| /* |
| * Generic VM initialization for x86-64 NUMA setups. |
| * Copyright 2002,2003 Andi Kleen, SuSE Labs. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/memblock.h> |
| #include <linux/mmzone.h> |
| #include <linux/ctype.h> |
| #include <linux/module.h> |
| #include <linux/nodemask.h> |
| #include <linux/sched.h> |
| #include <linux/acpi.h> |
| |
| #include <asm/e820.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> |
| #include <asm/acpi.h> |
| #include <asm/amd_nb.h> |
| |
| #include "numa_internal.h" |
| |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| EXPORT_SYMBOL(node_data); |
| |
| nodemask_t numa_nodes_parsed __initdata; |
| |
| struct memnode memnode; |
| |
| static unsigned long __initdata nodemap_addr; |
| static unsigned long __initdata nodemap_size; |
| |
| static struct numa_meminfo numa_meminfo __initdata; |
| |
| static int numa_distance_cnt; |
| static u8 *numa_distance; |
| |
| /* |
| * Given a shift value, try to populate memnodemap[] |
| * Returns : |
| * 1 if OK |
| * 0 if memnodmap[] too small (of shift too small) |
| * -1 if node overlap or lost ram (shift too big) |
| */ |
| static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift) |
| { |
| unsigned long addr, end; |
| int i, res = -1; |
| |
| memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); |
| for (i = 0; i < mi->nr_blks; i++) { |
| addr = mi->blk[i].start; |
| end = mi->blk[i].end; |
| if (addr >= end) |
| continue; |
| if ((end >> shift) >= memnodemapsize) |
| return 0; |
| do { |
| if (memnodemap[addr >> shift] != NUMA_NO_NODE) |
| return -1; |
| memnodemap[addr >> shift] = mi->blk[i].nid; |
| addr += (1UL << shift); |
| } while (addr < end); |
| res = 1; |
| } |
| return res; |
| } |
| |
| static int __init allocate_cachealigned_memnodemap(void) |
| { |
| unsigned long addr; |
| |
| memnodemap = memnode.embedded_map; |
| if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) |
| return 0; |
| |
| addr = 0x8000; |
| nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); |
| nodemap_addr = memblock_find_in_range(addr, get_max_mapped(), |
| nodemap_size, L1_CACHE_BYTES); |
| if (nodemap_addr == MEMBLOCK_ERROR) { |
| printk(KERN_ERR |
| "NUMA: Unable to allocate Memory to Node hash map\n"); |
| nodemap_addr = nodemap_size = 0; |
| return -1; |
| } |
| memnodemap = phys_to_virt(nodemap_addr); |
| memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); |
| |
| printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", |
| nodemap_addr, nodemap_addr + nodemap_size); |
| return 0; |
| } |
| |
| /* |
| * The LSB of all start and end addresses in the node map is the value of the |
| * maximum possible shift. |
| */ |
| static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi) |
| { |
| int i, nodes_used = 0; |
| unsigned long start, end; |
| unsigned long bitfield = 0, memtop = 0; |
| |
| for (i = 0; i < mi->nr_blks; i++) { |
| start = mi->blk[i].start; |
| end = mi->blk[i].end; |
| if (start >= end) |
| continue; |
| bitfield |= start; |
| nodes_used++; |
| if (end > memtop) |
| memtop = end; |
| } |
| if (nodes_used <= 1) |
| i = 63; |
| else |
| i = find_first_bit(&bitfield, sizeof(unsigned long)*8); |
| memnodemapsize = (memtop >> i)+1; |
| return i; |
| } |
| |
| static int __init compute_hash_shift(const struct numa_meminfo *mi) |
| { |
| int shift; |
| |
| shift = extract_lsb_from_nodes(mi); |
| if (allocate_cachealigned_memnodemap()) |
| return -1; |
| printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", |
| shift); |
| |
| if (populate_memnodemap(mi, shift) != 1) { |
| printk(KERN_INFO "Your memory is not aligned you need to " |
| "rebuild your kernel with a bigger NODEMAPSIZE " |
