| /************************************************************************ |
| * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC |
| * Copyright(c) 2002-2007 Neterion Inc. |
| |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License (GPL), incorporated herein by reference. |
| * Drivers based on or derived from this code fall under the GPL and must |
| * retain the authorship, copyright and license notice. This file is not |
| * a complete program and may only be used when the entire operating |
| * system is licensed under the GPL. |
| * See the file COPYING in this distribution for more information. |
| * |
| * Credits: |
| * Jeff Garzik : For pointing out the improper error condition |
| * check in the s2io_xmit routine and also some |
| * issues in the Tx watch dog function. Also for |
| * patiently answering all those innumerable |
| * questions regaring the 2.6 porting issues. |
| * Stephen Hemminger : Providing proper 2.6 porting mechanism for some |
| * macros available only in 2.6 Kernel. |
| * Francois Romieu : For pointing out all code part that were |
| * deprecated and also styling related comments. |
| * Grant Grundler : For helping me get rid of some Architecture |
| * dependent code. |
| * Christopher Hellwig : Some more 2.6 specific issues in the driver. |
| * |
| * The module loadable parameters that are supported by the driver and a brief |
| * explaination of all the variables. |
| * |
| * rx_ring_num : This can be used to program the number of receive rings used |
| * in the driver. |
| * rx_ring_sz: This defines the number of receive blocks each ring can have. |
| * This is also an array of size 8. |
| * rx_ring_mode: This defines the operation mode of all 8 rings. The valid |
| * values are 1, 2. |
| * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. |
| * tx_fifo_len: This too is an array of 8. Each element defines the number of |
| * Tx descriptors that can be associated with each corresponding FIFO. |
| * intr_type: This defines the type of interrupt. The values can be 0(INTA), |
| * 2(MSI_X). Default value is '2(MSI_X)' |
| * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not. |
| * Possible values '1' for enable '0' for disable. Default is '0' |
| * lro_max_pkts: This parameter defines maximum number of packets can be |
| * aggregated as a single large packet |
| * napi: This parameter used to enable/disable NAPI (polling Rx) |
| * Possible values '1' for enable and '0' for disable. Default is '1' |
| * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) |
| * Possible values '1' for enable and '0' for disable. Default is '0' |
| * vlan_tag_strip: This can be used to enable or disable vlan stripping. |
| * Possible values '1' for enable , '0' for disable. |
| * Default is '2' - which means disable in promisc mode |
| * and enable in non-promiscuous mode. |
| * multiq: This parameter used to enable/disable MULTIQUEUE support. |
| * Possible values '1' for enable and '0' for disable. Default is '0' |
| ************************************************************************/ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/stddef.h> |
| #include <linux/ioctl.h> |
| #include <linux/timex.h> |
| #include <linux/ethtool.h> |
| #include <linux/workqueue.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <net/tcp.h> |
| |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/div64.h> |
| #include <asm/irq.h> |
| |
| /* local include */ |
| #include "s2io.h" |
| #include "s2io-regs.h" |
| |
| #define DRV_VERSION "2.0.26.25" |
| |
| /* S2io Driver name & version. */ |
| static char s2io_driver_name[] = "Neterion"; |
| static char s2io_driver_version[] = DRV_VERSION; |
| |
| static int rxd_size[2] = {32,48}; |
| static int rxd_count[2] = {127,85}; |
| |
| static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) |
| { |
| int ret; |
| |
| ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); |
| |
| return ret; |
| } |
| |
| /* |
| * Cards with following subsystem_id have a link state indication |
| * problem, 600B, 600C, 600D, 640B, 640C and 640D. |
| * macro below identifies these cards given the subsystem_id. |
| */ |
| #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ |
| (dev_type == XFRAME_I_DEVICE) ? \ |
| ((((subid >= 0x600B) && (subid <= 0x600D)) || \ |
| ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 |
| |
| #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ |
| ADAPTER_STATUS_RMAC_LOCAL_FAULT))) |
| |
| static inline int is_s2io_card_up(const struct s2io_nic * sp) |
| { |
| return test_bit(__S2IO_STATE_CARD_UP, &sp->state); |
| } |
| |
| /* Ethtool related variables and Macros. */ |
| static char s2io_gstrings[][ETH_GSTRING_LEN] = { |
| "Register test\t(offline)", |
| "Eeprom test\t(offline)", |
| "Link test\t(online)", |
| "RLDRAM test\t(offline)", |
| "BIST Test\t(offline)" |
| }; |
| |
| static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { |
| {"tmac_frms"}, |
| {"tmac_data_octets"}, |
| {"tmac_drop_frms"}, |
| {"tmac_mcst_frms"}, |
| {"tmac_bcst_frms"}, |
| {"tmac_pause_ctrl_frms"}, |
| {"tmac_ttl_octets"}, |
| {"tmac_ucst_frms"}, |
| {"tmac_nucst_frms"}, |
| {"tmac_any_err_frms"}, |
| {"tmac_ttl_less_fb_octets"}, |
| {"tmac_vld_ip_octets"}, |
| {"tmac_vld_ip"}, |
| {"tmac_drop_ip"}, |
| {"tmac_icmp"}, |
| {"tmac_rst_tcp"}, |
| {"tmac_tcp"}, |
| {"tmac_udp"}, |
| {"rmac_vld_frms"}, |
| {"rmac_data_octets"}, |
| {"rmac_fcs_err_frms"}, |
| {"rmac_drop_frms"}, |
| {"rmac_vld_mcst_frms"}, |
| {"rmac_vld_bcst_frms"}, |
| {"rmac_in_rng_len_err_frms"}, |
| {"rmac_out_rng_len_err_frms"}, |
| {"rmac_long_frms"}, |
| {"rmac_pause_ctrl_frms"}, |
| {"rmac_unsup_ctrl_frms"}, |
| {"rmac_ttl_octets"}, |
| {"rmac_accepted_ucst_frms"}, |
| {"rmac_accepted_nucst_frms"}, |
| {"rmac_discarded_frms"}, |
| {"rmac_drop_events"}, |
| {"rmac_ttl_less_fb_octets"}, |
| {"rmac_ttl_frms"}, |
| {"rmac_usized_frms"}, |
| {"rmac_osized_frms"}, |
| {"rmac_frag_frms"}, |
| {"rmac_jabber_frms"}, |
| {"rmac_ttl_64_frms"}, |
| {"rmac_ttl_65_127_frms"}, |
| {"rmac_ttl_128_255_frms"}, |
| {"rmac_ttl_256_511_frms"}, |
| {"rmac_ttl_512_1023_frms"}, |
| {"rmac_ttl_1024_1518_frms"}, |
| {"rmac_ip"}, |
| {"rmac_ip_octets"}, |
| {"rmac_hdr_err_ip"}, |
| {"rmac_drop_ip"}, |
| {"rmac_icmp"}, |
| {"rmac_tcp"}, |
| {"rmac_udp"}, |
| {"rmac_err_drp_udp"}, |
| {"rmac_xgmii_err_sym"}, |
| {"rmac_frms_q0"}, |
| {"rmac_frms_q1"}, |
| {"rmac_frms_q2"}, |
| {"rmac_frms_q3"}, |
| {"rmac_frms_q4"}, |
| {"rmac_frms_q5"}, |
| {"rmac_frms_q6"}, |
| {"rmac_frms_q7"}, |
| {"rmac_full_q0"}, |
| {"rmac_full_q1"}, |
| {"rmac_full_q2"}, |
| {"rmac_full_q3"}, |
| {"rmac_full_q4"}, |
| {"rmac_full_q5"}, |
| {"rmac_full_q6"}, |
| {"rmac_full_q7"}, |
| {"rmac_pause_cnt"}, |
| {"rmac_xgmii_data_err_cnt"}, |
| {"rmac_xgmii_ctrl_err_cnt"}, |
| {"rmac_accepted_ip"}, |
| {"rmac_err_tcp"}, |
| {"rd_req_cnt"}, |
| {"new_rd_req_cnt"}, |
| {"new_rd_req_rtry_cnt"}, |
| {"rd_rtry_cnt"}, |
| {"wr_rtry_rd_ack_cnt"}, |
| {"wr_req_cnt"}, |
| {"new_wr_req_cnt"}, |
| {"new_wr_req_rtry_cnt"}, |
| {"wr_rtry_cnt"}, |
| {"wr_disc_cnt"}, |
| {"rd_rtry_wr_ack_cnt"}, |
| {"txp_wr_cnt"}, |
| {"txd_rd_cnt"}, |
| {"txd_wr_cnt"}, |
| {"rxd_rd_cnt"}, |
| {"rxd_wr_cnt"}, |
| {"txf_rd_cnt"}, |
| {"rxf_wr_cnt"} |
| }; |
| |
| static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { |
| {"rmac_ttl_1519_4095_frms"}, |
| {"rmac_ttl_4096_8191_frms"}, |
| {"rmac_ttl_8192_max_frms"}, |
| {"rmac_ttl_gt_max_frms"}, |
| {"rmac_osized_alt_frms"}, |
| {"rmac_jabber_alt_frms"}, |
| {"rmac_gt_max_alt_frms"}, |
| {"rmac_vlan_frms"}, |
| {"rmac_len_discard"}, |
| {"rmac_fcs_discard"}, |
| {"rmac_pf_discard"}, |
| {"rmac_da_discard"}, |
| {"rmac_red_discard"}, |
| {"rmac_rts_discard"}, |
| {"rmac_ingm_full_discard"}, |
| {"link_fault_cnt"} |
| }; |
| |
| static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { |
| {"\n DRIVER STATISTICS"}, |
| {"single_bit_ecc_errs"}, |
| {"double_bit_ecc_errs"}, |
| {"parity_err_cnt"}, |
| {"serious_err_cnt"}, |
| {"soft_reset_cnt"}, |
| {"fifo_full_cnt"}, |
| {"ring_0_full_cnt"}, |
| {"ring_1_full_cnt"}, |
| {"ring_2_full_cnt"}, |
| {"ring_3_full_cnt"}, |
| {"ring_4_full_cnt"}, |
| {"ring_5_full_cnt"}, |
| {"ring_6_full_cnt"}, |
| {"ring_7_full_cnt"}, |
| {"alarm_transceiver_temp_high"}, |
| {"alarm_transceiver_temp_low"}, |
| {"alarm_laser_bias_current_high"}, |
| {"alarm_laser_bias_current_low"}, |
| {"alarm_laser_output_power_high"}, |
| {"alarm_laser_output_power_low"}, |
| {"warn_transceiver_temp_high"}, |
| {"warn_transceiver_temp_low"}, |
| {"warn_laser_bias_current_high"}, |
| {"warn_laser_bias_current_low"}, |
| {"warn_laser_output_power_high"}, |
| {"warn_laser_output_power_low"}, |
| {"lro_aggregated_pkts"}, |
| {"lro_flush_both_count"}, |
| {"lro_out_of_sequence_pkts"}, |
| {"lro_flush_due_to_max_pkts"}, |
| {"lro_avg_aggr_pkts"}, |
| {"mem_alloc_fail_cnt"}, |
| {"pci_map_fail_cnt"}, |
| {"watchdog_timer_cnt"}, |
| {"mem_allocated"}, |
| {"mem_freed"}, |
| {"link_up_cnt"}, |
| {"link_down_cnt"}, |
| {"link_up_time"}, |
| {"link_down_time"}, |
| {"tx_tcode_buf_abort_cnt"}, |
| {"tx_tcode_desc_abort_cnt"}, |
| {"tx_tcode_parity_err_cnt"}, |
| {"tx_tcode_link_loss_cnt"}, |
| {"tx_tcode_list_proc_err_cnt"}, |
| {"rx_tcode_parity_err_cnt"}, |
| {"rx_tcode_abort_cnt"}, |
| {"rx_tcode_parity_abort_cnt"}, |
| {"rx_tcode_rda_fail_cnt"}, |
| {"rx_tcode_unkn_prot_cnt"}, |
| {"rx_tcode_fcs_err_cnt"}, |
| {"rx_tcode_buf_size_err_cnt"}, |
| {"rx_tcode_rxd_corrupt_cnt"}, |
| {"rx_tcode_unkn_err_cnt"}, |
| {"tda_err_cnt"}, |
| {"pfc_err_cnt"}, |
| {"pcc_err_cnt"}, |
| {"tti_err_cnt"}, |
| {"tpa_err_cnt"}, |
| {"sm_err_cnt"}, |
| {"lso_err_cnt"}, |
| {"mac_tmac_err_cnt"}, |
| {"mac_rmac_err_cnt"}, |
| {"xgxs_txgxs_err_cnt"}, |
| {"xgxs_rxgxs_err_cnt"}, |
| {"rc_err_cnt"}, |
| {"prc_pcix_err_cnt"}, |
| {"rpa_err_cnt"}, |
| {"rda_err_cnt"}, |
| {"rti_err_cnt"}, |
| {"mc_err_cnt"} |
| }; |
| |
| #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) |
| #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) |
| #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) |
| |
| #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN ) |
| #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN ) |
| |
| #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN ) |
| #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN ) |
| |
| #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) |
| #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN |
| |
| #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ |
| init_timer(&timer); \ |
| timer.function = handle; \ |
| timer.data = (unsigned long) arg; \ |
| mod_timer(&timer, (jiffies + exp)) \ |
| |
| /* copy mac addr to def_mac_addr array */ |
| static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) |
| { |
| sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); |
| sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); |
| sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); |
| sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); |
| sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); |
| sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); |
| } |
| |
| /* Add the vlan */ |
| static void s2io_vlan_rx_register(struct net_device *dev, |
| struct vlan_group *grp) |
| { |
| int i; |
| struct s2io_nic *nic = netdev_priv(dev); |
| unsigned long flags[MAX_TX_FIFOS]; |
| struct mac_info *mac_control = &nic->mac_control; |
| struct config_param *config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) |
| spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]); |
| |
| nic->vlgrp = grp; |
| for (i = config->tx_fifo_num - 1; i >= 0; i--) |
| spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, |
| flags[i]); |
| } |
| |
| /* Unregister the vlan */ |
| static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) |
| { |
| int i; |
| struct s2io_nic *nic = netdev_priv(dev); |
| unsigned long flags[MAX_TX_FIFOS]; |
| struct mac_info *mac_control = &nic->mac_control; |
| struct config_param *config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) |
| spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]); |
| |
| if (nic->vlgrp) |
| vlan_group_set_device(nic->vlgrp, vid, NULL); |
| |
| for (i = config->tx_fifo_num - 1; i >= 0; i--) |
| spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, |
| flags[i]); |
| } |
| |
| /* |
| * Constants to be programmed into the Xena's registers, to configure |
| * the XAUI. |
| */ |
| |
| #define END_SIGN 0x0 |
| static const u64 herc_act_dtx_cfg[] = { |
| /* Set address */ |
| 0x8000051536750000ULL, 0x80000515367500E0ULL, |
| /* Write data */ |
| 0x8000051536750004ULL, 0x80000515367500E4ULL, |
| /* Set address */ |
| 0x80010515003F0000ULL, 0x80010515003F00E0ULL, |
| /* Write data */ |
| 0x80010515003F0004ULL, 0x80010515003F00E4ULL, |
| /* Set address */ |
| 0x801205150D440000ULL, 0x801205150D4400E0ULL, |
| /* Write data */ |
| 0x801205150D440004ULL, 0x801205150D4400E4ULL, |
| /* Set address */ |
| 0x80020515F2100000ULL, 0x80020515F21000E0ULL, |
| /* Write data */ |
| 0x80020515F2100004ULL, 0x80020515F21000E4ULL, |
| /* Done */ |
| END_SIGN |
| }; |
| |
| static const u64 xena_dtx_cfg[] = { |
| /* Set address */ |
| 0x8000051500000000ULL, 0x80000515000000E0ULL, |
| /* Write data */ |
| 0x80000515D9350004ULL, 0x80000515D93500E4ULL, |
| /* Set address */ |
| 0x8001051500000000ULL, 0x80010515000000E0ULL, |
| /* Write data */ |
| 0x80010515001E0004ULL, 0x80010515001E00E4ULL, |
| /* Set address */ |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| /* Write data */ |
| 0x80020515F2100004ULL, 0x80020515F21000E4ULL, |
| END_SIGN |
| }; |
| |
| /* |
| * Constants for Fixing the MacAddress problem seen mostly on |
| * Alpha machines. |
| */ |
| static const u64 fix_mac[] = { |
| 0x0060000000000000ULL, 0x0060600000000000ULL, |
| 0x0040600000000000ULL, 0x0000600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0000600000000000ULL, |
| 0x0040600000000000ULL, 0x0060600000000000ULL, |
| END_SIGN |
| }; |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| |
| /* Module Loadable parameters. */ |
| S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); |
| S2IO_PARM_INT(rx_ring_num, 1); |
| S2IO_PARM_INT(multiq, 0); |
| S2IO_PARM_INT(rx_ring_mode, 1); |
| S2IO_PARM_INT(use_continuous_tx_intrs, 1); |
| S2IO_PARM_INT(rmac_pause_time, 0x100); |
| S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); |
| S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); |
| S2IO_PARM_INT(shared_splits, 0); |
| S2IO_PARM_INT(tmac_util_period, 5); |
| S2IO_PARM_INT(rmac_util_period, 5); |
| S2IO_PARM_INT(l3l4hdr_size, 128); |
| /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ |
| S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); |
| /* Frequency of Rx desc syncs expressed as power of 2 */ |
| S2IO_PARM_INT(rxsync_frequency, 3); |
| /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ |
| S2IO_PARM_INT(intr_type, 2); |
| /* Large receive offload feature */ |
| static unsigned int lro_enable; |
| module_param_named(lro, lro_enable, uint, 0); |
| |
| /* Max pkts to be aggregated by LRO at one time. If not specified, |
| * aggregation happens until we hit max IP pkt size(64K) |
| */ |
| S2IO_PARM_INT(lro_max_pkts, 0xFFFF); |
| S2IO_PARM_INT(indicate_max_pkts, 0); |
| |
| S2IO_PARM_INT(napi, 1); |
| S2IO_PARM_INT(ufo, 0); |
| S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); |
| |
| static unsigned int tx_fifo_len[MAX_TX_FIFOS] = |
| {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; |
| static unsigned int rx_ring_sz[MAX_RX_RINGS] = |
| {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; |
| static unsigned int rts_frm_len[MAX_RX_RINGS] = |
| {[0 ...(MAX_RX_RINGS - 1)] = 0 }; |
| |
| module_param_array(tx_fifo_len, uint, NULL, 0); |
| module_param_array(rx_ring_sz, uint, NULL, 0); |
| module_param_array(rts_frm_len, uint, NULL, 0); |
| |
| /* |
| * S2IO device table. |
| * This table lists all the devices that this driver supports. |
| */ |
| static struct pci_device_id s2io_tbl[] __devinitdata = { |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, s2io_tbl); |
| |
| static struct pci_error_handlers s2io_err_handler = { |
| .error_detected = s2io_io_error_detected, |
| .slot_reset = s2io_io_slot_reset, |
| .resume = s2io_io_resume, |
| }; |
| |
| static struct pci_driver s2io_driver = { |
| .name = "S2IO", |
| .id_table = s2io_tbl, |
| .probe = s2io_init_nic, |
| .remove = __devexit_p(s2io_rem_nic), |
| .err_handler = &s2io_err_handler, |
| }; |
| |
| /* A simplifier macro used both by init and free shared_mem Fns(). */ |
| #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) |
| |
| /* netqueue manipulation helper functions */ |
| static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) |
| { |
| if (!sp->config.multiq) { |
| int i; |
| |
| for (i = 0; i < sp->config.tx_fifo_num; i++) |
| sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; |
| } |
| netif_tx_stop_all_queues(sp->dev); |
| } |
| |
| static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) |
| { |
| if (!sp->config.multiq) |
| sp->mac_control.fifos[fifo_no].queue_state = |
| FIFO_QUEUE_STOP; |
| |
| netif_tx_stop_all_queues(sp->dev); |
| } |
| |
| static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) |
| { |
| if (!sp->config.multiq) { |
| int i; |
| |
| for (i = 0; i < sp->config.tx_fifo_num; i++) |
| sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; |
| } |
| netif_tx_start_all_queues(sp->dev); |
| } |
| |
| static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) |
| { |
| if (!sp->config.multiq) |
| sp->mac_control.fifos[fifo_no].queue_state = |
| FIFO_QUEUE_START; |
| |
| netif_tx_start_all_queues(sp->dev); |
| } |
| |
| static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) |
| { |
| if (!sp->config.multiq) { |
| int i; |
| |
| for (i = 0; i < sp->config.tx_fifo_num; i++) |
| sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; |
| } |
| netif_tx_wake_all_queues(sp->dev); |
| } |
| |
| static inline void s2io_wake_tx_queue( |
| struct fifo_info *fifo, int cnt, u8 multiq) |
| { |
| |
| if (multiq) { |
| if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) |
| netif_wake_subqueue(fifo->dev, fifo->fifo_no); |
| } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { |
| if (netif_queue_stopped(fifo->dev)) { |
| fifo->queue_state = FIFO_QUEUE_START; |
| netif_wake_queue(fifo->dev); |
| } |
| } |
| } |
| |
| /** |
| * init_shared_mem - Allocation and Initialization of Memory |
| * @nic: Device private variable. |
| * Description: The function allocates all the memory areas shared |
| * between the NIC and the driver. This includes Tx descriptors, |
| * Rx descriptors and the statistics block. |
| */ |
| |
| static int init_shared_mem(struct s2io_nic *nic) |
| { |
| u32 size; |
| void *tmp_v_addr, *tmp_v_addr_next; |
| dma_addr_t tmp_p_addr, tmp_p_addr_next; |
| struct RxD_block *pre_rxd_blk = NULL; |
| int i, j, blk_cnt; |
| int lst_size, lst_per_page; |
| struct net_device *dev = nic->dev; |
| unsigned long tmp; |
| struct buffAdd *ba; |
| |
| struct mac_info *mac_control; |
| struct config_param *config; |
| unsigned long long mem_allocated = 0; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| |
| /* Allocation and initialization of TXDLs in FIOFs */ |
| size = 0; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| size += config->tx_cfg[i].fifo_len; |
| } |
| if (size > MAX_AVAILABLE_TXDS) { |
| DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, "); |
| DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size); |
| return -EINVAL; |
| } |
| |
| size = 0; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| size = config->tx_cfg[i].fifo_len; |
| /* |
| * Legal values are from 2 to 8192 |
| */ |
| if (size < 2) { |
| DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size); |
| DBG_PRINT(ERR_DBG, "for fifo %d\n", i); |
| DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len" |
| "are 2 to 8192\n"); |
| return -EINVAL; |
| } |
| } |
| |
| lst_size = (sizeof(struct TxD) * config->max_txds); |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int fifo_len = config->tx_cfg[i].fifo_len; |
| int list_holder_size = fifo_len * sizeof(struct list_info_hold); |
| mac_control->fifos[i].list_info = kzalloc(list_holder_size, |
| GFP_KERNEL); |
| if (!mac_control->fifos[i].list_info) { |
| DBG_PRINT(INFO_DBG, |
| "Malloc failed for list_info\n"); |
| return -ENOMEM; |
| } |
| mem_allocated += list_holder_size; |
| } |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| mac_control->fifos[i].tx_curr_put_info.offset = 0; |
| mac_control->fifos[i].tx_curr_put_info.fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| mac_control->fifos[i].tx_curr_get_info.offset = 0; |
| mac_control->fifos[i].tx_curr_get_info.fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| mac_control->fifos[i].fifo_no = i; |
| mac_control->fifos[i].nic = nic; |
| mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2; |
| mac_control->fifos[i].dev = dev; |
| |
| for (j = 0; j < page_num; j++) { |
| int k = 0; |
| dma_addr_t tmp_p; |
| void *tmp_v; |
| tmp_v = pci_alloc_consistent(nic->pdev, |
| PAGE_SIZE, &tmp_p); |
| if (!tmp_v) { |
| DBG_PRINT(INFO_DBG, |
| "pci_alloc_consistent "); |
| DBG_PRINT(INFO_DBG, "failed for TxDL\n"); |
