| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * ACPI probing code for ARM performance counters. | 
 |  * | 
 |  * Copyright (C) 2017 ARM Ltd. | 
 |  */ | 
 |  | 
 | #include <linux/acpi.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/init.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/irqdesc.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/perf/arm_pmu.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 |  | 
 | static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus); | 
 | static DEFINE_PER_CPU(int, pmu_irqs); | 
 |  | 
 | static int arm_pmu_acpi_register_irq(int cpu) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *gicc; | 
 | 	int gsi, trigger; | 
 |  | 
 | 	gicc = acpi_cpu_get_madt_gicc(cpu); | 
 | 	if (WARN_ON(!gicc)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	gsi = gicc->performance_interrupt; | 
 |  | 
 | 	/* | 
 | 	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't | 
 | 	 * have an interrupt. QEMU advertises this by using a GSI of zero, | 
 | 	 * which is not known to be valid on any hardware despite being | 
 | 	 * valid per the spec. Take the pragmatic approach and reject a | 
 | 	 * GSI of zero for now. | 
 | 	 */ | 
 | 	if (!gsi) | 
 | 		return 0; | 
 |  | 
 | 	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) | 
 | 		trigger = ACPI_EDGE_SENSITIVE; | 
 | 	else | 
 | 		trigger = ACPI_LEVEL_SENSITIVE; | 
 |  | 
 | 	/* | 
 | 	 * Helpfully, the MADT GICC doesn't have a polarity flag for the | 
 | 	 * "performance interrupt". Luckily, on compliant GICs the polarity is | 
 | 	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change | 
 | 	 * from SW. | 
 | 	 * | 
 | 	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This | 
 | 	 * may not match the real polarity, but that should not matter. | 
 | 	 * | 
 | 	 * Other interrupt controllers are not supported with ACPI. | 
 | 	 */ | 
 | 	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH); | 
 | } | 
 |  | 
 | static void arm_pmu_acpi_unregister_irq(int cpu) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *gicc; | 
 | 	int gsi; | 
 |  | 
 | 	gicc = acpi_cpu_get_madt_gicc(cpu); | 
 | 	if (!gicc) | 
 | 		return; | 
 |  | 
 | 	gsi = gicc->performance_interrupt; | 
 | 	acpi_unregister_gsi(gsi); | 
 | } | 
 |  | 
 | static int arm_pmu_acpi_parse_irqs(void) | 
 | { | 
 | 	int irq, cpu, irq_cpu, err; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		irq = arm_pmu_acpi_register_irq(cpu); | 
 | 		if (irq < 0) { | 
 | 			err = irq; | 
 | 			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n", | 
 | 				cpu, err); | 
 | 			goto out_err; | 
 | 		} else if (irq == 0) { | 
 | 			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Log and request the IRQ so the core arm_pmu code can manage | 
 | 		 * it. We'll have to sanity-check IRQs later when we associate | 
 | 		 * them with their PMUs. | 
 | 		 */ | 
 | 		per_cpu(pmu_irqs, cpu) = irq; | 
 | 		armpmu_request_irq(irq, cpu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		irq = per_cpu(pmu_irqs, cpu); | 
 | 		if (!irq) | 
 | 			continue; | 
 |  | 
 | 		arm_pmu_acpi_unregister_irq(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Blat all copies of the IRQ so that we only unregister the | 
 | 		 * corresponding GSI once (e.g. when we have PPIs). | 
 | 		 */ | 
 | 		for_each_possible_cpu(irq_cpu) { | 
 | 			if (per_cpu(pmu_irqs, irq_cpu) == irq) | 
 | 				per_cpu(pmu_irqs, irq_cpu) = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void) | 
 | { | 
 | 	unsigned long cpuid = read_cpuid_id(); | 
 | 	struct arm_pmu *pmu; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		pmu = per_cpu(probed_pmus, cpu); | 
 | 		if (!pmu || pmu->acpi_cpuid != cpuid) | 
 | 			continue; | 
 |  | 
 | 		return pmu; | 
 | 	} | 
 |  | 
 | 	pmu = armpmu_alloc_atomic(); | 
 | 	if (!pmu) { | 
 | 		pr_warn("Unable to allocate PMU for CPU%d\n", | 
 | 			smp_processor_id()); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	pmu->acpi_cpuid = cpuid; | 
 |  | 
