| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/bio.h> |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/pagemap.h> |
| #include <linux/page-flags.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> |
| #include <linux/swap.h> |
| #include <linux/version.h> |
| #include <linux/writeback.h> |
| #include <linux/pagevec.h> |
| #include "extent_io.h" |
| #include "extent_map.h" |
| |
| /* temporary define until extent_map moves out of btrfs */ |
| struct kmem_cache *btrfs_cache_create(const char *name, size_t size, |
| unsigned long extra_flags, |
| void (*ctor)(void *, struct kmem_cache *, |
| unsigned long)); |
| |
| static struct kmem_cache *extent_state_cache; |
| static struct kmem_cache *extent_buffer_cache; |
| |
| static LIST_HEAD(buffers); |
| static LIST_HEAD(states); |
| static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED; |
| |
| #define BUFFER_LRU_MAX 64 |
| |
| struct tree_entry { |
| u64 start; |
| u64 end; |
| struct rb_node rb_node; |
| }; |
| |
| struct extent_page_data { |
| struct bio *bio; |
| struct extent_io_tree *tree; |
| get_extent_t *get_extent; |
| }; |
| |
| int __init extent_io_init(void) |
| { |
| extent_state_cache = btrfs_cache_create("extent_state", |
| sizeof(struct extent_state), 0, |
| NULL); |
| if (!extent_state_cache) |
| return -ENOMEM; |
| |
| extent_buffer_cache = btrfs_cache_create("extent_buffers", |
| sizeof(struct extent_buffer), 0, |
| NULL); |
| if (!extent_buffer_cache) |
| goto free_state_cache; |
| return 0; |
| |
| free_state_cache: |
| kmem_cache_destroy(extent_state_cache); |
| return -ENOMEM; |
| } |
| |
| void extent_io_exit(void) |
| { |
| struct extent_state *state; |
| struct extent_buffer *eb; |
| |
| while (!list_empty(&states)) { |
| state = list_entry(states.next, struct extent_state, leak_list); |
| printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs)); |
| list_del(&state->leak_list); |
| kmem_cache_free(extent_state_cache, state); |
| |
| } |
| |
| while (!list_empty(&buffers)) { |
| eb = list_entry(buffers.next, struct extent_buffer, leak_list); |
| printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs)); |
| list_del(&eb->leak_list); |
| kmem_cache_free(extent_buffer_cache, eb); |
| } |
| if (extent_state_cache) |
| kmem_cache_destroy(extent_state_cache); |
| if (extent_buffer_cache) |
| kmem_cache_destroy(extent_buffer_cache); |
| } |
| |
| void extent_io_tree_init(struct extent_io_tree *tree, |
| struct address_space *mapping, gfp_t mask) |
| { |
| tree->state.rb_node = NULL; |
| tree->ops = NULL; |
| tree->dirty_bytes = 0; |
| spin_lock_init(&tree->lock); |
| spin_lock_init(&tree->lru_lock); |
| tree->mapping = mapping; |
| INIT_LIST_HEAD(&tree->buffer_lru); |
| tree->lru_size = 0; |
| tree->last = NULL; |
| } |
| EXPORT_SYMBOL(extent_io_tree_init); |
| |
| void extent_io_tree_empty_lru(struct extent_io_tree *tree) |
| { |
| struct extent_buffer *eb; |
| while(!list_empty(&tree->buffer_lru)) { |
| eb = list_entry(tree->buffer_lru.next, struct extent_buffer, |
| lru); |
| list_del_init(&eb->lru); |
| free_extent_buffer(eb); |
| } |
| } |
| EXPORT_SYMBOL(extent_io_tree_empty_lru); |
| |
| struct extent_state *alloc_extent_state(gfp_t mask) |
| { |
| struct extent_state *state; |
| unsigned long flags; |
| |
| state = kmem_cache_alloc(extent_state_cache, mask); |
| if (!state) |
| return state; |
| state->state = 0; |
| state->private = 0; |
| state->tree = NULL; |
| spin_lock_irqsave(&leak_lock, flags); |
| list_add(&state->leak_list, &states); |
| spin_unlock_irqrestore(&leak_lock, flags); |
| |
| atomic_set(&state->refs, 1); |
| init_waitqueue_head(&state->wq); |
| return state; |
| } |
| EXPORT_SYMBOL(alloc_extent_state); |
| |
| void free_extent_state(struct extent_state *state) |
| { |
| if (!state) |
| return; |
| if (atomic_dec_and_test(&state->refs)) { |
| unsigned long flags; |
| WARN_ON(state->tree); |
| spin_lock_irqsave(&leak_lock, flags); |
| list_del(&state->leak_list); |
| spin_unlock_irqrestore(&leak_lock, flags); |
| kmem_cache_free(extent_state_cache, state); |
| } |
| } |
| EXPORT_SYMBOL(free_extent_state); |
| |
| static struct rb_node *tree_insert(struct rb_root *root, u64 offset, |
| struct rb_node *node) |
| { |
| struct rb_node ** p = &root->rb_node; |
| struct rb_node * parent = NULL; |
| struct tree_entry *entry; |
| |
| while(*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct tree_entry, rb_node); |
| |
| if (offset < entry->start) |
| p = &(*p)->rb_left; |
| else if (offset > entry->end) |
| p = &(*p)->rb_right; |
| else |
| return parent; |
| } |
| |
| entry = rb_entry(node, struct tree_entry, rb_node); |
| rb_link_node(node, parent, p); |
| rb_insert_color(node, root); |
| return NULL; |
| } |
| |
| static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, |
| struct rb_node **prev_ret, |
| struct rb_node **next_ret) |
| { |
| struct rb_root *root = &tree->state; |
| struct rb_node * n = root->rb_node; |
| struct rb_node *prev = NULL; |
| struct rb_node *orig_prev = NULL; |
| struct tree_entry *entry; |
| struct tree_entry *prev_entry = NULL; |
| |
| if (tree->last) { |
| struct extent_state *state; |
| state = tree->last; |
| if (state->start <= offset && offset <= state->end) |
| return &tree->last->rb_node; |
| } |
| while(n) { |
| entry = rb_entry(n, struct tree_entry, rb_node); |
| prev = n; |
| prev_entry = entry; |
| |
| if (offset < entry->start) |
| n = n->rb_left; |
| else if (offset > entry->end) |
| n = n->rb_right; |
| else { |
| tree->last = rb_entry(n, struct extent_state, rb_node); |
| return n; |
| } |
| } |
| |
| if (prev_ret) { |
| orig_prev = prev; |
| while(prev && offset > prev_entry->end) { |
| prev = rb_next(prev); |
| prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| } |
| *prev_ret = prev; |
| prev = orig_prev; |
| } |
| |
| if (next_ret) { |
| prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| while(prev && offset < prev_entry->start) { |
| prev = rb_prev(prev); |
| prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| } |
| *next_ret = prev; |
| } |
| return NULL; |
| } |
| |
| static inline struct rb_node *tree_search(struct extent_io_tree *tree, |
| u64 offset) |
| { |
| struct rb_node *prev = NULL; |
| struct rb_node *ret; |
| |
| ret = __etree_search(tree, offset, &prev, NULL); |
| if (!ret) { |
| if (prev) { |
| tree->last = rb_entry(prev, struct extent_state, |
| rb_node); |
| } |
| return prev; |
| } |
| return ret; |
| } |
| |
| /* |
| * utility function to look for merge candidates inside a given range. |
| * Any extents with matching state are merged together into a single |
| * extent in the tree. Extents with EXTENT_IO in their state field |
| * are not merged because the end_io handlers need to be able to do |
| * operations on them without sleeping (or doing allocations/splits). |
| * |
| * This should be called with the tree lock held. |
| */ |
| static int merge_state(struct extent_io_tree *tree, |
| struct extent_state *state) |
| { |
| struct extent_state *other; |
| struct rb_node *other_node; |
| |
| if (state->state & EXTENT_IOBITS) |
| return 0; |
| |
| other_node = rb_prev(&state->rb_node); |
| if (other_node) { |
| other = rb_entry(other_node, struct extent_state, rb_node); |
| if (other->end == state->start - 1 && |
| other->state == state->state) { |
| state->start = other->start; |
| other->tree = NULL; |
| if (tree->last == other) |
| tree->last = state; |
| rb_erase(&other->rb_node, &tree->state); |
| free_extent_state(other); |
| } |
| } |
| other_node = rb_next(&state->rb_node); |
| if (other_node) { |
| other = rb_entry(other_node, struct extent_state, rb_node); |
| if (other->start == state->end + 1 && |
| other->state == state->state) { |
| other->start = state->start; |
| state->tree = NULL; |
| if (tree->last == state) |
| tree->last = other; |
| rb_erase(&state->rb_node, &tree->state); |
| free_extent_state(state); |
| } |
| } |
| return 0; |
| } |
| |
| static void set_state_cb(struct extent_io_tree *tree, |
| struct extent_state *state, |
| unsigned long bits) |
| { |
| if (tree->ops && tree->ops->set_bit_hook) { |
| tree->ops->set_bit_hook(tree->mapping->host, state->start, |
| state->end, state->state, bits); |
| } |
| } |
| |
| static void clear_state_cb(struct extent_io_tree *tree, |
| struct extent_state *state, |
| unsigned long bits) |
| { |
| if (tree->ops && tree->ops->set_bit_hook) { |
| tree->ops->clear_bit_hook(tree->mapping->host, state->start, |
| state->end, state->state, bits); |
| } |
| } |
| |
| /* |
| * insert an extent_state struct into the tree. 'bits' are set on the |
| * struct before it is inserted. |
| * |
| * This may return -EEXIST if the extent is already there, in which case the |
| * state struct is freed. |
| * |
| * The tree lock is not taken internally. This is a utility function and |
| * probably isn't what you want to call (see set/clear_extent_bit). |
| */ |
| static int insert_state(struct extent_io_tree *tree, |
| struct extent_state *state, u64 start, u64 end, |
| int bits) |
| { |
| struct rb_node *node; |
| |
| if (end < start) { |
| printk("end < start %Lu %Lu\n", end, start); |
| WARN_ON(1); |
| } |
| if (bits & EXTENT_DIRTY) |
| tree->dirty_bytes += end - start + 1; |
| set_state_cb(tree, state, bits); |
| state->state |= bits; |
| state->start = start; |
| state->end = end; |
| node = tree_insert(&tree->state, end, &state->rb_node); |
| if (node) { |
| struct extent_state *found; |
| found = rb_entry(node, struct extent_state, rb_node); |
| printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end); |
| free_extent_state(state); |
| return -EEXIST; |
| } |
| state->tree = tree; |
| tree->last = state; |
| merge_state(tree, state); |
| return 0; |
| } |
| |
| /* |
| * split a given extent state struct in two, inserting the preallocated |
| * struct 'prealloc' as the newly created second half. 'split' indicates an |
| * offset inside 'orig' where it should be split. |
| * |
| * Before calling, |
| * the tree has 'orig' at [orig->start, orig->end]. After calling, there |
| * are two extent state structs in the tree: |
| * prealloc: [orig->start, split - 1] |
| * orig: [ split, orig->end ] |
| * |
| * The tree locks are not taken by this function. They need to be held |
| * by the caller. |
| */ |
| static int split_state(struct extent_io_tree *tree, struct extent_state *orig, |
| struct extent_state *prealloc, u64 split) |
| { |
| struct rb_node *node; |
| prealloc->start = orig->start; |
| prealloc->end = split - 1; |
| prealloc->state = orig->state; |
| orig->start = split; |
| |
| node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); |
| if (node) { |
| struct extent_state *found; |
