG); |
| hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF; |
| if (hw_step == 0x3) |
| trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) | |
| (SILICON_C_STEP << 2); |
| iwl_trans_release_nic_access(trans, &flags); |
| } |
| } |
| |
| /* |
| * 9000-series integrated A-step has a problem with suspend/resume |
| * and sometimes even causes the whole platform to get stuck. This |
| * workaround makes the hardware not go into the problematic state. |
| */ |
| if (trans->cfg->integrated && |
| trans->cfg->device_family == IWL_DEVICE_FAMILY_9000 && |
| CSR_HW_REV_STEP(trans->hw_rev) == SILICON_A_STEP) |
| iwl_set_bit(trans, CSR_HOST_CHICKEN, |
| CSR_HOST_CHICKEN_PM_IDLE_SRC_DIS_SB_PME); |
| |
| #if IS_ENABLED(CONFIG_IWLMVM) |
| trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID); |
| if (trans->hw_rf_id == CSR_HW_RF_ID_TYPE_HR) { |
| u32 hw_status; |
| |
| hw_status = iwl_read_prph(trans, UMAG_GEN_HW_STATUS); |
| if (hw_status & UMAG_GEN_HW_IS_FPGA) |
| trans->cfg = &iwla000_2ax_cfg_qnj_hr_f0; |
| else |
| trans->cfg = &iwla000_2ac_cfg_hr; |
| } |
| #endif |
| |
| iwl_pcie_set_interrupt_capa(pdev, trans); |
| trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; |
| snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), |
| "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); |
| |
| /* Initialize the wait queue for commands */ |
| init_waitqueue_head(&trans_pcie->wait_command_queue); |
| |
| init_waitqueue_head(&trans_pcie->d0i3_waitq); |
| |
| if (trans_pcie->msix_enabled) { |
| ret = iwl_pcie_init_msix_handler(pdev, trans_pcie); |
| if (ret) |
| goto out_no_pci; |
| } else { |
| ret = iwl_pcie_alloc_ict(trans); |
| if (ret) |
| goto out_no_pci; |
| |
| ret = devm_request_threaded_irq(&pdev->dev, pdev->irq, |
| iwl_pcie_isr, |
| iwl_pcie_irq_handler, |
| IRQF_SHARED, DRV_NAME, trans); |
| if (ret) { |
| IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); |
| goto out_free_ict; |
| } |
| trans_pcie->inta_mask = CSR_INI_SET_MASK; |
| } |
| |
| trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator", |
| WQ_HIGHPRI | WQ_UNBOUND, 1); |
| INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work); |
| |
| #ifdef CONFIG_IWLWIFI_PCIE_RTPM |
| trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3; |
| #else |
| trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED; |
| #endif /* CONFIG_IWLWIFI_PCIE_RTPM */ |
| |
| return trans; |
| |
| out_free_ict: |
| iwl_pcie_free_ict(trans); |
| out_no_pci: |
| free_percpu(trans_pcie->tso_hdr_page); |
| iwl_trans_free(trans); |
| return ERR_PTR(ret); |
| } |