| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de> |
| * Copyright (C) 2015 Broadcom Corporation |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/msi.h> |
| #include <linux/clk.h> |
| #include <linux/module.h> |
| #include <linux/mbus.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/platform_device.h> |
| #include <linux/of_address.h> |
| #include <linux/of_pci.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/phy/phy.h> |
| |
| #include "pcie-iproc.h" |
| |
| #define EP_PERST_SOURCE_SELECT_SHIFT 2 |
| #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT) |
| #define EP_MODE_SURVIVE_PERST_SHIFT 1 |
| #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT) |
| #define RC_PCIE_RST_OUTPUT_SHIFT 0 |
| #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT) |
| #define PAXC_RESET_MASK 0x7f |
| |
| #define GIC_V3_CFG_SHIFT 0 |
| #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT) |
| |
| #define MSI_ENABLE_CFG_SHIFT 0 |
| #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT) |
| |
| #define CFG_IND_ADDR_MASK 0x00001ffc |
| |
| #define CFG_ADDR_BUS_NUM_SHIFT 20 |
| #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000 |
| #define CFG_ADDR_DEV_NUM_SHIFT 15 |
| #define CFG_ADDR_DEV_NUM_MASK 0x000f8000 |
| #define CFG_ADDR_FUNC_NUM_SHIFT 12 |
| #define CFG_ADDR_FUNC_NUM_MASK 0x00007000 |
| #define CFG_ADDR_REG_NUM_SHIFT 2 |
| #define CFG_ADDR_REG_NUM_MASK 0x00000ffc |
| #define CFG_ADDR_CFG_TYPE_SHIFT 0 |
| #define CFG_ADDR_CFG_TYPE_MASK 0x00000003 |
| |
| #define SYS_RC_INTX_MASK 0xf |
| |
| #define PCIE_PHYLINKUP_SHIFT 3 |
| #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT) |
| #define PCIE_DL_ACTIVE_SHIFT 2 |
| #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT) |
| |
| #define APB_ERR_EN_SHIFT 0 |
| #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT) |
| |
| #define CFG_RD_SUCCESS 0 |
| #define CFG_RD_UR 1 |
| #define CFG_RD_CRS 2 |
| #define CFG_RD_CA 3 |
| #define CFG_RETRY_STATUS 0xffff0001 |
| #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */ |
| |
| /* derive the enum index of the outbound/inbound mapping registers */ |
| #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2) |
| |
| /* |
| * Maximum number of outbound mapping window sizes that can be supported by any |
| * OARR/OMAP mapping pair |
| */ |
| #define MAX_NUM_OB_WINDOW_SIZES 4 |
| |
| #define OARR_VALID_SHIFT 0 |
| #define OARR_VALID BIT(OARR_VALID_SHIFT) |
| #define OARR_SIZE_CFG_SHIFT 1 |
| |
| /* |
| * Maximum number of inbound mapping region sizes that can be supported by an |
| * IARR |
| */ |
| #define MAX_NUM_IB_REGION_SIZES 9 |
| |
| #define IMAP_VALID_SHIFT 0 |
| #define IMAP_VALID BIT(IMAP_VALID_SHIFT) |
| |
| #define IPROC_PCI_PM_CAP 0x48 |
| #define IPROC_PCI_PM_CAP_MASK 0xffff |
| #define IPROC_PCI_EXP_CAP 0xac |
| |
| #define IPROC_PCIE_REG_INVALID 0xffff |
| |
| /** |
| * iProc PCIe outbound mapping controller specific parameters |
| * |
| * @window_sizes: list of supported outbound mapping window sizes in MB |
| * @nr_sizes: number of supported outbound mapping window sizes |
| */ |
| struct iproc_pcie_ob_map { |
| resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; |
| unsigned int nr_sizes; |
| }; |
| |
| static const struct iproc_pcie_ob_map paxb_ob_map[] = { |
| { |
| /* OARR0/OMAP0 */ |
| .window_sizes = { 128, 256 }, |
| .nr_sizes = 2, |
| }, |
| { |
| /* OARR1/OMAP1 */ |
| .window_sizes = { 128, 256 }, |
| .nr_sizes = 2, |
| }, |
| }; |
| |
| static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { |
| { |
| /* OARR0/OMAP0 */ |
| .window_sizes = { 128, 256 }, |
| .nr_sizes = 2, |
| }, |
| { |
| /* OARR1/OMAP1 */ |
| .window_sizes = { 128, 256 }, |
| .nr_sizes = 2, |
| }, |
| { |
| /* OARR2/OMAP2 */ |
| .window_sizes = { 128, 256, 512, 1024 }, |
| .nr_sizes = 4, |
| }, |
| { |
| /* OARR3/OMAP3 */ |
| .window_sizes = { 128, 256, 512, 1024 }, |
| .nr_sizes = 4, |
| }, |
| }; |
| |
| /** |
| * iProc PCIe inbound mapping type |
| */ |
| enum iproc_pcie_ib_map_type { |
| /* for DDR memory */ |
| IPROC_PCIE_IB_MAP_MEM = 0, |
| |
| /* for device I/O memory */ |
| IPROC_PCIE_IB_MAP_IO, |
| |
| /* invalid or unused */ |
| IPROC_PCIE_IB_MAP_INVALID |
| }; |
| |
| /** |
| * iProc PCIe inbound mapping controller specific parameters |
| * |
| * @type: inbound mapping region type |
| * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or |
| * SZ_1G |
| * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or |
| * GB, depending on the size unit |
| * @nr_sizes: number of supported inbound mapping region sizes |
| * @nr_windows: number of supported inbound mapping windows for the region |
| * @imap_addr_offset: register offset between the upper and lower 32-bit |
| * IMAP address registers |
| * @imap_window_offset: register offset between each IMAP window |
| */ |
| struct iproc_pcie_ib_map { |
| enum iproc_pcie_ib_map_type type; |
| unsigned int size_unit; |
| resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; |
| unsigned int nr_sizes; |
| unsigned int nr_windows; |
| u16 imap_addr_offset; |
| u16 imap_window_offset; |
| }; |
| |
| static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { |
| { |
| /* IARR0/IMAP0 */ |
| .type = IPROC_PCIE_IB_MAP_IO, |
| .size_unit = SZ_1K, |
| .region_sizes = { 32 }, |
| .nr_sizes = 1, |
| .nr_windows = 8, |
| .imap_addr_offset = 0x40, |
| .imap_window_offset = 0x4, |
| }, |
| { |
| /* IARR1/IMAP1 (currently unused) */ |
| .type = IPROC_PCIE_IB_MAP_INVALID, |
| }, |
| { |
| /* IARR2/IMAP2 */ |
| .type = IPROC_PCIE_IB_MAP_MEM, |
| .size_unit = SZ_1M, |
| .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, |
| 16384 }, |
| .nr_sizes = 9, |
| .nr_windows = 1, |
| .imap_addr_offset = 0x4, |
| .imap_window_offset = 0x8, |