| "shift=%d\n", shift); |
| return -1; |
| } |
| return shift; |
| } |
| |
| int __meminit __early_pfn_to_nid(unsigned long pfn) |
| { |
| return phys_to_nid(pfn << PAGE_SHIFT); |
| } |
| |
| static void * __init early_node_mem(int nodeid, unsigned long start, |
| unsigned long end, unsigned long size, |
| unsigned long align) |
| { |
| unsigned long mem; |
| |
| /* |
| * put it on high as possible |
| * something will go with NODE_DATA |
| */ |
| if (start < (MAX_DMA_PFN<<PAGE_SHIFT)) |
| start = MAX_DMA_PFN<<PAGE_SHIFT; |
| if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) && |
| end > (MAX_DMA32_PFN<<PAGE_SHIFT)) |
| start = MAX_DMA32_PFN<<PAGE_SHIFT; |
| mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align); |
| if (mem != MEMBLOCK_ERROR) |
| return __va(mem); |
| |
| /* extend the search scope */ |
| end = max_pfn_mapped << PAGE_SHIFT; |
| start = MAX_DMA_PFN << PAGE_SHIFT; |
| mem = memblock_find_in_range(start, end, size, align); |
| if (mem != MEMBLOCK_ERROR) |
| return __va(mem); |
| |
| printk(KERN_ERR "Cannot find %lu bytes in node %d\n", |
| size, nodeid); |
| |
| return NULL; |
| } |
| |
| static int __init numa_add_memblk_to(int nid, u64 start, u64 end, |
| struct numa_meminfo *mi) |
| { |
| /* ignore zero length blks */ |
| if (start == end) |
| return 0; |
| |
| /* whine about and ignore invalid blks */ |
| if (start > end || nid < 0 || nid >= MAX_NUMNODES) { |
| pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n", |
| nid, start, end); |
| return 0; |
| } |
| |
| if (mi->nr_blks >= NR_NODE_MEMBLKS) { |
| pr_err("NUMA: too many memblk ranges\n"); |
| return -EINVAL; |
| } |
| |
| mi->blk[mi->nr_blks].start = start; |
| mi->blk[mi->nr_blks].end = end; |
| mi->blk[mi->nr_blks].nid = nid; |
| mi->nr_blks++; |
| return 0; |
| } |
| |
| /** |
| * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo |
| * @idx: Index of memblk to remove |
| * @mi: numa_meminfo to remove memblk from |
| * |
| * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and |
| * decrementing @mi->nr_blks. |
| */ |
| void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) |
| { |
| mi->nr_blks--; |
| memmove(&mi->blk[idx], &mi->blk[idx + 1], |
| (mi->nr_blks - idx) * sizeof(mi->blk[0])); |
| } |
| |
| /** |
| * numa_add_memblk - Add one numa_memblk to numa_meminfo |
| * @nid: NUMA node ID of the new memblk |
| * @start: Start address of the new memblk |
| * @end: End address of the new memblk |
| * |
| * Add a new memblk to the default numa_meminfo. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int __init numa_add_memblk(int nid, u64 start, u64 end) |
| { |
| return numa_add_memblk_to(nid, start, end, &numa_meminfo); |
| } |
| |
| /* Initialize bootmem allocator for a node */ |
| void __init |
| setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) |
| { |
| unsigned long start_pfn, last_pfn, nodedata_phys; |
| const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); |
| int nid; |
| |
| if (!end) |
| return; |
| |
| /* |
| * Don't confuse VM with a node that doesn't have the |
| * minimum amount of memory: |
| */ |
| if (end && (end - start) < NODE_MIN_SIZE) |
| return; |
| |
| start = roundup(start, ZONE_ALIGN); |
| |
| printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid, |
| start, end); |
| |
| start_pfn = start >> PAGE_SHIFT; |
| last_pfn = end >> PAGE_SHIFT; |
| |
| node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, |
| SMP_CACHE_BYTES); |
| if (node_data[nodeid] == NULL) |
| return; |
| nodedata_phys = __pa(node_data[nodeid]); |
| memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); |
| printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, |