| return -ENOMEM; |
| } |
| /* If we got a zero DMA address(can happen on |
| * certain platforms like PPC), reallocate. |
| * Store virtual address of page we don't want, |
| * to be freed later. |
| */ |
| if (!tmp_p) { |
| mac_control->zerodma_virt_addr = tmp_v; |
| DBG_PRINT(INIT_DBG, |
| "%s: Zero DMA address for TxDL. ", dev->name); |
| DBG_PRINT(INIT_DBG, |
| "Virtual address %p\n", tmp_v); |
| tmp_v = pci_alloc_consistent(nic->pdev, |
| PAGE_SIZE, &tmp_p); |
| if (!tmp_v) { |
| DBG_PRINT(INFO_DBG, |
| "pci_alloc_consistent "); |
| DBG_PRINT(INFO_DBG, "failed for TxDL\n"); |
| return -ENOMEM; |
| } |
| mem_allocated += PAGE_SIZE; |
| } |
| while (k < lst_per_page) { |
| int l = (j * lst_per_page) + k; |
| if (l == config->tx_cfg[i].fifo_len) |
| break; |
| mac_control->fifos[i].list_info[l].list_virt_addr = |
| tmp_v + (k * lst_size); |
| mac_control->fifos[i].list_info[l].list_phy_addr = |
| tmp_p + (k * lst_size); |
| k++; |
| } |
| } |
| } |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| size = config->tx_cfg[i].fifo_len; |
| mac_control->fifos[i].ufo_in_band_v |
| = kcalloc(size, sizeof(u64), GFP_KERNEL); |
| if (!mac_control->fifos[i].ufo_in_band_v) |
| return -ENOMEM; |
| mem_allocated += (size * sizeof(u64)); |
| } |
| |
| /* Allocation and initialization of RXDs in Rings */ |
| size = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (config->rx_cfg[i].num_rxd % |
| (rxd_count[nic->rxd_mode] + 1)) { |
| DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); |
| DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", |
| i); |
| DBG_PRINT(ERR_DBG, "RxDs per Block"); |
| return FAILURE; |
| } |
| size += config->rx_cfg[i].num_rxd; |
| mac_control->rings[i].block_count = |
| config->rx_cfg[i].num_rxd / |
| (rxd_count[nic->rxd_mode] + 1 ); |
| mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd - |
| mac_control->rings[i].block_count; |
| } |
| if (nic->rxd_mode == RXD_MODE_1) |
| size = (size * (sizeof(struct RxD1))); |
| else |
| size = (size * (sizeof(struct RxD3))); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| mac_control->rings[i].rx_curr_get_info.block_index = 0; |
| mac_control->rings[i].rx_curr_get_info.offset = 0; |
| mac_control->rings[i].rx_curr_get_info.ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| mac_control->rings[i].rx_curr_put_info.block_index = 0; |
| mac_control->rings[i].rx_curr_put_info.offset = 0; |
| mac_control->rings[i].rx_curr_put_info.ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| mac_control->rings[i].nic = nic; |
| mac_control->rings[i].ring_no = i; |
| mac_control->rings[i].lro = lro_enable; |
| |
| blk_cnt = config->rx_cfg[i].num_rxd / |
| (rxd_count[nic->rxd_mode] + 1); |
| /* Allocating all the Rx blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| struct rx_block_info *rx_blocks; |
| int l; |
| |
| rx_blocks = &mac_control->rings[i].rx_blocks[j]; |
| size = SIZE_OF_BLOCK; //size is always page size |
| tmp_v_addr = pci_alloc_consistent(nic->pdev, size, |
| &tmp_p_addr); |
| if (tmp_v_addr == NULL) { |
| /* |
| * In case of failure, free_shared_mem() |
| * is called, which should free any |
| * memory that was alloced till the |
| * failure happened. |
| */ |
| rx_blocks->block_virt_addr = tmp_v_addr; |
| return -ENOMEM; |
| } |
| mem_allocated += size; |
| memset(tmp_v_addr, 0, size); |
| rx_blocks->block_virt_addr = tmp_v_addr; |
| rx_blocks->block_dma_addr = tmp_p_addr; |
| rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)* |
| rxd_count[nic->rxd_mode], |
| GFP_KERNEL); |
| if (!rx_blocks->rxds) |
| return -ENOMEM; |
| mem_allocated += |
| (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]); |
| for (l=0; l<rxd_count[nic->rxd_mode];l++) { |
| rx_blocks->rxds[l].virt_addr = |
| rx_blocks->block_virt_addr + |
| (rxd_size[nic->rxd_mode] * l); |
| rx_blocks->rxds[l].dma_addr = |
| rx_blocks->block_dma_addr + |
| (rxd_size[nic->rxd_mode] * l); |
| } |
| } |
| /* Interlinking all Rx Blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = |
| mac_control->rings[i].rx_blocks[j].block_virt_addr; |
| tmp_v_addr_next = |
| mac_control->rings[i].rx_blocks[(j + 1) % |
| blk_cnt].block_virt_addr; |
| tmp_p_addr = |
| mac_control->rings[i].rx_blocks[j].block_dma_addr; |
| tmp_p_addr_next = |
| mac_control->rings[i].rx_blocks[(j + 1) % |
| blk_cnt].block_dma_addr; |
| |
| pre_rxd_blk = (struct RxD_block *) tmp_v_addr; |
| pre_rxd_blk->reserved_2_pNext_RxD_block = |
| (unsigned long) tmp_v_addr_next; |
| pre_rxd_blk->pNext_RxD_Blk_physical = |
| (u64) tmp_p_addr_next; |
| } |
| } |
| if (nic->rxd_mode == RXD_MODE_3B) { |
| /* |
| * Allocation of Storages for buffer addresses in 2BUFF mode |
| * and the buffers as well. |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = config->rx_cfg[i].num_rxd / |
| (rxd_count[nic->rxd_mode]+ 1); |
| mac_control->rings[i].ba = |
| kmalloc((sizeof(struct buffAdd *) * blk_cnt), |
| GFP_KERNEL); |
| if (!mac_control->rings[i].ba) |
| return -ENOMEM; |
| mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt); |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| mac_control->rings[i].ba[j] = |
| kmalloc((sizeof(struct buffAdd) * |
| (rxd_count[nic->rxd_mode] + 1)), |
| GFP_KERNEL); |
| if (!mac_control->rings[i].ba[j]) |
| return -ENOMEM; |
| mem_allocated += (sizeof(struct buffAdd) * \ |
| (rxd_count[nic->rxd_mode] + 1)); |
| while (k != rxd_count[nic->rxd_mode]) { |
| ba = &mac_control->rings[i].ba[j][k]; |
| |
| ba->ba_0_org = (void *) kmalloc |
| (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_0_org) |
| return -ENOMEM; |
| mem_allocated += |
| (BUF0_LEN + ALIGN_SIZE); |
| tmp = (unsigned long)ba->ba_0_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_0 = (void *) tmp; |
| |
| ba->ba_1_org = (void *) kmalloc |
| (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_1_org) |
| return -ENOMEM; |
| mem_allocated |
| += (BUF1_LEN + ALIGN_SIZE); |
| tmp = (unsigned long) ba->ba_1_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_1 = (void *) tmp; |
| k++; |
| } |
| } |
| } |
| } |
| |
| /* Allocation and initialization of Statistics block */ |
| size = sizeof(struct stat_block); |
| mac_control->stats_mem = pci_alloc_consistent |
| (nic->pdev, size, &mac_control->stats_mem_phy); |
| |
| if (!mac_control->stats_mem) { |
| /* |
| * In case of failure, free_shared_mem() is called, which |
| * should free any memory that was alloced till the |
| * failure happened. |
| */ |
| return -ENOMEM; |
| } |
| mem_allocated += size; |
| mac_control->stats_mem_sz = size; |
| |
| tmp_v_addr = mac_control->stats_mem; |
| mac_control->stats_info = (struct stat_block *) tmp_v_addr; |
| memset(tmp_v_addr, 0, size); |
| DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, |
| (unsigned long long) tmp_p_addr); |
| mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; |
| return SUCCESS; |
| } |
| |
| /** |
| * free_shared_mem - Free the allocated Memory |
| * @nic: Device private variable. |
| * Description: This function is to free all memory locations allocated by |
| * the init_shared_mem() function and return it to the kernel. |
| */ |
| |
| static void free_shared_mem(struct s2io_nic *nic) |
| { |
| int i, j, blk_cnt, size; |
| void *tmp_v_addr; |
| dma_addr_t tmp_p_addr; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int lst_size, lst_per_page; |
| struct net_device *dev; |
| int page_num = 0; |
| |
| if (!nic) |
| return; |
| |
| dev = nic->dev; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| lst_size = (sizeof(struct TxD) * config->max_txds); |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| for (j = 0; j < page_num; j++) { |
| int mem_blks = (j * lst_per_page); |
| if (!mac_control->fifos[i].list_info) |
| return; |
| if (!mac_control->fifos[i].list_info[mem_blks]. |
| list_virt_addr) |
| break; |
| pci_free_consistent(nic->pdev, PAGE_SIZE, |
| mac_control->fifos[i]. |
| list_info[mem_blks]. |
| list_virt_addr, |
| mac_control->fifos[i]. |
| list_info[mem_blks]. |
| list_phy_addr); |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += PAGE_SIZE; |
| } |
| /* If we got a zero DMA address during allocation, |
| * free the page now |
| */ |
| if (mac_control->zerodma_virt_addr) { |
| pci_free_consistent(nic->pdev, PAGE_SIZE, |
| mac_control->zerodma_virt_addr, |
| (dma_addr_t)0); |
| DBG_PRINT(INIT_DBG, |
| "%s: Freeing TxDL with zero DMA addr. ", |
| dev->name); |
| DBG_PRINT(INIT_DBG, "Virtual address %p\n", |
| mac_control->zerodma_virt_addr); |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += PAGE_SIZE; |
| } |
| kfree(mac_control->fifos[i].list_info); |
| nic->mac_control.stats_info->sw_stat.mem_freed += |
| (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold)); |
| } |
| |
| size = SIZE_OF_BLOCK; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = mac_control->rings[i].block_count; |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = mac_control->rings[i].rx_blocks[j]. |
| block_virt_addr; |
| tmp_p_addr = mac_control->rings[i].rx_blocks[j]. |
| block_dma_addr; |
| if (tmp_v_addr == NULL) |
| break; |
| pci_free_consistent(nic->pdev, size, |
| tmp_v_addr, tmp_p_addr); |
| nic->mac_control.stats_info->sw_stat.mem_freed += size; |
| kfree(mac_control->rings[i].rx_blocks[j].rxds); |
| nic->mac_control.stats_info->sw_stat.mem_freed += |
| ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]); |
| } |
| } |
| |
| if (nic->rxd_mode == RXD_MODE_3B) { |
| /* Freeing buffer storage addresses in 2BUFF mode. */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = config->rx_cfg[i].num_rxd / |
| (rxd_count[nic->rxd_mode] + 1); |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| if (!mac_control->rings[i].ba[j]) |
| continue; |
| while (k != rxd_count[nic->rxd_mode]) { |
| struct buffAdd *ba = |
| &mac_control->rings[i].ba[j][k]; |
| kfree(ba->ba_0_org); |
| nic->mac_control.stats_info->sw_stat.\ |
| mem_freed += (BUF0_LEN + ALIGN_SIZE); |
| kfree(ba->ba_1_org); |
| nic->mac_control.stats_info->sw_stat.\ |
| mem_freed += (BUF1_LEN + ALIGN_SIZE); |
| k++; |
| } |
| kfree(mac_control->rings[i].ba[j]); |
| nic->mac_control.stats_info->sw_stat.mem_freed += |
| (sizeof(struct buffAdd) * |
| (rxd_count[nic->rxd_mode] + 1)); |
| } |
| kfree(mac_control->rings[i].ba); |
| nic->mac_control.stats_info->sw_stat.mem_freed += |
| (sizeof(struct buffAdd *) * blk_cnt); |
| } |
| } |
| |
| for (i = 0; i < nic->config.tx_fifo_num; i++) { |
| if (mac_control->fifos[i].ufo_in_band_v) { |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += (config->tx_cfg[i].fifo_len * sizeof(u64)); |
| kfree(mac_control->fifos[i].ufo_in_band_v); |
| } |
| } |
| |
| if (mac_control->stats_mem) { |
| nic->mac_control.stats_info->sw_stat.mem_freed += |
| mac_control->stats_mem_sz; |
| pci_free_consistent(nic->pdev, |
| mac_control->stats_mem_sz, |
| mac_control->stats_mem, |
| mac_control->stats_mem_phy); |
| } |
| } |
| |
| /** |
| * s2io_verify_pci_mode - |
| */ |
| |
| static int s2io_verify_pci_mode(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| int mode; |
| |
| val64 = readq(&bar0->pci_mode); |
| mode = (u8)GET_PCI_MODE(val64); |
| |
| if ( val64 & PCI_MODE_UNKNOWN_MODE) |
| return -1; /* Unknown PCI mode */ |
| return mode; |
| } |
| |
| #define NEC_VENID 0x1033 |
| #define NEC_DEVID 0x0125 |
| static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) |
| { |
| struct pci_dev *tdev = NULL; |
| while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) { |
| if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { |
| if (tdev->bus == s2io_pdev->bus->parent) { |
| pci_dev_put(tdev); |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; |
| /** |
| * s2io_print_pci_mode - |
| */ |
| static int s2io_print_pci_mode(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| int mode; |
| struct config_param *config = &nic->config; |
| |
| val64 = readq(&bar0->pci_mode); |
| mode = (u8)GET_PCI_MODE(val64); |
| |
| if ( val64 & PCI_MODE_UNKNOWN_MODE) |
| return -1; /* Unknown PCI mode */ |
| |
| config->bus_speed = bus_speed[mode]; |
| |
| if (s2io_on_nec_bridge(nic->pdev)) { |
| DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", |
| nic->dev->name); |
| return mode; |
| } |
| |
| if (val64 & PCI_MODE_32_BITS) { |
| DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name); |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name); |
| } |
| |
| switch(mode) { |
| case PCI_MODE_PCI_33: |
| DBG_PRINT(ERR_DBG, "33MHz PCI bus\n"); |
| break; |
| case PCI_MODE_PCI_66: |
| DBG_PRINT(ERR_DBG, "66MHz PCI bus\n"); |
| break; |
| case PCI_MODE_PCIX_M1_66: |
| DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n"); |
| break; |
| case PCI_MODE_PCIX_M1_100: |
| DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n"); |
| break; |
| case PCI_MODE_PCIX_M1_133: |
| DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n"); |
| break; |
| case PCI_MODE_PCIX_M2_66: |
| DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n"); |
| break; |
| case PCI_MODE_PCIX_M2_100: |
| DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n"); |
| break; |
| case PCI_MODE_PCIX_M2_133: |
| DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n"); |
| break; |
| default: |
| return -1; /* Unsupported bus speed */ |
| } |
| |
| return mode; |
| } |
| |
| /** |
| * init_tti - Initialization transmit traffic interrupt scheme |
| * @nic: device private variable |
| * @link: link status (UP/DOWN) used to enable/disable continuous |
| * transmit interrupts |
| * Description: The function configures transmit traffic interrupts |
| * Return Value: SUCCESS on success and |
| * '-1' on failure |
| */ |
| |
| static int init_tti(struct s2io_nic *nic, int link) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| int i; |
| struct config_param *config; |
| |
| config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| /* |
| * TTI Initialization. Default Tx timer gets us about |
| * 250 interrupts per sec. Continuous interrupts are enabled |
| * by default. |
| */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| int count = (nic->config.bus_speed * 125)/2; |
| val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); |
| } else |
| val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); |
| |
| val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | |
| TTI_DATA1_MEM_TX_URNG_B(0x10) | |
| TTI_DATA1_MEM_TX_URNG_C(0x30) | |
| TTI_DATA1_MEM_TX_TIMER_AC_EN; |
| if (i == 0) |
| if (use_continuous_tx_intrs && (link == LINK_UP)) |
| val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; |
| writeq(val64, &bar0->tti_data1_mem); |
| |
| if (nic->config.intr_type == MSI_X) { |
| val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | |
| TTI_DATA2_MEM_TX_UFC_B(0x100) | |
| TTI_DATA2_MEM_TX_UFC_C(0x200) | |
| TTI_DATA2_MEM_TX_UFC_D(0x300); |
| } else { |
| if ((nic->config.tx_steering_type == |
| TX_DEFAULT_STEERING) && |
| (config->tx_fifo_num > 1) && |
| (i >= nic->udp_fifo_idx) && |
| (i < (nic->udp_fifo_idx + |
| nic->total_udp_fifos))) |
| val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | |
| TTI_DATA2_MEM_TX_UFC_B(0x80) | |
| TTI_DATA2_MEM_TX_UFC_C(0x100) | |
| TTI_DATA2_MEM_TX_UFC_D(0x120); |
| else |
| val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | |
| TTI_DATA2_MEM_TX_UFC_B(0x20) | |
| TTI_DATA2_MEM_TX_UFC_C(0x40) | |
| TTI_DATA2_MEM_TX_UFC_D(0x80); |
| } |
| |
| writeq(val64, &bar0->tti_data2_mem); |
| |
| val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD | |
| TTI_CMD_MEM_OFFSET(i); |
| writeq(val64, &bar0->tti_command_mem); |
| |
| if (wait_for_cmd_complete(&bar0->tti_command_mem, |
| TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS) |
| return FAILURE; |
| } |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * init_nic - Initialization of hardware |
| * @nic: device private variable |
| * Description: The function sequentially configures every block |
| * of the H/W from their reset values. |
| * Return Value: SUCCESS on success and |
| * '-1' on failure (endian settings incorrect). |
| */ |
| |
| static int init_nic(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| void __iomem *add; |
| u32 time; |
| int i, j; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int dtx_cnt = 0; |
| unsigned long long mem_share; |
| int mem_size; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* to set the swapper controle on the card */ |
| if(s2io_set_swapper(nic)) { |
| DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); |
| return -EIO; |
| } |
| |
| /* |
| * Herc requires EOI to be removed from reset before XGXS, so.. |
| */ |
| if (nic->device_type & XFRAME_II_DEVICE) { |
| val64 = 0xA500000000ULL; |
| writeq(val64, &bar0->sw_reset); |
| msleep(500); |
| val64 = readq(&bar0->sw_reset); |
| } |
| |
| /* Remove XGXS from reset state */ |
| val64 = 0; |
| writeq(val64, &bar0->sw_reset); |
| msleep(500); |
| val64 = readq(&bar0->sw_reset); |
| |
| /* Ensure that it's safe to access registers by checking |
| * RIC_RUNNING bit is reset. Check is valid only for XframeII. |
| */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| for (i = 0; i < 50; i++) { |
| val64 = readq(&bar0->adapter_status); |
| if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) |
| break; |
| msleep(10); |
| } |
| if (i == 50) |
| return -ENODEV; |
| } |
| |
| /* Enable Receiving broadcasts */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_RMAC_BCAST_ENABLE; |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| /* Read registers in all blocks */ |
| val64 = readq(&bar0->mac_int_mask); |
| val64 = readq(&bar0->mc_int_mask); |
| val64 = readq(&bar0->xgxs_int_mask); |
| |
| /* Set MTU */ |
| val64 = dev->mtu; |
| writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| |
| if (nic->device_type & XFRAME_II_DEVICE) { |
| while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { |
| SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], |
| &bar0->dtx_control, UF); |
| if (dtx_cnt & 0x1) |
| msleep(1); /* Necessary!! */ |
| dtx_cnt++; |
| } |
| } else { |
| while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { |
| SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], |
| &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| dtx_cnt++; |
| } |
| } |
| |
| /* Tx DMA Initialization */ |
| val64 = 0; |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| |
| |
| for (i = 0, j = 0; i < config->tx_fifo_num; i++) { |
| val64 |= |
| vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19), |
| 13) | vBIT(config->tx_cfg[i].fifo_priority, |
| ((j * 32) + 5), 3); |
| |
| if (i == (config->tx_fifo_num - 1)) { |
| if (i % 2 == 0) |
| i++; |
| } |
| |
| switch (i) { |
| case 1: |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| val64 = 0; |
| j = 0; |
| break; |
| case 3: |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| val64 = 0; |
| j = 0; |
| break; |
| case 5: |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| val64 = 0; |
| j = 0; |
| break; |
| case 7: |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| val64 = 0; |
| j = 0; |
| break; |
| default: |
| j++; |
| break; |
| } |
| } |
| |
| /* |
| * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug |
| * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. |
| */ |
| if ((nic->device_type == XFRAME_I_DEVICE) && |
| (nic->pdev->revision < 4)) |
| writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); |
| |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", |
| &bar0->tx_fifo_partition_0, (unsigned long long) val64); |
| |
| /* |
| * Initialization of Tx_PA_CONFIG register to ignore packet |
| * integrity checking. |
| */ |
| val64 = readq(&bar0->tx_pa_cfg); |
| val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | |
| TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->tx_pa_cfg); |
| |
| /* Rx DMA intialization. */ |
| val64 = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 |= |
| vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), |
| 3); |
| } |
| writeq(val64, &bar0->rx_queue_priority); |
| |
| /* |
| * Allocating equal share of memory to all the |
| * configured Rings. |
| */ |
| val64 = 0; |
| if (nic->device_type & XFRAME_II_DEVICE) |
| mem_size = 32; |
| else |
| mem_size = 64; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| switch (i) { |
| case 0: |
| mem_share = (mem_size / config->rx_ring_num + |
| mem_size % config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); |
| continue; |
| case 1: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); |
| continue; |
| case 2: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); |
| continue; |
| case 3: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); |
| continue; |
| case 4: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); |
| continue; |
| case 5: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); |
| continue; |
| case 6: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); |
| continue; |
| case 7: |
| mem_share = (mem_size / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); |
| continue; |
| } |
| } |
| writeq(val64, &bar0->rx_queue_cfg); |
| |
| /* |
| * Filling Tx round robin registers |
| * as per the number of FIFOs for equal scheduling priority |
| */ |
| switch (config->tx_fifo_num) { |
| case 1: |
| val64 = 0x0; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 2: |