| }, |
| { |
| /* IARR3/IMAP3 */ |
| .type = IPROC_PCIE_IB_MAP_MEM, |
| .size_unit = SZ_1G, |
| .region_sizes = { 1, 2, 4, 8, 16, 32 }, |
| .nr_sizes = 6, |
| .nr_windows = 8, |
| .imap_addr_offset = 0x4, |
| .imap_window_offset = 0x8, |
| }, |
| { |
| /* IARR4/IMAP4 */ |
| .type = IPROC_PCIE_IB_MAP_MEM, |
| .size_unit = SZ_1G, |
| .region_sizes = { 32, 64, 128, 256, 512 }, |
| .nr_sizes = 5, |
| .nr_windows = 8, |
| .imap_addr_offset = 0x4, |
| .imap_window_offset = 0x8, |
| }, |
| }; |
| |
| /* |
| * iProc PCIe host registers |
| */ |
| enum iproc_pcie_reg { |
| /* clock/reset signal control */ |
| IPROC_PCIE_CLK_CTRL = 0, |
| |
| /* |
| * To allow MSI to be steered to an external MSI controller (e.g., ARM |
| * GICv3 ITS) |
| */ |
| IPROC_PCIE_MSI_GIC_MODE, |
| |
| /* |
| * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the |
| * window where the MSI posted writes are written, for the writes to be |
| * interpreted as MSI writes. |
| */ |
| IPROC_PCIE_MSI_BASE_ADDR, |
| IPROC_PCIE_MSI_WINDOW_SIZE, |
| |
| /* |
| * To hold the address of the register where the MSI writes are |
| * programed. When ARM GICv3 ITS is used, this should be programmed |
| * with the address of the GITS_TRANSLATER register. |
| */ |
| IPROC_PCIE_MSI_ADDR_LO, |
| IPROC_PCIE_MSI_ADDR_HI, |
| |
| /* enable MSI */ |
| IPROC_PCIE_MSI_EN_CFG, |
| |
| /* allow access to root complex configuration space */ |
| IPROC_PCIE_CFG_IND_ADDR, |
| IPROC_PCIE_CFG_IND_DATA, |
| |
| /* allow access to device configuration space */ |
| IPROC_PCIE_CFG_ADDR, |
| IPROC_PCIE_CFG_DATA, |
| |
| /* enable INTx */ |
| IPROC_PCIE_INTX_EN, |
| |
| /* outbound address mapping */ |
| IPROC_PCIE_OARR0, |
| IPROC_PCIE_OMAP0, |
| IPROC_PCIE_OARR1, |
| IPROC_PCIE_OMAP1, |
| IPROC_PCIE_OARR2, |
| IPROC_PCIE_OMAP2, |
| IPROC_PCIE_OARR3, |
| IPROC_PCIE_OMAP3, |
| |
| /* inbound address mapping */ |
| IPROC_PCIE_IARR0, |
| IPROC_PCIE_IMAP0, |
| IPROC_PCIE_IARR1, |
| IPROC_PCIE_IMAP1, |
| IPROC_PCIE_IARR2, |
| IPROC_PCIE_IMAP2, |
| IPROC_PCIE_IARR3, |
| IPROC_PCIE_IMAP3, |
| IPROC_PCIE_IARR4, |
| IPROC_PCIE_IMAP4, |
| |
| /* config read status */ |
| IPROC_PCIE_CFG_RD_STATUS, |
| |
| /* link status */ |
| IPROC_PCIE_LINK_STATUS, |
| |
| /* enable APB error for unsupported requests */ |
| IPROC_PCIE_APB_ERR_EN, |
| |
| /* total number of core registers */ |
| IPROC_PCIE_MAX_NUM_REG, |
| }; |
| |
| /* iProc PCIe PAXB BCMA registers */ |
| static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = { |
| [IPROC_PCIE_CLK_CTRL] = 0x000, |
| [IPROC_PCIE_CFG_IND_ADDR] = 0x120, |
| [IPROC_PCIE_CFG_IND_DATA] = 0x124, |
| [IPROC_PCIE_CFG_ADDR] = 0x1f8, |
| [IPROC_PCIE_CFG_DATA] = 0x1fc, |
| [IPROC_PCIE_INTX_EN] = 0x330, |
| [IPROC_PCIE_LINK_STATUS] = 0xf0c, |
| }; |
| |
| /* iProc PCIe PAXB registers */ |
| static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = { |
| [IPROC_PCIE_CLK_CTRL] = 0x000, |
| [IPROC_PCIE_CFG_IND_ADDR] = 0x120, |
| [IPROC_PCIE_CFG_IND_DATA] = 0x124, |
| [IPROC_PCIE_CFG_ADDR] = 0x1f8, |
| [IPROC_PCIE_CFG_DATA] = 0x1fc, |
| [IPROC_PCIE_INTX_EN] = 0x330, |
| [IPROC_PCIE_OARR0] = 0xd20, |
| [IPROC_PCIE_OMAP0] = 0xd40, |
| [IPROC_PCIE_OARR1] = 0xd28, |
| [IPROC_PCIE_OMAP1] = 0xd48, |
| [IPROC_PCIE_LINK_STATUS] = 0xf0c, |
| [IPROC_PCIE_APB_ERR_EN] = 0xf40, |
| }; |
| |
| /* iProc PCIe PAXB v2 registers */ |
| static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = { |
| [IPROC_PCIE_CLK_CTRL] = 0x000, |
| [IPROC_PCIE_CFG_IND_ADDR] = 0x120, |
| [IPROC_PCIE_CFG_IND_DATA] = 0x124, |
| [IPROC_PCIE_CFG_ADDR] = 0x1f8, |
| [IPROC_PCIE_CFG_DATA] = 0x1fc, |
| [IPROC_PCIE_INTX_EN] = 0x330, |
| [IPROC_PCIE_OARR0] = 0xd20, |
| [IPROC_PCIE_OMAP0] = 0xd40, |
| [IPROC_PCIE_OARR1] = 0xd28, |
| [IPROC_PCIE_OMAP1] = 0xd48, |
| [IPROC_PCIE_OARR2] = 0xd60, |
| [IPROC_PCIE_OMAP2] = 0xd68, |
| [IPROC_PCIE_OARR3] = 0xdf0, |
| [IPROC_PCIE_OMAP3] = 0xdf8, |
| [IPROC_PCIE_IARR0] = 0xd00, |
| [IPROC_PCIE_IMAP0] = 0xc00, |
| [IPROC_PCIE_IARR2] = 0xd10, |
| [IPROC_PCIE_IMAP2] = 0xcc0, |
| [IPROC_PCIE_IARR3] = 0xe00, |
| [IPROC_PCIE_IMAP3] = 0xe08, |
| [IPROC_PCIE_IARR4] = 0xe68, |
| [IPROC_PCIE_IMAP4] = 0xe70, |
| [IPROC_PCIE_CFG_RD_STATUS] = 0xee0, |
| [IPROC_PCIE_LINK_STATUS] = 0xf0c, |
| [IPROC_PCIE_APB_ERR_EN] = 0xf40, |
| }; |
| |
| /* iProc PCIe PAXC v1 registers */ |
| static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = { |
| [IPROC_PCIE_CLK_CTRL] = 0x000, |
| [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, |
| [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, |
| [IPROC_PCIE_CFG_ADDR] = 0x1f8, |
| [IPROC_PCIE_CFG_DATA] = 0x1fc, |
| }; |
| |
| /* iProc PCIe PAXC v2 registers */ |
| static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = { |
| [IPROC_PCIE_MSI_GIC_MODE] = 0x050, |
| [IPROC_PCIE_MSI_BASE_ADDR] = 0x074, |
| [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078, |
| [IPROC_PCIE_MSI_ADDR_LO] = 0x07c, |
| [IPROC_PCIE_MSI_ADDR_HI] = 0x080, |
| [IPROC_PCIE_MSI_EN_CFG] = 0x09c, |
| [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, |
| [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, |
| [IPROC_PCIE_CFG_ADDR] = 0x1f8, |
| [IPROC_PCIE_CFG_DATA] = 0x1fc, |
| }; |
| |
| /* |
| * List of device IDs of controllers that have corrupted capability list that |
| * require SW fixup |
| */ |
| static const u16 iproc_pcie_corrupt_cap_did[] = { |
| 0x16cd, |
| 0x16f0, |
| 0xd802, |
| 0xd804 |
| }; |
| |
| static inline struct iproc_pcie *iproc_data(struct pci_bus *bus) |
| { |
| struct iproc_pcie *pcie = bus->sysdata; |
| return pcie; |
| } |
| |
| static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) |
| { |
| return !!(reg_offset == IPROC_PCIE_REG_INVALID); |
| } |
| |
| static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, |
