| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cache.h> |
| #include <asm/apic.h> |
| #include <asm/uv/uv.h> |
| #include <linux/debugfs.h> |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) |
| = { &init_mm, 0, }; |
| |
| /* |
| * Smarter SMP flushing macros. |
| * c/o Linus Torvalds. |
| * |
| * These mean you can really definitely utterly forget about |
| * writing to user space from interrupts. (Its not allowed anyway). |
| * |
| * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| * |
| * More scalable flush, from Andi Kleen |
| * |
| * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi |
| */ |
| |
| struct flush_tlb_info { |
| struct mm_struct *flush_mm; |
| unsigned long flush_start; |
| unsigned long flush_end; |
| }; |
| |
| /* |
| * We cannot call mmdrop() because we are in interrupt context, |
| * instead update mm->cpu_vm_mask. |
| */ |
| void leave_mm(int cpu) |
| { |
| struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm); |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) |
| BUG(); |
| if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) { |
| cpumask_clear_cpu(cpu, mm_cpumask(active_mm)); |
| load_cr3(swapper_pg_dir); |
| } |
| } |
| EXPORT_SYMBOL_GPL(leave_mm); |
| |
| /* |
| * The flush IPI assumes that a thread switch happens in this order: |
| * [cpu0: the cpu that switches] |
| * 1) switch_mm() either 1a) or 1b) |
| * 1a) thread switch to a different mm |
| * 1a1) set cpu_tlbstate to TLBSTATE_OK |
| * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm |
| * if cpu0 was in lazy tlb mode. |
| * 1a2) update cpu active_mm |
| * Now cpu0 accepts tlb flushes for the new mm. |
| * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask); |
| * Now the other cpus will send tlb flush ipis. |
| * 1a4) change cr3. |
| * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask); |
| * Stop ipi delivery for the old mm. This is not synchronized with |
| * the other cpus, but flush_tlb_func ignore flush ipis for the wrong |
| * mm, and in the worst case we perform a superfluous tlb flush. |
| * 1b) thread switch without mm change |
| * cpu active_mm is correct, cpu0 already handles flush ipis. |
| * 1b1) set cpu_tlbstate to TLBSTATE_OK |
| * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| * Atomically set the bit [other cpus will start sending flush ipis], |
| * and test the bit. |
| * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| * 2) switch %%esp, ie current |
| * |
| * The interrupt must handle 2 special cases: |
| * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| * runs in kernel space, the cpu could load tlb entries for user space |
| * pages. |
| * |
| * The good news is that cpu_tlbstate is local to each cpu, no |
| * write/read ordering problems. |
| */ |
| |
| /* |
| * TLB flush funcation: |
| * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| * 2) Leave the mm if we are in the lazy tlb mode. |
| */ |
| static void flush_tlb_func(void *info) |
| { |
| struct flush_tlb_info *f = info; |
| |
| if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm)) |
| return; |
| |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { |
| if (f->flush_end == TLB_FLUSH_ALL || !cpu_has_invlpg) |
| local_flush_tlb(); |
| else if (!f->flush_end) |
| __flush_tlb_single(f->flush_start); |
| else { |
| unsigned long addr; |
| addr = f->flush_start; |
| while (addr < f->flush_end) { |
| __flush_tlb_single(addr); |
| addr += PAGE_SIZE; |
| } |
| } |
| } else |
| leave_mm(smp_processor_id()); |
| |
| } |
| |
| void native_flush_tlb_others(const struct cpumask *cpumask, |
| struct mm_struct *mm, unsigned long start, |
| unsigned long end) |
| { |
| struct flush_tlb_info info; |
| info.flush_mm = mm; |
| info.flush_start = start; |
| info.flush_end = end; |
| |
| if (is_uv_system()) { |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu); |
| if (cpumask) |
| smp_call_function_many(cpumask, flush_tlb_func, |
| &info, 1); |
| return; |
| } |
| smp_call_function_many(cpumask, flush_tlb_func, &info, 1); |
| } |
| |
| void flush_tlb_current_task(void) |
| { |
| struct mm_struct *mm = current->mm; |
| |
| preempt_disable(); |
| |
| local_flush_tlb(); |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); |
| preempt_enable(); |
| } |
| |
| /* |
| * It can find out the THP large page, or |
| * HUGETLB page in tlb_flush when THP disabled |
| */ |
| static inline unsigned long has_large_page(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| unsigned long addr = ALIGN(start, HPAGE_SIZE); |