| val64 = 0x0001000100010001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001000100000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 3: |
| val64 = 0x0001020001020001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0200010200010200ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0102000102000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0001020001020001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0200010200000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 4: |
| val64 = 0x0001020300010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001020300000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 5: |
| val64 = 0x0001020304000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0304000102030400ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0102030400010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0400010203040001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0203040000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 6: |
| val64 = 0x0001020304050001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0203040500010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0405000102030405ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0001020304050001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0203040500000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 7: |
| val64 = 0x0001020304050600ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| val64 = 0x0102030405060001ULL; |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| val64 = 0x0203040506000102ULL; |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| val64 = 0x0304050600010203ULL; |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0405060000000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| case 8: |
| val64 = 0x0001020304050607ULL; |
| writeq(val64, &bar0->tx_w_round_robin_0); |
| writeq(val64, &bar0->tx_w_round_robin_1); |
| writeq(val64, &bar0->tx_w_round_robin_2); |
| writeq(val64, &bar0->tx_w_round_robin_3); |
| val64 = 0x0001020300000000ULL; |
| writeq(val64, &bar0->tx_w_round_robin_4); |
| break; |
| } |
| |
| /* Enable all configured Tx FIFO partitions */ |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| val64 |= (TX_FIFO_PARTITION_EN); |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| |
| /* Filling the Rx round robin registers as per the |
| * number of Rings and steering based on QoS with |
| * equal priority. |
| */ |
| switch (config->rx_ring_num) { |
| case 1: |
| val64 = 0x0; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080808080808080ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 2: |
| val64 = 0x0001000100010001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001000100000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080808040404040ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 3: |
| val64 = 0x0001020001020001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0200010200010200ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0102000102000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0001020001020001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0200010200000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080804040402020ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 4: |
| val64 = 0x0001020300010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001020300000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020201010ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 5: |
| val64 = 0x0001020304000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0304000102030400ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0102030400010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0400010203040001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0203040000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020201008ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 6: |
| val64 = 0x0001020304050001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0203040500010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0405000102030405ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0001020304050001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0203040500000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080404020100804ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 7: |
| val64 = 0x0001020304050600ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| val64 = 0x0102030405060001ULL; |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| val64 = 0x0203040506000102ULL; |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| val64 = 0x0304050600010203ULL; |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0405060000000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8080402010080402ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| case 8: |
| val64 = 0x0001020304050607ULL; |
| writeq(val64, &bar0->rx_w_round_robin_0); |
| writeq(val64, &bar0->rx_w_round_robin_1); |
| writeq(val64, &bar0->rx_w_round_robin_2); |
| writeq(val64, &bar0->rx_w_round_robin_3); |
| val64 = 0x0001020300000000ULL; |
| writeq(val64, &bar0->rx_w_round_robin_4); |
| |
| val64 = 0x8040201008040201ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| break; |
| } |
| |
| /* UDP Fix */ |
| val64 = 0; |
| for (i = 0; i < 8; i++) |
| writeq(val64, &bar0->rts_frm_len_n[i]); |
| |
| /* Set the default rts frame length for the rings configured */ |
| val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); |
| for (i = 0 ; i < config->rx_ring_num ; i++) |
| writeq(val64, &bar0->rts_frm_len_n[i]); |
| |
| /* Set the frame length for the configured rings |
| * desired by the user |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| /* If rts_frm_len[i] == 0 then it is assumed that user not |
| * specified frame length steering. |
| * If the user provides the frame length then program |
| * the rts_frm_len register for those values or else |
| * leave it as it is. |
| */ |
| if (rts_frm_len[i] != 0) { |
| writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), |
| &bar0->rts_frm_len_n[i]); |
| } |
| } |
| |
| /* Disable differentiated services steering logic */ |
| for (i = 0; i < 64; i++) { |
| if (rts_ds_steer(nic, i, 0) == FAILURE) { |
| DBG_PRINT(ERR_DBG, "%s: failed rts ds steering", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i); |
| return -ENODEV; |
| } |
| } |
| |
| /* Program statistics memory */ |
| writeq(mac_control->stats_mem_phy, &bar0->stat_addr); |
| |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| val64 = STAT_BC(0x320); |
| writeq(val64, &bar0->stat_byte_cnt); |
| } |
| |
| /* |
| * Initializing the sampling rate for the device to calculate the |
| * bandwidth utilization. |
| */ |
| val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | |
| MAC_RX_LINK_UTIL_VAL(rmac_util_period); |
| writeq(val64, &bar0->mac_link_util); |
| |
| /* |
| * Initializing the Transmit and Receive Traffic Interrupt |
| * Scheme. |
| */ |
| |
| /* Initialize TTI */ |
| if (SUCCESS != init_tti(nic, nic->last_link_state)) |
| return -ENODEV; |
| |
| /* RTI Initialization */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| /* |
| * Programmed to generate Apprx 500 Intrs per |
| * second |
| */ |
| int count = (nic->config.bus_speed * 125)/4; |
| val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); |
| } else |
| val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); |
| val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | |
| RTI_DATA1_MEM_RX_URNG_B(0x10) | |
| RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; |
| |
| writeq(val64, &bar0->rti_data1_mem); |
| |
| val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | |
| RTI_DATA2_MEM_RX_UFC_B(0x2) ; |
| if (nic->config.intr_type == MSI_X) |
| val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \ |
| RTI_DATA2_MEM_RX_UFC_D(0x40)); |
| else |
| val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \ |
| RTI_DATA2_MEM_RX_UFC_D(0x80)); |
| writeq(val64, &bar0->rti_data2_mem); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD |
| | RTI_CMD_MEM_OFFSET(i); |
| writeq(val64, &bar0->rti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the |
| * command register will be reset. We poll for this |
| * particular condition. We wait for a maximum of 500ms |
| * for the operation to complete, if it's not complete |
| * by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->rti_command_mem); |
| if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) |
| break; |
| |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", |
| dev->name); |
| return -ENODEV; |
| } |
| time++; |
| msleep(50); |
| } |
| } |
| |
| /* |
| * Initializing proper values as Pause threshold into all |
| * the 8 Queues on Rx side. |
| */ |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); |
| |
| /* Disable RMAC PAD STRIPPING */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64), add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| val64 = readq(&bar0->mac_cfg); |
| |
| /* Enable FCS stripping by adapter */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_CFG_RMAC_STRIP_FCS; |
| if (nic->device_type == XFRAME_II_DEVICE) |
| writeq(val64, &bar0->mac_cfg); |
| else { |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64), add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| } |
| |
| /* |
| * Set the time value to be inserted in the pause frame |
| * generated by xena. |
| */ |
| val64 = readq(&bar0->rmac_pause_cfg); |
| val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); |
| val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); |
| writeq(val64, &bar0->rmac_pause_cfg); |
| |
| /* |
| * Set the Threshold Limit for Generating the pause frame |
| * If the amount of data in any Queue exceeds ratio of |
| * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 |
| * pause frame is generated |
| */ |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q0q3) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q0q3); |
| |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q4q7) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q4q7); |
| |
| /* |
| * TxDMA will stop Read request if the number of read split has |
| * exceeded the limit pointed by shared_splits |
| */ |
| val64 = readq(&bar0->pic_control); |
| val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); |
| writeq(val64, &bar0->pic_control); |
| |
| if (nic->config.bus_speed == 266) { |
| writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); |
| writeq(0x0, &bar0->read_retry_delay); |
| writeq(0x0, &bar0->write_retry_delay); |
| } |
| |
| /* |
| * Programming the Herc to split every write transaction |
| * that does not start on an ADB to reduce disconnects. |
| */ |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | |
| MISC_LINK_STABILITY_PRD(3); |
| writeq(val64, &bar0->misc_control); |
| val64 = readq(&bar0->pic_control2); |
| val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); |
| writeq(val64, &bar0->pic_control2); |
| } |
| if (strstr(nic->product_name, "CX4")) { |
| val64 = TMAC_AVG_IPG(0x17); |
| writeq(val64, &bar0->tmac_avg_ipg); |
| } |
| |
| return SUCCESS; |
| } |
| #define LINK_UP_DOWN_INTERRUPT 1 |
| #define MAC_RMAC_ERR_TIMER 2 |
| |
| static int s2io_link_fault_indication(struct s2io_nic *nic) |
| { |
| if (nic->device_type == XFRAME_II_DEVICE) |
| return LINK_UP_DOWN_INTERRUPT; |
| else |
| return MAC_RMAC_ERR_TIMER; |
| } |
| |
| /** |
| * do_s2io_write_bits - update alarm bits in alarm register |
| * @value: alarm bits |
| * @flag: interrupt status |
| * @addr: address value |
| * Description: update alarm bits in alarm register |
| * Return Value: |
| * NONE. |
| */ |
| static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) |
| { |
| u64 temp64; |
| |
| temp64 = readq(addr); |
| |
| if(flag == ENABLE_INTRS) |
| temp64 &= ~((u64) value); |
| else |
| temp64 |= ((u64) value); |
| writeq(temp64, addr); |
| } |
| |
| static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 gen_int_mask = 0; |
| u64 interruptible; |
| |
| writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); |
| if (mask & TX_DMA_INTR) { |
| |
| gen_int_mask |= TXDMA_INT_M; |
| |
| do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | |
| TXDMA_PCC_INT | TXDMA_TTI_INT | |
| TXDMA_LSO_INT | TXDMA_TPA_INT | |
| TXDMA_SM_INT, flag, &bar0->txdma_int_mask); |
| |
| do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | |
| PFC_MISC_0_ERR | PFC_MISC_1_ERR | |
| PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, |
| &bar0->pfc_err_mask); |
| |
| do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | |
| TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | |
| TDA_PCIX_ERR, flag, &bar0->tda_err_mask); |
| |
| do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | |
| PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | |
| PCC_N_SERR | PCC_6_COF_OV_ERR | |
| PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | |
| PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | |
| PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask); |
| |
| do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | |
| TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); |
| |
| do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | |
| LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | |
| LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, |
| flag, &bar0->lso_err_mask); |
| |
| do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, |
| flag, &bar0->tpa_err_mask); |
| |
| do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); |
| |
| } |
| |
| if (mask & TX_MAC_INTR) { |
| gen_int_mask |= TXMAC_INT_M; |
| do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, |
| &bar0->mac_int_mask); |
| do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | |
| TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | |
| TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, |
| flag, &bar0->mac_tmac_err_mask); |
| } |
| |
| if (mask & TX_XGXS_INTR) { |
| gen_int_mask |= TXXGXS_INT_M; |
| do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, |
| &bar0->xgxs_int_mask); |
| do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | |
| TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, |
| flag, &bar0->xgxs_txgxs_err_mask); |
| } |
| |
| if (mask & RX_DMA_INTR) { |
| gen_int_mask |= RXDMA_INT_M; |
| do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | |
| RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, |
| flag, &bar0->rxdma_int_mask); |
| do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | |
| RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | |
| RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | |
| RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); |
| do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | |
| PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | |
| PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, |
| &bar0->prc_pcix_err_mask); |
| do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | |
| RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, |
| &bar0->rpa_err_mask); |
| do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | |
| RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | |
| RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | |
| RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR, |
| flag, &bar0->rda_err_mask); |
| do_s2io_write_bits(RTI_SM_ERR_ALARM | |
| RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, |
| flag, &bar0->rti_err_mask); |
| } |
| |
| if (mask & RX_MAC_INTR) { |
| gen_int_mask |= RXMAC_INT_M; |
| do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, |
| &bar0->mac_int_mask); |
| interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | |
| RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | |
| RMAC_DOUBLE_ECC_ERR; |
| if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) |
| interruptible |= RMAC_LINK_STATE_CHANGE_INT; |
| do_s2io_write_bits(interruptible, |
| flag, &bar0->mac_rmac_err_mask); |
| } |
| |
| if (mask & RX_XGXS_INTR) |
| { |
| gen_int_mask |= RXXGXS_INT_M; |
| do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, |
| &bar0->xgxs_int_mask); |
| do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, |
| &bar0->xgxs_rxgxs_err_mask); |
| } |
| |
| if (mask & MC_INTR) { |
| gen_int_mask |= MC_INT_M; |
| do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask); |
| do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | |
| MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, |
| &bar0->mc_err_mask); |
| } |
| nic->general_int_mask = gen_int_mask; |
| |
| /* Remove this line when alarm interrupts are enabled */ |
| nic->general_int_mask = 0; |
| } |
| /** |
| * en_dis_able_nic_intrs - Enable or Disable the interrupts |
| * @nic: device private variable, |
| * @mask: A mask indicating which Intr block must be modified and, |
| * @flag: A flag indicating whether to enable or disable the Intrs. |
| * Description: This function will either disable or enable the interrupts |
| * depending on the flag argument. The mask argument can be used to |
| * enable/disable any Intr block. |
| * Return Value: NONE. |
| */ |
| |
| static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 temp64 = 0, intr_mask = 0; |
| |
| intr_mask = nic->general_int_mask; |
| |
| /* Top level interrupt classification */ |
| /* PIC Interrupts */ |
| if (mask & TX_PIC_INTR) { |
| /* Enable PIC Intrs in the general intr mask register */ |
| intr_mask |= TXPIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| /* |
| * If Hercules adapter enable GPIO otherwise |
| * disable all PCIX, Flash, MDIO, IIC and GPIO |
| * interrupts for now. |
| * TODO |
| */ |
| if (s2io_link_fault_indication(nic) == |
| LINK_UP_DOWN_INTERRUPT ) { |
| do_s2io_write_bits(PIC_INT_GPIO, flag, |
| &bar0->pic_int_mask); |
| do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, |
| &bar0->gpio_int_mask); |
| } else |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable PIC Intrs in the general |
| * intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| } |
| } |
| |
| /* Tx traffic interrupts */ |
| if (mask & TX_TRAFFIC_INTR) { |
| intr_mask |= TXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| /* |
| * Enable all the Tx side interrupts |
| * writing 0 Enables all 64 TX interrupt levels |
| */ |
| writeq(0x0, &bar0->tx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Tx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); |
| } |
| } |
| |
| /* Rx traffic interrupts */ |
| if (mask & RX_TRAFFIC_INTR) { |
| intr_mask |= RXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| /* writing 0 Enables all 8 RX interrupt levels */ |
| writeq(0x0, &bar0->rx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Rx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); |
| } |
| } |
| |
| temp64 = readq(&bar0->general_int_mask); |
| if (flag == ENABLE_INTRS) |
| temp64 &= ~((u64) intr_mask); |
| else |
| temp64 = DISABLE_ALL_INTRS; |
| writeq(temp64, &bar0->general_int_mask); |
| |
| nic->general_int_mask = readq(&bar0->general_int_mask); |
| } |
| |
| /** |
| * verify_pcc_quiescent- Checks for PCC quiescent state |
| * Return: 1 If PCC is quiescence |
| * 0 If PCC is not quiescence |
| */ |
| static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) |
| { |
| int ret = 0, herc; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = readq(&bar0->adapter_status); |
| |
| herc = (sp->device_type == XFRAME_II_DEVICE); |
| |
| if (flag == FALSE) { |
| if ((!herc && (sp->pdev->revision >= 4)) || herc) { |
| if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) |
| ret = 1; |
| } else { |
| if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) |
| ret = 1; |
| } |
| } else { |
| if ((!herc && (sp->pdev->revision >= 4)) || herc) { |
| if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == |
| ADAPTER_STATUS_RMAC_PCC_IDLE)) |
| ret = 1; |
| } else { |
| if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == |
| ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) |
| ret = 1; |
| } |
| } |
| |
| return ret; |
| } |
| /** |
| * verify_xena_quiescence - Checks whether the H/W is ready |
| * Description: Returns whether the H/W is ready to go or not. Depending |
| * on whether adapter enable bit was written or not the comparison |
| * differs and the calling function passes the input argument flag to |
| * indicate this. |
| * Return: 1 If xena is quiescence |
| * 0 If Xena is not quiescence |
| */ |
| |
| static int verify_xena_quiescence(struct s2io_nic *sp) |
| { |
| int mode; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = readq(&bar0->adapter_status); |
| mode = s2io_verify_pci_mode(sp); |
| |
| if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { |
| DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { |
| DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_PFC_READY)) { |
| DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { |
| DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { |
| DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { |
| DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { |
| DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!"); |
| return 0; |
| } |
| if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { |
| DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!"); |
| return 0; |
| } |
| |
| /* |
| * In PCI 33 mode, the P_PLL is not used, and therefore, |