| found = rb_entry(node, struct extent_state, rb_node); |
| printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end); |
| free_extent_state(prealloc); |
| return -EEXIST; |
| } |
| prealloc->tree = tree; |
| return 0; |
| } |
| |
| /* |
| * utility function to clear some bits in an extent state struct. |
| * it will optionally wake up any one waiting on this state (wake == 1), or |
| * forcibly remove the state from the tree (delete == 1). |
| * |
| * If no bits are set on the state struct after clearing things, the |
| * struct is freed and removed from the tree |
| */ |
| static int clear_state_bit(struct extent_io_tree *tree, |
| struct extent_state *state, int bits, int wake, |
| int delete) |
| { |
| int ret = state->state & bits; |
| |
| if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { |
| u64 range = state->end - state->start + 1; |
| WARN_ON(range > tree->dirty_bytes); |
| tree->dirty_bytes -= range; |
| } |
| clear_state_cb(tree, state, bits); |
| state->state &= ~bits; |
| if (wake) |
| wake_up(&state->wq); |
| if (delete || state->state == 0) { |
| if (state->tree) { |
| clear_state_cb(tree, state, state->state); |
| if (tree->last == state) { |
| tree->last = extent_state_next(state); |
| } |
| rb_erase(&state->rb_node, &tree->state); |
| state->tree = NULL; |
| free_extent_state(state); |
| } else { |
| WARN_ON(1); |
| } |
| } else { |
| merge_state(tree, state); |
| } |
| return ret; |
| } |
| |
| /* |
| * clear some bits on a range in the tree. This may require splitting |
| * or inserting elements in the tree, so the gfp mask is used to |
| * indicate which allocations or sleeping are allowed. |
| * |
| * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove |
| * the given range from the tree regardless of state (ie for truncate). |
| * |
| * the range [start, end] is inclusive. |
| * |
| * This takes the tree lock, and returns < 0 on error, > 0 if any of the |
| * bits were already set, or zero if none of the bits were already set. |
| */ |
| int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| int bits, int wake, int delete, gfp_t mask) |
| { |
| struct extent_state *state; |
| struct extent_state *prealloc = NULL; |
| struct rb_node *node; |
| unsigned long flags; |
| int err; |
| int set = 0; |
| |
| again: |
| if (!prealloc && (mask & __GFP_WAIT)) { |
| prealloc = alloc_extent_state(mask); |
| if (!prealloc) |
| return -ENOMEM; |
| } |
| |
| spin_lock_irqsave(&tree->lock, flags); |
| /* |
| * this search will find the extents that end after |
| * our range starts |
| */ |
| node = tree_search(tree, start); |
| if (!node) |
| goto out; |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start > end) |
| goto out; |
| WARN_ON(state->end < start); |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | or |
| * | ------------- state -------------- | |
| * |
| * We need to split the extent we found, and may flip |
| * bits on second half. |
| * |
| * If the extent we found extends past our range, we |
| * just split and search again. It'll get split again |
| * the next time though. |
| * |
| * If the extent we found is inside our range, we clear |
| * the desired bit on it. |
| */ |
| |
| if (state->start < start) { |
| if (!prealloc) |
| prealloc = alloc_extent_state(GFP_ATOMIC); |
| err = split_state(tree, state, prealloc, start); |
| BUG_ON(err == -EEXIST); |
| prealloc = NULL; |
| if (err) |
| goto out; |
| if (state->end <= end) { |
| start = state->end + 1; |
| set |= clear_state_bit(tree, state, bits, |
| wake, delete); |
| } else { |
| start = state->start; |
| } |
| goto search_again; |
| } |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * We need to split the extent, and clear the bit |
| * on the first half |
| */ |
| if (state->start <= end && state->end > end) { |
| if (!prealloc) |
| prealloc = alloc_extent_state(GFP_ATOMIC); |
| err = split_state(tree, state, prealloc, end + 1); |
| BUG_ON(err == -EEXIST); |
| |
| if (wake) |
| wake_up(&state->wq); |
| set |= clear_state_bit(tree, prealloc, bits, |
| wake, delete); |
| prealloc = NULL; |
| goto out; |
| } |
| |
| start = state->end + 1; |
| set |= clear_state_bit(tree, state, bits, wake, delete); |
| goto search_again; |
| |
| out: |
| spin_unlock_irqrestore(&tree->lock, flags); |
| if (prealloc) |
| free_extent_state(prealloc); |
| |
| return set; |
| |
| search_again: |
| if (start > end) |
| goto out; |
| spin_unlock_irqrestore(&tree->lock, flags); |
| if (mask & __GFP_WAIT) |
| cond_resched(); |
| goto again; |
| } |
| EXPORT_SYMBOL(clear_extent_bit); |
| |
| static int wait_on_state(struct extent_io_tree *tree, |
| struct extent_state *state) |
| { |
| DEFINE_WAIT(wait); |
| prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock_irq(&tree->lock); |
| schedule(); |
| spin_lock_irq(&tree->lock); |
| finish_wait(&state->wq, &wait); |
| return 0; |
| } |
| |
| /* |
| * waits for one or more bits to clear on a range in the state tree. |
| * The range [start, end] is inclusive. |
| * The tree lock is taken by this function |
| */ |
| int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) |
| { |
| struct extent_state *state; |
| struct rb_node *node; |
| |
| spin_lock_irq(&tree->lock); |
| again: |
| while (1) { |
| /* |
| * this search will find all the extents that end after |
| * our range starts |
| */ |
| node = tree_search(tree, start); |
| if (!node) |
| break; |
| |
| state = rb_entry(node, struct extent_state, rb_node); |
| |
| if (state->start > end) |
| goto out; |
| |
| if (state->state & bits) { |
| start = state->start; |
| atomic_inc(&state->refs); |
| wait_on_state(tree, state); |
| free_extent_state(state); |
| goto again; |
| } |
| start = state->end + 1; |
| |
| if (start > end) |
| break; |
| |
| if (need_resched()) { |
| spin_unlock_irq(&tree->lock); |
| cond_resched(); |
| spin_lock_irq(&tree->lock); |
| } |
| } |
| out: |
| spin_unlock_irq(&tree->lock); |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_extent_bit); |
| |
| static void set_state_bits(struct extent_io_tree *tree, |
| struct extent_state *state, |
| int bits) |
| { |
| if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { |
| u64 range = state->end - state->start + 1; |
| tree->dirty_bytes += range; |
| } |
| set_state_cb(tree, state, bits); |
| state->state |= bits; |
| } |
| |
| /* |
| * set some bits on a range in the tree. This may require allocations |
| * or sleeping, so the gfp mask is used to indicate what is allowed. |
| * |
| * If 'exclusive' == 1, this will fail with -EEXIST if some part of the |
| * range already has the desired bits set. The start of the existing |
| * range is returned in failed_start in this case. |
| * |
| * [start, end] is inclusive |
| * This takes the tree lock. |
| */ |
| int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, |
| int exclusive, u64 *failed_start, gfp_t mask) |
| { |
| struct extent_state *state; |
| struct extent_state *prealloc = NULL; |
| struct rb_node *node; |
| unsigned long flags; |
| int err = 0; |
| int set; |
| u64 last_start; |
| u64 last_end; |
| again: |
| if (!prealloc && (mask & __GFP_WAIT)) { |
| prealloc = alloc_extent_state(mask); |
| if (!prealloc) |
| return -ENOMEM; |
| } |
| |
| spin_lock_irqsave(&tree->lock, flags); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, start); |
| if (!node) { |
| err = insert_state(tree, prealloc, start, end, bits); |
| prealloc = NULL; |
| BUG_ON(err == -EEXIST); |
| goto out; |
| } |
| |
| state = rb_entry(node, struct extent_state, rb_node); |
| last_start = state->start; |
| last_end = state->end; |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * |
| * Just lock what we found and keep going |
| */ |
| if (state->start == start && state->end <= end) { |
| set = state->state & bits; |
| if (set && exclusive) { |
| *failed_start = state->start; |
| err = -EEXIST; |
| goto out; |
| } |
| set_state_bits(tree, state, bits); |
| start = state->end + 1; |
| merge_state(tree, state); |
| goto search_again; |
| } |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * or |
| * | ------------- state -------------- | |
| * |
| * We need to split the extent we found, and may flip bits on |
| * second half. |
| * |
| * If the extent we found extends past our |
| * range, we just split and search again. It'll get split |
| * again the next time though. |
| * |
| * If the extent we found is inside our range, we set the |
| * desired bit on it. |
| */ |
| if (state->start < start) { |
| set = state->state & bits; |
| if (exclusive && set) { |
| *failed_start = start; |
| err = -EEXIST; |
| goto out; |
| } |
| err = split_state(tree, state, prealloc, start); |
| BUG_ON(err == -EEXIST); |
| prealloc = NULL; |
| if (err) |
| goto out; |
| if (state->end <= end) { |
| set_state_bits(tree, state, bits); |
| start = state->end + 1; |
| merge_state(tree, state); |
| } else { |
| start = state->start; |
| } |
| goto search_again; |
| } |
| /* |
| * | ---- desired range ---- | |
| * | state | or | state | |
| * |
| * There's a hole, we need to insert something in it and |
| * ignore the extent we found. |
| */ |
| if (state->start > start) { |
| u64 this_end; |
| if (end < last_start) |
| this_end = end; |
| else |
| this_end = last_start -1; |
| err = insert_state(tree, prealloc, start, this_end, |
| bits); |
| prealloc = NULL; |
| BUG_ON(err == -EEXIST); |
| if (err) |
| goto out; |
| start = this_end + 1; |
| goto search_again; |
| } |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * We need to split the extent, and set the bit |
| * on the first half |
| */ |
| if (state->start <= end && state->end > end) { |
| set = state->state & bits; |
| if (exclusive && set) { |
| *failed_start = start; |
| err = -EEXIST; |
| goto out; |
| } |
| err = split_state(tree, state, prealloc, end + 1); |
| BUG_ON(err == -EEXIST); |
| |
| set_state_bits(tree, prealloc, bits); |
| merge_state(tree, prealloc); |
| prealloc = NULL; |
| goto out; |
| } |
| |
| goto search_again; |
| |
| out: |
| spin_unlock_irqrestore(&tree->lock, flags); |
| if (prealloc) |
| free_extent_state(prealloc); |
| |
| return err; |
| |
| search_again: |
| if (start > end) |
| goto out; |
| spin_unlock_irqrestore(&tree->lock, flags); |
| if (mask & __GFP_WAIT) |
| cond_resched(); |
| goto again; |
| } |
| EXPORT_SYMBOL(set_extent_bit); |
| |
| /* wrappers around set/clear extent bit */ |
| int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_dirty); |
| |
| int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, |
| int bits, gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, bits, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_bits); |
| |
| int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, |