| nodedata_phys + pgdat_size - 1); |
| nid = phys_to_nid(nodedata_phys); |
| if (nid != nodeid) |
| printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); |
| |
| memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); |
| NODE_DATA(nodeid)->node_id = nodeid; |
| NODE_DATA(nodeid)->node_start_pfn = start_pfn; |
| NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; |
| |
| node_set_online(nodeid); |
| } |
| |
| /** |
| * numa_cleanup_meminfo - Cleanup a numa_meminfo |
| * @mi: numa_meminfo to clean up |
| * |
| * Sanitize @mi by merging and removing unncessary memblks. Also check for |
| * conflicts and clear unused memblks. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int __init numa_cleanup_meminfo(struct numa_meminfo *mi) |
| { |
| const u64 low = 0; |
| const u64 high = (u64)max_pfn << PAGE_SHIFT; |
| int i, j, k; |
| |
| for (i = 0; i < mi->nr_blks; i++) { |
| struct numa_memblk *bi = &mi->blk[i]; |
| |
| /* make sure all blocks are inside the limits */ |
| bi->start = max(bi->start, low); |
| bi->end = min(bi->end, high); |
| |
| /* and there's no empty block */ |
| if (bi->start == bi->end) { |
| numa_remove_memblk_from(i--, mi); |
| continue; |
| } |
| |
| for (j = i + 1; j < mi->nr_blks; j++) { |
| struct numa_memblk *bj = &mi->blk[j]; |
| unsigned long start, end; |
| |
| /* |
| * See whether there are overlapping blocks. Whine |
| * about but allow overlaps of the same nid. They |
| * will be merged below. |
| */ |
| if (bi->end > bj->start && bi->start < bj->end) { |
| if (bi->nid != bj->nid) { |
| pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n", |
| bi->nid, bi->start, bi->end, |
| bj->nid, bj->start, bj->end); |
| return -EINVAL; |
| } |
| pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n", |
| bi->nid, bi->start, bi->end, |
| bj->start, bj->end); |
| } |
| |
| /* |
| * Join together blocks on the same node, holes |
| * between which don't overlap with memory on other |
| * nodes. |
| */ |
| if (bi->nid != bj->nid) |
| continue; |
| start = max(min(bi->start, bj->start), low); |
| end = min(max(bi->end, bj->end), high); |
| for (k = 0; k < mi->nr_blks; k++) { |
| struct numa_memblk *bk = &mi->blk[k]; |
| |
| if (bi->nid == bk->nid) |
| continue; |
| if (start < bk->end && end > bk->start) |
| break; |
| } |
| if (k < mi->nr_blks) |
| continue; |
| printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", |
| bi->nid, bi->start, bi->end, bj->start, bj->end, |
| start, end); |
| bi->start = start; |
| bi->end = end; |
| numa_remove_memblk_from(j--, mi); |
| } |
| } |
| |
| for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { |
| mi->blk[i].start = mi->blk[i].end = 0; |
| mi->blk[i].nid = NUMA_NO_NODE; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set nodes, which have memory in @mi, in *@nodemask. |
| */ |
| static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, |
| const struct numa_meminfo *mi) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(mi->blk); i++) |
| if (mi->blk[i].start != mi->blk[i].end && |
| mi->blk[i].nid != NUMA_NO_NODE) |
| node_set(mi->blk[i].nid, *nodemask); |
| } |
| |
| /** |
| * numa_reset_distance - Reset NUMA distance table |
| * |
| * The current table is freed. The next numa_set_distance() call will |
| * create a new one. |
| */ |
| void __init numa_reset_distance(void) |
| { |
| size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); |
| |
| /* numa_distance could be 1LU marking allocation failure, test cnt */ |
| if (numa_distance_cnt) |
| memblock_x86_free_range(__pa(numa_distance), |
| __pa(numa_distance) + size); |
| numa_distance_cnt = 0; |