| * the the P_PLL_LOCK bit in the adapter_status register will |
| * not be asserted. |
| */ |
| if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && |
| sp->device_type == XFRAME_II_DEVICE && mode != |
| PCI_MODE_PCI_33) { |
| DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!"); |
| return 0; |
| } |
| if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT)) { |
| DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /** |
| * fix_mac_address - Fix for Mac addr problem on Alpha platforms |
| * @sp: Pointer to device specifc structure |
| * Description : |
| * New procedure to clear mac address reading problems on Alpha platforms |
| * |
| */ |
| |
| static void fix_mac_address(struct s2io_nic * sp) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int i = 0; |
| |
| while (fix_mac[i] != END_SIGN) { |
| writeq(fix_mac[i++], &bar0->gpio_control); |
| udelay(10); |
| val64 = readq(&bar0->gpio_control); |
| } |
| } |
| |
| /** |
| * start_nic - Turns the device on |
| * @nic : device private variable. |
| * Description: |
| * This function actually turns the device on. Before this function is |
| * called,all Registers are configured from their reset states |
| * and shared memory is allocated but the NIC is still quiescent. On |
| * calling this function, the device interrupts are cleared and the NIC is |
| * literally switched on by writing into the adapter control register. |
| * Return Value: |
| * SUCCESS on success and -1 on failure. |
| */ |
| |
| static int start_nic(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| u16 subid, i; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* PRC Initialization and configuration */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr, |
| &bar0->prc_rxd0_n[i]); |
| |
| val64 = readq(&bar0->prc_ctrl_n[i]); |
| if (nic->rxd_mode == RXD_MODE_1) |
| val64 |= PRC_CTRL_RC_ENABLED; |
| else |
| val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; |
| if (nic->device_type == XFRAME_II_DEVICE) |
| val64 |= PRC_CTRL_GROUP_READS; |
| val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); |
| val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); |
| writeq(val64, &bar0->prc_ctrl_n[i]); |
| } |
| |
| if (nic->rxd_mode == RXD_MODE_3B) { |
| /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 |= RX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->rx_pa_cfg); |
| } |
| |
| if (vlan_tag_strip == 0) { |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; |
| writeq(val64, &bar0->rx_pa_cfg); |
| nic->vlan_strip_flag = 0; |
| } |
| |
| /* |
| * Enabling MC-RLDRAM. After enabling the device, we timeout |
| * for around 100ms, which is approximately the time required |
| * for the device to be ready for operation. |
| */ |
| val64 = readq(&bar0->mc_rldram_mrs); |
| val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| val64 = readq(&bar0->mc_rldram_mrs); |
| |
| msleep(100); /* Delay by around 100 ms. */ |
| |
| /* Enabling ECC Protection. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~ADAPTER_ECC_EN; |
| writeq(val64, &bar0->adapter_control); |
| |
| /* |
| * Verify if the device is ready to be enabled, if so enable |
| * it. |
| */ |
| val64 = readq(&bar0->adapter_status); |
| if (!verify_xena_quiescence(nic)) { |
| DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); |
| DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| /* |
| * With some switches, link might be already up at this point. |
| * Because of this weird behavior, when we enable laser, |
| * we may not get link. We need to handle this. We cannot |
| * figure out which switch is misbehaving. So we are forced to |
| * make a global change. |
| */ |
| |
| /* Enabling Laser. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_EOI_TX_ON; |
| writeq(val64, &bar0->adapter_control); |
| |
| if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { |
| /* |
| * Dont see link state interrupts initally on some switches, |
| * so directly scheduling the link state task here. |
| */ |
| schedule_work(&nic->set_link_task); |
| } |
| /* SXE-002: Initialize link and activity LED */ |
| subid = nic->pdev->subsystem_device; |
| if (((subid & 0xFF) >= 0x07) && |
| (nic->device_type == XFRAME_I_DEVICE)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *)bar0 + 0x2700); |
| } |
| |
| return SUCCESS; |
| } |
| /** |
| * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb |
| */ |
| static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \ |
| TxD *txdlp, int get_off) |
| { |
| struct s2io_nic *nic = fifo_data->nic; |
| struct sk_buff *skb; |
| struct TxD *txds; |
| u16 j, frg_cnt; |
| |
| txds = txdlp; |
| if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| txds->Buffer_Pointer, sizeof(u64), |
| PCI_DMA_TODEVICE); |
| txds++; |
| } |
| |
| skb = (struct sk_buff *) ((unsigned long) |
| txds->Host_Control); |
| if (!skb) { |
| memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); |
| return NULL; |
| } |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| txds->Buffer_Pointer, |
| skb->len - skb->data_len, |
| PCI_DMA_TODEVICE); |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| if (frg_cnt) { |
| txds++; |
| for (j = 0; j < frg_cnt; j++, txds++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; |
| if (!txds->Buffer_Pointer) |
| break; |
| pci_unmap_page(nic->pdev, (dma_addr_t) |
| txds->Buffer_Pointer, |
| frag->size, PCI_DMA_TODEVICE); |
| } |
| } |
| memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds)); |
| return(skb); |
| } |
| |
| /** |
| * free_tx_buffers - Free all queued Tx buffers |
| * @nic : device private variable. |
| * Description: |
| * Free all queued Tx buffers. |
| * Return Value: void |
| */ |
| |
| static void free_tx_buffers(struct s2io_nic *nic) |
| { |
| struct net_device *dev = nic->dev; |
| struct sk_buff *skb; |
| struct TxD *txdp; |
| int i, j; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int cnt = 0; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| unsigned long flags; |
| spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags); |
| for (j = 0; j < config->tx_cfg[i].fifo_len; j++) { |
| txdp = (struct TxD *) \ |
| mac_control->fifos[i].list_info[j].list_virt_addr; |
| skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); |
| if (skb) { |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += skb->truesize; |
| dev_kfree_skb(skb); |
| cnt++; |
| } |
| } |
| DBG_PRINT(INTR_DBG, |
| "%s:forcibly freeing %d skbs on FIFO%d\n", |
| dev->name, cnt, i); |
| mac_control->fifos[i].tx_curr_get_info.offset = 0; |
| mac_control->fifos[i].tx_curr_put_info.offset = 0; |
| spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags); |
| } |
| } |
| |
| /** |
| * stop_nic - To stop the nic |
| * @nic ; device private variable. |
| * Description: |
| * This function does exactly the opposite of what the start_nic() |
| * function does. This function is called to stop the device. |
| * Return Value: |
| * void. |
| */ |
| |
| static void stop_nic(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| u16 interruptible; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* Disable all interrupts */ |
| en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; |
| interruptible |= TX_PIC_INTR; |
| en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); |
| |
| /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~(ADAPTER_CNTL_EN); |
| writeq(val64, &bar0->adapter_control); |
| } |
| |
| /** |
| * fill_rx_buffers - Allocates the Rx side skbs |
| * @ring_info: per ring structure |
| * @from_card_up: If this is true, we will map the buffer to get |
| * the dma address for buf0 and buf1 to give it to the card. |
| * Else we will sync the already mapped buffer to give it to the card. |
| * Description: |
| * The function allocates Rx side skbs and puts the physical |
| * address of these buffers into the RxD buffer pointers, so that the NIC |
| * can DMA the received frame into these locations. |
| * The NIC supports 3 receive modes, viz |
| * 1. single buffer, |
| * 2. three buffer and |
| * 3. Five buffer modes. |
| * Each mode defines how many fragments the received frame will be split |
| * up into by the NIC. The frame is split into L3 header, L4 Header, |
| * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself |
| * is split into 3 fragments. As of now only single buffer mode is |
| * supported. |
| * Return Value: |
| * SUCCESS on success or an appropriate -ve value on failure. |
| */ |
| static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, |
| int from_card_up) |
| { |
| struct sk_buff *skb; |
| struct RxD_t *rxdp; |
| int off, size, block_no, block_no1; |
| u32 alloc_tab = 0; |
| u32 alloc_cnt; |
| u64 tmp; |
| struct buffAdd *ba; |
| struct RxD_t *first_rxdp = NULL; |
| u64 Buffer0_ptr = 0, Buffer1_ptr = 0; |
| int rxd_index = 0; |
| struct RxD1 *rxdp1; |
| struct RxD3 *rxdp3; |
| struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat; |
| |
| alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; |
| |
| block_no1 = ring->rx_curr_get_info.block_index; |
| while (alloc_tab < alloc_cnt) { |
| block_no = ring->rx_curr_put_info.block_index; |
| |
| off = ring->rx_curr_put_info.offset; |
| |
| rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; |
| |
| rxd_index = off + 1; |
| if (block_no) |
| rxd_index += (block_no * ring->rxd_count); |
| |
| if ((block_no == block_no1) && |
| (off == ring->rx_curr_get_info.offset) && |
| (rxdp->Host_Control)) { |
| DBG_PRINT(INTR_DBG, "%s: Get and Put", |
| ring->dev->name); |
| DBG_PRINT(INTR_DBG, " info equated\n"); |
| goto end; |
| } |
| if (off && (off == ring->rxd_count)) { |
| ring->rx_curr_put_info.block_index++; |
| if (ring->rx_curr_put_info.block_index == |
| ring->block_count) |
| ring->rx_curr_put_info.block_index = 0; |
| block_no = ring->rx_curr_put_info.block_index; |
| off = 0; |
| ring->rx_curr_put_info.offset = off; |
| rxdp = ring->rx_blocks[block_no].block_virt_addr; |
| DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", |
| ring->dev->name, rxdp); |
| |
| } |
| |
| if ((rxdp->Control_1 & RXD_OWN_XENA) && |
| ((ring->rxd_mode == RXD_MODE_3B) && |
| (rxdp->Control_2 & s2BIT(0)))) { |
| ring->rx_curr_put_info.offset = off; |
| goto end; |
| } |
| /* calculate size of skb based on ring mode */ |
| size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + HEADER_SNAP_SIZE; |
| if (ring->rxd_mode == RXD_MODE_1) |
| size += NET_IP_ALIGN; |
| else |
| size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; |
| |
| /* allocate skb */ |
| skb = dev_alloc_skb(size); |
| if(!skb) { |
| DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name); |
| DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n"); |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| stats->mem_alloc_fail_cnt++; |
| |
| return -ENOMEM ; |
| } |
| stats->mem_allocated += skb->truesize; |
| |
| if (ring->rxd_mode == RXD_MODE_1) { |
| /* 1 buffer mode - normal operation mode */ |
| rxdp1 = (struct RxD1*)rxdp; |
| memset(rxdp, 0, sizeof(struct RxD1)); |
| skb_reserve(skb, NET_IP_ALIGN); |
| rxdp1->Buffer0_ptr = pci_map_single |
| (ring->pdev, skb->data, size - NET_IP_ALIGN, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(nic->pdev, |
| rxdp1->Buffer0_ptr)) |
| goto pci_map_failed; |
| |
| rxdp->Control_2 = |
| SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); |
| rxdp->Host_Control = (unsigned long) (skb); |
| } else if (ring->rxd_mode == RXD_MODE_3B) { |
| /* |
| * 2 buffer mode - |
| * 2 buffer mode provides 128 |
| * byte aligned receive buffers. |
| */ |
| |
| rxdp3 = (struct RxD3*)rxdp; |
| /* save buffer pointers to avoid frequent dma mapping */ |
| Buffer0_ptr = rxdp3->Buffer0_ptr; |
| Buffer1_ptr = rxdp3->Buffer1_ptr; |
| memset(rxdp, 0, sizeof(struct RxD3)); |
| /* restore the buffer pointers for dma sync*/ |
| rxdp3->Buffer0_ptr = Buffer0_ptr; |
| rxdp3->Buffer1_ptr = Buffer1_ptr; |
| |
| ba = &ring->ba[block_no][off]; |
| skb_reserve(skb, BUF0_LEN); |
| tmp = (u64)(unsigned long) skb->data; |
| tmp += ALIGN_SIZE; |
| tmp &= ~ALIGN_SIZE; |
| skb->data = (void *) (unsigned long)tmp; |
| skb_reset_tail_pointer(skb); |
| |
| if (from_card_up) { |
| rxdp3->Buffer0_ptr = |
| pci_map_single(ring->pdev, ba->ba_0, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(nic->pdev, |
| rxdp3->Buffer0_ptr)) |
| goto pci_map_failed; |
| } else |
| pci_dma_sync_single_for_device(ring->pdev, |
| (dma_addr_t) rxdp3->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| |
| rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); |
| if (ring->rxd_mode == RXD_MODE_3B) { |
| /* Two buffer mode */ |
| |
| /* |
| * Buffer2 will have L3/L4 header plus |
| * L4 payload |
| */ |
| rxdp3->Buffer2_ptr = pci_map_single |
| (ring->pdev, skb->data, ring->mtu + 4, |
| PCI_DMA_FROMDEVICE); |
| |
| if (pci_dma_mapping_error(nic->pdev, |
| rxdp3->Buffer2_ptr)) |
| goto pci_map_failed; |
| |
| if (from_card_up) { |
| rxdp3->Buffer1_ptr = |
| pci_map_single(ring->pdev, |
| ba->ba_1, BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| |
| if (pci_dma_mapping_error(nic->pdev, |
| rxdp3->Buffer1_ptr)) { |
| pci_unmap_single |
| (ring->pdev, |
| (dma_addr_t)(unsigned long) |
| skb->data, |
| ring->mtu + 4, |
| PCI_DMA_FROMDEVICE); |
| goto pci_map_failed; |
| } |
| } |
| rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); |
| rxdp->Control_2 |= SET_BUFFER2_SIZE_3 |
| (ring->mtu + 4); |
| } |
| rxdp->Control_2 |= s2BIT(0); |
| rxdp->Host_Control = (unsigned long) (skb); |
| } |
| if (alloc_tab & ((1 << rxsync_frequency) - 1)) |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| off++; |
| if (off == (ring->rxd_count + 1)) |
| off = 0; |
| ring->rx_curr_put_info.offset = off; |
| |
| rxdp->Control_2 |= SET_RXD_MARKER; |
| if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| first_rxdp = rxdp; |
| } |
| ring->rx_bufs_left += 1; |
| alloc_tab++; |
| } |
| |
| end: |
| /* Transfer ownership of first descriptor to adapter just before |
| * exiting. Before that, use memory barrier so that ownership |
| * and other fields are seen by adapter correctly. |
| */ |
| if (first_rxdp) { |
| wmb(); |
| first_rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| |
| return SUCCESS; |
| pci_map_failed: |
| stats->pci_map_fail_cnt++; |
| stats->mem_freed += skb->truesize; |
| dev_kfree_skb_irq(skb); |
| return -ENOMEM; |
| } |
| |
| static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) |
| { |
| struct net_device *dev = sp->dev; |
| int j; |
| struct sk_buff *skb; |
| struct RxD_t *rxdp; |
| struct mac_info *mac_control; |
| struct buffAdd *ba; |
| struct RxD1 *rxdp1; |
| struct RxD3 *rxdp3; |
| |
| mac_control = &sp->mac_control; |
| for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { |
| rxdp = mac_control->rings[ring_no]. |
| rx_blocks[blk].rxds[j].virt_addr; |
| skb = (struct sk_buff *) |
| ((unsigned long) rxdp->Host_Control); |
| if (!skb) { |
| continue; |
| } |
| if (sp->rxd_mode == RXD_MODE_1) { |
| rxdp1 = (struct RxD1*)rxdp; |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp1->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE |
| + HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| memset(rxdp, 0, sizeof(struct RxD1)); |
| } else if(sp->rxd_mode == RXD_MODE_3B) { |
| rxdp3 = (struct RxD3*)rxdp; |
| ba = &mac_control->rings[ring_no]. |
| ba[blk][j]; |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp3->Buffer0_ptr, |
| BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp3->Buffer1_ptr, |
| BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp3->Buffer2_ptr, |
| dev->mtu + 4, |
| PCI_DMA_FROMDEVICE); |
| memset(rxdp, 0, sizeof(struct RxD3)); |
| } |
| sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; |
| dev_kfree_skb(skb); |
| mac_control->rings[ring_no].rx_bufs_left -= 1; |
| } |
| } |
| |
| /** |
| * free_rx_buffers - Frees all Rx buffers |
| * @sp: device private variable. |
| * Description: |
| * This function will free all Rx buffers allocated by host. |
| * Return Value: |
| * NONE. |
| */ |
| |
| static void free_rx_buffers(struct s2io_nic *sp) |
| { |
| struct net_device *dev = sp->dev; |
| int i, blk = 0, buf_cnt = 0; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| for (blk = 0; blk < rx_ring_sz[i]; blk++) |
| free_rxd_blk(sp,i,blk); |
| |
| mac_control->rings[i].rx_curr_put_info.block_index = 0; |
| mac_control->rings[i].rx_curr_get_info.block_index = 0; |
| mac_control->rings[i].rx_curr_put_info.offset = 0; |
| mac_control->rings[i].rx_curr_get_info.offset = 0; |
| mac_control->rings[i].rx_bufs_left = 0; |
| DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", |
| dev->name, buf_cnt, i); |
| } |
| } |
| |
| static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) |
| { |
| if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { |
| DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name); |
| DBG_PRINT(INFO_DBG, " in Rx Intr!!\n"); |
| } |
| return 0; |
| } |
| |
| /** |
| * s2io_poll - Rx interrupt handler for NAPI support |
| * @napi : pointer to the napi structure. |
| * @budget : The number of packets that were budgeted to be processed |
| * during one pass through the 'Poll" function. |
| * Description: |
| * Comes into picture only if NAPI support has been incorporated. It does |
| * the same thing that rx_intr_handler does, but not in a interrupt context |
| * also It will process only a given number of packets. |
| * Return value: |
| * 0 on success and 1 if there are No Rx packets to be processed. |
| */ |
| |
| static int s2io_poll_msix(struct napi_struct *napi, int budget) |
| { |
| struct ring_info *ring = container_of(napi, struct ring_info, napi); |
| struct net_device *dev = ring->dev; |
| struct config_param *config; |
| struct mac_info *mac_control; |
| int pkts_processed = 0; |
| u8 __iomem *addr = NULL; |
| u8 val8 = 0; |
| struct s2io_nic *nic = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| int budget_org = budget; |
| |
| config = &nic->config; |
| mac_control = &nic->mac_control; |
| |
| if (unlikely(!is_s2io_card_up(nic))) |
| return 0; |
| |
| pkts_processed = rx_intr_handler(ring, budget); |
| s2io_chk_rx_buffers(nic, ring); |
| |
| if (pkts_processed < budget_org) { |
| netif_rx_complete(napi); |
| /*Re Enable MSI-Rx Vector*/ |
| addr = (u8 __iomem *)&bar0->xmsi_mask_reg; |
| addr += 7 - ring->ring_no; |
| val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; |
| writeb(val8, addr); |
| val8 = readb(addr); |
| } |
| return pkts_processed; |
| } |
| static int s2io_poll_inta(struct napi_struct *napi, int budget) |
| { |
| struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); |
| struct ring_info *ring; |
| struct net_device *dev = nic->dev; |
| struct config_param *config; |
| struct mac_info *mac_control; |
| int pkts_processed = 0; |
| int ring_pkts_processed, i; |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| int budget_org = budget; |
| |
| config = &nic->config; |
| mac_control = &nic->mac_control; |
| |
| if (unlikely(!is_s2io_card_up(nic))) |
| return 0; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| ring = &mac_control->rings[i]; |
| ring_pkts_processed = rx_intr_handler(ring, budget); |
| s2io_chk_rx_buffers(nic, ring); |
| pkts_processed += ring_pkts_processed; |
| budget -= ring_pkts_processed; |
| if (budget <= 0) |
| break; |
| } |
| if (pkts_processed < budget_org) { |
| netif_rx_complete(napi); |
| /* Re enable the Rx interrupts for the ring */ |
| writeq(0, &bar0->rx_traffic_mask); |
| readl(&bar0->rx_traffic_mask); |
| } |
| return pkts_processed; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /** |
| * s2io_netpoll - netpoll event handler entry point |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function will be called by upper layer to check for events on the |
| * interface in situations where interrupts are disabled. It is used for |
| * specific in-kernel networking tasks, such as remote consoles and kernel |
| * debugging over the network (example netdump in RedHat). |
| */ |
| static void s2io_netpoll(struct net_device *dev) |
| { |
| struct s2io_nic *nic = netdev_priv(dev); |
| struct mac_info *mac_control; |
| struct config_param *config; |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| u64 val64 = 0xFFFFFFFFFFFFFFFFULL; |
| int i; |
| |
| if (pci_channel_offline(nic->pdev)) |
| return; |
| |
| disable_irq(dev->irq); |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| writeq(val64, &bar0->rx_traffic_int); |
| writeq(val64, &bar0->tx_traffic_int); |
| |
| /* we need to free up the transmitted skbufs or else netpoll will |
| * run out of skbs and will fail and eventually netpoll application such |
| * as netdump will fail. |
| */ |
| for (i = 0; i < config->tx_fifo_num; i++) |
| tx_intr_handler(&mac_control->fifos[i]); |
| |
| /* check for received packet and indicate up to network */ |
| for (i = 0; i < config->rx_ring_num; i++) |
| rx_intr_handler(&mac_control->rings[i], 0); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (fill_rx_buffers(nic, &mac_control->rings[i], 0) == |
| -ENOMEM) { |
| DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name); |
| DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n"); |
| break; |
| } |
| } |
| enable_irq(dev->irq); |
| return; |
| } |
| #endif |
| |
| /** |
| * rx_intr_handler - Rx interrupt handler |