| enum iproc_pcie_reg reg) |
| { |
| return pcie->reg_offsets[reg]; |
| } |
| |
| static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, |
| enum iproc_pcie_reg reg) |
| { |
| u16 offset = iproc_pcie_reg_offset(pcie, reg); |
| |
| if (iproc_pcie_reg_is_invalid(offset)) |
| return 0; |
| |
| return readl(pcie->base + offset); |
| } |
| |
| static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, |
| enum iproc_pcie_reg reg, u32 val) |
| { |
| u16 offset = iproc_pcie_reg_offset(pcie, reg); |
| |
| if (iproc_pcie_reg_is_invalid(offset)) |
| return; |
| |
| writel(val, pcie->base + offset); |
| } |
| |
| /** |
| * APB error forwarding can be disabled during access of configuration |
| * registers of the endpoint device, to prevent unsupported requests |
| * (typically seen during enumeration with multi-function devices) from |
| * triggering a system exception. |
| */ |
| static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus, |
| bool disable) |
| { |
| struct iproc_pcie *pcie = iproc_data(bus); |
| u32 val; |
| |
| if (bus->number && pcie->has_apb_err_disable) { |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); |
| if (disable) |
| val &= ~APB_ERR_EN; |
| else |
| val |= APB_ERR_EN; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); |
| } |
| } |
| |
| static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie, |
| unsigned int busno, |
| unsigned int slot, |
| unsigned int fn, |
| int where) |
| { |
| u16 offset; |
| u32 val; |
| |
| /* EP device access */ |
| val = (busno << CFG_ADDR_BUS_NUM_SHIFT) | |
| (slot << CFG_ADDR_DEV_NUM_SHIFT) | |
| (fn << CFG_ADDR_FUNC_NUM_SHIFT) | |
| (where & CFG_ADDR_REG_NUM_MASK) | |
| (1 & CFG_ADDR_CFG_TYPE_MASK); |
| |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); |
| offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); |
| |
| if (iproc_pcie_reg_is_invalid(offset)) |
| return NULL; |
| |
| return (pcie->base + offset); |
| } |
| |
| static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie, |
| void __iomem *cfg_data_p) |
| { |
| int timeout = CFG_RETRY_STATUS_TIMEOUT_US; |
| unsigned int data; |
| u32 status; |
| |
| /* |
| * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only |
| * affects config reads of the Vendor ID. For config writes or any |
| * other config reads, the Root may automatically reissue the |
| * configuration request again as a new request. |
| * |
| * For config reads, this hardware returns CFG_RETRY_STATUS data |
| * when it receives a CRS completion, regardless of the address of |
| * the read or the CRS Software Visibility Enable bit. As a |
| * partial workaround for this, we retry in software any read that |
| * returns CFG_RETRY_STATUS. |
| * |
| * Note that a non-Vendor ID config register may have a value of |
| * CFG_RETRY_STATUS. If we read that, we can't distinguish it from |
| * a CRS completion, so we will incorrectly retry the read and |
| * eventually return the wrong data (0xffffffff). |
| */ |
| data = readl(cfg_data_p); |
| while (data == CFG_RETRY_STATUS && timeout--) { |
| /* |
| * CRS state is set in CFG_RD status register |
| * This will handle the case where CFG_RETRY_STATUS is |
| * valid config data. |
| */ |
| status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS); |
| if (status != CFG_RD_CRS) |
| return data; |
| |
| udelay(1); |
| data = readl(cfg_data_p); |
| } |
| |
| if (data == CFG_RETRY_STATUS) |
| data = 0xffffffff; |
| |
| return data; |
| } |
| |
| static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val) |
| { |
| u32 i, dev_id; |
| |
| switch (where & ~0x3) { |
| case PCI_VENDOR_ID: |
| dev_id = *val >> 16; |
| |
| /* |
| * Activate fixup for those controllers that have corrupted |
| * capability list registers |
| */ |
| for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) |
| if (dev_id == iproc_pcie_corrupt_cap_did[i]) |
| pcie->fix_paxc_cap = true; |
| break; |
| |
| case IPROC_PCI_PM_CAP: |
| if (pcie->fix_paxc_cap) { |
| /* advertise PM, force next capability to PCIe */ |
| *val &= ~IPROC_PCI_PM_CAP_MASK; |
| *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; |
| } |
| break; |
| |
| case IPROC_PCI_EXP_CAP: |
| if (pcie->fix_paxc_cap) { |
| /* advertise root port, version 2, terminate here */ |
| *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | |
| PCI_CAP_ID_EXP; |
| } |
| break; |
| |
| case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: |
| /* Don't advertise CRS SV support */ |
| *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| struct iproc_pcie *pcie = iproc_data(bus); |
| unsigned int slot = PCI_SLOT(devfn); |
| unsigned int fn = PCI_FUNC(devfn); |
| unsigned int busno = bus->number; |
| void __iomem *cfg_data_p; |
| unsigned int data; |
| int ret; |
| |
| /* root complex access */ |
| if (busno == 0) { |
| ret = pci_generic_config_read32(bus, devfn, where, size, val); |
| if (ret == PCIBIOS_SUCCESSFUL) |
| iproc_pcie_fix_cap(pcie, where, val); |
| |
| return ret; |
| } |
| |
| cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); |
| |
| if (!cfg_data_p) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| data = iproc_pcie_cfg_retry(pcie, cfg_data_p); |
| |
| *val = data; |
| if (size <= 2) |
| *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); |
| |
| /* |
| * For PAXC and PAXCv2, the total number of PFs that one can enumerate |
| * depends on the firmware configuration. Unfortunately, due to an ASIC |
| * bug, unconfigured PFs cannot be properly hidden from the root |
| * complex. As a result, write access to these PFs will cause bus lock |
| * up on the embedded processor |
| * |
| * Since all unconfigured PFs are left with an incorrect, staled device |
| * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access |
| * early here and reject them all |
| */ |
| #define DEVICE_ID_MASK 0xffff0000 |
| #define DEVICE_ID_SHIFT 16 |
| if (pcie->rej_unconfig_pf && |
| (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID) |
| if ((*val & DEVICE_ID_MASK) == |
| (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT)) |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| /** |
| * Note access to the configuration registers are protected at the higher layer |
| * by 'pci_lock' in drivers/pci/access.c |
| */ |
| static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie, |
| int busno, unsigned int devfn, |
| int where) |
| { |
| unsigned slot = PCI_SLOT(devfn); |
| unsigned fn = PCI_FUNC(devfn); |
| u16 offset; |
| |
| /* root complex access */ |
| if (busno == 0) { |
| if (slot > 0 || fn > 0) |
| return NULL; |
| |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, |
| where & CFG_IND_ADDR_MASK); |
| offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); |
| if (iproc_pcie_reg_is_invalid(offset)) |
| return NULL; |
| else |
| return (pcie->base + offset); |
| } |
| |
| return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); |
| } |
| |
| static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus, |
| unsigned int devfn, |
| int where) |
| { |
| return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn, |
| where); |
| } |
| |
| static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, |
| unsigned int devfn, int where, |
| int size, u32 *val) |
| { |
| void __iomem *addr; |
| |
| addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); |
| if (!addr) { |
| *val = ~0; |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| } |
| |
| *val = readl(addr); |
| |
| if (size <= 2) |
| *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, |
| unsigned int devfn, int where, |
| int size, u32 val) |
| { |
| void __iomem *addr; |
| u32 mask, tmp; |
| |
| addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); |
| if (!addr) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| if (size == 4) { |
| writel(val, addr); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); |
| tmp = readl(addr) & mask; |
| tmp |= val << ((where & 0x3) * 8); |
| writel(tmp, addr); |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| int ret; |
| struct iproc_pcie *pcie = iproc_data(bus); |
| |
| iproc_pcie_apb_err_disable(bus, true); |
| if (pcie->iproc_cfg_read) |
| ret = iproc_pcie_config_read(bus, devfn, where, size, val); |
| else |
| ret = pci_generic_config_read32(bus, devfn, where, size, val); |
| iproc_pcie_apb_err_disable(bus, false); |
| |
| return ret; |
| } |
| |
| static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 val) |
| { |
| int ret; |
| |
| iproc_pcie_apb_err_disable(bus, true); |
| ret = pci_generic_config_write32(bus, devfn, where, size, val); |
| iproc_pcie_apb_err_disable(bus, false); |
| |
| return ret; |
| } |
| |
| static struct pci_ops iproc_pcie_ops = { |
| .map_bus = iproc_pcie_bus_map_cfg_bus, |
| .read = iproc_pcie_config_read32, |
| .write = iproc_pcie_config_write32, |
| }; |
| |
| static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert) |
| { |
| u32 val; |
| |
| /* |
| * PAXC and the internal emulated endpoint device downstream should not |
| * be reset. If firmware has been loaded on the endpoint device at an |
| * earlier boot stage, reset here causes issues. |
| */ |
| if (pcie->ep_is_internal) |
| return; |
| |
| if (assert) { |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); |
| val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & |
| ~RC_PCIE_RST_OUTPUT; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); |
| udelay(250); |
| } else { |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); |
| val |= RC_PCIE_RST_OUTPUT; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); |
| msleep(100); |
| } |
| } |
| |
| int iproc_pcie_shutdown(struct iproc_pcie *pcie) |
| { |
| iproc_pcie_perst_ctrl(pcie, true); |
| msleep(500); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iproc_pcie_shutdown); |
| |
| static int iproc_pcie_check_link(struct iproc_pcie *pcie) |
| { |
| struct device *dev = pcie->dev; |
| u32 hdr_type, link_ctrl, link_status, class, val; |
| bool link_is_active = false; |
| |
| /* |
| * PAXC connects to emulated endpoint devices directly and does not |
| * have a Serdes. Therefore skip the link detection logic here. |
| */ |
| if (pcie->ep_is_internal) |
| return 0; |
| |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); |
| if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) { |
| dev_err(dev, "PHY or data link is INACTIVE!\n"); |
| return -ENODEV; |
| } |
| |
| /* make sure we are not in EP mode */ |
| iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type); |
| if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) { |
| dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type); |
| return -EFAULT; |
| } |
| |
| /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */ |
| #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c |
| #define PCI_CLASS_BRIDGE_MASK 0xffff00 |
| #define PCI_CLASS_BRIDGE_SHIFT 8 |
| iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, |
| 4, &class); |
| class &= ~PCI_CLASS_BRIDGE_MASK; |
| class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT); |
| iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, |
| 4, class); |
| |
| /* check link status to see if link is active */ |
| iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, |
| 2, &link_status); |
| if (link_status & PCI_EXP_LNKSTA_NLW) |
| link_is_active = true; |
| |
| if (!link_is_active) { |
| /* try GEN 1 link speed */ |
| #define PCI_TARGET_LINK_SPEED_MASK 0xf |