| int bits, gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, bits, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_bits); |
| |
| int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, |
| EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_delalloc); |
| |
| int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, |
| EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_dirty); |
| |
| int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_new); |
| |
| int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_new); |
| |
| int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_uptodate); |
| |
| int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_uptodate); |
| |
| int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, |
| 0, NULL, mask); |
| } |
| EXPORT_SYMBOL(set_extent_writeback); |
| |
| int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_writeback); |
| |
| int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); |
| } |
| EXPORT_SYMBOL(wait_on_extent_writeback); |
| |
| int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) |
| { |
| int err; |
| u64 failed_start; |
| while (1) { |
| err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, |
| &failed_start, mask); |
| if (err == -EEXIST && (mask & __GFP_WAIT)) { |
| wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); |
| start = failed_start; |
| } else { |
| break; |
| } |
| WARN_ON(start > end); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(lock_extent); |
| |
| int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); |
| } |
| EXPORT_SYMBOL(unlock_extent); |
| |
| /* |
| * helper function to set pages and extents in the tree dirty |
| */ |
| int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| BUG_ON(!page); |
| __set_page_dirty_nobuffers(page); |
| page_cache_release(page); |
| index++; |
| } |
| set_extent_dirty(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_range_dirty); |
| |
| /* |
| * helper function to set both pages and extents in the tree writeback |
| */ |
| int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| BUG_ON(!page); |
| set_page_writeback(page); |
| page_cache_release(page); |
| index++; |
| } |
| set_extent_writeback(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_range_writeback); |
| |
| int find_first_extent_bit(struct extent_io_tree *tree, u64 start, |
| u64 *start_ret, u64 *end_ret, int bits) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| int ret = 1; |
| |
| spin_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, start); |
| if (!node) { |
| goto out; |
| } |
| |
| while(1) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->end >= start && (state->state & bits)) { |
| *start_ret = state->start; |
| *end_ret = state->end; |
| ret = 0; |
| break; |
| } |
| node = rb_next(node); |
| if (!node) |
| break; |
| } |
| out: |
| spin_unlock_irq(&tree->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(find_first_extent_bit); |
| |
| struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, |
| u64 start, int bits) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, start); |
| if (!node) { |
| goto out; |
| } |
| |
| while(1) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->end >= start && (state->state & bits)) { |
| return state; |
| } |
| node = rb_next(node); |
| if (!node) |
| break; |
| } |
| out: |
| return NULL; |
| } |
| EXPORT_SYMBOL(find_first_extent_bit_state); |
| |
| u64 find_lock_delalloc_range(struct extent_io_tree *tree, |
| u64 *start, u64 *end, u64 max_bytes) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| u64 cur_start = *start; |
| u64 found = 0; |
| u64 total_bytes = 0; |
| |
| spin_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| search_again: |
| node = tree_search(tree, cur_start); |
| if (!node) { |
| *end = (u64)-1; |
| goto out; |
| } |
| |
| while(1) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (found && state->start != cur_start) { |
| goto out; |
| } |
| if (!(state->state & EXTENT_DELALLOC)) { |
| if (!found) |
| *end = state->end; |
| goto out; |
| } |
| if (!found) { |
| struct extent_state *prev_state; |
| struct rb_node *prev_node = node; |
| while(1) { |
| prev_node = rb_prev(prev_node); |
| if (!prev_node) |
| break; |
| prev_state = rb_entry(prev_node, |
| struct extent_state, |
| rb_node); |
| if (!(prev_state->state & EXTENT_DELALLOC)) |
| break; |
| state = prev_state; |
| node = prev_node; |
| } |
| } |
| if (state->state & EXTENT_LOCKED) { |
| DEFINE_WAIT(wait); |
| atomic_inc(&state->refs); |
| prepare_to_wait(&state->wq, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_unlock_irq(&tree->lock); |
| schedule(); |
| spin_lock_irq(&tree->lock); |
| finish_wait(&state->wq, &wait); |
| free_extent_state(state); |
| goto search_again; |
| } |
| set_state_cb(tree, state, EXTENT_LOCKED); |
| state->state |= EXTENT_LOCKED; |
| if (!found) |
| *start = state->start; |
| found++; |
| *end = state->end; |
| cur_start = state->end + 1; |
| node = rb_next(node); |
| if (!node) |
| break; |
| total_bytes += state->end - state->start + 1; |
| if (total_bytes >= max_bytes) |
| break; |
| } |
| out: |
| spin_unlock_irq(&tree->lock); |
| return found; |
| } |
| |
| u64 count_range_bits(struct extent_io_tree *tree, |
| u64 *start, u64 search_end, u64 max_bytes, |
| unsigned long bits) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| u64 cur_start = *start; |
| u64 total_bytes = 0; |
| int found = 0; |
| |
| if (search_end <= cur_start) { |
| printk("search_end %Lu start %Lu\n", search_end, cur_start); |
| WARN_ON(1); |
| return 0; |
| } |
| |
| spin_lock_irq(&tree->lock); |
| if (cur_start == 0 && bits == EXTENT_DIRTY) { |
| total_bytes = tree->dirty_bytes; |
| goto out; |
| } |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, cur_start); |
| if (!node) { |
| goto out; |
| } |
| |
| while(1) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start > search_end) |
| break; |
| if (state->end >= cur_start && (state->state & bits)) { |
| total_bytes += min(search_end, state->end) + 1 - |
| max(cur_start, state->start); |
| if (total_bytes >= max_bytes) |
| break; |
| if (!found) { |
| *start = state->start; |
| found = 1; |
| } |
| } |
| node = rb_next(node); |
| if (!node) |
| break; |
| } |
| out: |
| spin_unlock_irq(&tree->lock); |
| return total_bytes; |
| } |
| /* |
| * helper function to lock both pages and extents in the tree. |
| * pages must be locked first. |
| */ |
| int lock_range(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| int err; |
| |
| while (index <= end_index) { |
| page = grab_cache_page(tree->mapping, index); |
| if (!page) { |
| err = -ENOMEM; |
| goto failed; |
| } |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| goto failed; |
| } |
| index++; |
| } |
| lock_extent(tree, start, end, GFP_NOFS); |
| return 0; |
| |
| failed: |
| /* |
| * we failed above in getting the page at 'index', so we undo here |
| * up to but not including the page at 'index' |
| */ |
| end_index = index; |
| index = start >> PAGE_CACHE_SHIFT; |
| while (index < end_index) { |
| page = find_get_page(tree->mapping, index); |
| unlock_page(page); |
| page_cache_release(page); |
| index++; |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(lock_range); |
| |
| /* |
| * helper function to unlock both pages and extents in the tree. |
| */ |
| int unlock_range(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| unlock_page(page); |
| page_cache_release(page); |
| index++; |
| } |
| unlock_extent(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(unlock_range); |
| |
| int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| int ret = 0; |
| |
| spin_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, start); |
| if (!node) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start != start) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state->private = private; |
| out: |
| spin_unlock_irq(&tree->lock); |
| return ret; |
| } |
| |
| int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| int ret = 0; |
| |
| spin_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(tree, start); |
| if (!node) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start != start) { |
| ret = -ENOENT; |
| goto out; |
| } |
| *private = state->private; |
| out: |
| spin_unlock_irq(&tree->lock); |
| return ret; |
| } |
| |
| /* |
| * searches a range in the state tree for a given mask. |
| * If 'filled' == 1, this returns 1 only if every extent in the tree |
| * has the bits set. Otherwise, 1 is returned if any bit in the |
| * range is found set. |
| */ |
| int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| int bits, int filled) |
| { |
| struct extent_state *state = NULL; |
| struct rb_node *node; |
| int bitset = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tree->lock, flags); |
| node = tree_search(tree, start); |
| while (node && start <= end) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| |
| if (filled && state->start > start) { |
| bitset = 0; |
| break; |
| } |
| |
| if (state->start > end) |
| break; |
| |
| if (state->state & bits) { |
| bitset = 1; |
| if (!filled) |
| break; |
| } else if (filled) { |
| bitset = 0; |
| break; |
| } |
| start = state->end + 1; |
| if (start > end) |
| break; |
| node = rb_next(node); |
| if (!node) { |
| if (filled) |
| bitset = 0; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&tree->lock, flags); |
| return bitset; |
| } |
| EXPORT_SYMBOL(test_range_bit); |
| |
| /* |
| * helper function to set a given page up to date if all the |
| * extents in the tree for that page are up to date |
| */ |
| static int check_page_uptodate(struct extent_io_tree *tree, |
| struct page *page) |
| { |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) |
| SetPageUptodate(page); |
| return 0; |
| } |
| |
| /* |
| * helper function to unlock a page if all the extents in the tree |
| * for that page are unlocked |
| */ |
| static int check_page_locked(struct extent_io_tree *tree, |
| struct page *page) |
| { |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) |
| unlock_page(page); |
| return 0; |
| } |
| |
| /* |
| * helper function to end page writeback if all the extents |
| * in the tree for that page are done with writeback |
| */ |
| static int check_page_writeback(struct extent_io_tree *tree, |
| struct page *page) |
| { |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) |
| end_page_writeback(page); |
| return 0; |
| } |
| |
| /* lots and lots of room for performance fixes in the end_bio funcs */ |
| |
| /* |
| * after a writepage IO is done, we need to: |
| * clear the uptodate bits on error |
| * clear the writeback bits in the extent tree for this IO |