| * @ring_info: per ring structure. |
| * @budget: budget for napi processing. |
| * Description: |
| * If the interrupt is because of a received frame or if the |
| * receive ring contains fresh as yet un-processed frames,this function is |
| * called. It picks out the RxD at which place the last Rx processing had |
| * stopped and sends the skb to the OSM's Rx handler and then increments |
| * the offset. |
| * Return Value: |
| * No. of napi packets processed. |
| */ |
| static int rx_intr_handler(struct ring_info *ring_data, int budget) |
| { |
| int get_block, put_block; |
| struct rx_curr_get_info get_info, put_info; |
| struct RxD_t *rxdp; |
| struct sk_buff *skb; |
| int pkt_cnt = 0, napi_pkts = 0; |
| int i; |
| struct RxD1* rxdp1; |
| struct RxD3* rxdp3; |
| |
| get_info = ring_data->rx_curr_get_info; |
| get_block = get_info.block_index; |
| memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); |
| put_block = put_info.block_index; |
| rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; |
| |
| while (RXD_IS_UP2DT(rxdp)) { |
| /* |
| * If your are next to put index then it's |
| * FIFO full condition |
| */ |
| if ((get_block == put_block) && |
| (get_info.offset + 1) == put_info.offset) { |
| DBG_PRINT(INTR_DBG, "%s: Ring Full\n", |
| ring_data->dev->name); |
| break; |
| } |
| skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| ring_data->dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| return 0; |
| } |
| if (ring_data->rxd_mode == RXD_MODE_1) { |
| rxdp1 = (struct RxD1*)rxdp; |
| pci_unmap_single(ring_data->pdev, (dma_addr_t) |
| rxdp1->Buffer0_ptr, |
| ring_data->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| } else if (ring_data->rxd_mode == RXD_MODE_3B) { |
| rxdp3 = (struct RxD3*)rxdp; |
| pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t) |
| rxdp3->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(ring_data->pdev, (dma_addr_t) |
| rxdp3->Buffer2_ptr, |
| ring_data->mtu + 4, |
| PCI_DMA_FROMDEVICE); |
| } |
| prefetch(skb->data); |
| rx_osm_handler(ring_data, rxdp); |
| get_info.offset++; |
| ring_data->rx_curr_get_info.offset = get_info.offset; |
| rxdp = ring_data->rx_blocks[get_block]. |
| rxds[get_info.offset].virt_addr; |
| if (get_info.offset == rxd_count[ring_data->rxd_mode]) { |
| get_info.offset = 0; |
| ring_data->rx_curr_get_info.offset = get_info.offset; |
| get_block++; |
| if (get_block == ring_data->block_count) |
| get_block = 0; |
| ring_data->rx_curr_get_info.block_index = get_block; |
| rxdp = ring_data->rx_blocks[get_block].block_virt_addr; |
| } |
| |
| if (ring_data->nic->config.napi) { |
| budget--; |
| napi_pkts++; |
| if (!budget) |
| break; |
| } |
| pkt_cnt++; |
| if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) |
| break; |
| } |
| if (ring_data->lro) { |
| /* Clear all LRO sessions before exiting */ |
| for (i=0; i<MAX_LRO_SESSIONS; i++) { |
| struct lro *lro = &ring_data->lro0_n[i]; |
| if (lro->in_use) { |
| update_L3L4_header(ring_data->nic, lro); |
| queue_rx_frame(lro->parent, lro->vlan_tag); |
| clear_lro_session(lro); |
| } |
| } |
| } |
| return(napi_pkts); |
| } |
| |
| /** |
| * tx_intr_handler - Transmit interrupt handler |
| * @nic : device private variable |
| * Description: |
| * If an interrupt was raised to indicate DMA complete of the |
| * Tx packet, this function is called. It identifies the last TxD |
| * whose buffer was freed and frees all skbs whose data have already |
| * DMA'ed into the NICs internal memory. |
| * Return Value: |
| * NONE |
| */ |
| |
| static void tx_intr_handler(struct fifo_info *fifo_data) |
| { |
| struct s2io_nic *nic = fifo_data->nic; |
| struct tx_curr_get_info get_info, put_info; |
| struct sk_buff *skb = NULL; |
| struct TxD *txdlp; |
| int pkt_cnt = 0; |
| unsigned long flags = 0; |
| u8 err_mask; |
| |
| if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) |
| return; |
| |
| get_info = fifo_data->tx_curr_get_info; |
| memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); |
| txdlp = (struct TxD *) fifo_data->list_info[get_info.offset]. |
| list_virt_addr; |
| while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && |
| (get_info.offset != put_info.offset) && |
| (txdlp->Host_Control)) { |
| /* Check for TxD errors */ |
| if (txdlp->Control_1 & TXD_T_CODE) { |
| unsigned long long err; |
| err = txdlp->Control_1 & TXD_T_CODE; |
| if (err & 0x1) { |
| nic->mac_control.stats_info->sw_stat. |
| parity_err_cnt++; |
| } |
| |
| /* update t_code statistics */ |
| err_mask = err >> 48; |
| switch(err_mask) { |
| case 2: |
| nic->mac_control.stats_info->sw_stat. |
| tx_buf_abort_cnt++; |
| break; |
| |
| case 3: |
| nic->mac_control.stats_info->sw_stat. |
| tx_desc_abort_cnt++; |
| break; |
| |
| case 7: |
| nic->mac_control.stats_info->sw_stat. |
| tx_parity_err_cnt++; |
| break; |
| |
| case 10: |
| nic->mac_control.stats_info->sw_stat. |
| tx_link_loss_cnt++; |
| break; |
| |
| case 15: |
| nic->mac_control.stats_info->sw_stat. |
| tx_list_proc_err_cnt++; |
| break; |
| } |
| } |
| |
| skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); |
| if (skb == NULL) { |
| spin_unlock_irqrestore(&fifo_data->tx_lock, flags); |
| DBG_PRINT(ERR_DBG, "%s: Null skb ", |
| __func__); |
| DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); |
| return; |
| } |
| pkt_cnt++; |
| |
| /* Updating the statistics block */ |
| nic->dev->stats.tx_bytes += skb->len; |
| nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; |
| dev_kfree_skb_irq(skb); |
| |
| get_info.offset++; |
| if (get_info.offset == get_info.fifo_len + 1) |
| get_info.offset = 0; |
| txdlp = (struct TxD *) fifo_data->list_info |
| [get_info.offset].list_virt_addr; |
| fifo_data->tx_curr_get_info.offset = |
| get_info.offset; |
| } |
| |
| s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); |
| |
| spin_unlock_irqrestore(&fifo_data->tx_lock, flags); |
| } |
| |
| /** |
| * s2io_mdio_write - Function to write in to MDIO registers |
| * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) |
| * @addr : address value |
| * @value : data value |
| * @dev : pointer to net_device structure |
| * Description: |
| * This function is used to write values to the MDIO registers |
| * NONE |
| */ |
| static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev) |
| { |
| u64 val64 = 0x0; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| //address transaction |
| val64 = val64 | MDIO_MMD_INDX_ADDR(addr) |
| | MDIO_MMD_DEV_ADDR(mmd_type) |
| | MDIO_MMS_PRT_ADDR(0x0); |
| writeq(val64, &bar0->mdio_control); |
| val64 = val64 | MDIO_CTRL_START_TRANS(0xE); |
| writeq(val64, &bar0->mdio_control); |
| udelay(100); |
| |
| //Data transaction |
| val64 = 0x0; |
| val64 = val64 | MDIO_MMD_INDX_ADDR(addr) |
| | MDIO_MMD_DEV_ADDR(mmd_type) |
| | MDIO_MMS_PRT_ADDR(0x0) |
| | MDIO_MDIO_DATA(value) |
| | MDIO_OP(MDIO_OP_WRITE_TRANS); |
| writeq(val64, &bar0->mdio_control); |
| val64 = val64 | MDIO_CTRL_START_TRANS(0xE); |
| writeq(val64, &bar0->mdio_control); |
| udelay(100); |
| |
| val64 = 0x0; |
| val64 = val64 | MDIO_MMD_INDX_ADDR(addr) |
| | MDIO_MMD_DEV_ADDR(mmd_type) |
| | MDIO_MMS_PRT_ADDR(0x0) |
| | MDIO_OP(MDIO_OP_READ_TRANS); |
| writeq(val64, &bar0->mdio_control); |
| val64 = val64 | MDIO_CTRL_START_TRANS(0xE); |
| writeq(val64, &bar0->mdio_control); |
| udelay(100); |
| |
| } |
| |
| /** |
| * s2io_mdio_read - Function to write in to MDIO registers |
| * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) |
| * @addr : address value |
| * @dev : pointer to net_device structure |
| * Description: |
| * This function is used to read values to the MDIO registers |
| * NONE |
| */ |
| static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) |
| { |
| u64 val64 = 0x0; |
| u64 rval64 = 0x0; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| /* address transaction */ |
| val64 = val64 | MDIO_MMD_INDX_ADDR(addr) |
| | MDIO_MMD_DEV_ADDR(mmd_type) |
| | MDIO_MMS_PRT_ADDR(0x0); |
| writeq(val64, &bar0->mdio_control); |
| val64 = val64 | MDIO_CTRL_START_TRANS(0xE); |
| writeq(val64, &bar0->mdio_control); |
| udelay(100); |
| |
| /* Data transaction */ |
| val64 = 0x0; |
| val64 = val64 | MDIO_MMD_INDX_ADDR(addr) |
| | MDIO_MMD_DEV_ADDR(mmd_type) |
| | MDIO_MMS_PRT_ADDR(0x0) |
| | MDIO_OP(MDIO_OP_READ_TRANS); |
| writeq(val64, &bar0->mdio_control); |
| val64 = val64 | MDIO_CTRL_START_TRANS(0xE); |
| writeq(val64, &bar0->mdio_control); |
| udelay(100); |
| |
| /* Read the value from regs */ |
| rval64 = readq(&bar0->mdio_control); |
| rval64 = rval64 & 0xFFFF0000; |
| rval64 = rval64 >> 16; |
| return rval64; |
| } |
| /** |
| * s2io_chk_xpak_counter - Function to check the status of the xpak counters |
| * @counter : couter value to be updated |
| * @flag : flag to indicate the status |
| * @type : counter type |
| * Description: |
| * This function is to check the status of the xpak counters value |
| * NONE |
| */ |
| |
| static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type) |
| { |
| u64 mask = 0x3; |
| u64 val64; |
| int i; |
| for(i = 0; i <index; i++) |
| mask = mask << 0x2; |
| |
| if(flag > 0) |
| { |
| *counter = *counter + 1; |
| val64 = *regs_stat & mask; |
| val64 = val64 >> (index * 0x2); |
| val64 = val64 + 1; |
| if(val64 == 3) |
| { |
| switch(type) |
| { |
| case 1: |
| DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " |
| "service. Excessive temperatures may " |
| "result in premature transceiver " |
| "failure \n"); |
| break; |
| case 2: |
| DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " |
| "service Excessive bias currents may " |
| "indicate imminent laser diode " |
| "failure \n"); |
| break; |
| case 3: |
| DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " |
| "service Excessive laser output " |
| "power may saturate far-end " |
| "receiver\n"); |
| break; |
| default: |
| DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm " |
| "type \n"); |
| } |
| val64 = 0x0; |
| } |
| val64 = val64 << (index * 0x2); |
| *regs_stat = (*regs_stat & (~mask)) | (val64); |
| |
| } else { |
| *regs_stat = *regs_stat & (~mask); |
| } |
| } |
| |
| /** |
| * s2io_updt_xpak_counter - Function to update the xpak counters |
| * @dev : pointer to net_device struct |
| * Description: |
| * This function is to upate the status of the xpak counters value |
| * NONE |
| */ |
| static void s2io_updt_xpak_counter(struct net_device *dev) |
| { |
| u16 flag = 0x0; |
| u16 type = 0x0; |
| u16 val16 = 0x0; |
| u64 val64 = 0x0; |
| u64 addr = 0x0; |
| |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct stat_block *stat_info = sp->mac_control.stats_info; |
| |
| /* Check the communication with the MDIO slave */ |
| addr = 0x0000; |
| val64 = 0x0; |
| val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); |
| if((val64 == 0xFFFF) || (val64 == 0x0000)) |
| { |
| DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - " |
| "Returned %llx\n", (unsigned long long)val64); |
| return; |
| } |
| |
| /* Check for the expecte value of 2040 at PMA address 0x0000 */ |
| if(val64 != 0x2040) |
| { |
| DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "); |
| DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n", |
| (unsigned long long)val64); |
| return; |
| } |
| |
| /* Loading the DOM register to MDIO register */ |
| addr = 0xA100; |
| s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev); |
| val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); |
| |
| /* Reading the Alarm flags */ |
| addr = 0xA070; |
| val64 = 0x0; |
| val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); |
| |
| flag = CHECKBIT(val64, 0x7); |
| type = 1; |
| s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high, |
| &stat_info->xpak_stat.xpak_regs_stat, |
| 0x0, flag, type); |
| |
| if(CHECKBIT(val64, 0x6)) |
| stat_info->xpak_stat.alarm_transceiver_temp_low++; |
| |
| flag = CHECKBIT(val64, 0x3); |
| type = 2; |
| s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high, |
| &stat_info->xpak_stat.xpak_regs_stat, |
| 0x2, flag, type); |
| |
| if(CHECKBIT(val64, 0x2)) |
| stat_info->xpak_stat.alarm_laser_bias_current_low++; |
| |
| flag = CHECKBIT(val64, 0x1); |
| type = 3; |
| s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high, |
| &stat_info->xpak_stat.xpak_regs_stat, |
| 0x4, flag, type); |
| |
| if(CHECKBIT(val64, 0x0)) |
| stat_info->xpak_stat.alarm_laser_output_power_low++; |
| |
| /* Reading the Warning flags */ |
| addr = 0xA074; |
| val64 = 0x0; |
| val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); |
| |
| if(CHECKBIT(val64, 0x7)) |
| stat_info->xpak_stat.warn_transceiver_temp_high++; |
| |
| if(CHECKBIT(val64, 0x6)) |
| stat_info->xpak_stat.warn_transceiver_temp_low++; |
| |
| if(CHECKBIT(val64, 0x3)) |
| stat_info->xpak_stat.warn_laser_bias_current_high++; |
| |
| if(CHECKBIT(val64, 0x2)) |
| stat_info->xpak_stat.warn_laser_bias_current_low++; |
| |
| if(CHECKBIT(val64, 0x1)) |
| stat_info->xpak_stat.warn_laser_output_power_high++; |
| |
| if(CHECKBIT(val64, 0x0)) |
| stat_info->xpak_stat.warn_laser_output_power_low++; |
| } |
| |
| /** |
| * wait_for_cmd_complete - waits for a command to complete. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * Description: Function that waits for a command to Write into RMAC |
| * ADDR DATA registers to be completed and returns either success or |
| * error depending on whether the command was complete or not. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, |
| int bit_state) |
| { |
| int ret = FAILURE, cnt = 0, delay = 1; |
| u64 val64; |
| |
| if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) |
| return FAILURE; |
| |
| do { |
| val64 = readq(addr); |
| if (bit_state == S2IO_BIT_RESET) { |
| if (!(val64 & busy_bit)) { |
| ret = SUCCESS; |
| break; |
| } |
| } else { |
| if (!(val64 & busy_bit)) { |
| ret = SUCCESS; |
| break; |
| } |
| } |
| |
| if(in_interrupt()) |
| mdelay(delay); |
| else |
| msleep(delay); |
| |
| if (++cnt >= 10) |
| delay = 50; |
| } while (cnt < 20); |
| return ret; |
| } |
| /* |
| * check_pci_device_id - Checks if the device id is supported |
| * @id : device id |
| * Description: Function to check if the pci device id is supported by driver. |
| * Return value: Actual device id if supported else PCI_ANY_ID |
| */ |
| static u16 check_pci_device_id(u16 id) |
| { |
| switch (id) { |
| case PCI_DEVICE_ID_HERC_WIN: |
| case PCI_DEVICE_ID_HERC_UNI: |
| return XFRAME_II_DEVICE; |
| case PCI_DEVICE_ID_S2IO_UNI: |
| case PCI_DEVICE_ID_S2IO_WIN: |
| return XFRAME_I_DEVICE; |
| default: |
| return PCI_ANY_ID; |
| } |
| } |
| |
| /** |
| * s2io_reset - Resets the card. |
| * @sp : private member of the device structure. |
| * Description: Function to Reset the card. This function then also |
| * restores the previously saved PCI configuration space registers as |
| * the card reset also resets the configuration space. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_reset(struct s2io_nic * sp) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| u16 subid, pci_cmd; |
| int i; |
| u16 val16; |
| unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; |
| unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; |
| |
| DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n", |
| __func__, sp->dev->name); |
| |
| /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); |
| |
| val64 = SW_RESET_ALL; |
| writeq(val64, &bar0->sw_reset); |
| if (strstr(sp->product_name, "CX4")) { |
| msleep(750); |
| } |
| msleep(250); |
| for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { |
| |
| /* Restore the PCI state saved during initialization. */ |
| pci_restore_state(sp->pdev); |
| pci_read_config_word(sp->pdev, 0x2, &val16); |
| if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) |
| break; |
| msleep(200); |
| } |
| |
| if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) { |
| DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__); |
| } |
| |
| pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); |
| |
| s2io_init_pci(sp); |
| |
| /* Set swapper to enable I/O register access */ |
| s2io_set_swapper(sp); |
| |
| /* restore mac_addr entries */ |
| do_s2io_restore_unicast_mc(sp); |
| |
| /* Restore the MSIX table entries from local variables */ |
| restore_xmsi_data(sp); |
| |
| /* Clear certain PCI/PCI-X fields after reset */ |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| /* Clear "detected parity error" bit */ |
| pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); |
| |
| /* Clearing PCIX Ecc status register */ |
| pci_write_config_dword(sp->pdev, 0x68, 0x7C); |
| |
| /* Clearing PCI_STATUS error reflected here */ |
| writeq(s2BIT(62), &bar0->txpic_int_reg); |
| } |
| |
| /* Reset device statistics maintained by OS */ |
| memset(&sp->stats, 0, sizeof (struct net_device_stats)); |
| |
| up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt; |
| down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt; |
| up_time = sp->mac_control.stats_info->sw_stat.link_up_time; |
| down_time = sp->mac_control.stats_info->sw_stat.link_down_time; |
| reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt; |
| mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated; |
| mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed; |
| watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt; |
| /* save link up/down time/cnt, reset/memory/watchdog cnt */ |
| memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block)); |
| /* restore link up/down time/cnt, reset/memory/watchdog cnt */ |
| sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt; |
| sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt; |
| sp->mac_control.stats_info->sw_stat.link_up_time = up_time; |
| sp->mac_control.stats_info->sw_stat.link_down_time = down_time; |
| sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt; |
| sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt; |
| sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt; |
| sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt; |
| |
| /* SXE-002: Configure link and activity LED to turn it off */ |
| subid = sp->pdev->subsystem_device; |
| if (((subid & 0xFF) >= 0x07) && |
| (sp->device_type == XFRAME_I_DEVICE)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *)bar0 + 0x2700); |
| } |
| |
| /* |
| * Clear spurious ECC interrupts that would have occured on |
| * XFRAME II cards after reset. |
| */ |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| val64 = readq(&bar0->pcc_err_reg); |
| writeq(val64, &bar0->pcc_err_reg); |
| } |
| |
| sp->device_enabled_once = FALSE; |
| } |
| |
| /** |
| * s2io_set_swapper - to set the swapper controle on the card |
| * @sp : private member of the device structure, |
| * pointer to the s2io_nic structure. |
| * Description: Function to set the swapper control on the card |
| * correctly depending on the 'endianness' of the system. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| static int s2io_set_swapper(struct s2io_nic * sp) |
| { |
| struct net_device *dev = sp->dev; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64, valt, valr; |
| |
| /* |
| * Set proper endian settings and verify the same by reading |
| * the PIF Feed-back register. |
| */ |
| |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| int i = 0; |
| u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ |
| 0x8100008181000081ULL, /* FE=1, SE=0 */ |
| 0x4200004242000042ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq(value[i], &bar0->swapper_ctrl); |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 == 0x0123456789ABCDEFULL) |
| break; |
| i++; |
| } |
| if (i == 4) { |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| valr = value[i]; |
| } else { |
| valr = readq(&bar0->swapper_ctrl); |
| } |
| |
| valt = 0x0123456789ABCDEFULL; |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| |
| if(val64 != valt) { |
| int i = 0; |
| u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ |
| 0x0081810000818100ULL, /* FE=1, SE=0 */ |
| 0x0042420000424200ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq((value[i] | valr), &bar0->swapper_ctrl); |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| if(val64 == valt) |
| break; |
| i++; |
| } |
| if(i == 4) { |
| unsigned long long x = val64; |
| DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); |
| DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x); |
| return FAILURE; |
| } |
| } |
| val64 = readq(&bar0->swapper_ctrl); |
| val64 &= 0xFFFF000000000000ULL; |
| |
| #ifdef __BIG_ENDIAN |
| /* |
| * The device by default set to a big endian format, so a |
| * big endian driver need not set anything. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| if (sp->config.intr_type == INTA) |
| val64 |= SWAPPER_CTRL_XMSI_SE; |
| writeq(val64, &bar0->swapper_ctrl); |
| #else |
| /* |
| * Initially we enable all bits to make it accessible by the |
| * driver, then we selectively enable only those bits that |
| * we want to set. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_R_SE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXD_W_SE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_R_SE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXD_W_SE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| if (sp->config.intr_type == INTA) |
| val64 |= SWAPPER_CTRL_XMSI_SE; |