| numa_distance = NULL; /* enable table creation */ |
| } |
| |
| static int __init numa_alloc_distance(void) |
| { |
| nodemask_t nodes_parsed; |
| size_t size; |
| int i, j, cnt = 0; |
| u64 phys; |
| |
| /* size the new table and allocate it */ |
| nodes_parsed = numa_nodes_parsed; |
| numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); |
| |
| for_each_node_mask(i, nodes_parsed) |
| cnt = i; |
| cnt++; |
| size = cnt * cnt * sizeof(numa_distance[0]); |
| |
| phys = memblock_find_in_range(0, (u64)max_pfn_mapped << PAGE_SHIFT, |
| size, PAGE_SIZE); |
| if (phys == MEMBLOCK_ERROR) { |
| pr_warning("NUMA: Warning: can't allocate distance table!\n"); |
| /* don't retry until explicitly reset */ |
| numa_distance = (void *)1LU; |
| return -ENOMEM; |
| } |
| memblock_x86_reserve_range(phys, phys + size, "NUMA DIST"); |
| |
| numa_distance = __va(phys); |
| numa_distance_cnt = cnt; |
| |
| /* fill with the default distances */ |
| for (i = 0; i < cnt; i++) |
| for (j = 0; j < cnt; j++) |
| numa_distance[i * cnt + j] = i == j ? |
| LOCAL_DISTANCE : REMOTE_DISTANCE; |
| printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); |
| |
| return 0; |
| } |
| |
| /** |
| * numa_set_distance - Set NUMA distance from one NUMA to another |
| * @from: the 'from' node to set distance |
| * @to: the 'to' node to set distance |
| * @distance: NUMA distance |
| * |
| * Set the distance from node @from to @to to @distance. If distance table |
| * doesn't exist, one which is large enough to accommodate all the currently |
| * known nodes will be created. |
| * |
| * If such table cannot be allocated, a warning is printed and further |
| * calls are ignored until the distance table is reset with |
| * numa_reset_distance(). |
| * |
| * If @from or @to is higher than the highest known node at the time of |
| * table creation or @distance doesn't make sense, the call is ignored. |
| * This is to allow simplification of specific NUMA config implementations. |
| */ |
| void __init numa_set_distance(int from, int to, int distance) |
| { |
| if (!numa_distance && numa_alloc_distance() < 0) |
| return; |
| |
| if (from >= numa_distance_cnt || to >= numa_distance_cnt) { |
| printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n", |
| from, to, distance); |
| return; |
| } |
| |
| if ((u8)distance != distance || |
| (from == to && distance != LOCAL_DISTANCE)) { |
| pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", |
| from, to, distance); |
| return; |
| } |
| |
| numa_distance[from * numa_distance_cnt + to] = distance; |
| } |
| |
| int __node_distance(int from, int to) |
| { |
| if (from >= numa_distance_cnt || to >= numa_distance_cnt) |
| return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; |
| return numa_distance[from * numa_distance_cnt + to]; |
| } |
| EXPORT_SYMBOL(__node_distance); |
| |
| /* |
| * Sanity check to catch more bad NUMA configurations (they are amazingly |
| * common). Make sure the nodes cover all memory. |
| */ |
| static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) |
| { |
| unsigned long numaram, e820ram; |
| int i; |
| |
| numaram = 0; |
| for (i = 0; i < mi->nr_blks; i++) { |
| unsigned long s = mi->blk[i].start >> PAGE_SHIFT; |
| unsigned long e = mi->blk[i].end >> PAGE_SHIFT; |
| numaram += e - s; |
| numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); |
| if ((long)numaram < 0) |
| numaram = 0; |
| } |
| |
| e820ram = max_pfn - (memblock_x86_hole_size(0, |
| max_pfn << PAGE_SHIFT) >> PAGE_SHIFT); |
| /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ |
| if ((long)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { |
| printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n", |
