blob: 7b946b3dee9d1fd73448ae8d735c72cd7d3b1d0b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Glue code for AES encryption optimized for sparc64 crypto opcodes.
*
* This is based largely upon arch/x86/crypto/aesni-intel_glue.c
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
* interface for 64-bit kernels.
* Authors: Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <asm/fpumacro.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include "opcodes.h"
struct aes_ops {
void (*encrypt)(const u64 *key, const u32 *input, u32 *output);
void (*decrypt)(const u64 *key, const u32 *input, u32 *output);
void (*load_encrypt_keys)(const u64 *key);
void (*load_decrypt_keys)(const u64 *key);
void (*ecb_encrypt)(const u64 *key, const u64 *input, u64 *output,
unsigned int len);
void (*ecb_decrypt)(const u64 *key, const u64 *input, u64 *output,
unsigned int len);
void (*cbc_encrypt)(const u64 *key, const u64 *input, u64 *output,
unsigned int len, u64 *iv);
void (*cbc_decrypt)(const u64 *key, const u64 *input, u64 *output,
unsigned int len, u64 *iv);
void (*ctr_crypt)(const u64 *key, const u64 *input, u64 *output,
unsigned int len, u64 *iv);
};
struct crypto_sparc64_aes_ctx {
struct aes_ops *ops;
u64 key[AES_MAX_KEYLENGTH / sizeof(u64)];
u32 key_length;
u32 expanded_key_length;
};
extern void aes_sparc64_encrypt_128(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_encrypt_192(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_encrypt_256(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_decrypt_128(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_decrypt_192(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_decrypt_256(const u64 *key, const u32 *input,
u32 *output);
extern void aes_sparc64_load_encrypt_keys_128(const u64 *key);
extern void aes_sparc64_load_encrypt_keys_192(const u64 *key);
extern void aes_sparc64_load_encrypt_keys_256(const u64 *key);
extern void aes_sparc64_load_decrypt_keys_128(const u64 *key);
extern void aes_sparc64_load_decrypt_keys_192(const u64 *key);
extern void aes_sparc64_load_decrypt_keys_256(const u64 *key);
extern void aes_sparc64_ecb_encrypt_128(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_ecb_encrypt_192(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_ecb_encrypt_256(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_ecb_decrypt_128(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_ecb_decrypt_192(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_ecb_decrypt_256(const u64 *key, const u64 *input,
u64 *output, unsigned int len);
extern void aes_sparc64_cbc_encrypt_128(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_cbc_encrypt_192(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_cbc_encrypt_256(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_cbc_decrypt_128(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_cbc_decrypt_192(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_cbc_decrypt_256(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_ctr_crypt_128(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_ctr_crypt_192(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
extern void aes_sparc64_ctr_crypt_256(const u64 *key, const u64 *input,
u64 *output, unsigned int len,
u64 *iv);
static struct aes_ops aes128_ops = {
.encrypt = aes_sparc64_encrypt_128,
.decrypt = aes_sparc64_decrypt_128,
.load_encrypt_keys = aes_sparc64_load_encrypt_keys_128,
.load_decrypt_keys = aes_sparc64_load_decrypt_keys_128,
.ecb_encrypt = aes_sparc64_ecb_encrypt_128,
.ecb_decrypt = aes_sparc64_ecb_decrypt_128,
.cbc_encrypt = aes_sparc64_cbc_encrypt_128,
.cbc_decrypt = aes_sparc64_cbc_decrypt_128,
.ctr_crypt = aes_sparc64_ctr_crypt_128,
};
static struct aes_ops aes192_ops = {
.encrypt = aes_sparc64_encrypt_192,
.decrypt = aes_sparc64_decrypt_192,
.load_encrypt_keys = aes_sparc64_load_encrypt_keys_192,
.load_decrypt_keys = aes_sparc64_load_decrypt_keys_192,
.ecb_encrypt = aes_sparc64_ecb_encrypt_192,
.ecb_decrypt = aes_sparc64_ecb_decrypt_192,
.cbc_encrypt = aes_sparc64_cbc_encrypt_192,
.cbc_decrypt = aes_sparc64_cbc_decrypt_192,
.ctr_crypt = aes_sparc64_ctr_crypt_192,
};
static struct aes_ops aes256_ops = {
.encrypt = aes_sparc64_encrypt_256,
.decrypt = aes_sparc64_decrypt_256,
.load_encrypt_keys = aes_sparc64_load_encrypt_keys_256,
.load_decrypt_keys = aes_sparc64_load_decrypt_keys_256,
.ecb_encrypt = aes_sparc64_ecb_encrypt_256,
.ecb_decrypt = aes_sparc64_ecb_decrypt_256,
.cbc_encrypt = aes_sparc64_cbc_encrypt_256,
.cbc_decrypt = aes_sparc64_cbc_decrypt_256,
.ctr_crypt = aes_sparc64_ctr_crypt_256,
};
extern void aes_sparc64_key_expand(const u32 *in_key, u64 *output_key,
unsigned int key_len);
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