| #define PCI_TARGET_LINK_SPEED_GEN2 0x2 |
| #define PCI_TARGET_LINK_SPEED_GEN1 0x1 |
| iproc_pci_raw_config_read32(pcie, 0, |
| IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, |
| 4, &link_ctrl); |
| if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) == |
| PCI_TARGET_LINK_SPEED_GEN2) { |
| link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK; |
| link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1; |
| iproc_pci_raw_config_write32(pcie, 0, |
| IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, |
| 4, link_ctrl); |
| msleep(100); |
| |
| iproc_pci_raw_config_read32(pcie, 0, |
| IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, |
| 2, &link_status); |
| if (link_status & PCI_EXP_LNKSTA_NLW) |
| link_is_active = true; |
| } |
| } |
| |
| dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN"); |
| |
| return link_is_active ? 0 : -ENODEV; |
| } |
| |
| static void iproc_pcie_enable(struct iproc_pcie *pcie) |
| { |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK); |
| } |
| |
| static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, |
| int window_idx) |
| { |
| u32 val; |
| |
| val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); |
| |
| return !!(val & OARR_VALID); |
| } |
| |
| static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, |
| int size_idx, u64 axi_addr, u64 pci_addr) |
| { |
| struct device *dev = pcie->dev; |
| u16 oarr_offset, omap_offset; |
| |
| /* |
| * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based |
| * on window index. |
| */ |
| oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, |
| window_idx)); |
| omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, |
| window_idx)); |
| if (iproc_pcie_reg_is_invalid(oarr_offset) || |
| iproc_pcie_reg_is_invalid(omap_offset)) |
| return -EINVAL; |
| |
| /* |
| * Program the OARR registers. The upper 32-bit OARR register is |
| * always right after the lower 32-bit OARR register. |
| */ |
| writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | |
| OARR_VALID, pcie->base + oarr_offset); |
| writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); |
| |
| /* now program the OMAP registers */ |
| writel(lower_32_bits(pci_addr), pcie->base + omap_offset); |
| writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); |
| |
| dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n", |
| window_idx, oarr_offset, &axi_addr, &pci_addr); |
| dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n", |
| readl(pcie->base + oarr_offset), |
| readl(pcie->base + oarr_offset + 4)); |
| dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n", |
| readl(pcie->base + omap_offset), |
| readl(pcie->base + omap_offset + 4)); |
| |
| return 0; |
| } |
| |
| /** |
| * Some iProc SoCs require the SW to configure the outbound address mapping |
| * |
| * Outbound address translation: |
| * |
| * iproc_pcie_address = axi_address - axi_offset |
| * OARR = iproc_pcie_address |
| * OMAP = pci_addr |
| * |
| * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address |
| */ |
| static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, |
| u64 pci_addr, resource_size_t size) |
| { |
| struct iproc_pcie_ob *ob = &pcie->ob; |
| struct device *dev = pcie->dev; |
| int ret = -EINVAL, window_idx, size_idx; |
| |
| if (axi_addr < ob->axi_offset) { |
| dev_err(dev, "axi address %pap less than offset %pap\n", |
| &axi_addr, &ob->axi_offset); |
| return -EINVAL; |
| } |
| |
| /* |
| * Translate the AXI address to the internal address used by the iProc |
| * PCIe core before programming the OARR |
| */ |
| axi_addr -= ob->axi_offset; |
| |
| /* iterate through all OARR/OMAP mapping windows */ |
| for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { |
| const struct iproc_pcie_ob_map *ob_map = |
| &pcie->ob_map[window_idx]; |
| |
| /* |
| * If current outbound window is already in use, move on to the |
| * next one. |
| */ |
| if (iproc_pcie_ob_is_valid(pcie, window_idx)) |
| continue; |
| |
| /* |
| * Iterate through all supported window sizes within the |
| * OARR/OMAP pair to find a match. Go through the window sizes |
| * in a descending order. |
| */ |
| for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; |
| size_idx--) { |
| resource_size_t window_size = |
| ob_map->window_sizes[size_idx] * SZ_1M; |
| |
| /* |
| * Keep iterating until we reach the last window and |
| * with the minimal window size at index zero. In this |
| * case, we take a compromise by mapping it using the |
| * minimum window size that can be supported |
| */ |
| if (size < window_size) { |
| if (size_idx > 0 || window_idx > 0) |
| continue; |
| |
| /* |
| * For the corner case of reaching the minimal |
| * window size that can be supported on the |
| * last window |
| */ |
| axi_addr = ALIGN_DOWN(axi_addr, window_size); |
| pci_addr = ALIGN_DOWN(pci_addr, window_size); |
| size = window_size; |
| } |
| |
| if (!IS_ALIGNED(axi_addr, window_size) || |
| !IS_ALIGNED(pci_addr, window_size)) { |
| dev_err(dev, |
| "axi %pap or pci %pap not aligned\n", |
| &axi_addr, &pci_addr); |
| return -EINVAL; |
| } |
| |
| /* |
| * Match found! Program both OARR and OMAP and mark |
| * them as a valid entry. |
| */ |
| ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, |
| axi_addr, pci_addr); |
| if (ret) |
| goto err_ob; |
| |
| size -= window_size; |
| if (size == 0) |
| return 0; |
| |
| /* |
| * If we are here, we are done with the current window, |
| * but not yet finished all mappings. Need to move on |
| * to the next window. |
| */ |
| axi_addr += window_size; |
| pci_addr += window_size; |
| break; |
| } |
| } |
| |
| err_ob: |
| dev_err(dev, "unable to configure outbound mapping\n"); |
| dev_err(dev, |