| (numaram << PAGE_SHIFT) >> 20, |
| (e820ram << PAGE_SHIFT) >> 20); |
| return false; |
| } |
| return true; |
| } |
| |
| static int __init numa_register_memblks(struct numa_meminfo *mi) |
| { |
| int i, nid; |
| |
| /* Account for nodes with cpus and no memory */ |
| node_possible_map = numa_nodes_parsed; |
| numa_nodemask_from_meminfo(&node_possible_map, mi); |
| if (WARN_ON(nodes_empty(node_possible_map))) |
| return -EINVAL; |
| |
| memnode_shift = compute_hash_shift(mi); |
| if (memnode_shift < 0) { |
| printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < mi->nr_blks; i++) |
| memblock_x86_register_active_regions(mi->blk[i].nid, |
| mi->blk[i].start >> PAGE_SHIFT, |
| mi->blk[i].end >> PAGE_SHIFT); |
| |
| /* for out of order entries */ |
| sort_node_map(); |
| if (!numa_meminfo_cover_memory(mi)) |
| return -EINVAL; |
| |
| /* Finally register nodes. */ |
| for_each_node_mask(nid, node_possible_map) { |
| u64 start = (u64)max_pfn << PAGE_SHIFT; |
| u64 end = 0; |
| |
| for (i = 0; i < mi->nr_blks; i++) { |
| if (nid != mi->blk[i].nid) |
| continue; |
| start = min(mi->blk[i].start, start); |
| end = max(mi->blk[i].end, end); |
| } |
| |
| if (start < end) |
| setup_node_bootmem(nid, start, end); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dummy_numma_init - Fallback dummy NUMA init |
| * |
| * Used if there's no underlying NUMA architecture, NUMA initialization |
| * fails, or NUMA is disabled on the command line. |
| * |
| * Must online at least one node and add memory blocks that cover all |
| * allowed memory. This function must not fail. |
| */ |
| static int __init dummy_numa_init(void) |
| { |
| printk(KERN_INFO "%s\n", |
| numa_off ? "NUMA turned off" : "No NUMA configuration found"); |
| printk(KERN_INFO "Faking a node at %016lx-%016lx\n", |
| 0LU, max_pfn << PAGE_SHIFT); |
| |
| node_set(0, numa_nodes_parsed); |
| numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| static int __init numa_init(int (*init_func)(void)) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < MAX_LOCAL_APIC; i++) |
| set_apicid_to_node(i, NUMA_NO_NODE); |
| |
| nodes_clear(numa_nodes_parsed); |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| memset(&numa_meminfo, 0, sizeof(numa_meminfo)); |
| remove_all_active_ranges(); |
| numa_reset_distance(); |
| |
| ret = init_func(); |
| if (ret < 0) |
| return ret; |
| ret = numa_cleanup_meminfo(&numa_meminfo); |
| if (ret < 0) |
| return ret; |
| |
| numa_emulation(&numa_meminfo, numa_distance_cnt); |
| |
| ret = numa_register_memblks(&numa_meminfo); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < nr_cpu_ids; i++) { |
| int nid = early_cpu_to_node(i); |
| |
| if (nid == NUMA_NO_NODE) |
| continue; |
| if (!node_online(nid)) |
| numa_clear_node(i); |
| } |
| numa_init_array(); |
| return 0; |
| } |
| |
| void __init initmem_init(void) |
| { |
| int ret; |
| |
| if (!numa_off) { |
| #ifdef CONFIG_ACPI_NUMA |
| ret = numa_init(x86_acpi_numa_init); |
| if (!ret) |
| return; |
| #endif |
| #ifdef CONFIG_AMD_NUMA |
| ret = numa_init(amd_numa_init); |
| if (!ret) |
| return; |
| #endif |
| } |
| |
| numa_init(dummy_numa_init); |
| } |
| |
| unsigned long __init numa_free_all_bootmem(void) |
| { |
| unsigned long pages = 0; |
| int i; |
| |
| for_each_online_node(i) |
| pages += free_all_bootmem_node(NODE_DATA(i)); |
| |
| pages += free_all_memory_core_early(MAX_NUMNODES); |
| |
| return pages; |
| } |
| |
| int __cpuinit numa_cpu_node(int cpu) |
| { |
| int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); |
| |
| if (apicid != BAD_APICID) |
| return __apicid_to_node[apicid]; |
| return NUMA_NO_NODE; |
| } |