switch (key_len) {
case AES_KEYSIZE_128:
ctx->expanded_key_length = 0xb0;
ctx->ops = &aes128_ops;
break;
case AES_KEYSIZE_192:
ctx->expanded_key_length = 0xd0;
ctx->ops = &aes192_ops;
break;
case AES_KEYSIZE_256:
ctx->expanded_key_length = 0xf0;
ctx->ops = &aes256_ops;
break;
default:
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
aes_sparc64_key_expand((const u32 *)in_key, &ctx->key[0], key_len);
ctx->key_length = key_len;
return 0;
}
static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->ops->encrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst);
}
static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->ops->decrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst);
}
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1))
static int ecb_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ctx->ops->load_encrypt_keys(&ctx->key[0]);
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
ctx->ops->ecb_encrypt(&ctx->key[0],
(const u64 *)walk.src.virt.addr,
(u64 *) walk.dst.virt.addr,
block_len);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
static int ecb_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
u64 *key_end;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ctx->ops->load_decrypt_keys(&ctx->key[0]);
key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)];
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
ctx->ops->ecb_decrypt(key_end,
(const u64 *) walk.src.virt.addr,
(u64 *) walk.dst.virt.addr, block_len);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
static int cbc_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ctx->ops->load_encrypt_keys(&ctx->key[0]);
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
ctx->ops->cbc_encrypt(&ctx->key[0],
(const u64 *)walk.src.virt.addr,
(u64 *) walk.dst.virt.addr,
block_len, (u64 *) walk.iv);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
static int cbc_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
u64 *key_end;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ctx->ops->load_decrypt_keys(&ctx->key[0]);
key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)];
while ((nbytes = walk.nbytes)) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
ctx->ops->cbc_decrypt(key_end,
(const u64 *) walk.src.virt.addr,
(u64 *) walk.dst.virt.addr,
block_len, (u64 *) walk.iv);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
fprs_write(0);
return err;
}
static void ctr_crypt_final(struct crypto_sparc64_aes_ctx *ctx,
struct blkcipher_walk *walk)
{
u8 *ctrblk = walk->iv;
u64 keystream[AES_BLOCK_SIZE / sizeof(u64)];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
ctx->ops->ecb_encrypt(&ctx->key[0], (const u64 *)ctrblk,
keystream, AES_BLOCK_SIZE);
crypto_xor_cpy(dst, (u8 *) keystream, src, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
}
static int ctr_crypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_sparc64_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ctx->ops->load_encrypt_keys(&ctx->key[0]);
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
unsigned int block_len = nbytes & AES_BLOCK_MASK;
if (likely(block_len)) {
ctx->ops->ctr_crypt(&ctx->key[0],
(const u64 *)walk.src.virt.addr,
(u64 *) walk.dst.virt.addr,
block_len, (u64 *) walk.iv);
}
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
if (walk.nbytes) {
ctr_crypt_final(ctx, &walk);
err = blkcipher_walk_done(desc, &walk, 0);
}
fprs_write(0);
return err;
}
static struct crypto_alg algs[] = { {
.cra_name = "aes",
.cra_driver_name = "aes-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = crypto_aes_encrypt,
.cia_decrypt = crypto_aes_decrypt
}
}
}, {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 7,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 7,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx),
.cra_alignmask = 7,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
} };
static bool __init sparc64_has_aes_opcode(void)
{
unsigned long cfr;
if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO))
return false;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
if (!(cfr & CFR_AES))
return false;
return true;
}
static int __init aes_sparc64_mod_init(void)
{
if (sparc64_has_aes_opcode()) {
pr_info("Using sparc64 aes opcodes optimized AES implementation\n");
return crypto_register_algs(algs, ARRAY_SIZE(algs));
}
pr_info("sparc64 aes opcodes not available.\n");
return -ENODEV;
}
static void __exit aes_sparc64_mod_fini(void)
{
crypto_unregister_algs(algs, ARRAY_SIZE(algs));
}
module_init(aes_sparc64_mod_init);
module_exit(aes_sparc64_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, sparc64 aes opcode accelerated");
MODULE_ALIAS_CRYPTO("aes");
#include "crop_devid.c"