| * end_page_writeback if the page has no more pending IO |
| * |
| * Scheduling is not allowed, so the extent state tree is expected |
| * to have one and only one object corresponding to this IO. |
| */ |
| #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) |
| static void end_bio_extent_writepage(struct bio *bio, int err) |
| #else |
| static int end_bio_extent_writepage(struct bio *bio, |
| unsigned int bytes_done, int err) |
| #endif |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_state *state = bio->bi_private; |
| struct extent_io_tree *tree = state->tree; |
| struct rb_node *node; |
| u64 start; |
| u64 end; |
| u64 cur; |
| int whole_page; |
| unsigned long flags; |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| if (bio->bi_size) |
| return 1; |
| #endif |
| do { |
| struct page *page = bvec->bv_page; |
| start = ((u64)page->index << PAGE_CACHE_SHIFT) + |
| bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| whole_page = 1; |
| else |
| whole_page = 0; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (!uptodate) { |
| clear_extent_uptodate(tree, start, end, GFP_ATOMIC); |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| |
| if (tree->ops && tree->ops->writepage_end_io_hook) { |
| tree->ops->writepage_end_io_hook(page, start, end, |
| state); |
| } |
| |
| /* |
| * bios can get merged in funny ways, and so we need to |
| * be careful with the state variable. We know the |
| * state won't be merged with others because it has |
| * WRITEBACK set, but we can't be sure each biovec is |
| * sequential in the file. So, if our cached state |
| * doesn't match the expected end, search the tree |
| * for the correct one. |
| */ |
| |
| spin_lock_irqsave(&tree->lock, flags); |
| if (!state || state->end != end) { |
| state = NULL; |
| node = __etree_search(tree, start, NULL, NULL); |
| if (node) { |
| state = rb_entry(node, struct extent_state, |
| rb_node); |
| if (state->end != end || |
| !(state->state & EXTENT_WRITEBACK)) |
| state = NULL; |
| } |
| if (!state) { |
| spin_unlock_irqrestore(&tree->lock, flags); |
| clear_extent_writeback(tree, start, |
| end, GFP_ATOMIC); |
| goto next_io; |
| } |
| } |
| cur = end; |
| while(1) { |
| struct extent_state *clear = state; |
| cur = state->start; |
| node = rb_prev(&state->rb_node); |
| if (node) { |
| state = rb_entry(node, |
| struct extent_state, |
| rb_node); |
| } else { |
| state = NULL; |
| } |
| |
| clear_state_bit(tree, clear, EXTENT_WRITEBACK, |
| 1, 0); |
| if (cur == start) |
| break; |
| if (cur < start) { |
| WARN_ON(1); |
| break; |
| } |
| if (!node) |
| break; |
| } |
| /* before releasing the lock, make sure the next state |
| * variable has the expected bits set and corresponds |
| * to the correct offsets in the file |
| */ |
| if (state && (state->end + 1 != start || |
| !(state->state & EXTENT_WRITEBACK))) { |
| state = NULL; |
| } |
| spin_unlock_irqrestore(&tree->lock, flags); |
| next_io: |
| |
| if (whole_page) |
| end_page_writeback(page); |
| else |
| check_page_writeback(tree, page); |
| } while (bvec >= bio->bi_io_vec); |
| bio_put(bio); |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| return 0; |
| #endif |
| } |
| |
| /* |
| * after a readpage IO is done, we need to: |
| * clear the uptodate bits on error |
| * set the uptodate bits if things worked |
| * set the page up to date if all extents in the tree are uptodate |
| * clear the lock bit in the extent tree |
| * unlock the page if there are no other extents locked for it |
| * |
| * Scheduling is not allowed, so the extent state tree is expected |
| * to have one and only one object corresponding to this IO. |
| */ |
| #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) |
| static void end_bio_extent_readpage(struct bio *bio, int err) |
| #else |
| static int end_bio_extent_readpage(struct bio *bio, |
| unsigned int bytes_done, int err) |
| #endif |
| { |
| int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_state *state = bio->bi_private; |
| struct extent_io_tree *tree = state->tree; |
| struct rb_node *node; |
| u64 start; |
| u64 end; |
| u64 cur; |
| unsigned long flags; |
| int whole_page; |
| int ret; |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| if (bio->bi_size) |
| return 1; |
| #endif |
| |
| do { |
| struct page *page = bvec->bv_page; |
| start = ((u64)page->index << PAGE_CACHE_SHIFT) + |
| bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| whole_page = 1; |
| else |
| whole_page = 0; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { |
| ret = tree->ops->readpage_end_io_hook(page, start, end, |
| state); |
| if (ret) |
| uptodate = 0; |
| } |
| |
| spin_lock_irqsave(&tree->lock, flags); |
| if (!state || state->end != end) { |
| state = NULL; |
| node = __etree_search(tree, start, NULL, NULL); |
| if (node) { |
| state = rb_entry(node, struct extent_state, |
| rb_node); |
| if (state->end != end || |
| !(state->state & EXTENT_LOCKED)) |
| state = NULL; |
| } |
| if (!state) { |
| spin_unlock_irqrestore(&tree->lock, flags); |
| set_extent_uptodate(tree, start, end, |
| GFP_ATOMIC); |
| unlock_extent(tree, start, end, GFP_ATOMIC); |
| goto next_io; |
| } |
| } |
| |
| cur = end; |
| while(1) { |
| struct extent_state *clear = state; |
| cur = state->start; |
| node = rb_prev(&state->rb_node); |
| if (node) { |
| state = rb_entry(node, |
| struct extent_state, |
| rb_node); |
| } else { |
| state = NULL; |
| } |
| set_state_cb(tree, clear, EXTENT_UPTODATE); |
| clear->state |= EXTENT_UPTODATE; |
| clear_state_bit(tree, clear, EXTENT_LOCKED, |
| 1, 0); |
| if (cur == start) |
| break; |
| if (cur < start) { |
| WARN_ON(1); |
| break; |
| } |
| if (!node) |
| break; |
| } |
| /* before releasing the lock, make sure the next state |
| * variable has the expected bits set and corresponds |
| * to the correct offsets in the file |
| */ |
| if (state && (state->end + 1 != start || |
| !(state->state & EXTENT_LOCKED))) { |
| state = NULL; |
| } |
| spin_unlock_irqrestore(&tree->lock, flags); |
| next_io: |
| if (whole_page) { |
| if (uptodate) { |
| SetPageUptodate(page); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| unlock_page(page); |
| } else { |
| if (uptodate) { |
| check_page_uptodate(tree, page); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| check_page_locked(tree, page); |
| } |
| } while (bvec >= bio->bi_io_vec); |
| |
| bio_put(bio); |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| return 0; |
| #endif |
| } |
| |
| /* |
| * IO done from prepare_write is pretty simple, we just unlock |
| * the structs in the extent tree when done, and set the uptodate bits |
| * as appropriate. |
| */ |
| #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) |
| static void end_bio_extent_preparewrite(struct bio *bio, int err) |
| #else |
| static int end_bio_extent_preparewrite(struct bio *bio, |
| unsigned int bytes_done, int err) |
| #endif |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_state *state = bio->bi_private; |
| struct extent_io_tree *tree = state->tree; |
| u64 start; |
| u64 end; |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| if (bio->bi_size) |
| return 1; |
| #endif |
| |
| do { |
| struct page *page = bvec->bv_page; |
| start = ((u64)page->index << PAGE_CACHE_SHIFT) + |
| bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (uptodate) { |
| set_extent_uptodate(tree, start, end, GFP_ATOMIC); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| |
| unlock_extent(tree, start, end, GFP_ATOMIC); |
| |
| } while (bvec >= bio->bi_io_vec); |
| |
| bio_put(bio); |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| return 0; |
| #endif |
| } |
| |
| static struct bio * |
| extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, |
| gfp_t gfp_flags) |
| { |
| struct bio *bio; |
| |
| bio = bio_alloc(gfp_flags, nr_vecs); |
| |
| if (bio == NULL && (current->flags & PF_MEMALLOC)) { |
| while (!bio && (nr_vecs /= 2)) |
| bio = bio_alloc(gfp_flags, nr_vecs); |
| } |
| |
| if (bio) { |
| bio->bi_bdev = bdev; |
| bio->bi_sector = first_sector; |
| } |
| return bio; |
| } |
| |
| static int submit_one_bio(int rw, struct bio *bio) |
| { |
| u64 maxsector; |
| int ret = 0; |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct page *page = bvec->bv_page; |
| struct extent_io_tree *tree = bio->bi_private; |
| struct rb_node *node; |
| struct extent_state *state; |
| u64 start; |
| u64 end; |
| |
| start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| spin_lock_irq(&tree->lock); |
| node = __etree_search(tree, start, NULL, NULL); |
| BUG_ON(!node); |
| state = rb_entry(node, struct extent_state, rb_node); |
| while(state->end < end) { |
| node = rb_next(node); |
| state = rb_entry(node, struct extent_state, rb_node); |
| } |
| BUG_ON(state->end != end); |
| spin_unlock_irq(&tree->lock); |
| |
| bio->bi_private = state; |
| |
| bio_get(bio); |
| |
| maxsector = bio->bi_bdev->bd_inode->i_size >> 9; |
| if (maxsector < bio->bi_sector) { |
| printk("sector too large max %Lu got %llu\n", maxsector, |
| (unsigned long long)bio->bi_sector); |
| WARN_ON(1); |
| } |
| if (tree->ops && tree->ops->submit_bio_hook) |
| tree->ops->submit_bio_hook(page->mapping->host, rw, bio); |
| else |
| submit_bio(rw, bio); |
| if (bio_flagged(bio, BIO_EOPNOTSUPP)) |
| ret = -EOPNOTSUPP; |
| bio_put(bio); |
| return ret; |
| } |
| |
| static int submit_extent_page(int rw, struct extent_io_tree *tree, |
| struct page *page, sector_t sector, |
| size_t size, unsigned long offset, |
| struct block_device *bdev, |
| struct bio **bio_ret, |
| unsigned long max_pages, |
| bio_end_io_t end_io_func) |
| { |
| int ret = 0; |
| struct bio *bio; |
| int nr; |
| |
| if (bio_ret && *bio_ret) { |
| bio = *bio_ret; |
| if (bio->bi_sector + (bio->bi_size >> 9) != sector || |
| (tree->ops && tree->ops->merge_bio_hook && |
| tree->ops->merge_bio_hook(page, offset, size, bio)) || |
| bio_add_page(bio, page, size, offset) < size) { |
| ret = submit_one_bio(rw, bio); |
| bio = NULL; |
| } else { |
| return 0; |
| } |
| } |
| nr = bio_get_nr_vecs(bdev); |
| bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); |
| if (!bio) { |
| printk("failed to allocate bio nr %d\n", nr); |
| } |
| |
| |
| bio_add_page(bio, page, size, offset); |
| bio->bi_end_io = end_io_func; |
| bio->bi_private = tree; |
| |
| if (bio_ret) { |
| *bio_ret = bio; |
| } else { |
| ret = submit_one_bio(rw, bio); |
| } |
| |
| return ret; |
| } |
| |
| void set_page_extent_mapped(struct page *page) |
| { |
| if (!PagePrivate(page)) { |
| SetPagePrivate(page); |
| WARN_ON(!page->mapping->a_ops->invalidatepage); |
| set_page_private(page, EXTENT_PAGE_PRIVATE); |
| page_cache_get(page); |
| } |