 | 	return pmu; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether the new IRQ is compatible with those already associated with | 
 |  * the PMU (e.g. we don't have mismatched PPIs). | 
 |  */ | 
 | static bool pmu_irq_matches(struct arm_pmu *pmu, int irq) | 
 | { | 
 | 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events; | 
 | 	int cpu; | 
 |  | 
 | 	if (!irq) | 
 | 		return true; | 
 |  | 
 | 	for_each_cpu(cpu, &pmu->supported_cpus) { | 
 | 		int other_irq = per_cpu(hw_events->irq, cpu); | 
 | 		if (!other_irq) | 
 | 			continue; | 
 |  | 
 | 		if (irq == other_irq) | 
 | 			continue; | 
 | 		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq)) | 
 | 			continue; | 
 |  | 
 | 		pr_warn("mismatched PPIs detected\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * This must run before the common arm_pmu hotplug logic, so that we can | 
 |  * associate a CPU and its interrupt before the common code tries to manage the | 
 |  * affinity and so on. | 
 |  * | 
 |  * Note that hotplug events are serialized, so we cannot race with another CPU | 
 |  * coming up. The perf core won't open events while a hotplug event is in | 
 |  * progress. | 
 |  */ | 
 | static int arm_pmu_acpi_cpu_starting(unsigned int cpu) | 
 | { | 
 | 	struct arm_pmu *pmu; | 
 | 	struct pmu_hw_events __percpu *hw_events; | 
 | 	int irq; | 
 |  | 
 | 	/* If we've already probed this CPU, we have nothing to do */ | 
 | 	if (per_cpu(probed_pmus, cpu)) | 
 | 		return 0; | 
 |  | 
 | 	irq = per_cpu(pmu_irqs, cpu); | 
 |  | 
 | 	pmu = arm_pmu_acpi_find_alloc_pmu(); | 
 | 	if (!pmu) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	per_cpu(probed_pmus, cpu) = pmu; | 
 |  | 
 | 	if (pmu_irq_matches(pmu, irq)) { | 
 | 		hw_events = pmu->hw_events; | 
 | 		per_cpu(hw_events->irq, cpu) = irq; | 
 | 	} | 
 |  | 
 | 	cpumask_set_cpu(cpu, &pmu->supported_cpus); | 
 |  | 
 | 	/* | 
 | 	 * Ideally, we'd probe the PMU here when we find the first matching | 
 | 	 * CPU. We can't do that for several reasons; see the comment in | 
 | 	 * arm_pmu_acpi_init(). | 
 | 	 * | 
 | 	 * So for the time being, we're done. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | int arm_pmu_acpi_probe(armpmu_init_fn init_fn) | 
 | { | 
 | 	int pmu_idx = 0; | 
 | 	int cpu, ret; | 
 |  | 
 | 	/* | 
 | 	 * Initialise and register the set of PMUs which we know about right | 
 | 	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we | 
 | 	 * could handle late hotplug, but this may lead to deadlock since we | 
 | 	 * might try to register a hotplug notifier instance from within a | 
 | 	 * hotplug notifier. | 
 | 	 * | 
 | 	 * There's also the problem of having access to the right init_fn, | 
 | 	 * without tying this too deeply into the "real" PMU driver. | 
 | 	 * | 
 | 	 * For the moment, as with the platform/DT case, we need at least one | 
 | 	 * of a PMU's CPUs to be online at probe time. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu); | 
 | 		char *base_name; | 
 |  | 
 | 		if (!pmu || pmu->name) | 
 | 			continue; | 
 |  | 
 | 		ret = init_fn(pmu); | 
 | 		if (ret == -ENODEV) { | 
 | 			/* PMU not handled by this driver, or not present */ | 
 | 			continue; | 
 | 		} else if (ret) { | 
 | 			pr_warn("Unable to initialise PMU for CPU%d\n", cpu); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		base_name = pmu->name; | 
 | 		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++); | 
 | 		if (!pmu->name) { | 
 | 			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		ret = armpmu_register(pmu); | 
 | 		if (ret) { | 
 | 			pr_warn("Failed to register PMU for CPU%d\n", cpu); | 
 | 			kfree(pmu->name); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int arm_pmu_acpi_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (acpi_disabled) | 
 | 		return 0; | 
 |  | 
 | 	ret = arm_pmu_acpi_parse_irqs(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING, | 
 | 				"perf/arm/pmu_acpi:starting", | 
 | 				arm_pmu_acpi_cpu_starting, NULL); | 
 |  | 
 | 	return ret; | 
 | } | 
 | subsys_initcall(arm_pmu_acpi_init) |