| for (; addr < end; addr += HPAGE_SIZE) { |
| pgd = pgd_offset(mm, addr); |
| if (likely(!pgd_none(*pgd))) { |
| pud = pud_offset(pgd, addr); |
| if (likely(!pud_none(*pud))) { |
| pmd = pmd_offset(pud, addr); |
| if (likely(!pmd_none(*pmd))) |
| if (pmd_large(*pmd)) |
| return addr; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, |
| unsigned long end, unsigned long vmflag) |
| { |
| unsigned long addr; |
| unsigned act_entries, tlb_entries = 0; |
| |
| preempt_disable(); |
| if (current->active_mm != mm) |
| goto flush_all; |
| |
| if (!current->mm) { |
| leave_mm(smp_processor_id()); |
| goto flush_all; |
| } |
| |
| if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 |
| || vmflag == VM_HUGETLB) { |
| local_flush_tlb(); |
| goto flush_all; |
| } |
| |
| /* In modern CPU, last level tlb used for both data/ins */ |
| if (vmflag & VM_EXEC) |
| tlb_entries = tlb_lli_4k[ENTRIES]; |
| else |
| tlb_entries = tlb_lld_4k[ENTRIES]; |
| /* Assume all of TLB entries was occupied by this task */ |
| act_entries = mm->total_vm > tlb_entries ? tlb_entries : mm->total_vm; |
| |
| /* tlb_flushall_shift is on balance point, details in commit log */ |
| if ((end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift) |
| local_flush_tlb(); |
| else { |
| if (has_large_page(mm, start, end)) { |
| local_flush_tlb(); |
| goto flush_all; |
| } |
| /* flush range by one by one 'invlpg' */ |
| for (addr = start; addr < end; addr += PAGE_SIZE) |
| __flush_tlb_single(addr); |
| |
| if (cpumask_any_but(mm_cpumask(mm), |
| smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, start, end); |
| preempt_enable(); |
| return; |
| } |
| |
| flush_all: |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); |
| preempt_enable(); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long start) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| preempt_disable(); |
| |
| if (current->active_mm == mm) { |
| if (current->mm) |
| __flush_tlb_one(start); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, start, 0UL); |
| |
| preempt_enable(); |
| } |
| |
| static void do_flush_tlb_all(void *info) |
| { |
| __flush_tlb_all(); |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) |
| leave_mm(smp_processor_id()); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu(do_flush_tlb_all, NULL, 1); |
| } |
| |
| static void do_kernel_range_flush(void *info) |
| { |
| struct flush_tlb_info *f = info; |
| unsigned long addr; |
| |
| /* flush range by one by one 'invlpg' */ |
| for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE) |
| __flush_tlb_single(addr); |
| } |
| |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| unsigned act_entries; |
| struct flush_tlb_info info; |
| |
| /* In modern CPU, last level tlb used for both data/ins */ |
| act_entries = tlb_lld_4k[ENTRIES]; |
| |
| /* Balance as user space task's flush, a bit conservative */ |
| if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 || |
| (end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift) |
| |
| on_each_cpu(do_flush_tlb_all, NULL, 1); |
| else { |
| info.flush_start = start; |
| info.flush_end = end; |
| on_each_cpu(do_kernel_range_flush, &info, 1); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_TLBFLUSH |
| static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| char buf[32]; |
| unsigned int len; |
| |
| len = sprintf(buf, "%hd\n", tlb_flushall_shift); |
| return simple_read_from_buffer(user_buf, count, ppos, buf, len); |
| } |
| |
| static ssize_t tlbflush_write_file(struct file *file, |
| const char __user *user_buf, size_t count, loff_t *ppos) |
| { |
| char buf[32]; |
| ssize_t len; |
| s8 shift; |
| |
| len = min(count, sizeof(buf) - 1); |
| if (copy_from_user(buf, user_buf, len)) |
| return -EFAULT; |
| |
| buf[len] = '\0'; |
| if (kstrtos8(buf, 0, &shift)) |
| return -EINVAL; |
| |
| if (shift < -1 || shift >= BITS_PER_LONG) |
| return -EINVAL; |
| |
| tlb_flushall_shift = shift; |
| return count; |
| } |
| |
| static const struct file_operations fops_tlbflush = { |
| .read = tlbflush_read_file, |
| .write = tlbflush_write_file, |
| .llseek = default_llseek, |
| }; |
| |
| static int __cpuinit create_tlb_flushall_shift(void) |
| { |
| if (cpu_has_invlpg) { |
| debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR, |
| arch_debugfs_dir, NULL, &fops_tlbflush); |
| } |
| return 0; |
| } |
| late_initcall(create_tlb_flushall_shift); |
| #endif |