| } |
| |
| void set_page_extent_head(struct page *page, unsigned long len) |
| { |
| set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); |
| } |
| |
| /* |
| * basic readpage implementation. Locked extent state structs are inserted |
| * into the tree that are removed when the IO is done (by the end_io |
| * handlers) |
| */ |
| static int __extent_read_full_page(struct extent_io_tree *tree, |
| struct page *page, |
| get_extent_t *get_extent, |
| struct bio **bio) |
| { |
| struct inode *inode = page->mapping->host; |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| u64 end; |
| u64 cur = start; |
| u64 extent_offset; |
| u64 last_byte = i_size_read(inode); |
| u64 block_start; |
| u64 cur_end; |
| sector_t sector; |
| struct extent_map *em; |
| struct block_device *bdev; |
| int ret; |
| int nr = 0; |
| size_t page_offset = 0; |
| size_t iosize; |
| size_t blocksize = inode->i_sb->s_blocksize; |
| |
| set_page_extent_mapped(page); |
| |
| end = page_end; |
| lock_extent(tree, start, end, GFP_NOFS); |
| |
| while (cur <= end) { |
| if (cur >= last_byte) { |
| char *userpage; |
| iosize = PAGE_CACHE_SIZE - page_offset; |
| userpage = kmap_atomic(page, KM_USER0); |
| memset(userpage + page_offset, 0, iosize); |
| flush_dcache_page(page); |
| kunmap_atomic(userpage, KM_USER0); |
| set_extent_uptodate(tree, cur, cur + iosize - 1, |
| GFP_NOFS); |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| break; |
| } |
| em = get_extent(inode, page, page_offset, cur, |
| end - cur + 1, 0); |
| if (IS_ERR(em) || !em) { |
| SetPageError(page); |
| unlock_extent(tree, cur, end, GFP_NOFS); |
| break; |
| } |
| |
| extent_offset = cur - em->start; |
| BUG_ON(extent_map_end(em) <= cur); |
| BUG_ON(end < cur); |
| |
| iosize = min(extent_map_end(em) - cur, end - cur + 1); |
| cur_end = min(extent_map_end(em) - 1, end); |
| iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| sector = (em->block_start + extent_offset) >> 9; |
| bdev = em->bdev; |
| block_start = em->block_start; |
| free_extent_map(em); |
| em = NULL; |
| |
| /* we've found a hole, just zero and go on */ |
| if (block_start == EXTENT_MAP_HOLE) { |
| char *userpage; |
| userpage = kmap_atomic(page, KM_USER0); |
| memset(userpage + page_offset, 0, iosize); |
| flush_dcache_page(page); |
| kunmap_atomic(userpage, KM_USER0); |
| |
| set_extent_uptodate(tree, cur, cur + iosize - 1, |
| GFP_NOFS); |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| /* the get_extent function already copied into the page */ |
| if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| /* we have an inline extent but it didn't get marked up |
| * to date. Error out |
| */ |
| if (block_start == EXTENT_MAP_INLINE) { |
| SetPageError(page); |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| |
| ret = 0; |
| if (tree->ops && tree->ops->readpage_io_hook) { |
| ret = tree->ops->readpage_io_hook(page, cur, |
| cur + iosize - 1); |
| } |
| if (!ret) { |
| unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1; |
| nr -= page->index; |
| ret = submit_extent_page(READ, tree, page, |
| sector, iosize, page_offset, |
| bdev, bio, nr, |
| end_bio_extent_readpage); |
| } |
| if (ret) |
| SetPageError(page); |
| cur = cur + iosize; |
| page_offset += iosize; |
| nr++; |
| } |
| if (!nr) { |
| if (!PageError(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| } |
| return 0; |
| } |
| |
| int extent_read_full_page(struct extent_io_tree *tree, struct page *page, |
| get_extent_t *get_extent) |
| { |
| struct bio *bio = NULL; |
| int ret; |
| |
| ret = __extent_read_full_page(tree, page, get_extent, &bio); |
| if (bio) |
| submit_one_bio(READ, bio); |
| return ret; |
| } |
| EXPORT_SYMBOL(extent_read_full_page); |
| |
| /* |
| * the writepage semantics are similar to regular writepage. extent |
| * records are inserted to lock ranges in the tree, and as dirty areas |
| * are found, they are marked writeback. Then the lock bits are removed |
| * and the end_io handler clears the writeback ranges |
| */ |
| static int __extent_writepage(struct page *page, struct writeback_control *wbc, |
| void *data) |
| { |
| struct inode *inode = page->mapping->host; |
| struct extent_page_data *epd = data; |
| struct extent_io_tree *tree = epd->tree; |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 delalloc_start; |
| u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| u64 end; |
| u64 cur = start; |
| u64 extent_offset; |
| u64 last_byte = i_size_read(inode); |
| u64 block_start; |
| u64 iosize; |
| sector_t sector; |
| struct extent_map *em; |
| struct block_device *bdev; |
| int ret; |
| int nr = 0; |
| size_t page_offset = 0; |
| size_t blocksize; |
| loff_t i_size = i_size_read(inode); |
| unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; |
| u64 nr_delalloc; |
| u64 delalloc_end; |
| |
| WARN_ON(!PageLocked(page)); |
| if (page->index > end_index) { |
| clear_extent_dirty(tree, start, page_end, GFP_NOFS); |
| unlock_page(page); |
| return 0; |
| } |
| |
| if (page->index == end_index) { |
| char *userpage; |
| |
| size_t offset = i_size & (PAGE_CACHE_SIZE - 1); |
| |
| userpage = kmap_atomic(page, KM_USER0); |
| memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset); |
| flush_dcache_page(page); |
| kunmap_atomic(userpage, KM_USER0); |
| } |
| |
| set_page_extent_mapped(page); |
| |
| delalloc_start = start; |
| delalloc_end = 0; |
| while(delalloc_end < page_end) { |
| nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start, |
| &delalloc_end, |
| 128 * 1024 * 1024); |
| if (nr_delalloc == 0) { |
| delalloc_start = delalloc_end + 1; |
| continue; |
| } |
| tree->ops->fill_delalloc(inode, delalloc_start, |
| delalloc_end); |
| clear_extent_bit(tree, delalloc_start, |
| delalloc_end, |
| EXTENT_LOCKED | EXTENT_DELALLOC, |
| 1, 0, GFP_NOFS); |
| delalloc_start = delalloc_end + 1; |
| } |
| lock_extent(tree, start, page_end, GFP_NOFS); |
| |
| end = page_end; |
| if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) { |
| printk("found delalloc bits after lock_extent\n"); |
| } |
| |
| if (last_byte <= start) { |
| clear_extent_dirty(tree, start, page_end, GFP_NOFS); |
| goto done; |
| } |
| |
| set_extent_uptodate(tree, start, page_end, GFP_NOFS); |
| blocksize = inode->i_sb->s_blocksize; |
| |
| while (cur <= end) { |
| if (cur >= last_byte) { |
| clear_extent_dirty(tree, cur, page_end, GFP_NOFS); |
| break; |
| } |
| em = epd->get_extent(inode, page, page_offset, cur, |
| end - cur + 1, 1); |
| if (IS_ERR(em) || !em) { |
| SetPageError(page); |
| break; |
| } |
| |
| extent_offset = cur - em->start; |
| BUG_ON(extent_map_end(em) <= cur); |
| BUG_ON(end < cur); |
| iosize = min(extent_map_end(em) - cur, end - cur + 1); |
| iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| sector = (em->block_start + extent_offset) >> 9; |
| bdev = em->bdev; |
| block_start = em->block_start; |
| free_extent_map(em); |
| em = NULL; |
| |
| if (block_start == EXTENT_MAP_HOLE || |
| block_start == EXTENT_MAP_INLINE) { |
| clear_extent_dirty(tree, cur, |
| cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| |
| /* leave this out until we have a page_mkwrite call */ |
| if (0 && !test_range_bit(tree, cur, cur + iosize - 1, |
| EXTENT_DIRTY, 0)) { |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); |
| if (tree->ops && tree->ops->writepage_io_hook) { |
| ret = tree->ops->writepage_io_hook(page, cur, |
| cur + iosize - 1); |
| } else { |
| ret = 0; |
| } |
| if (ret) |
| SetPageError(page); |
| else { |
| unsigned long max_nr = end_index + 1; |
| set_range_writeback(tree, cur, cur + iosize - 1); |
| if (!PageWriteback(page)) { |
| printk("warning page %lu not writeback, " |
| "cur %llu end %llu\n", page->index, |
| (unsigned long long)cur, |
| (unsigned long long)end); |
| } |
| |
| ret = submit_extent_page(WRITE, tree, page, sector, |
| iosize, page_offset, bdev, |
| &epd->bio, max_nr, |
| end_bio_extent_writepage); |
| if (ret) |
| SetPageError(page); |
| } |
| cur = cur + iosize; |
| page_offset += iosize; |
| nr++; |
| } |
| done: |
| if (nr == 0) { |
| /* make sure the mapping tag for page dirty gets cleared */ |
| set_page_writeback(page); |
| end_page_writeback(page); |
| } |
| unlock_extent(tree, start, page_end, GFP_NOFS); |
| unlock_page(page); |
| return 0; |
| } |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) |
| |
| /* Taken directly from 2.6.23 for 2.6.18 back port */ |
| typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, |
| void *data); |
| |
| /** |
| * write_cache_pages - walk the list of dirty pages of the given address space |
| * and write all of them. |
| * @mapping: address space structure to write |
| * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
| * @writepage: function called for each page |
| * @data: data passed to writepage function |
| * |
| * If a page is already under I/O, write_cache_pages() skips it, even |
| * if it's dirty. This is desirable behaviour for memory-cleaning writeback, |
| * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() |
| * and msync() need to guarantee that all the data which was dirty at the time |
| * the call was made get new I/O started against them. If wbc->sync_mode is |
| * WB_SYNC_ALL then we were called for data integrity and we must wait for |
| * existing IO to complete. |
| */ |
| static int write_cache_pages(struct address_space *mapping, |
| struct writeback_control *wbc, writepage_t writepage, |
| void *data) |
| { |
| struct backing_dev_info *bdi = mapping->backing_dev_info; |
| int ret = 0; |
| int done = 0; |
| struct pagevec pvec; |
| int nr_pages; |
| pgoff_t index; |
| pgoff_t end; /* Inclusive */ |
| int scanned = 0; |
| int range_whole = 0; |
| |
| if (wbc->nonblocking && bdi_write_congested(bdi)) { |
| wbc->encountered_congestion = 1; |
| return 0; |
| } |
| |
| pagevec_init(&pvec, 0); |
| if (wbc->range_cyclic) { |
| index = mapping->writeback_index; /* Start from prev offset */ |
| end = -1; |
| } else { |
| index = wbc->range_start >> PAGE_CACHE_SHIFT; |
| end = wbc->range_end >> PAGE_CACHE_SHIFT; |
| if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
| range_whole = 1; |
| scanned = 1; |
| } |
| retry: |
| while (!done && (index <= end) && |
| (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
| PAGECACHE_TAG_DIRTY, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { |
| unsigned i; |
| |
| scanned = 1; |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| /* |
| * At this point we hold neither mapping->tree_lock nor |
| * lock on the page itself: the page may be truncated or |
| * invalidated (changing page->mapping to NULL), or even |
| * swizzled back from swapper_space to tmpfs file |