| writeq(val64, &bar0->swapper_ctrl); |
| #endif |
| val64 = readq(&bar0->swapper_ctrl); |
| |
| /* |
| * Verifying if endian settings are accurate by reading a |
| * feedback register. |
| */ |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| /* Endian settings are incorrect, calls for another dekko. */ |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| return SUCCESS; |
| } |
| |
| static int wait_for_msix_trans(struct s2io_nic *nic, int i) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| u64 val64; |
| int ret = 0, cnt = 0; |
| |
| do { |
| val64 = readq(&bar0->xmsi_access); |
| if (!(val64 & s2BIT(15))) |
| break; |
| mdelay(1); |
| cnt++; |
| } while(cnt < 5); |
| if (cnt == 5) { |
| DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| static void restore_xmsi_data(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| u64 val64; |
| int i, msix_index; |
| |
| |
| if (nic->device_type == XFRAME_I_DEVICE) |
| return; |
| |
| for (i=0; i < MAX_REQUESTED_MSI_X; i++) { |
| msix_index = (i) ? ((i-1) * 8 + 1): 0; |
| writeq(nic->msix_info[i].addr, &bar0->xmsi_address); |
| writeq(nic->msix_info[i].data, &bar0->xmsi_data); |
| val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); |
| writeq(val64, &bar0->xmsi_access); |
| if (wait_for_msix_trans(nic, msix_index)) { |
| DBG_PRINT(ERR_DBG, "failed in %s\n", __func__); |
| continue; |
| } |
| } |
| } |
| |
| static void store_xmsi_data(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| u64 val64, addr, data; |
| int i, msix_index; |
| |
| if (nic->device_type == XFRAME_I_DEVICE) |
| return; |
| |
| /* Store and display */ |
| for (i=0; i < MAX_REQUESTED_MSI_X; i++) { |
| msix_index = (i) ? ((i-1) * 8 + 1): 0; |
| val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); |
| writeq(val64, &bar0->xmsi_access); |
| if (wait_for_msix_trans(nic, msix_index)) { |
| DBG_PRINT(ERR_DBG, "failed in %s\n", __func__); |
| continue; |
| } |
| addr = readq(&bar0->xmsi_address); |
| data = readq(&bar0->xmsi_data); |
| if (addr && data) { |
| nic->msix_info[i].addr = addr; |
| nic->msix_info[i].data = data; |
| } |
| } |
| } |
| |
| static int s2io_enable_msi_x(struct s2io_nic *nic) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| u64 rx_mat; |
| u16 msi_control; /* Temp variable */ |
| int ret, i, j, msix_indx = 1; |
| |
| nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!nic->entries) { |
| DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \ |
| __func__); |
| nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; |
| return -ENOMEM; |
| } |
| nic->mac_control.stats_info->sw_stat.mem_allocated |
| += (nic->num_entries * sizeof(struct msix_entry)); |
| |
| memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry)); |
| |
| nic->s2io_entries = |
| kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry), |
| GFP_KERNEL); |
| if (!nic->s2io_entries) { |
| DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", |
| __func__); |
| nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; |
| kfree(nic->entries); |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += (nic->num_entries * sizeof(struct msix_entry)); |
| return -ENOMEM; |
| } |
| nic->mac_control.stats_info->sw_stat.mem_allocated |
| += (nic->num_entries * sizeof(struct s2io_msix_entry)); |
| memset(nic->s2io_entries, 0, |
| nic->num_entries * sizeof(struct s2io_msix_entry)); |
| |
| nic->entries[0].entry = 0; |
| nic->s2io_entries[0].entry = 0; |
| nic->s2io_entries[0].in_use = MSIX_FLG; |
| nic->s2io_entries[0].type = MSIX_ALARM_TYPE; |
| nic->s2io_entries[0].arg = &nic->mac_control.fifos; |
| |
| for (i = 1; i < nic->num_entries; i++) { |
| nic->entries[i].entry = ((i - 1) * 8) + 1; |
| nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; |
| nic->s2io_entries[i].arg = NULL; |
| nic->s2io_entries[i].in_use = 0; |
| } |
| |
| rx_mat = readq(&bar0->rx_mat); |
| for (j = 0; j < nic->config.rx_ring_num; j++) { |
| rx_mat |= RX_MAT_SET(j, msix_indx); |
| nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; |
| nic->s2io_entries[j+1].type = MSIX_RING_TYPE; |
| nic->s2io_entries[j+1].in_use = MSIX_FLG; |
| msix_indx += 8; |
| } |
| writeq(rx_mat, &bar0->rx_mat); |
| readq(&bar0->rx_mat); |
| |
| ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); |
| /* We fail init if error or we get less vectors than min required */ |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name); |
| kfree(nic->entries); |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += (nic->num_entries * sizeof(struct msix_entry)); |
| kfree(nic->s2io_entries); |
| nic->mac_control.stats_info->sw_stat.mem_freed |
| += (nic->num_entries * sizeof(struct s2io_msix_entry)); |
| nic->entries = NULL; |
| nic->s2io_entries = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * To enable MSI-X, MSI also needs to be enabled, due to a bug |
| * in the herc NIC. (Temp change, needs to be removed later) |
| */ |
| pci_read_config_word(nic->pdev, 0x42, &msi_control); |
| msi_control |= 0x1; /* Enable MSI */ |
| pci_write_config_word(nic->pdev, 0x42, msi_control); |
| |
| return 0; |
| } |
| |
| /* Handle software interrupt used during MSI(X) test */ |
| static irqreturn_t s2io_test_intr(int irq, void *dev_id) |
| { |
| struct s2io_nic *sp = dev_id; |
| |
| sp->msi_detected = 1; |
| wake_up(&sp->msi_wait); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Test interrupt path by forcing a a software IRQ */ |
| static int s2io_test_msi(struct s2io_nic *sp) |
| { |
| struct pci_dev *pdev = sp->pdev; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| int err; |
| u64 val64, saved64; |
| |
| err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, |
| sp->name, sp); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", |
| sp->dev->name, pci_name(pdev), pdev->irq); |
| return err; |
| } |
| |
| init_waitqueue_head (&sp->msi_wait); |
| sp->msi_detected = 0; |
| |
| saved64 = val64 = readq(&bar0->scheduled_int_ctrl); |
| val64 |= SCHED_INT_CTRL_ONE_SHOT; |
| val64 |= SCHED_INT_CTRL_TIMER_EN; |
| val64 |= SCHED_INT_CTRL_INT2MSI(1); |
| writeq(val64, &bar0->scheduled_int_ctrl); |
| |
| wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); |
| |
| if (!sp->msi_detected) { |
| /* MSI(X) test failed, go back to INTx mode */ |
| DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " |
| "using MSI(X) during test\n", sp->dev->name, |
| pci_name(pdev)); |
| |
| err = -EOPNOTSUPP; |
| } |
| |
| free_irq(sp->entries[1].vector, sp); |
| |
| writeq(saved64, &bar0->scheduled_int_ctrl); |
| |
| return err; |
| } |
| |
| static void remove_msix_isr(struct s2io_nic *sp) |
| { |
| int i; |
| u16 msi_control; |
| |
| for (i = 0; i < sp->num_entries; i++) { |
| if (sp->s2io_entries[i].in_use == |
| MSIX_REGISTERED_SUCCESS) { |
| int vector = sp->entries[i].vector; |
| void *arg = sp->s2io_entries[i].arg; |
| free_irq(vector, arg); |
| } |
| } |
| |
| kfree(sp->entries); |
| kfree(sp->s2io_entries); |
| sp->entries = NULL; |
| sp->s2io_entries = NULL; |
| |
| pci_read_config_word(sp->pdev, 0x42, &msi_control); |
| msi_control &= 0xFFFE; /* Disable MSI */ |
| pci_write_config_word(sp->pdev, 0x42, msi_control); |
| |
| pci_disable_msix(sp->pdev); |
| } |
| |
| static void remove_inta_isr(struct s2io_nic *sp) |
| { |
| struct net_device *dev = sp->dev; |
| |
| free_irq(sp->pdev->irq, dev); |
| } |
| |
| /* ********************************************************* * |
| * Functions defined below concern the OS part of the driver * |
| * ********************************************************* */ |
| |
| /** |
| * s2io_open - open entry point of the driver |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function is the open entry point of the driver. It mainly calls a |
| * function to allocate Rx buffers and inserts them into the buffer |
| * descriptors and then enables the Rx part of the NIC. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| static int s2io_open(struct net_device *dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| int err = 0; |
| |
| /* |
| * Make sure you have link off by default every time |
| * Nic is initialized |
| */ |
| netif_carrier_off(dev); |
| sp->last_link_state = 0; |
| |
| /* Initialize H/W and enable interrupts */ |
| err = s2io_card_up(sp); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| dev->name); |
| goto hw_init_failed; |
| } |
| |
| if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { |
| DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); |
| s2io_card_down(sp); |
| err = -ENODEV; |
| goto hw_init_failed; |
| } |
| s2io_start_all_tx_queue(sp); |
| return 0; |
| |
| hw_init_failed: |
| if (sp->config.intr_type == MSI_X) { |
| if (sp->entries) { |
| kfree(sp->entries); |
| sp->mac_control.stats_info->sw_stat.mem_freed |
| += (sp->num_entries * sizeof(struct msix_entry)); |
| } |
| if (sp->s2io_entries) { |
| kfree(sp->s2io_entries); |
| sp->mac_control.stats_info->sw_stat.mem_freed |
| += (sp->num_entries * sizeof(struct s2io_msix_entry)); |
| } |
| } |
| return err; |
| } |
| |
| /** |
| * s2io_close -close entry point of the driver |
| * @dev : device pointer. |
| * Description: |
| * This is the stop entry point of the driver. It needs to undo exactly |
| * whatever was done by the open entry point,thus it's usually referred to |
| * as the close function.Among other things this function mainly stops the |
| * Rx side of the NIC and frees all the Rx buffers in the Rx rings. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| static int s2io_close(struct net_device *dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct config_param *config = &sp->config; |
| u64 tmp64; |
| int offset; |
| |
| /* Return if the device is already closed * |
| * Can happen when s2io_card_up failed in change_mtu * |
| */ |
| if (!is_s2io_card_up(sp)) |
| return 0; |
| |
| s2io_stop_all_tx_queue(sp); |
| /* delete all populated mac entries */ |
| for (offset = 1; offset < config->max_mc_addr; offset++) { |
| tmp64 = do_s2io_read_unicast_mc(sp, offset); |
| if (tmp64 != S2IO_DISABLE_MAC_ENTRY) |
| do_s2io_delete_unicast_mc(sp, tmp64); |
| } |
| |
| s2io_card_down(sp); |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_xmit - Tx entry point of te driver |
| * @skb : the socket buffer containing the Tx data. |
| * @dev : device pointer. |
| * Description : |
| * This function is the Tx entry point of the driver. S2IO NIC supports |
| * certain protocol assist features on Tx side, namely CSO, S/G, LSO. |
| * NOTE: when device cant queue the pkt,just the trans_start variable will |
| * not be upadted. |
| * Return value: |
| * 0 on success & 1 on failure. |
| */ |
| |
| static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; |
| register u64 val64; |
| struct TxD *txdp; |
| struct TxFIFO_element __iomem *tx_fifo; |
| unsigned long flags = 0; |
| u16 vlan_tag = 0; |
| struct fifo_info *fifo = NULL; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int do_spin_lock = 1; |
| int offload_type; |
| int enable_per_list_interrupt = 0; |
| struct swStat *stats = &sp->mac_control.stats_info->sw_stat; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); |
| |
| if (unlikely(skb->len <= 0)) { |
| DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name); |
| dev_kfree_skb_any(skb); |
| return 0; |
| } |
| |
| if (!is_s2io_card_up(sp)) { |
| DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", |
| dev->name); |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| queue = 0; |
| if (sp->vlgrp && vlan_tx_tag_present(skb)) |
| vlan_tag = vlan_tx_tag_get(skb); |
| if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *ip; |
| struct tcphdr *th; |
| ip = ip_hdr(skb); |
| |
| if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) { |
| th = (struct tcphdr *)(((unsigned char *)ip) + |
| ip->ihl*4); |
| |
| if (ip->protocol == IPPROTO_TCP) { |
| queue_len = sp->total_tcp_fifos; |
| queue = (ntohs(th->source) + |
| ntohs(th->dest)) & |
| sp->fifo_selector[queue_len - 1]; |
| if (queue >= queue_len) |
| queue = queue_len - 1; |
| } else if (ip->protocol == IPPROTO_UDP) { |
| queue_len = sp->total_udp_fifos; |
| queue = (ntohs(th->source) + |
| ntohs(th->dest)) & |
| sp->fifo_selector[queue_len - 1]; |
| if (queue >= queue_len) |
| queue = queue_len - 1; |
| queue += sp->udp_fifo_idx; |
| if (skb->len > 1024) |
| enable_per_list_interrupt = 1; |
| do_spin_lock = 0; |
| } |
| } |
| } |
| } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) |
| /* get fifo number based on skb->priority value */ |
| queue = config->fifo_mapping |
| [skb->priority & (MAX_TX_FIFOS - 1)]; |
| fifo = &mac_control->fifos[queue]; |
| |
| if (do_spin_lock) |
| spin_lock_irqsave(&fifo->tx_lock, flags); |
| else { |
| if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) |
| return NETDEV_TX_LOCKED; |
| } |
| |
| if (sp->config.multiq) { |
| if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { |
| spin_unlock_irqrestore(&fifo->tx_lock, flags); |
| return NETDEV_TX_BUSY; |
| } |
| } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { |
| if (netif_queue_stopped(dev)) { |
| spin_unlock_irqrestore(&fifo->tx_lock, flags); |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| put_off = (u16) fifo->tx_curr_put_info.offset; |
| get_off = (u16) fifo->tx_curr_get_info.offset; |
| txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr; |
| |
| queue_len = fifo->tx_curr_put_info.fifo_len + 1; |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (txdp->Host_Control || |
| ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { |
| DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); |
| s2io_stop_tx_queue(sp, fifo->fifo_no); |
| dev_kfree_skb(skb); |
| spin_unlock_irqrestore(&fifo->tx_lock, flags); |
| return 0; |
| } |
| |
| offload_type = s2io_offload_type(skb); |
| if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { |
| txdp->Control_1 |= TXD_TCP_LSO_EN; |
| txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); |
| } |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| txdp->Control_2 |= |
| (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | |
| TXD_TX_CKO_UDP_EN); |
| } |
| txdp->Control_1 |= TXD_GATHER_CODE_FIRST; |
| txdp->Control_1 |= TXD_LIST_OWN_XENA; |
| txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); |
| if (enable_per_list_interrupt) |
| if (put_off & (queue_len >> 5)) |
| txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; |
| if (vlan_tag) { |
| txdp->Control_2 |= TXD_VLAN_ENABLE; |
| txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); |
| } |
| |
| frg_len = skb->len - skb->data_len; |
| if (offload_type == SKB_GSO_UDP) { |
| int ufo_size; |
| |
| ufo_size = s2io_udp_mss(skb); |
| ufo_size &= ~7; |
| txdp->Control_1 |= TXD_UFO_EN; |
| txdp->Control_1 |= TXD_UFO_MSS(ufo_size); |
| txdp->Control_1 |= TXD_BUFFER0_SIZE(8); |
| #ifdef __BIG_ENDIAN |
| /* both variants do cpu_to_be64(be32_to_cpu(...)) */ |
| fifo->ufo_in_band_v[put_off] = |
| (__force u64)skb_shinfo(skb)->ip6_frag_id; |
| #else |
| fifo->ufo_in_band_v[put_off] = |
| (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; |
| #endif |
| txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; |
| txdp->Buffer_Pointer = pci_map_single(sp->pdev, |
| fifo->ufo_in_band_v, |
| sizeof(u64), PCI_DMA_TODEVICE); |
| if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) |
| goto pci_map_failed; |
| txdp++; |
| } |
| |
| txdp->Buffer_Pointer = pci_map_single |
| (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); |
| if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) |
| goto pci_map_failed; |
| |
| txdp->Host_Control = (unsigned long) skb; |
| txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); |
| if (offload_type == SKB_GSO_UDP) |
| txdp->Control_1 |= TXD_UFO_EN; |
| |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| /* For fragmented SKB. */ |
| for (i = 0; i < frg_cnt; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| /* A '0' length fragment will be ignored */ |
| if (!frag->size) |
| continue; |
| txdp++; |
| txdp->Buffer_Pointer = (u64) pci_map_page |
| (sp->pdev, frag->page, frag->page_offset, |
| frag->size, PCI_DMA_TODEVICE); |
| txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size); |
| if (offload_type == SKB_GSO_UDP) |
| txdp->Control_1 |= TXD_UFO_EN; |
| } |
| txdp->Control_1 |= TXD_GATHER_CODE_LAST; |
| |
| if (offload_type == SKB_GSO_UDP) |
| frg_cnt++; /* as Txd0 was used for inband header */ |
| |
| tx_fifo = mac_control->tx_FIFO_start[queue]; |
| val64 = fifo->list_info[put_off].list_phy_addr; |
| writeq(val64, &tx_fifo->TxDL_Pointer); |
| |
| val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | |
| TX_FIFO_LAST_LIST); |
| if (offload_type) |
| val64 |= TX_FIFO_SPECIAL_FUNC; |
| |
| writeq(val64, &tx_fifo->List_Control); |
| |
| mmiowb(); |
| |
| put_off++; |
| if (put_off == fifo->tx_curr_put_info.fifo_len + 1) |
| put_off = 0; |
| fifo->tx_curr_put_info.offset = put_off; |
| |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { |
| sp->mac_control.stats_info->sw_stat.fifo_full_cnt++; |
| DBG_PRINT(TX_DBG, |
| "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", |
| put_off, get_off); |
| s2io_stop_tx_queue(sp, fifo->fifo_no); |
| } |
| mac_control->stats_info->sw_stat.mem_allocated += skb->truesize; |
| dev->trans_start = jiffies; |
| spin_unlock_irqrestore(&fifo->tx_lock, flags); |
| |
| if (sp->config.intr_type == MSI_X) |
| tx_intr_handler(fifo); |
| |
| return 0; |
| pci_map_failed: |
| stats->pci_map_fail_cnt++; |
| s2io_stop_tx_queue(sp, fifo->fifo_no); |
| stats->mem_freed += skb->truesize; |
| dev_kfree_skb(skb); |
| spin_unlock_irqrestore(&fifo->tx_lock, flags); |
| return 0; |
| } |
| |
| static void |
| s2io_alarm_handle(unsigned long data) |
| { |
| struct s2io_nic *sp = (struct s2io_nic *)data; |
| struct net_device *dev = sp->dev; |
| |
| s2io_handle_errors(dev); |
| mod_timer(&sp->alarm_timer, jiffies + HZ / 2); |
| } |
| |
| static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) |
| { |
| struct ring_info *ring = (struct ring_info *)dev_id; |
| struct s2io_nic *sp = ring->nic; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| struct net_device *dev = sp->dev; |
| |
| if (unlikely(!is_s2io_card_up(sp))) |
| return IRQ_HANDLED; |
| |
| if (sp->config.napi) { |
| u8 __iomem *addr = NULL; |
| u8 val8 = 0; |
| |
| addr = (u8 __iomem *)&bar0->xmsi_mask_reg; |
| addr += (7 - ring->ring_no); |
| val8 = (ring->ring_no == 0) ? 0x7f : 0xff; |
| writeb(val8, addr); |
| val8 = readb(addr); |
| netif_rx_schedule(&ring->napi); |
| } else { |
| rx_intr_handler(ring, 0); |
| s2io_chk_rx_buffers(sp, ring); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) |
| { |
| int i; |
| struct fifo_info *fifos = (struct fifo_info *)dev_id; |
| struct s2io_nic *sp = fifos->nic; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| struct config_param *config = &sp->config; |
| u64 reason; |
| |
| if (unlikely(!is_s2io_card_up(sp))) |
| return IRQ_NONE; |
| |
| reason = readq(&bar0->general_int_status); |
| if (unlikely(reason == S2IO_MINUS_ONE)) |
| /* Nothing much can be done. Get out */ |
| return IRQ_HANDLED; |
| |
| if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { |
| writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); |
| |
| if (reason & GEN_INTR_TXPIC) |
| s2io_txpic_intr_handle(sp); |
| |
| if (reason & GEN_INTR_TXTRAFFIC) |
| writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); |
| |
| for (i = 0; i < config->tx_fifo_num; i++) |
| tx_intr_handler(&fifos[i]); |
| |
| writeq(sp->general_int_mask, &bar0->general_int_mask); |
| readl(&bar0->general_int_status); |
| return IRQ_HANDLED; |
| } |
| /* The interrupt was not raised by us */ |
| return IRQ_NONE; |
| } |
| |
| static void s2io_txpic_intr_handle(struct s2io_nic *sp) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| |
| val64 = readq(&bar0->pic_int_status); |
| if (val64 & PIC_INT_GPIO) { |
| val64 = readq(&bar0->gpio_int_reg); |
| if ((val64 & GPIO_INT_REG_LINK_DOWN) && |
| (val64 & GPIO_INT_REG_LINK_UP)) { |
| /* |
| * This is unstable state so clear both up/down |
| * interrupt and adapter to re-evaluate the link state. |
| */ |
| val64 |= GPIO_INT_REG_LINK_DOWN; |
| val64 |= GPIO_INT_REG_LINK_UP; |
| writeq(val64, &bar0->gpio_int_reg); |
| val64 = readq(&bar0->gpio_int_mask); |
| val64 &= ~(GPIO_INT_MASK_LINK_UP | |
| GPIO_INT_MASK_LINK_DOWN); |
| writeq(val64, &bar0->gpio_int_mask); |
| } |
| else if (val64 & GPIO_INT_REG_LINK_UP) { |
| val64 = readq(&bar0->adapter_status); |
| /* Enable Adapter */ |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_CNTL_EN; |
| writeq(val64, &bar0->adapter_control); |
| val64 |= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| if (!sp->device_enabled_once) |
| sp->device_enabled_once = 1; |
| |
| s2io_link(sp, LINK_UP); |
| /* |
| * unmask link down interrupt and mask link-up |
| * intr |
| */ |
| val64 = readq(&bar0->gpio_int_mask); |
| val64 &= ~GPIO_INT_MASK_LINK_DOWN; |
| val64 |= GPIO_INT_MASK_LINK_UP; |
| writeq(val64, &bar0->gpio_int_mask); |
| |
| }else if (val64 & GPIO_INT_REG_LINK_DOWN) { |
| val64 = readq(&bar0->adapter_status); |
| s2io_link(sp, LINK_DOWN); |
| /* Link is down so unmaks link up interrupt */ |
| val64 = readq(&bar0->gpio_int_mask); |
| val64 &= ~GPIO_INT_MASK_LINK_UP; |
| val64 |= GPIO_INT_MASK_LINK_DOWN; |
| writeq(val64, &bar0->gpio_int_mask); |