| "axi %pap, axi offset %pap, pci %pap, res size %pap\n", |
| &axi_addr, &ob->axi_offset, &pci_addr, &size); |
| |
| return ret; |
| } |
| |
| static int iproc_pcie_map_ranges(struct iproc_pcie *pcie, |
| struct list_head *resources) |
| { |
| struct device *dev = pcie->dev; |
| struct resource_entry *window; |
| int ret; |
| |
| resource_list_for_each_entry(window, resources) { |
| struct resource *res = window->res; |
| u64 res_type = resource_type(res); |
| |
| switch (res_type) { |
| case IORESOURCE_IO: |
| case IORESOURCE_BUS: |
| break; |
| case IORESOURCE_MEM: |
| ret = iproc_pcie_setup_ob(pcie, res->start, |
| res->start - window->offset, |
| resource_size(res)); |
| if (ret) |
| return ret; |
| break; |
| default: |
| dev_err(dev, "invalid resource %pR\n", res); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, |
| int region_idx) |
| { |
| const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; |
| u32 val; |
| |
| val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); |
| |
| return !!(val & (BIT(ib_map->nr_sizes) - 1)); |
| } |
| |
| static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, |
| enum iproc_pcie_ib_map_type type) |
| { |
| return !!(ib_map->type == type); |
| } |
| |
| static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, |
| int size_idx, int nr_windows, u64 axi_addr, |
| u64 pci_addr, resource_size_t size) |
| { |
| struct device *dev = pcie->dev; |
| const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; |
| u16 iarr_offset, imap_offset; |
| u32 val; |
| int window_idx; |
| |
| iarr_offset = iproc_pcie_reg_offset(pcie, |
| MAP_REG(IPROC_PCIE_IARR0, region_idx)); |
| imap_offset = iproc_pcie_reg_offset(pcie, |
| MAP_REG(IPROC_PCIE_IMAP0, region_idx)); |
| if (iproc_pcie_reg_is_invalid(iarr_offset) || |
| iproc_pcie_reg_is_invalid(imap_offset)) |
| return -EINVAL; |
| |
| dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n", |
| region_idx, iarr_offset, &axi_addr, &pci_addr); |
| |
| /* |
| * Program the IARR registers. The upper 32-bit IARR register is |
| * always right after the lower 32-bit IARR register. |
| */ |
| writel(lower_32_bits(pci_addr) | BIT(size_idx), |
| pcie->base + iarr_offset); |
| writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); |
| |
| dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n", |
| readl(pcie->base + iarr_offset), |
| readl(pcie->base + iarr_offset + 4)); |
| |
| /* |
| * Now program the IMAP registers. Each IARR region may have one or |
| * more IMAP windows. |
| */ |
| size >>= ilog2(nr_windows); |
| for (window_idx = 0; window_idx < nr_windows; window_idx++) { |
| val = readl(pcie->base + imap_offset); |
| val |= lower_32_bits(axi_addr) | IMAP_VALID; |
| writel(val, pcie->base + imap_offset); |
| writel(upper_32_bits(axi_addr), |
| pcie->base + imap_offset + ib_map->imap_addr_offset); |
| |
| dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n", |
| window_idx, readl(pcie->base + imap_offset), |
| readl(pcie->base + imap_offset + |
| ib_map->imap_addr_offset)); |
| |
| imap_offset += ib_map->imap_window_offset; |
| axi_addr += size; |
| } |
| |
| return 0; |
| } |
| |
| static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, |
| struct of_pci_range *range, |
| enum iproc_pcie_ib_map_type type) |
| { |
| struct device *dev = pcie->dev; |
| struct iproc_pcie_ib *ib = &pcie->ib; |
| int ret; |
| unsigned int region_idx, size_idx; |
| u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr; |
| resource_size_t size = range->size; |
| |
| /* iterate through all IARR mapping regions */ |
| for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { |
| const struct iproc_pcie_ib_map *ib_map = |
| &pcie->ib_map[region_idx]; |
| |
| /* |
| * If current inbound region is already in use or not a |
| * compatible type, move on to the next. |
| */ |
| if (iproc_pcie_ib_is_in_use(pcie, region_idx) || |
| !iproc_pcie_ib_check_type(ib_map, type)) |
| continue; |
| |
| /* iterate through all supported region sizes to find a match */ |
| for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { |
| resource_size_t region_size = |
| ib_map->region_sizes[size_idx] * ib_map->size_unit; |
| |
| if (size != region_size) |
| continue; |
| |
| if (!IS_ALIGNED(axi_addr, region_size) || |
| !IS_ALIGNED(pci_addr, region_size)) { |
| dev_err(dev, |
| "axi %pap or pci %pap not aligned\n", |
| &axi_addr, &pci_addr); |
| return -EINVAL; |
| } |
| |
| /* Match found! Program IARR and all IMAP windows. */ |
| ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, |
| ib_map->nr_windows, axi_addr, |
| pci_addr, size); |
| if (ret) |
| goto err_ib; |
| else |
| return 0; |
| |
| } |
| } |
| ret = -EINVAL; |
| |
| err_ib: |
| dev_err(dev, "unable to configure inbound mapping\n"); |
| dev_err(dev, "axi %pap, pci %pap, res size %pap\n", |
| &axi_addr, &pci_addr, &size); |
| |
| return ret; |
| } |
| |
| static int iproc_pcie_add_dma_range(struct device *dev, |
| struct list_head *resources, |
| struct of_pci_range *range) |
| { |
| struct resource *res; |
| struct resource_entry *entry, *tmp; |
| struct list_head *head = resources; |
| |
| res = devm_kzalloc(dev, sizeof(struct resource), GFP_KERNEL); |
| if (!res) |
| return -ENOMEM; |
| |
| resource_list_for_each_entry(tmp, resources) { |
| if (tmp->res->start < range->cpu_addr) |
| head = &tmp->node; |
| } |
| |
| res->start = range->cpu_addr; |
| res->end = res->start + range->size - 1; |
| |
| entry = resource_list_create_entry(res, 0); |
| if (!entry) |
| return -ENOMEM; |
| |
| entry->offset = res->start - range->cpu_addr; |
| resource_list_add(entry, head); |
| |
| return 0; |
| } |
| |
| static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) |
| { |
| struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); |
| struct of_pci_range range; |
| struct of_pci_range_parser parser; |
| int ret; |
| LIST_HEAD(resources); |
| |
| /* Get the dma-ranges from DT */ |
| ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node); |
| if (ret) |
| return ret; |
| |
| for_each_of_pci_range(&parser, &range) { |
| ret = iproc_pcie_add_dma_range(pcie->dev, |
| &resources, |
| &range); |
| if (ret) |
| goto out; |
| /* Each range entry corresponds to an inbound mapping region */ |
| ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM); |
| if (ret) |
| goto out; |
| } |
| |
| list_splice_init(&resources, &host->dma_ranges); |
| |
| return 0; |
| out: |
| pci_free_resource_list(&resources); |
| return ret; |
| } |
| |
| static int iproce_pcie_get_msi(struct iproc_pcie *pcie, |
| struct device_node *msi_node, |
| u64 *msi_addr) |
| { |
| struct device *dev = pcie->dev; |
| int ret; |
| struct resource res; |
| |
| /* |
| * Check if 'msi-map' points to ARM GICv3 ITS, which is the only |
| * supported external MSI controller that requires steering. |
| */ |
| if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) { |
| dev_err(dev, "unable to find compatible MSI controller\n"); |
| return -ENODEV; |
| } |
| |
| /* derive GITS_TRANSLATER address from GICv3 */ |
| ret = of_address_to_resource(msi_node, 0, &res); |
| if (ret < 0) { |
| dev_err(dev, "unable to obtain MSI controller resources\n"); |
| return ret; |
| } |
| |
| *msi_addr = res.start + GITS_TRANSLATER; |
| return 0; |
| } |
| |
| static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr) |
| { |
| int ret; |
| struct of_pci_range range; |
| |
| memset(&range, 0, sizeof(range)); |
| range.size = SZ_32K; |
| range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1); |
| |
| ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO); |
| return ret; |
| } |
| |
| static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr, |
| bool enable) |
| { |
| u32 val; |
| |
| if (!enable) { |
| /* |
| * Disable PAXC MSI steering. All write transfers will be |
| * treated as non-MSI transfers |
| */ |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); |
| val &= ~MSI_ENABLE_CFG; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); |
| return; |
| } |
| |
| /* |
| * Program bits [43:13] of address of GITS_TRANSLATER register into |
| * bits [30:0] of the MSI base address register. In fact, in all iProc |
| * based SoCs, all I/O register bases are well below the 32-bit |
| * boundary, so we can safely assume bits [43:32] are always zeros. |
| */ |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR, |
| (u32)(msi_addr >> 13)); |
| |
| /* use a default 8K window size */ |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0); |
| |
| /* steering MSI to GICv3 ITS */ |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE); |
| val |= GIC_V3_CFG; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val); |
| |
| /* |
| * Program bits [43:2] of address of GITS_TRANSLATER register into the |
| * iProc MSI address registers. |
| */ |
| msi_addr >>= 2; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI, |
| upper_32_bits(msi_addr)); |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO, |
| lower_32_bits(msi_addr)); |
| |
| /* enable MSI */ |
| val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); |
| val |= MSI_ENABLE_CFG; |
| iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); |
| } |
| |
| static int iproc_pcie_msi_steer(struct iproc_pcie *pcie, |
| struct device_node *msi_node) |
| { |
| struct device *dev = pcie->dev; |
| int ret; |
| u64 msi_addr; |
| |
| ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr); |
| if (ret < 0) { |
| dev_err(dev, "msi steering failed\n"); |
| return ret; |
| } |
| |
| switch (pcie->type) { |
| case IPROC_PCIE_PAXB_V2: |
| ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr); |
| if (ret) |
| return ret; |
| break; |
| case IPROC_PCIE_PAXC_V2: |
| iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int iproc_pcie_msi_enable(struct iproc_pcie *pcie) |
| { |
| struct device_node *msi_node; |
| int ret; |
| |
| /* |
| * Either the "msi-parent" or the "msi-map" phandle needs to exist |
| * for us to obtain the MSI node. |
| */ |
| |
| msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0); |
| if (!msi_node) { |
| const __be32 *msi_map = NULL; |
| int len; |
| u32 phandle; |
| |
| msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len); |
| if (!msi_map) |
| return -ENODEV; |
| |
| phandle = be32_to_cpup(msi_map + 1); |
| msi_node = of_find_node_by_phandle(phandle); |
| if (!msi_node) |
| return -ENODEV; |
| } |
| |
| /* |
| * Certain revisions of the iProc PCIe controller require additional |
| * configurations to steer the MSI writes towards an external MSI |
| * controller. |
| */ |
| if (pcie->need_msi_steer) { |
| ret = iproc_pcie_msi_steer(pcie, msi_node); |
| if (ret) |
| goto out_put_node; |
| } |
| |
| /* |
| * If another MSI controller is being used, the call below should fail |
| * but that is okay |
| */ |
| ret = iproc_msi_init(pcie, msi_node); |
| |
| out_put_node: |
| of_node_put(msi_node); |
| return ret; |
| } |
| |
| static void iproc_pcie_msi_disable(struct iproc_pcie *pcie) |
| { |
| iproc_msi_exit(pcie); |
| } |
| |
| static int iproc_pcie_rev_init(struct iproc_pcie *pcie) |
| { |
| struct device *dev = pcie->dev; |
| unsigned int reg_idx; |
| const u16 *regs; |
| |
| switch (pcie->type) { |
| case IPROC_PCIE_PAXB_BCMA: |
| regs = iproc_pcie_reg_paxb_bcma; |
| break; |
| case IPROC_PCIE_PAXB: |
| regs = iproc_pcie_reg_paxb; |
| pcie->has_apb_err_disable = true; |
| if (pcie->need_ob_cfg) { |
| pcie->ob_map = paxb_ob_map; |
| pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map); |
| } |
| break; |
| case IPROC_PCIE_PAXB_V2: |
| regs = iproc_pcie_reg_paxb_v2; |
| pcie->iproc_cfg_read = true; |
| pcie->has_apb_err_disable = true; |
| if (pcie->need_ob_cfg) { |
| pcie->ob_map = paxb_v2_ob_map; |
| pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); |
| } |
| pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); |
| pcie->ib_map = paxb_v2_ib_map; |
| pcie->need_msi_steer = true; |
| dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n", |
| CFG_RETRY_STATUS); |
| break; |
| case IPROC_PCIE_PAXC: |
| regs = iproc_pcie_reg_paxc; |
| pcie->ep_is_internal = true; |
| pcie->iproc_cfg_read = true; |
| pcie->rej_unconfig_pf = true; |
| break; |
| case IPROC_PCIE_PAXC_V2: |
| regs = iproc_pcie_reg_paxc_v2; |
| pcie->ep_is_internal = true; |
| pcie->iproc_cfg_read = true; |
| pcie->rej_unconfig_pf = true; |
| pcie->need_msi_steer = true; |
| break; |
| default: |
| dev_err(dev, "incompatible iProc PCIe interface\n"); |
| return -EINVAL; |
| } |
| |
| pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG, |
| sizeof(*pcie->reg_offsets), |
| GFP_KERNEL); |
| if (!pcie->reg_offsets) |
| return -ENOMEM; |
| |
| /* go through the register table and populate all valid registers */ |
| pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? |
| IPROC_PCIE_REG_INVALID : regs[0]; |
| for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++) |
| pcie->reg_offsets[reg_idx] = regs[reg_idx] ? |
| regs[reg_idx] : IPROC_PCIE_REG_INVALID; |
| |
| return 0; |
| } |
| |
| int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res) |
| { |
| struct device *dev; |
| int ret; |
| struct pci_bus *child; |
| struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); |
| |
| dev = pcie->dev; |
| |
| ret = iproc_pcie_rev_init(pcie); |
| if (ret) { |
| dev_err(dev, "unable to initialize controller parameters\n"); |
| return ret; |
| } |
| |
| ret = devm_request_pci_bus_resources(dev, res); |
| if (ret) |
| return ret; |
| |
| ret = phy_init(pcie->phy); |
| if (ret) { |
| dev_err(dev, "unable to initialize PCIe PHY\n"); |
| return ret; |
| } |
| |
| ret = phy_power_on(pcie->phy); |
| if (ret) { |
| dev_err(dev, "unable to power on PCIe PHY\n"); |
| goto err_exit_phy; |
| } |
| |
| iproc_pcie_perst_ctrl(pcie, true); |
| iproc_pcie_perst_ctrl(pcie, false); |
| |
| if (pcie->need_ob_cfg) { |
| ret = iproc_pcie_map_ranges(pcie, res); |
| if (ret) { |
| dev_err(dev, "map failed\n"); |
| goto err_power_off_phy; |
| } |
| } |
| |
| if (pcie->need_ib_cfg) { |
| ret = iproc_pcie_map_dma_ranges(pcie); |
| if (ret && ret != -ENOENT) |
| goto err_power_off_phy; |
| } |
| |
| ret = iproc_pcie_check_link(pcie); |
| if (ret) { |
| dev_err(dev, "no PCIe EP device detected\n"); |
| goto err_power_off_phy; |
| } |
| |
| iproc_pcie_enable(pcie); |
| |
| if (IS_ENABLED(CONFIG_PCI_MSI)) |
| if (iproc_pcie_msi_enable(pcie)) |
| dev_info(dev, "not using iProc MSI\n"); |
| |
| list_splice_init(res, &host->windows); |
| host->busnr = 0; |
| host->dev.parent = dev; |
| host->ops = &iproc_pcie_ops; |
| host->sysdata = pcie; |
| host->map_irq = pcie->map_irq; |
| host->swizzle_irq = pci_common_swizzle; |
| |
| ret = pci_scan_root_bus_bridge(host); |
| if (ret < 0) { |
| dev_err(dev, "failed to scan host: %d\n", ret); |
| goto err_power_off_phy; |
| } |
| |
| pci_assign_unassigned_bus_resources(host->bus); |
| |
| pcie->root_bus = host->bus; |
| |
| list_for_each_entry(child, &host->bus->children, node) |
| pcie_bus_configure_settings(child); |
| |
| pci_bus_add_devices(host->bus); |
| |
| return 0; |
| |
| err_power_off_phy: |
| phy_power_off(pcie->phy); |
| err_exit_phy: |
| phy_exit(pcie->phy); |
| return ret; |
| } |
| EXPORT_SYMBOL(iproc_pcie_setup); |
| |
| int iproc_pcie_remove(struct iproc_pcie *pcie) |
| { |
| pci_stop_root_bus(pcie->root_bus); |
| pci_remove_root_bus(pcie->root_bus); |
| |
| iproc_pcie_msi_disable(pcie); |
| |
| phy_power_off(pcie->phy); |
| phy_exit(pcie->phy); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(iproc_pcie_remove); |
| |
| /* |
| * The MSI parsing logic in certain revisions of Broadcom PAXC based root |
| * complex does not work and needs to be disabled |
| */ |
| static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev) |
| { |
| struct iproc_pcie *pcie = iproc_data(pdev->bus); |
| |
| if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) |
| iproc_pcie_paxc_v2_msi_steer(pcie, 0, false); |
| } |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, |
| quirk_paxc_disable_msi_parsing); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, |
| quirk_paxc_disable_msi_parsing); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, |
| quirk_paxc_disable_msi_parsing); |
| |
| static void quirk_paxc_bridge(struct pci_dev *pdev) |
| { |
| /* |
| * The PCI config space is shared with the PAXC root port and the first |
| * Ethernet device. So, we need to workaround this by telling the PCI |
| * code that the bridge is not an Ethernet device. |
| */ |
| if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) |
| pdev->class = PCI_CLASS_BRIDGE_PCI << 8; |
| |
| /* |
| * MPSS is not being set properly (as it is currently 0). This is |
| * because that area of the PCI config space is hard coded to zero, and |
| * is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS) |
| * so that the MPS can be set to the real max value. |
| */ |
| pdev->pcie_mpss = 2; |
| } |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge); |
| DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge); |
| |
| MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); |
| MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver"); |
| MODULE_LICENSE("GPL v2"); |