| * mapping |
| */ |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| unlock_page(page); |
| continue; |
| } |
| |
| if (!wbc->range_cyclic && page->index > end) { |
| done = 1; |
| unlock_page(page); |
| continue; |
| } |
| |
| if (wbc->sync_mode != WB_SYNC_NONE) |
| wait_on_page_writeback(page); |
| |
| if (PageWriteback(page) || |
| !clear_page_dirty_for_io(page)) { |
| unlock_page(page); |
| continue; |
| } |
| |
| ret = (*writepage)(page, wbc, data); |
| |
| if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { |
| unlock_page(page); |
| ret = 0; |
| } |
| if (ret || (--(wbc->nr_to_write) <= 0)) |
| done = 1; |
| if (wbc->nonblocking && bdi_write_congested(bdi)) { |
| wbc->encountered_congestion = 1; |
| done = 1; |
| } |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| if (!scanned && !done) { |
| /* |
| * We hit the last page and there is more work to be done: wrap |
| * back to the start of the file |
| */ |
| scanned = 1; |
| index = 0; |
| goto retry; |
| } |
| if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
| mapping->writeback_index = index; |
| return ret; |
| } |
| #endif |
| |
| int extent_write_full_page(struct extent_io_tree *tree, struct page *page, |
| get_extent_t *get_extent, |
| struct writeback_control *wbc) |
| { |
| int ret; |
| struct address_space *mapping = page->mapping; |
| struct extent_page_data epd = { |
| .bio = NULL, |
| .tree = tree, |
| .get_extent = get_extent, |
| }; |
| struct writeback_control wbc_writepages = { |
| .bdi = wbc->bdi, |
| .sync_mode = WB_SYNC_NONE, |
| .older_than_this = NULL, |
| .nr_to_write = 64, |
| .range_start = page_offset(page) + PAGE_CACHE_SIZE, |
| .range_end = (loff_t)-1, |
| }; |
| |
| |
| ret = __extent_writepage(page, wbc, &epd); |
| |
| write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd); |
| if (epd.bio) { |
| submit_one_bio(WRITE, epd.bio); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(extent_write_full_page); |
| |
| |
| int extent_writepages(struct extent_io_tree *tree, |
| struct address_space *mapping, |
| get_extent_t *get_extent, |
| struct writeback_control *wbc) |
| { |
| int ret = 0; |
| struct extent_page_data epd = { |
| .bio = NULL, |
| .tree = tree, |
| .get_extent = get_extent, |
| }; |
| |
| ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd); |
| if (epd.bio) { |
| submit_one_bio(WRITE, epd.bio); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(extent_writepages); |
| |
| int extent_readpages(struct extent_io_tree *tree, |
| struct address_space *mapping, |
| struct list_head *pages, unsigned nr_pages, |
| get_extent_t get_extent) |
| { |
| struct bio *bio = NULL; |
| unsigned page_idx; |
| struct pagevec pvec; |
| |
| pagevec_init(&pvec, 0); |
| for (page_idx = 0; page_idx < nr_pages; page_idx++) { |
| struct page *page = list_entry(pages->prev, struct page, lru); |
| |
| prefetchw(&page->flags); |
| list_del(&page->lru); |
| /* |
| * what we want to do here is call add_to_page_cache_lru, |
| * but that isn't exported, so we reproduce it here |
| */ |
| if (!add_to_page_cache(page, mapping, |
| page->index, GFP_KERNEL)) { |
| |
| /* open coding of lru_cache_add, also not exported */ |
| page_cache_get(page); |
| if (!pagevec_add(&pvec, page)) |
| __pagevec_lru_add(&pvec); |
| __extent_read_full_page(tree, page, get_extent, &bio); |
| } |
| page_cache_release(page); |
| } |
| if (pagevec_count(&pvec)) |
| __pagevec_lru_add(&pvec); |
| BUG_ON(!list_empty(pages)); |
| if (bio) |
| submit_one_bio(READ, bio); |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_readpages); |
| |
| /* |
| * basic invalidatepage code, this waits on any locked or writeback |
| * ranges corresponding to the page, and then deletes any extent state |
| * records from the tree |
| */ |
| int extent_invalidatepage(struct extent_io_tree *tree, |
| struct page *page, unsigned long offset) |
| { |
| u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| size_t blocksize = page->mapping->host->i_sb->s_blocksize; |
| |
| start += (offset + blocksize -1) & ~(blocksize - 1); |
| if (start > end) |
| return 0; |
| |
| lock_extent(tree, start, end, GFP_NOFS); |
| wait_on_extent_writeback(tree, start, end); |
| clear_extent_bit(tree, start, end, |
| EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, |
| 1, 1, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_invalidatepage); |
| |
| /* |
| * simple commit_write call, set_range_dirty is used to mark both |
| * the pages and the extent records as dirty |
| */ |
| int extent_commit_write(struct extent_io_tree *tree, |
| struct inode *inode, struct page *page, |
| unsigned from, unsigned to) |
| { |
| loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; |
| |
| set_page_extent_mapped(page); |
| set_page_dirty(page); |
| |
| if (pos > inode->i_size) { |
| i_size_write(inode, pos); |
| mark_inode_dirty(inode); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_commit_write); |
| |
| int extent_prepare_write(struct extent_io_tree *tree, |
| struct inode *inode, struct page *page, |
| unsigned from, unsigned to, get_extent_t *get_extent) |
| { |
| u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 page_end = page_start + PAGE_CACHE_SIZE - 1; |
| u64 block_start; |
| u64 orig_block_start; |
| u64 block_end; |
| u64 cur_end; |
| struct extent_map *em; |
| unsigned blocksize = 1 << inode->i_blkbits; |
| size_t page_offset = 0; |
| size_t block_off_start; |
| size_t block_off_end; |
| int err = 0; |
| int iocount = 0; |
| int ret = 0; |
| int isnew; |
| |
| set_page_extent_mapped(page); |
| |
| block_start = (page_start + from) & ~((u64)blocksize - 1); |
| block_end = (page_start + to - 1) | (blocksize - 1); |
| orig_block_start = block_start; |
| |
| lock_extent(tree, page_start, page_end, GFP_NOFS); |
| while(block_start <= block_end) { |
| em = get_extent(inode, page, page_offset, block_start, |
| block_end - block_start + 1, 1); |
| if (IS_ERR(em) || !em) { |
| goto err; |
| } |
| cur_end = min(block_end, extent_map_end(em) - 1); |
| block_off_start = block_start & (PAGE_CACHE_SIZE - 1); |
| block_off_end = block_off_start + blocksize; |
| isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); |
| |
| if (!PageUptodate(page) && isnew && |
| (block_off_end > to || block_off_start < from)) { |
| void *kaddr; |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| if (block_off_end > to) |
| memset(kaddr + to, 0, block_off_end - to); |
| if (block_off_start < from) |
| memset(kaddr + block_off_start, 0, |
| from - block_off_start); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| } |
| if ((em->block_start != EXTENT_MAP_HOLE && |
| em->block_start != EXTENT_MAP_INLINE) && |
| !isnew && !PageUptodate(page) && |
| (block_off_end > to || block_off_start < from) && |
| !test_range_bit(tree, block_start, cur_end, |
| EXTENT_UPTODATE, 1)) { |
| u64 sector; |
| u64 extent_offset = block_start - em->start; |
| size_t iosize; |
| sector = (em->block_start + extent_offset) >> 9; |
| iosize = (cur_end - block_start + blocksize) & |
| ~((u64)blocksize - 1); |
| /* |
| * we've already got the extent locked, but we |
| * need to split the state such that our end_bio |
| * handler can clear the lock. |
| */ |
| set_extent_bit(tree, block_start, |
| block_start + iosize - 1, |
| EXTENT_LOCKED, 0, NULL, GFP_NOFS); |
| ret = submit_extent_page(READ, tree, page, |
| sector, iosize, page_offset, em->bdev, |
| NULL, 1, |
| end_bio_extent_preparewrite); |
| iocount++; |
| block_start = block_start + iosize; |
| } else { |
| set_extent_uptodate(tree, block_start, cur_end, |
| GFP_NOFS); |
| unlock_extent(tree, block_start, cur_end, GFP_NOFS); |
| block_start = cur_end + 1; |
| } |
| page_offset = block_start & (PAGE_CACHE_SIZE - 1); |
| free_extent_map(em); |
| } |
| if (iocount) { |
| wait_extent_bit(tree, orig_block_start, |
| block_end, EXTENT_LOCKED); |
| } |
| check_page_uptodate(tree, page); |
| err: |
| /* FIXME, zero out newly allocated blocks on error */ |
| return err; |
| } |
| EXPORT_SYMBOL(extent_prepare_write); |
| |
| /* |
| * a helper for releasepage. As long as there are no locked extents |
| * in the range corresponding to the page, both state records and extent |
| * map records are removed |
| */ |
| int try_release_extent_mapping(struct extent_map_tree *map, |
| struct extent_io_tree *tree, struct page *page, |
| gfp_t mask) |
| { |
| struct extent_map *em; |
| u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| u64 orig_start = start; |
| int ret = 1; |
| if ((mask & __GFP_WAIT) && |
| page->mapping->host->i_size > 16 * 1024 * 1024) { |
| u64 len; |
| while (start <= end) { |
| len = end - start + 1; |
| spin_lock(&map->lock); |
| em = lookup_extent_mapping(map, start, len); |
| if (!em || IS_ERR(em)) { |
| spin_unlock(&map->lock); |
| break; |
| } |
| if (em->start != start) { |
| spin_unlock(&map->lock); |
| free_extent_map(em); |
| break; |
| } |
| if (!test_range_bit(tree, em->start, |
| extent_map_end(em) - 1, |
| EXTENT_LOCKED, 0)) { |
| remove_extent_mapping(map, em); |
| /* once for the rb tree */ |
| free_extent_map(em); |
| } |
| start = extent_map_end(em); |
| spin_unlock(&map->lock); |
| |
| /* once for us */ |
| free_extent_map(em); |
| } |
| } |
| if (test_range_bit(tree, orig_start, end, EXTENT_IOBITS, 0)) |
| ret = 0; |
| else { |
| if ((mask & GFP_NOFS) == GFP_NOFS) |
| mask = GFP_NOFS; |
| clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE, |
| 1, 1, mask); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(try_release_extent_mapping); |
| |
| sector_t extent_bmap(struct address_space *mapping, sector_t iblock, |
| get_extent_t *get_extent) |
| { |
| struct inode *inode = mapping->host; |
| u64 start = iblock << inode->i_blkbits; |
| sector_t sector = 0; |
| struct extent_map *em; |
| |
| em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0); |
| if (!em || IS_ERR(em)) |
| return 0; |
| |
| if (em->block_start == EXTENT_MAP_INLINE || |
| em->block_start == EXTENT_MAP_HOLE) |
| goto out; |
| |
| sector = (em->block_start + start - em->start) >> inode->i_blkbits; |
| out: |
| free_extent_map(em); |
| return sector; |
| } |
| |
| static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb) |
| { |
| if (list_empty(&eb->lru)) { |
| extent_buffer_get(eb); |
| list_add(&eb->lru, &tree->buffer_lru); |
| tree->lru_size++; |
| if (tree->lru_size >= BUFFER_LRU_MAX) { |
| struct extent_buffer *rm; |
| rm = list_entry(tree->buffer_lru.prev, |
| struct extent_buffer, lru); |
| tree->lru_size--; |
| list_del_init(&rm->lru); |
| free_extent_buffer(rm); |
| } |
| } else |
| list_move(&eb->lru, &tree->buffer_lru); |
| return 0; |
| } |
| static struct extent_buffer *find_lru(struct extent_io_tree *tree, |