| |
| /* turn off LED */ |
| val64 = readq(&bar0->adapter_control); |
| val64 = val64 &(~ADAPTER_LED_ON); |
| writeq(val64, &bar0->adapter_control); |
| } |
| } |
| val64 = readq(&bar0->gpio_int_mask); |
| } |
| |
| /** |
| * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter |
| * @value: alarm bits |
| * @addr: address value |
| * @cnt: counter variable |
| * Description: Check for alarm and increment the counter |
| * Return Value: |
| * 1 - if alarm bit set |
| * 0 - if alarm bit is not set |
| */ |
| static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr, |
| unsigned long long *cnt) |
| { |
| u64 val64; |
| val64 = readq(addr); |
| if ( val64 & value ) { |
| writeq(val64, addr); |
| (*cnt)++; |
| return 1; |
| } |
| return 0; |
| |
| } |
| |
| /** |
| * s2io_handle_errors - Xframe error indication handler |
| * @nic: device private variable |
| * Description: Handle alarms such as loss of link, single or |
| * double ECC errors, critical and serious errors. |
| * Return Value: |
| * NONE |
| */ |
| static void s2io_handle_errors(void * dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 temp64 = 0,val64=0; |
| int i = 0; |
| |
| struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; |
| struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; |
| |
| if (!is_s2io_card_up(sp)) |
| return; |
| |
| if (pci_channel_offline(sp->pdev)) |
| return; |
| |
| memset(&sw_stat->ring_full_cnt, 0, |
| sizeof(sw_stat->ring_full_cnt)); |
| |
| /* Handling the XPAK counters update */ |
| if(stats->xpak_timer_count < 72000) { |
| /* waiting for an hour */ |
| stats->xpak_timer_count++; |
| } else { |
| s2io_updt_xpak_counter(dev); |
| /* reset the count to zero */ |
| stats->xpak_timer_count = 0; |
| } |
| |
| /* Handling link status change error Intr */ |
| if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { |
| val64 = readq(&bar0->mac_rmac_err_reg); |
| writeq(val64, &bar0->mac_rmac_err_reg); |
| if (val64 & RMAC_LINK_STATE_CHANGE_INT) |
| schedule_work(&sp->set_link_task); |
| } |
| |
| /* In case of a serious error, the device will be Reset. */ |
| if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, |
| &sw_stat->serious_err_cnt)) |
| goto reset; |
| |
| /* Check for data parity error */ |
| if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, |
| &sw_stat->parity_err_cnt)) |
| goto reset; |
| |
| /* Check for ring full counter */ |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| val64 = readq(&bar0->ring_bump_counter1); |
| for (i=0; i<4; i++) { |
| temp64 = ( val64 & vBIT(0xFFFF,(i*16),16)); |
| temp64 >>= 64 - ((i+1)*16); |
| sw_stat->ring_full_cnt[i] += temp64; |
| } |
| |
| val64 = readq(&bar0->ring_bump_counter2); |
| for (i=0; i<4; i++) { |
| temp64 = ( val64 & vBIT(0xFFFF,(i*16),16)); |
| temp64 >>= 64 - ((i+1)*16); |
| sw_stat->ring_full_cnt[i+4] += temp64; |
| } |
| } |
| |
| val64 = readq(&bar0->txdma_int_status); |
| /*check for pfc_err*/ |
| if (val64 & TXDMA_PFC_INT) { |
| if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM| |
| PFC_MISC_0_ERR | PFC_MISC_1_ERR| |
| PFC_PCIX_ERR, &bar0->pfc_err_reg, |
| &sw_stat->pfc_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg, |
| &sw_stat->pfc_err_cnt); |
| } |
| |
| /*check for tda_err*/ |
| if (val64 & TXDMA_TDA_INT) { |
| if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | |
| TDA_SM1_ERR_ALARM, &bar0->tda_err_reg, |
| &sw_stat->tda_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, |
| &bar0->tda_err_reg, &sw_stat->tda_err_cnt); |
| } |
| /*check for pcc_err*/ |
| if (val64 & TXDMA_PCC_INT) { |
| if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
| | PCC_N_SERR | PCC_6_COF_OV_ERR |
| | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
| | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
| | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg, |
| &sw_stat->pcc_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, |
| &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt); |
| } |
| |
| /*check for tti_err*/ |
| if (val64 & TXDMA_TTI_INT) { |
| if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg, |
| &sw_stat->tti_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, |
| &bar0->tti_err_reg, &sw_stat->tti_err_cnt); |
| } |
| |
| /*check for lso_err*/ |
| if (val64 & TXDMA_LSO_INT) { |
| if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
| | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, |
| &bar0->lso_err_reg, &sw_stat->lso_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, |
| &bar0->lso_err_reg, &sw_stat->lso_err_cnt); |
| } |
| |
| /*check for tpa_err*/ |
| if (val64 & TXDMA_TPA_INT) { |
| if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg, |
| &sw_stat->tpa_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg, |
| &sw_stat->tpa_err_cnt); |
| } |
| |
| /*check for sm_err*/ |
| if (val64 & TXDMA_SM_INT) { |
| if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg, |
| &sw_stat->sm_err_cnt)) |
| goto reset; |
| } |
| |
| val64 = readq(&bar0->mac_int_status); |
| if (val64 & MAC_INT_STATUS_TMAC_INT) { |
| if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, |
| &bar0->mac_tmac_err_reg, |
| &sw_stat->mac_tmac_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
| | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, |
| &bar0->mac_tmac_err_reg, |
| &sw_stat->mac_tmac_err_cnt); |
| } |
| |
| val64 = readq(&bar0->xgxs_int_status); |
| if (val64 & XGXS_INT_STATUS_TXGXS) { |
| if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, |
| &bar0->xgxs_txgxs_err_reg, |
| &sw_stat->xgxs_txgxs_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, |
| &bar0->xgxs_txgxs_err_reg, |
| &sw_stat->xgxs_txgxs_err_cnt); |
| } |
| |
| val64 = readq(&bar0->rxdma_int_status); |
| if (val64 & RXDMA_INT_RC_INT_M) { |
| if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
| | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM, |
| &bar0->rc_err_reg, &sw_stat->rc_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
| | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, |
| &sw_stat->rc_err_cnt); |
| if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
| | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg, |
| &sw_stat->prc_pcix_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn |
| | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg, |
| &sw_stat->prc_pcix_err_cnt); |
| } |
| |
| if (val64 & RXDMA_INT_RPA_INT_M) { |
| if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, |
| &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, |
| &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt); |
| } |
| |
| if (val64 & RXDMA_INT_RDA_INT_M) { |
| if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
| | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM |
| | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR, |
| &bar0->rda_err_reg, &sw_stat->rda_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR |
| | RDA_MISC_ERR | RDA_PCIX_ERR, |
| &bar0->rda_err_reg, &sw_stat->rda_err_cnt); |
| } |
| |
| if (val64 & RXDMA_INT_RTI_INT_M) { |
| if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg, |
| &sw_stat->rti_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, |
| &bar0->rti_err_reg, &sw_stat->rti_err_cnt); |
| } |
| |
| val64 = readq(&bar0->mac_int_status); |
| if (val64 & MAC_INT_STATUS_RMAC_INT) { |
| if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, |
| &bar0->mac_rmac_err_reg, |
| &sw_stat->mac_rmac_err_cnt)) |
| goto reset; |
| do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR| |
| RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg, |
| &sw_stat->mac_rmac_err_cnt); |
| } |
| |
| val64 = readq(&bar0->xgxs_int_status); |
| if (val64 & XGXS_INT_STATUS_RXGXS) { |
| if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, |
| &bar0->xgxs_rxgxs_err_reg, |
| &sw_stat->xgxs_rxgxs_err_cnt)) |
| goto reset; |
| } |
| |
| val64 = readq(&bar0->mc_int_status); |
| if(val64 & MC_INT_STATUS_MC_INT) { |
| if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg, |
| &sw_stat->mc_err_cnt)) |
| goto reset; |
| |
| /* Handling Ecc errors */ |
| if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { |
| writeq(val64, &bar0->mc_err_reg); |
| if (val64 & MC_ERR_REG_ECC_ALL_DBL) { |
| sw_stat->double_ecc_errs++; |
| if (sp->device_type != XFRAME_II_DEVICE) { |
| /* |
| * Reset XframeI only if critical error |
| */ |
| if (val64 & |
| (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | |
| MC_ERR_REG_MIRI_ECC_DB_ERR_1)) |
| goto reset; |
| } |
| } else |
| sw_stat->single_ecc_errs++; |
| } |
| } |
| return; |
| |
| reset: |
| s2io_stop_all_tx_queue(sp); |
| schedule_work(&sp->rst_timer_task); |
| sw_stat->soft_reset_cnt++; |
| return; |
| } |
| |
| /** |
| * s2io_isr - ISR handler of the device . |
| * @irq: the irq of the device. |
| * @dev_id: a void pointer to the dev structure of the NIC. |
| * Description: This function is the ISR handler of the device. It |
| * identifies the reason for the interrupt and calls the relevant |
| * service routines. As a contongency measure, this ISR allocates the |
| * recv buffers, if their numbers are below the panic value which is |
| * presently set to 25% of the original number of rcv buffers allocated. |
| * Return value: |
| * IRQ_HANDLED: will be returned if IRQ was handled by this routine |
| * IRQ_NONE: will be returned if interrupt is not from our device |
| */ |
| static irqreturn_t s2io_isr(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| int i; |
| u64 reason = 0; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| |
| /* Pretend we handled any irq's from a disconnected card */ |
| if (pci_channel_offline(sp->pdev)) |
| return IRQ_NONE; |
| |
| if (!is_s2io_card_up(sp)) |
| return IRQ_NONE; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* |
| * Identify the cause for interrupt and call the appropriate |
| * interrupt handler. Causes for the interrupt could be; |
| * 1. Rx of packet. |
| * 2. Tx complete. |
| * 3. Link down. |
| */ |
| reason = readq(&bar0->general_int_status); |
| |
| if (unlikely(reason == S2IO_MINUS_ONE) ) { |
| /* Nothing much can be done. Get out */ |
| return IRQ_HANDLED; |
| } |
| |
| if (reason & (GEN_INTR_RXTRAFFIC | |
| GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) |
| { |
| writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); |
| |
| if (config->napi) { |
| if (reason & GEN_INTR_RXTRAFFIC) { |
| netif_rx_schedule(&sp->napi); |
| writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); |
| writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); |
| readl(&bar0->rx_traffic_int); |
| } |
| } else { |
| /* |
| * rx_traffic_int reg is an R1 register, writing all 1's |
| * will ensure that the actual interrupt causing bit |
| * get's cleared and hence a read can be avoided. |
| */ |
| if (reason & GEN_INTR_RXTRAFFIC) |
| writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); |
| |
| for (i = 0; i < config->rx_ring_num; i++) |
| rx_intr_handler(&mac_control->rings[i], 0); |
| } |
| |
| /* |
| * tx_traffic_int reg is an R1 register, writing all 1's |
| * will ensure that the actual interrupt causing bit get's |
| * cleared and hence a read can be avoided. |
| */ |
| if (reason & GEN_INTR_TXTRAFFIC) |
| writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); |
| |
| for (i = 0; i < config->tx_fifo_num; i++) |
| tx_intr_handler(&mac_control->fifos[i]); |
| |
| if (reason & GEN_INTR_TXPIC) |
| s2io_txpic_intr_handle(sp); |
| |
| /* |
| * Reallocate the buffers from the interrupt handler itself. |
| */ |
| if (!config->napi) { |
| for (i = 0; i < config->rx_ring_num; i++) |
| s2io_chk_rx_buffers(sp, &mac_control->rings[i]); |
| } |
| writeq(sp->general_int_mask, &bar0->general_int_mask); |
| readl(&bar0->general_int_status); |
| |
| return IRQ_HANDLED; |
| |
| } |
| else if (!reason) { |
| /* The interrupt was not raised by us */ |
| return IRQ_NONE; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * s2io_updt_stats - |
| */ |
| static void s2io_updt_stats(struct s2io_nic *sp) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int cnt = 0; |
| |
| if (is_s2io_card_up(sp)) { |
| /* Apprx 30us on a 133 MHz bus */ |
| val64 = SET_UPDT_CLICKS(10) | |
| STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; |
| writeq(val64, &bar0->stat_cfg); |
| do { |
| udelay(100); |
| val64 = readq(&bar0->stat_cfg); |
| if (!(val64 & s2BIT(0))) |
| break; |
| cnt++; |
| if (cnt == 5) |
| break; /* Updt failed */ |
| } while(1); |
| } |
| } |
| |
| /** |
| * s2io_get_stats - Updates the device statistics structure. |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function updates the device statistics structure in the s2io_nic |
| * structure and returns a pointer to the same. |
| * Return value: |
| * pointer to the updated net_device_stats structure. |
| */ |
| |
| static struct net_device_stats *s2io_get_stats(struct net_device *dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int i; |
| |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* Configure Stats for immediate updt */ |
| s2io_updt_stats(sp); |
| |
| /* Using sp->stats as a staging area, because reset (due to mtu |
| change, for example) will clear some hardware counters */ |
| dev->stats.tx_packets += |
| le32_to_cpu(mac_control->stats_info->tmac_frms) - |
| sp->stats.tx_packets; |
| sp->stats.tx_packets = |
| le32_to_cpu(mac_control->stats_info->tmac_frms); |
| dev->stats.tx_errors += |
| le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) - |
| sp->stats.tx_errors; |
| sp->stats.tx_errors = |
| le32_to_cpu(mac_control->stats_info->tmac_any_err_frms); |
| dev->stats.rx_errors += |
| le64_to_cpu(mac_control->stats_info->rmac_drop_frms) - |
| sp->stats.rx_errors; |
| sp->stats.rx_errors = |
| le64_to_cpu(mac_control->stats_info->rmac_drop_frms); |
| dev->stats.multicast = |
| le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - |
| sp->stats.multicast; |
| sp->stats.multicast = |
| le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms); |
| dev->stats.rx_length_errors = |
| le64_to_cpu(mac_control->stats_info->rmac_long_frms) - |
| sp->stats.rx_length_errors; |
| sp->stats.rx_length_errors = |
| le64_to_cpu(mac_control->stats_info->rmac_long_frms); |
| |
| /* collect per-ring rx_packets and rx_bytes */ |
| dev->stats.rx_packets = dev->stats.rx_bytes = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| dev->stats.rx_packets += mac_control->rings[i].rx_packets; |
| dev->stats.rx_bytes += mac_control->rings[i].rx_bytes; |
| } |
| |
| return (&dev->stats); |
| } |
| |
| /** |
| * s2io_set_multicast - entry point for multicast address enable/disable. |
| * @dev : pointer to the device structure |
| * Description: |
| * This function is a driver entry point which gets called by the kernel |
| * whenever multicast addresses must be enabled/disabled. This also gets |
| * called to set/reset promiscuous mode. Depending on the deivce flag, we |
| * determine, if multicast address must be enabled or if promiscuous mode |
| * is to be disabled etc. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_set_multicast(struct net_device *dev) |
| { |
| int i, j, prev_cnt; |
| struct dev_mc_list *mclist; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = |
| 0xfeffffffffffULL; |
| u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; |
| void __iomem *add; |
| struct config_param *config = &sp->config; |
| |
| if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { |
| /* Enable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET); |
| |
| sp->m_cast_flg = 1; |
| sp->all_multi_pos = config->max_mc_addr - 1; |
| } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { |
| /* Disable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET); |
| |
| sp->m_cast_flg = 0; |
| sp->all_multi_pos = 0; |
| } |
| |
| if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { |
| /* Put the NIC into promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| if (vlan_tag_strip != 1) { |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; |
| writeq(val64, &bar0->rx_pa_cfg); |
| sp->vlan_strip_flag = 0; |
| } |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 1; |
| DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", |
| dev->name); |
| } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { |
| /* Remove the NIC from promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| if (vlan_tag_strip != 0) { |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 |= RX_PA_CFG_STRIP_VLAN_TAG; |
| writeq(val64, &bar0->rx_pa_cfg); |
| sp->vlan_strip_flag = 1; |
| } |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 0; |
| DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", |
| dev->name); |
| } |
| |
| /* Update individual M_CAST address list */ |
| if ((!sp->m_cast_flg) && dev->mc_count) { |
| if (dev->mc_count > |
| (config->max_mc_addr - config->max_mac_addr)) { |
| DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "can be added, please enable "); |
| DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); |
| return; |
| } |
| |
| prev_cnt = sp->mc_addr_count; |
| sp->mc_addr_count = dev->mc_count; |
| |
| /* Clear out the previous list of Mc in the H/W. */ |
| for (i = 0; i < prev_cnt; i++) { |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET |
| (config->mc_start_offset + i); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait for command completes */ |
| if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET)) { |
| DBG_PRINT(ERR_DBG, "%s: Adding ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| return; |
| } |
| } |
| |
| /* Create the new Rx filter list and update the same in H/W. */ |
| for (i = 0, mclist = dev->mc_list; i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, |
| ETH_ALEN); |
| mac_addr = 0; |
| for (j = 0; j < ETH_ALEN; j++) { |
| mac_addr |= mclist->dmi_addr[j]; |
| mac_addr <<= 8; |
| } |
| mac_addr >>= 8; |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET |
| (i + config->mc_start_offset); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait for command completes */ |
| if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET)) { |
| DBG_PRINT(ERR_DBG, "%s: Adding ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| return; |
| } |
| } |
| } |
| } |
| |
| /* read from CAM unicast & multicast addresses and store it in |
| * def_mac_addr structure |
| */ |
| static void do_s2io_store_unicast_mc(struct s2io_nic *sp) |
| { |
| int offset; |
| u64 mac_addr = 0x0; |
| struct config_param *config = &sp->config; |
| |
| /* store unicast & multicast mac addresses */ |
| for (offset = 0; offset < config->max_mc_addr; offset++) { |
| mac_addr = do_s2io_read_unicast_mc(sp, offset); |
| /* if read fails disable the entry */ |
| if (mac_addr == FAILURE) |
| mac_addr = S2IO_DISABLE_MAC_ENTRY; |
| do_s2io_copy_mac_addr(sp, offset, mac_addr); |
| } |
| } |
| |
| /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ |
| static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) |
| { |
| int offset; |
| struct config_param *config = &sp->config; |
| /* restore unicast mac address */ |
| for (offset = 0; offset < config->max_mac_addr; offset++) |
| do_s2io_prog_unicast(sp->dev, |
| sp->def_mac_addr[offset].mac_addr); |
| |
| /* restore multicast mac address */ |
| for (offset = config->mc_start_offset; |
| offset < config->max_mc_addr; offset++) |
| do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); |
| } |
| |
| /* add a multicast MAC address to CAM */ |
| static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) |
| { |
| int i; |
| u64 mac_addr = 0; |
| struct config_param *config = &sp->config; |
| |
| for (i = 0; i < ETH_ALEN; i++) { |
| mac_addr <<= 8; |
| mac_addr |= addr[i]; |
| } |
| if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) |
| return SUCCESS; |
| |
| /* check if the multicast mac already preset in CAM */ |
| for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { |
| u64 tmp64; |
| tmp64 = do_s2io_read_unicast_mc(sp, i); |
| if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ |
| break; |
| |
| if (tmp64 == mac_addr) |
| return SUCCESS; |
| } |
| if (i == config->max_mc_addr) { |
| DBG_PRINT(ERR_DBG, |
| "CAM full no space left for multicast MAC\n"); |
| return FAILURE; |
| } |
| /* Update the internal structure with this new mac address */ |
| do_s2io_copy_mac_addr(sp, i, mac_addr); |
| |
| return (do_s2io_add_mac(sp, mac_addr, i)); |
| } |
| |
| /* add MAC address to CAM */ |
| static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) |
| { |
| u64 val64; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), |
| &bar0->rmac_addr_data0_mem); |
| |
| val64 = |
| RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(off); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait till command completes */ |
| if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET)) { |
| DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); |
| return FAILURE; |
| } |
| return SUCCESS; |
| } |
| /* deletes a specified unicast/multicast mac entry from CAM */ |
| static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) |
| { |
| int offset; |
| u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; |
| struct config_param *config = &sp->config; |
| |
| for (offset = 1; |
| offset < config->max_mc_addr; offset++) { |