| u64 start, unsigned long len) |
| { |
| struct list_head *lru = &tree->buffer_lru; |
| struct list_head *cur = lru->next; |
| struct extent_buffer *eb; |
| |
| if (list_empty(lru)) |
| return NULL; |
| |
| do { |
| eb = list_entry(cur, struct extent_buffer, lru); |
| if (eb->start == start && eb->len == len) { |
| extent_buffer_get(eb); |
| return eb; |
| } |
| cur = cur->next; |
| } while (cur != lru); |
| return NULL; |
| } |
| |
| static inline unsigned long num_extent_pages(u64 start, u64 len) |
| { |
| return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - |
| (start >> PAGE_CACHE_SHIFT); |
| } |
| |
| static inline struct page *extent_buffer_page(struct extent_buffer *eb, |
| unsigned long i) |
| { |
| struct page *p; |
| struct address_space *mapping; |
| |
| if (i == 0) |
| return eb->first_page; |
| i += eb->start >> PAGE_CACHE_SHIFT; |
| mapping = eb->first_page->mapping; |
| read_lock_irq(&mapping->tree_lock); |
| p = radix_tree_lookup(&mapping->page_tree, i); |
| read_unlock_irq(&mapping->tree_lock); |
| return p; |
| } |
| |
| static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, |
| u64 start, |
| unsigned long len, |
| gfp_t mask) |
| { |
| struct extent_buffer *eb = NULL; |
| unsigned long flags; |
| |
| spin_lock(&tree->lru_lock); |
| eb = find_lru(tree, start, len); |
| spin_unlock(&tree->lru_lock); |
| if (eb) { |
| return eb; |
| } |
| |
| eb = kmem_cache_zalloc(extent_buffer_cache, mask); |
| INIT_LIST_HEAD(&eb->lru); |
| eb->start = start; |
| eb->len = len; |
| spin_lock_irqsave(&leak_lock, flags); |
| list_add(&eb->leak_list, &buffers); |
| spin_unlock_irqrestore(&leak_lock, flags); |
| atomic_set(&eb->refs, 1); |
| |
| return eb; |
| } |
| |
| static void __free_extent_buffer(struct extent_buffer *eb) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&leak_lock, flags); |
| list_del(&eb->leak_list); |
| spin_unlock_irqrestore(&leak_lock, flags); |
| kmem_cache_free(extent_buffer_cache, eb); |
| } |
| |
| struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, |
| u64 start, unsigned long len, |
| struct page *page0, |
| gfp_t mask) |
| { |
| unsigned long num_pages = num_extent_pages(start, len); |
| unsigned long i; |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| struct extent_buffer *eb; |
| struct page *p; |
| struct address_space *mapping = tree->mapping; |
| int uptodate = 1; |
| |
| eb = __alloc_extent_buffer(tree, start, len, mask); |
| if (!eb) |
| return NULL; |
| |
| if (eb->flags & EXTENT_BUFFER_FILLED) |
| goto lru_add; |
| |
| if (page0) { |
| eb->first_page = page0; |
| i = 1; |
| index++; |
| page_cache_get(page0); |
| mark_page_accessed(page0); |
| set_page_extent_mapped(page0); |
| WARN_ON(!PageUptodate(page0)); |
| set_page_extent_head(page0, len); |
| } else { |
| i = 0; |
| } |
| for (; i < num_pages; i++, index++) { |
| p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); |
| if (!p) { |
| WARN_ON(1); |
| goto fail; |
| } |
| set_page_extent_mapped(p); |
| mark_page_accessed(p); |
| if (i == 0) { |
| eb->first_page = p; |
| set_page_extent_head(p, len); |
| } else { |
| set_page_private(p, EXTENT_PAGE_PRIVATE); |
| } |
| if (!PageUptodate(p)) |
| uptodate = 0; |
| unlock_page(p); |
| } |
| if (uptodate) |
| eb->flags |= EXTENT_UPTODATE; |
| eb->flags |= EXTENT_BUFFER_FILLED; |
| |
| lru_add: |
| spin_lock(&tree->lru_lock); |
| add_lru(tree, eb); |
| spin_unlock(&tree->lru_lock); |
| return eb; |
| |
| fail: |
| spin_lock(&tree->lru_lock); |
| list_del_init(&eb->lru); |
| spin_unlock(&tree->lru_lock); |
| if (!atomic_dec_and_test(&eb->refs)) |
| return NULL; |
| for (index = 1; index < i; index++) { |
| page_cache_release(extent_buffer_page(eb, index)); |
| } |
| if (i > 0) |
| page_cache_release(extent_buffer_page(eb, 0)); |
| __free_extent_buffer(eb); |
| return NULL; |
| } |
| EXPORT_SYMBOL(alloc_extent_buffer); |
| |
| struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, |
| u64 start, unsigned long len, |
| gfp_t mask) |
| { |
| unsigned long num_pages = num_extent_pages(start, len); |
| unsigned long i; |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| struct extent_buffer *eb; |
| struct page *p; |
| struct address_space *mapping = tree->mapping; |
| int uptodate = 1; |
| |
| eb = __alloc_extent_buffer(tree, start, len, mask); |
| if (!eb) |
| return NULL; |
| |
| if (eb->flags & EXTENT_BUFFER_FILLED) |
| goto lru_add; |
| |
| for (i = 0; i < num_pages; i++, index++) { |
| p = find_lock_page(mapping, index); |
| if (!p) { |
| goto fail; |
| } |
| set_page_extent_mapped(p); |
| mark_page_accessed(p); |
| |
| if (i == 0) { |
| eb->first_page = p; |
| set_page_extent_head(p, len); |
| } else { |
| set_page_private(p, EXTENT_PAGE_PRIVATE); |
| } |
| |
| if (!PageUptodate(p)) |
| uptodate = 0; |
| unlock_page(p); |
| } |
| if (uptodate) |
| eb->flags |= EXTENT_UPTODATE; |
| eb->flags |= EXTENT_BUFFER_FILLED; |
| |
| lru_add: |
| spin_lock(&tree->lru_lock); |
| add_lru(tree, eb); |
| spin_unlock(&tree->lru_lock); |
| return eb; |
| fail: |
| spin_lock(&tree->lru_lock); |
| list_del_init(&eb->lru); |
| spin_unlock(&tree->lru_lock); |
| if (!atomic_dec_and_test(&eb->refs)) |
| return NULL; |
| for (index = 1; index < i; index++) { |
| page_cache_release(extent_buffer_page(eb, index)); |
| } |
| if (i > 0) |
| page_cache_release(extent_buffer_page(eb, 0)); |
| __free_extent_buffer(eb); |
| return NULL; |
| } |
| EXPORT_SYMBOL(find_extent_buffer); |
| |
| void free_extent_buffer(struct extent_buffer *eb) |
| { |
| unsigned long i; |
| unsigned long num_pages; |
| |
| if (!eb) |
| return; |
| |
| if (!atomic_dec_and_test(&eb->refs)) |
| return; |
| |
| WARN_ON(!list_empty(&eb->lru)); |
| num_pages = num_extent_pages(eb->start, eb->len); |
| |
| for (i = 1; i < num_pages; i++) { |
| page_cache_release(extent_buffer_page(eb, i)); |
| } |
| page_cache_release(extent_buffer_page(eb, 0)); |
| __free_extent_buffer(eb); |
| } |
| EXPORT_SYMBOL(free_extent_buffer); |
| |
| int clear_extent_buffer_dirty(struct extent_io_tree *tree, |
| struct extent_buffer *eb) |
| { |
| int set; |
| unsigned long i; |
| unsigned long num_pages; |
| struct page *page; |
| |
| u64 start = eb->start; |
| u64 end = start + eb->len - 1; |
| |
| set = clear_extent_dirty(tree, start, end, GFP_NOFS); |
| num_pages = num_extent_pages(eb->start, eb->len); |
| |
| for (i = 0; i < num_pages; i++) { |
| page = extent_buffer_page(eb, i); |
| lock_page(page); |
| if (i == 0) |
| set_page_extent_head(page, eb->len); |
| else |
| set_page_private(page, EXTENT_PAGE_PRIVATE); |
| |
| /* |
| * if we're on the last page or the first page and the |
| * block isn't aligned on a page boundary, do extra checks |
| * to make sure we don't clean page that is partially dirty |
| */ |
| if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || |
| ((i == num_pages - 1) && |
| ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { |
| start = (u64)page->index << PAGE_CACHE_SHIFT; |
| end = start + PAGE_CACHE_SIZE - 1; |
| if (test_range_bit(tree, start, end, |
| EXTENT_DIRTY, 0)) { |
| unlock_page(page); |
| continue; |
| } |
| } |
| clear_page_dirty_for_io(page); |
| read_lock_irq(&page->mapping->tree_lock); |
| if (!PageDirty(page)) { |
| radix_tree_tag_clear(&page->mapping->page_tree, |
| page_index(page), |
| PAGECACHE_TAG_DIRTY); |
| } |
| read_unlock_irq(&page->mapping->tree_lock); |
| unlock_page(page); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(clear_extent_buffer_dirty); |
| |
| int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, |
| struct extent_buffer *eb) |
| { |
| return wait_on_extent_writeback(tree, eb->start, |
| eb->start + eb->len - 1); |
| } |
| EXPORT_SYMBOL(wait_on_extent_buffer_writeback); |
| |
| int set_extent_buffer_dirty(struct extent_io_tree *tree, |
| struct extent_buffer *eb) |
| { |
| unsigned long i; |
| unsigned long num_pages; |
| |
| num_pages = num_extent_pages(eb->start, eb->len); |
| for (i = 0; i < num_pages; i++) { |
| struct page *page = extent_buffer_page(eb, i); |
| /* writepage may need to do something special for the |
| * first page, we have to make sure page->private is |
| * properly set. releasepage may drop page->private |
| * on us if the page isn't already dirty. |
| */ |
| if (i == 0) { |
| lock_page(page); |
| set_page_extent_head(page, eb->len); |
| } else if (PagePrivate(page) && |
| page->private != EXTENT_PAGE_PRIVATE) { |
| lock_page(page); |
| set_page_extent_mapped(page); |
| unlock_page(page); |
| } |
| __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); |
| if (i == 0) |
| unlock_page(page); |
| } |
| return set_extent_dirty(tree, eb->start, |
| eb->start + eb->len - 1, GFP_NOFS); |
| } |
| EXPORT_SYMBOL(set_extent_buffer_dirty); |
| |
| int set_extent_buffer_uptodate(struct extent_io_tree *tree, |
| struct extent_buffer *eb) |
| { |
| unsigned long i; |
| struct page *page; |
| unsigned long num_pages; |
| |
| num_pages = num_extent_pages(eb->start, eb->len); |
| |
| set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, |
| GFP_NOFS); |
| for (i = 0; i < num_pages; i++) { |
| page = extent_buffer_page(eb, i); |
| if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || |
| ((i == num_pages - 1) && |
| ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { |
| check_page_uptodate(tree, page); |
| continue; |
| } |
| SetPageUptodate(page); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(set_extent_buffer_uptodate); |
| |
| int extent_buffer_uptodate(struct extent_io_tree *tree, |
| struct extent_buffer *eb) |
| { |
| if (eb->flags & EXTENT_UPTODATE) |
| return 1; |
| return test_range_bit(tree, eb->start, eb->start + eb->len - 1, |
| EXTENT_UPTODATE, 1); |
| } |
| EXPORT_SYMBOL(extent_buffer_uptodate); |
| |
| int read_extent_buffer_pages(struct extent_io_tree *tree, |
| struct extent_buffer *eb, |
| u64 start, int wait, |
| get_extent_t *get_extent) |
| { |
| unsigned long i; |
| unsigned long start_i; |
| struct page *page; |
| int err; |
| int ret = 0; |
| unsigned long num_pages; |
| struct bio *bio = NULL; |
| |
| |
| if (eb->flags & EXTENT_UPTODATE) |
| return 0; |
| |
| if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1, |
| EXTENT_UPTODATE, 1)) { |
| return 0; |
| } |
| |
| if (start) { |
| WARN_ON(start < eb->start); |
| start_i = (start >> PAGE_CACHE_SHIFT) - |
| (eb->start >> PAGE_CACHE_SHIFT); |
| } else { |
| start_i = 0; |
| } |
| |
| num_pages = num_extent_pages(eb->start, eb->len); |
| for (i = start_i; i < num_pages; i++) { |
| page = extent_buffer_page(eb, i); |
| if (PageUptodate(page)) { |
| continue; |
| } |
| if (!wait) { |
| if (TestSetPageLocked(page)) { |
| continue; |
| } |
| } else { |
| lock_page(page); |
| } |
| if (!PageUptodate(page)) { |
| err = __extent_read_full_page(tree, page, |
| get_extent, &bio); |
| if (err) { |
| ret = err; |
| } |
| } else { |
| unlock_page(page); |
| } |
| } |
| |
| if (bio) |
| submit_one_bio(READ, bio); |
| |
| if (ret || !wait) { |
| return ret; |
| } |
| for (i = start_i; i < num_pages; i++) { |
| page = extent_buffer_page(eb, i); |
| wait_on_page_locked(page); |
| if (!PageUptodate(page)) { |
| ret = -EIO; |
| } |
| } |
| if (!ret) |
| eb->flags |= EXTENT_UPTODATE; |
| return ret; |
| } |
| EXPORT_SYMBOL(read_extent_buffer_pages); |
| |
| void read_extent_buffer(struct extent_buffer *eb, void *dstv, |
| unsigned long start, |
| unsigned long len) |
| { |
| size_t cur; |
| size_t offset; |
| struct page *page; |
| char *kaddr; |
| char *dst = (char *)dstv; |
| size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| unsigned long num_pages = num_extent_pages(eb->start, eb->len); |
| |
| WARN_ON(start > eb->len); |
| WARN_ON(start + len > eb->start + eb->len); |
| |
| offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| while(len > 0) { |
| page = extent_buffer_page(eb, i); |
| if (!PageUptodate(page)) { |
| printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len); |
| WARN_ON(1); |
| } |
| WARN_ON(!PageUptodate(page)); |
| |
| cur = min(len, (PAGE_CACHE_SIZE - offset)); |
| kaddr = kmap_atomic(page, KM_USER1); |
| memcpy(dst, kaddr + offset, cur); |
| kunmap_atomic(kaddr, KM_USER1); |
| |
| dst += cur; |
| len -= cur; |
| offset = 0; |
| i++; |
| } |
| } |
| EXPORT_SYMBOL(read_extent_buffer); |
| |
| int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, |
| unsigned long min_len, char **token, char **map, |
| unsigned long *map_start, |
| unsigned long *map_len, int km) |
| { |
| size_t offset = start & (PAGE_CACHE_SIZE - 1); |
| char *kaddr; |
| struct page *p; |
| size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| unsigned long end_i = (start_offset + start + min_len - 1) >> |
| PAGE_CACHE_SHIFT; |
| |
| if (i != end_i) |
| return -EINVAL; |
| |
| if (i == 0) { |
| offset = start_offset; |
| *map_start = 0; |
| } else { |
| offset = 0; |
| *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; |
| } |
| if (start + min_len > eb->len) { |
| printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len); |
| WARN_ON(1); |
| } |
| |
| p = extent_buffer_page(eb, i); |
| WARN_ON(!PageUptodate(p)); |
| kaddr = kmap_atomic(p, km); |
| *token = kaddr; |
| *map = kaddr + offset; |
| *map_len = PAGE_CACHE_SIZE - offset; |
| return 0; |
| } |
| EXPORT_SYMBOL(map_private_extent_buffer); |
| |
| int map_extent_buffer(struct extent_buffer *eb, unsigned long start, |
| unsigned long min_len, |
| char **token, char **map, |
| unsigned long *map_start, |
| unsigned long *map_len, int km) |
| { |
| int err; |
| int save = 0; |
| if (eb->map_token) { |
| unmap_extent_buffer(eb, eb->map_token, km); |
| eb->map_token = NULL; |
| save = 1; |
| } |
| err = map_private_extent_buffer(eb, start, min_len, token, map, |
| map_start, map_len, km); |
| if (!err && save) { |
| eb->map_token = *token; |
| eb->kaddr = *map; |
| eb->map_start = *map_start; |
| eb->map_len = *map_len; |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(map_extent_buffer); |
| |
| void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) |
| { |
| kunmap_atomic(token, km); |
| } |
| EXPORT_SYMBOL(unmap_extent_buffer); |
| |
| int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, |
| unsigned long start, |
| unsigned long len) |
| { |
| size_t cur; |
| size_t offset; |
| struct page *page; |
| char *kaddr; |
| char *ptr = (char *)ptrv; |
| size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| int ret = 0; |
| |
| WARN_ON(start > eb->len); |
| WARN_ON(start + len > eb->start + eb->len); |
| |
| offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| while(len > 0) { |
| page = extent_buffer_page(eb, i); |
| WARN_ON(!PageUptodate(page)); |
| |
| cur = min(len, (PAGE_CACHE_SIZE - offset)); |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| ret = memcmp(ptr, kaddr + offset, cur); |
| kunmap_atomic(kaddr, KM_USER0); |
| if (ret) |
| break; |
| |
| ptr += cur; |
| len -= cur; |
| offset = 0; |
| i++; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(memcmp_extent_buffer); |
| |
| void write_extent_buffer(struct extent_buffer *eb, const void *srcv, |
| unsigned long start, unsigned long len) |
| { |
| size_t cur; |
| size_t offset; |
| struct page *page; |
| char *kaddr; |
| char *src = (char *)srcv; |
| size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| |
| WARN_ON(start > eb->len); |
| WARN_ON(start + len > eb->start + eb->len); |
| |
| offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| while(len > 0) { |
| page = extent_buffer_page(eb, i); |
| WARN_ON(!PageUptodate(page)); |
| |
| cur = min(len, PAGE_CACHE_SIZE - offset); |
| kaddr = kmap_atomic(page, KM_USER1); |
| memcpy(kaddr + offset, src, cur); |
| kunmap_atomic(kaddr, KM_USER1); |
| |
| src += cur; |
| len -= cur; |
| offset = 0; |
| i++; |
| } |
| } |
| EXPORT_SYMBOL(write_extent_buffer); |
| |
| void memset_extent_buffer(struct extent_buffer *eb, char c, |
| unsigned long start, unsigned long len) |
| { |
| size_t cur; |
| size_t offset; |
| struct page *page; |
| char *kaddr; |
| size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| |
| WARN_ON(start > eb->len); |
| WARN_ON(start + len > eb->start + eb->len); |
| |
| offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| while(len > 0) { |
| page = extent_buffer_page(eb, i); |
| WARN_ON(!PageUptodate(page)); |
| |
| cur = min(len, PAGE_CACHE_SIZE - offset); |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr + offset, c, cur); |
| kunmap_atomic(kaddr, KM_USER0); |
| |
| len -= cur; |
| offset = 0; |
| i++; |
| } |
| } |
| EXPORT_SYMBOL(memset_extent_buffer); |
| |
| void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, |
| unsigned long dst_offset, unsigned long src_offset, |
| unsigned long len) |
| { |
| u64 dst_len = dst->len; |
| size_t cur; |
| size_t offset; |
| struct page *page; |
| char *kaddr; |
| size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; |
| |
| WARN_ON(src->len != dst_len); |
| |
| offset = (start_offset + dst_offset) & |
| ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| while(len > 0) { |
| page = extent_buffer_page(dst, i); |
| WARN_ON(!PageUptodate(page)); |
| |
| cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| read_extent_buffer(src, kaddr + offset, src_offset, cur); |
| kunmap_atomic(kaddr, KM_USER0); |
| |
| src_offset += cur; |
| len -= cur; |
| offset = 0; |
| i++; |
| } |
| } |
| EXPORT_SYMBOL(copy_extent_buffer); |
| |
| static void move_pages(struct page *dst_page, struct page *src_page, |
| unsigned long dst_off, unsigned long src_off, |
| unsigned long len) |
| { |
| char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); |
| if (dst_page == src_page) { |
| memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); |
| } else { |
| char *src_kaddr = kmap_atomic(src_page, KM_USER1); |
| char *p = dst_kaddr + dst_off + len; |
| char *s = src_kaddr + src_off + len; |
| |
| while (len--) |
| *--p = *--s; |
| |
| kunmap_atomic(src_kaddr, KM_USER1); |
| } |
| kunmap_atomic(dst_kaddr, KM_USER0); |
| } |
| |
| static void copy_pages(struct page *dst_page, struct page *src_page, |
| unsigned long dst_off, unsigned long src_off, |
| unsigned long len) |
| { |
| char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); |
| char *src_kaddr; |
| |
| if (dst_page != src_page) |
| src_kaddr = kmap_atomic(src_page, KM_USER1); |
| else |
| src_kaddr = dst_kaddr; |
| |
| memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); |
| kunmap_atomic(dst_kaddr, KM_USER0); |
| if (dst_page != src_page) |
| kunmap_atomic(src_kaddr, KM_USER1); |
| } |
| |
| void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, |
| unsigned long src_offset, unsigned long len) |
| { |
| size_t cur; |
| size_t dst_off_in_page; |
| size_t src_off_in_page; |
| size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long dst_i; |
| unsigned long src_i; |
| |
| if (src_offset + len > dst->len) { |
| printk("memmove bogus src_offset %lu move len %lu len %lu\n", |
| src_offset, len, dst->len); |
| BUG_ON(1); |
| } |
| if (dst_offset + len > dst->len) { |
| printk("memmove bogus dst_offset %lu move len %lu len %lu\n", |
| dst_offset, len, dst->len); |
| BUG_ON(1); |
| } |
| |
| while(len > 0) { |
| dst_off_in_page = (start_offset + dst_offset) & |
| ((unsigned long)PAGE_CACHE_SIZE - 1); |
| src_off_in_page = (start_offset + src_offset) & |
| ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; |
| src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; |
| |
| cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - |
| src_off_in_page)); |
| cur = min_t(unsigned long, cur, |
| (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); |
| |
| copy_pages(extent_buffer_page(dst, dst_i), |
| extent_buffer_page(dst, src_i), |
| dst_off_in_page, src_off_in_page, cur); |
| |
| src_offset += cur; |
| dst_offset += cur; |
| len -= cur; |
| } |
| } |
| EXPORT_SYMBOL(memcpy_extent_buffer); |
| |
| void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, |
| unsigned long src_offset, unsigned long len) |
| { |
| size_t cur; |
| size_t dst_off_in_page; |
| size_t src_off_in_page; |
| unsigned long dst_end = dst_offset + len - 1; |
| unsigned long src_end = src_offset + len - 1; |
| size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| unsigned long dst_i; |
| unsigned long src_i; |
| |
| if (src_offset + len > dst->len) { |
| printk("memmove bogus src_offset %lu move len %lu len %lu\n", |
| src_offset, len, dst->len); |
| BUG_ON(1); |
| } |
| if (dst_offset + len > dst->len) { |
| printk("memmove bogus dst_offset %lu move len %lu len %lu\n", |
| dst_offset, len, dst->len); |
| BUG_ON(1); |
| } |
| if (dst_offset < src_offset) { |
| memcpy_extent_buffer(dst, dst_offset, src_offset, len); |
| return; |
| } |
| while(len > 0) { |
| dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; |
| src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; |
| |
| dst_off_in_page = (start_offset + dst_end) & |
| ((unsigned long)PAGE_CACHE_SIZE - 1); |
| src_off_in_page = (start_offset + src_end) & |
| ((unsigned long)PAGE_CACHE_SIZE - 1); |
| |
| cur = min_t(unsigned long, len, src_off_in_page + 1); |
| cur = min(cur, dst_off_in_page + 1); |
| move_pages(extent_buffer_page(dst, dst_i), |
| extent_buffer_page(dst, src_i), |
| dst_off_in_page - cur + 1, |
| src_off_in_page - cur + 1, cur); |
| |
| dst_end -= cur; |
| src_end -= cur; |
| len -= cur; |
| } |
| } |
| EXPORT_SYMBOL(memmove_extent_buffer); |