| tmp64 = do_s2io_read_unicast_mc(sp, offset); |
| if (tmp64 == addr) { |
| /* disable the entry by writing 0xffffffffffffULL */ |
| if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) |
| return FAILURE; |
| /* store the new mac list from CAM */ |
| do_s2io_store_unicast_mc(sp); |
| return SUCCESS; |
| } |
| } |
| DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", |
| (unsigned long long)addr); |
| return FAILURE; |
| } |
| |
| /* read mac entries from CAM */ |
| static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) |
| { |
| u64 tmp64 = 0xffffffffffff0000ULL, val64; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| /* read mac addr */ |
| val64 = |
| RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(offset); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait till command completes */ |
| if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, |
| S2IO_BIT_RESET)) { |
| DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); |
| return FAILURE; |
| } |
| tmp64 = readq(&bar0->rmac_addr_data0_mem); |
| return (tmp64 >> 16); |
| } |
| |
| /** |
| * s2io_set_mac_addr driver entry point |
| */ |
| |
| static int s2io_set_mac_addr(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EINVAL; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| /* store the MAC address in CAM */ |
| return (do_s2io_prog_unicast(dev, dev->dev_addr)); |
| } |
| /** |
| * do_s2io_prog_unicast - Programs the Xframe mac address |
| * @dev : pointer to the device structure. |
| * @addr: a uchar pointer to the new mac address which is to be set. |
| * Description : This procedure will program the Xframe to receive |
| * frames with new Mac Address |
| * Return value: SUCCESS on success and an appropriate (-)ve integer |
| * as defined in errno.h file on failure. |
| */ |
| |
| static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| register u64 mac_addr = 0, perm_addr = 0; |
| int i; |
| u64 tmp64; |
| struct config_param *config = &sp->config; |
| |
| /* |
| * Set the new MAC address as the new unicast filter and reflect this |
| * change on the device address registered with the OS. It will be |
| * at offset 0. |
| */ |
| for (i = 0; i < ETH_ALEN; i++) { |
| mac_addr <<= 8; |
| mac_addr |= addr[i]; |
| perm_addr <<= 8; |
| perm_addr |= sp->def_mac_addr[0].mac_addr[i]; |
| } |
| |
| /* check if the dev_addr is different than perm_addr */ |
| if (mac_addr == perm_addr) |
| return SUCCESS; |
| |
| /* check if the mac already preset in CAM */ |
| for (i = 1; i < config->max_mac_addr; i++) { |
| tmp64 = do_s2io_read_unicast_mc(sp, i); |
| if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ |
| break; |
| |
| if (tmp64 == mac_addr) { |
| DBG_PRINT(INFO_DBG, |
| "MAC addr:0x%llx already present in CAM\n", |
| (unsigned long long)mac_addr); |
| return SUCCESS; |
| } |
| } |
| if (i == config->max_mac_addr) { |
| DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); |
| return FAILURE; |
| } |
| /* Update the internal structure with this new mac address */ |
| do_s2io_copy_mac_addr(sp, i, mac_addr); |
| return (do_s2io_add_mac(sp, mac_addr, i)); |
| } |
| |
| /** |
| * s2io_ethtool_sset - Sets different link parameters. |
| * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| * @info: pointer to the structure with parameters given by ethtool to set |
| * link information. |
| * Description: |
| * The function sets different link parameters provided by the user onto |
| * the NIC. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_ethtool_sset(struct net_device *dev, |
| struct ethtool_cmd *info) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| if ((info->autoneg == AUTONEG_ENABLE) || |
| (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) |
| return -EINVAL; |
| else { |
| s2io_close(sp->dev); |
| s2io_open(sp->dev); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtol_gset - Return link specific information. |
| * @sp : private member of the device structure, pointer to the |
| * s2io_nic structure. |
| * @info : pointer to the structure with parameters given by ethtool |
| * to return link information. |
| * Description: |
| * Returns link specific information like speed, duplex etc.. to ethtool. |
| * Return value : |
| * return 0 on success. |
| */ |
| |
| static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| info->port = PORT_FIBRE; |
| |
| /* info->transceiver */ |
| info->transceiver = XCVR_EXTERNAL; |
| |
| if (netif_carrier_ok(sp->dev)) { |
| info->speed = 10000; |
| info->duplex = DUPLEX_FULL; |
| } else { |
| info->speed = -1; |
| info->duplex = -1; |
| } |
| |
| info->autoneg = AUTONEG_DISABLE; |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtool_gdrvinfo - Returns driver specific information. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @info : pointer to the structure with parameters given by ethtool to |
| * return driver information. |
| * Description: |
| * Returns driver specefic information like name, version etc.. to ethtool. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_ethtool_gdrvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| strncpy(info->driver, s2io_driver_name, sizeof(info->driver)); |
| strncpy(info->version, s2io_driver_version, sizeof(info->version)); |
| strncpy(info->fw_version, "", sizeof(info->fw_version)); |
| strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); |
| info->regdump_len = XENA_REG_SPACE; |
| info->eedump_len = XENA_EEPROM_SPACE; |
| } |
| |
| /** |
| * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. |
| * @sp: private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @regs : pointer to the structure with parameters given by ethtool for |
| * dumping the registers. |
| * @reg_space: The input argumnet into which all the registers are dumped. |
| * Description: |
| * Dumps the entire register space of xFrame NIC into the user given |
| * buffer area. |
| * Return value : |
| * void . |
| */ |
| |
| static void s2io_ethtool_gregs(struct net_device *dev, |
| struct ethtool_regs *regs, void *space) |
| { |
| int i; |
| u64 reg; |
| u8 *reg_space = (u8 *) space; |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| regs->len = XENA_REG_SPACE; |
| regs->version = sp->pdev->subsystem_device; |
| |
| for (i = 0; i < regs->len; i += 8) { |
| reg = readq(sp->bar0 + i); |
| memcpy((reg_space + i), ®, 8); |
| } |
| } |
| |
| /** |
| * s2io_phy_id - timer function that alternates adapter LED. |
| * @data : address of the private member of the device structure, which |
| * is a pointer to the s2io_nic structure, provided as an u32. |
| * Description: This is actually the timer function that alternates the |
| * adapter LED bit of the adapter control bit to set/reset every time on |
| * invocation. The timer is set for 1/2 a second, hence tha NIC blinks |
| * once every second. |
| */ |
| static void s2io_phy_id(unsigned long data) |
| { |
| struct s2io_nic *sp = (struct s2io_nic *) data; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = 0; |
| u16 subid; |
| |
| subid = sp->pdev->subsystem_device; |
| if ((sp->device_type == XFRAME_II_DEVICE) || |
| ((subid & 0xFF) >= 0x07)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 ^= GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| } else { |
| val64 = readq(&bar0->adapter_control); |
| val64 ^= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| } |
| |
| mod_timer(&sp->id_timer, jiffies + HZ / 2); |
| } |
| |
| /** |
| * s2io_ethtool_idnic - To physically identify the nic on the system. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @id : pointer to the structure with identification parameters given by |
| * ethtool. |
| * Description: Used to physically identify the NIC on the system. |
| * The Link LED will blink for a time specified by the user for |
| * identification. |
| * NOTE: The Link has to be Up to be able to blink the LED. Hence |
| * identification is possible only if it's link is up. |
| * Return value: |
| * int , returns 0 on success |
| */ |
| |
| static int s2io_ethtool_idnic(struct net_device *dev, u32 data) |
| { |
| u64 val64 = 0, last_gpio_ctrl_val; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u16 subid; |
| |
| subid = sp->pdev->subsystem_device; |
| last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| if ((sp->device_type == XFRAME_I_DEVICE) && |
| ((subid & 0xFF) < 0x07)) { |
| val64 = readq(&bar0->adapter_control); |
| if (!(val64 & ADAPTER_CNTL_EN)) { |
| printk(KERN_ERR |
| "Adapter Link down, cannot blink LED\n"); |
| return -EFAULT; |
| } |
| } |
| if (sp->id_timer.function == NULL) { |
| init_timer(&sp->id_timer); |
| sp->id_timer.function = s2io_phy_id; |
| sp->id_timer.data = (unsigned long) sp; |
| } |
| mod_timer(&sp->id_timer, jiffies); |
| if (data) |
| msleep_interruptible(data * HZ); |
| else |
| msleep_interruptible(MAX_FLICKER_TIME); |
| del_timer_sync(&sp->id_timer); |
| |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) { |
| writeq(last_gpio_ctrl_val, &bar0->gpio_control); |
| last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| } |
| |
| return 0; |
| } |
| |
| static void s2io_ethtool_gringparam(struct net_device *dev, |
| struct ethtool_ringparam *ering) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| int i,tx_desc_count=0,rx_desc_count=0; |
| |
| if (sp->rxd_mode == RXD_MODE_1) |
| ering->rx_max_pending = MAX_RX_DESC_1; |
| else if (sp->rxd_mode == RXD_MODE_3B) |
| ering->rx_max_pending = MAX_RX_DESC_2; |
| |
| ering->tx_max_pending = MAX_TX_DESC; |
| for (i = 0 ; i < sp->config.tx_fifo_num ; i++) |
| tx_desc_count += sp->config.tx_cfg[i].fifo_len; |
| |
| DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds); |
| ering->tx_pending = tx_desc_count; |
| rx_desc_count = 0; |
| for (i = 0 ; i < sp->config.rx_ring_num ; i++) |
| rx_desc_count += sp->config.rx_cfg[i].num_rxd; |
| |
| ering->rx_pending = rx_desc_count; |
| |
| ering->rx_mini_max_pending = 0; |
| ering->rx_mini_pending = 0; |
| if(sp->rxd_mode == RXD_MODE_1) |
| ering->rx_jumbo_max_pending = MAX_RX_DESC_1; |
| else if (sp->rxd_mode == RXD_MODE_3B) |
| ering->rx_jumbo_max_pending = MAX_RX_DESC_2; |
| ering->rx_jumbo_pending = rx_desc_count; |
| } |
| |
| /** |
| * s2io_ethtool_getpause_data -Pause frame frame generation and reception. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ep : pointer to the structure with pause parameters given by ethtool. |
| * Description: |
| * Returns the Pause frame generation and reception capability of the NIC. |
| * Return value: |
| * void |
| */ |
| static void s2io_ethtool_getpause_data(struct net_device *dev, |
| struct ethtool_pauseparam *ep) |
| { |
| u64 val64; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (val64 & RMAC_PAUSE_GEN_ENABLE) |
| ep->tx_pause = TRUE; |
| if (val64 & RMAC_PAUSE_RX_ENABLE) |
| ep->rx_pause = TRUE; |
| ep->autoneg = FALSE; |
| } |
| |
| /** |
| * s2io_ethtool_setpause_data - set/reset pause frame generation. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ep : pointer to the structure with pause parameters given by ethtool. |
| * Description: |
| * It can be used to set or reset Pause frame generation or reception |
| * support of the NIC. |
| * Return value: |
| * int, returns 0 on Success |
| */ |
| |
| static int s2io_ethtool_setpause_data(struct net_device *dev, |
| struct ethtool_pauseparam *ep) |
| { |
| u64 val64; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (ep->tx_pause) |
| val64 |= RMAC_PAUSE_GEN_ENABLE; |
| else |
| val64 &= ~RMAC_PAUSE_GEN_ENABLE; |
| if (ep->rx_pause) |
| val64 |= RMAC_PAUSE_RX_ENABLE; |
| else |
| val64 &= ~RMAC_PAUSE_RX_ENABLE; |
| writeq(val64, &bar0->rmac_pause_cfg); |
| return 0; |
| } |
| |
| /** |
| * read_eeprom - reads 4 bytes of data from user given offset. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @off : offset at which the data must be written |
| * @data : Its an output parameter where the data read at the given |
| * offset is stored. |
| * Description: |
| * Will read 4 bytes of data from the user given offset and return the |
| * read data. |
| * NOTE: Will allow to read only part of the EEPROM visible through the |
| * I2C bus. |
| * Return value: |
| * -1 on failure and 0 on success. |
| */ |
| |
| #define S2IO_DEV_ID 5 |
| static int read_eeprom(struct s2io_nic * sp, int off, u64 * data) |
| { |
| int ret = -1; |
| u32 exit_cnt = 0; |
| u64 val64; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | |
| I2C_CONTROL_CNTL_START; |
| SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->i2c_control); |
| if (I2C_CONTROL_CNTL_END(val64)) { |
| *data = I2C_CONTROL_GET_DATA(val64); |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | |
| SPI_CONTROL_BYTECNT(0x3) | |
| SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| val64 |= SPI_CONTROL_REQ; |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->spi_control); |
| if (val64 & SPI_CONTROL_NACK) { |
| ret = 1; |
| break; |
| } else if (val64 & SPI_CONTROL_DONE) { |
| *data = readq(&bar0->spi_data); |
| *data &= 0xffffff; |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * write_eeprom - actually writes the relevant part of the data value. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @off : offset at which the data must be written |
| * @data : The data that is to be written |
| * @cnt : Number of bytes of the data that are actually to be written into |
| * the Eeprom. (max of 3) |
| * Description: |
| * Actually writes the relevant part of the data value into the Eeprom |
| * through the I2C bus. |
| * Return value: |
| * 0 on success, -1 on failure. |
| */ |
| |
| static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt) |
| { |
| int exit_cnt = 0, ret = -1; |
| u64 val64; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) | |
| I2C_CONTROL_CNTL_START; |
| SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->i2c_control); |
| if (I2C_CONTROL_CNTL_END(val64)) { |
| if (!(val64 & I2C_CONTROL_NACK)) |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| |
| if (sp->device_type == XFRAME_II_DEVICE) { |
| int write_cnt = (cnt == 8) ? 0 : cnt; |
| writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data); |
| |
| val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | |
| SPI_CONTROL_BYTECNT(write_cnt) | |
| SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| val64 |= SPI_CONTROL_REQ; |
| SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); |
| while (exit_cnt < 5) { |
| val64 = readq(&bar0->spi_control); |
| if (val64 & SPI_CONTROL_NACK) { |
| ret = 1; |
| break; |
| } else if (val64 & SPI_CONTROL_DONE) { |
| ret = 0; |
| break; |
| } |
| msleep(50); |
| exit_cnt++; |
| } |
| } |
| return ret; |
| } |
| static void s2io_vpd_read(struct s2io_nic *nic) |
| { |
| u8 *vpd_data; |
| u8 data; |
| int i=0, cnt, fail = 0; |
| int vpd_addr = 0x80; |
| |
| if (nic->device_type == XFRAME_II_DEVICE) { |
| strcpy(nic->product_name, "Xframe II 10GbE network adapter"); |
| vpd_addr = 0x80; |
| } |
| else { |
| strcpy(nic->product_name, "Xframe I 10GbE network adapter"); |
| vpd_addr = 0x50; |
| } |
| strcpy(nic->serial_num, "NOT AVAILABLE"); |
| |
| vpd_data = kmalloc(256, GFP_KERNEL); |
| if (!vpd_data) { |
| nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; |
| return; |
| } |
| nic->mac_control.stats_info->sw_stat.mem_allocated += 256; |
| |
| for (i = 0; i < 256; i +=4 ) { |
| pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); |
| pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); |
| pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); |
| for (cnt = 0; cnt <5; cnt++) { |
| msleep(2); |
| pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); |
| if (data == 0x80) |
| break; |
| } |
| if (cnt >= 5) { |
| DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); |
| fail = 1; |
| break; |
| } |
| pci_read_config_dword(nic->pdev, (vpd_addr + 4), |
| (u32 *)&vpd_data[i]); |
| } |
| |
| if(!fail) { |
| /* read serial number of adapter */ |
| for (cnt = 0; cnt < 256; cnt++) { |
| if ((vpd_data[cnt] == 'S') && |
| (vpd_data[cnt+1] == 'N') && |
| (vpd_data[cnt+2] < VPD_STRING_LEN)) { |
| memset(nic->serial_num, 0, VPD_STRING_LEN); |
| memcpy(nic->serial_num, &vpd_data[cnt + 3], |
| vpd_data[cnt+2]); |
| break; |
| } |
| } |
| } |
| |
| if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { |
| memset(nic->product_name, 0, vpd_data[1]); |
| memcpy(nic->product_name, &vpd_data[3], vpd_data[1]); |
| } |
| kfree(vpd_data); |
| nic->mac_control.stats_info->sw_stat.mem_freed += 256; |
| } |
| |
| /** |
| * s2io_ethtool_geeprom - reads the value stored in the Eeprom. |
| * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| * @eeprom : pointer to the user level structure provided by ethtool, |
| * containing all relevant information. |
| * @data_buf : user defined value to be written into Eeprom. |
| * Description: Reads the values stored in the Eeprom at given offset |
| * for a given length. Stores these values int the input argument data |
| * buffer 'data_buf' and returns these to the caller (ethtool.) |
| * Return value: |
| * int 0 on success |
| */ |
| |
| static int s2io_ethtool_geeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, u8 * data_buf) |
| { |
| u32 i, valid; |
| u64 data; |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); |
| |
| if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) |
| eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; |
| |
| for (i = 0; i < eeprom->len; i += 4) { |
| if (read_eeprom(sp, (eeprom->offset + i), &data)) { |
| DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); |
| return -EFAULT; |
| } |
| valid = INV(data); |
| memcpy((data_buf + i), &valid, 4); |
| } |
| return 0; |
| } |
| |
| /** |
| * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @eeprom : pointer to the user level structure provided by ethtool, |
| * containing all relevant information. |
| * @data_buf ; user defined value to be written into Eeprom. |
| * Description: |
| * Tries to write the user provided value in the Eeprom, at the offset |
| * given by the user. |
| * Return value: |
| * 0 on success, -EFAULT on failure. |
| */ |
| |
| static int s2io_ethtool_seeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, |
| u8 * data_buf) |
| { |
| int len = eeprom->len, cnt = 0; |
| u64 valid = 0, data; |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { |
| DBG_PRINT(ERR_DBG, |
| "ETHTOOL_WRITE_EEPROM Err: Magic value "); |
| DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", |
| eeprom->magic); |
| return -EFAULT; |
| } |
| |
| while (len) { |
| data = (u32) data_buf[cnt] & 0x000000FF; |
| if (data) { |
| valid = (u32) (data << 24); |
| } else |
| valid = data; |
| |
| if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { |
| DBG_PRINT(ERR_DBG, |
| "ETHTOOL_WRITE_EEPROM Err: Cannot "); |
| DBG_PRINT(ERR_DBG, |
| "write into the specified offset\n"); |
| return -EFAULT; |
| } |
| cnt++; |
| len--; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_register_test - reads and writes into all clock domains. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data : variable that returns the result of each of the test conducted b |
| * by the driver. |
| * Description: |
| * Read and write into all clock domains. The NIC has 3 clock domains, |
| * see that registers in all the three regions are accessible. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_register_test(struct s2io_nic * sp, uint64_t * data) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = 0, exp_val; |
| int fail = 0; |
| |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x123456789abcdefULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); |
| } |
| |
| val64 = readq(&bar0->rmac_pause_cfg); |
| if (val64 != 0xc000ffff00000000ULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); |
| } |
| |
| val64 = readq(&bar0->rx_queue_cfg); |
| if (sp->device_type == XFRAME_II_DEVICE) |
| exp_val = 0x0404040404040404ULL; |
| else |
| exp_val = 0x0808080808080808ULL; |
| if (val64 != exp_val) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); |
| } |
| |
| val64 = readq(&bar0->xgxs_efifo_cfg); |
| if (val64 != 0x000000001923141EULL) { |
| fail = 1; |
| DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); |
| } |
| |
| val64 = 0x5A5A5A5A5A5A5A5AULL; |
| writeq(val64, &bar0->xmsi_data); |
| val64 = readq(&bar0->xmsi_data); |
| if (val64 != 0x5A5A5A5A5A5A5A5AULL) { |
| fail = 1; |
| DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); |
| } |
| |
| val64 = 0xA5A5A5A5A5A5A5A5ULL; |
| writeq(val64, &bar0->xmsi_data); |
| val64 = readq(&bar0->xmsi_data); |
| if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { |
| fail = 1; |
| DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); |
| } |
| |
| *data = fail; |
| return fail; |
| } |
| |
| /** |
| * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data:variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * Verify that EEPROM in the xena can be programmed using I2C_CONTROL |
| * register. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data) |
| { |
| int fail = 0; |
| u64 ret_data, org_4F0, org_7F0; |
| u8 saved_4F0 = 0, saved_7F0 = 0; |
| struct net_device *dev = sp->dev; |
| |
| /* Test Write Error at offset 0 */ |
| /* Note that SPI interface allows write access to all areas |
| * of EEPROM. Hence doing all negative testing only for Xframe I. |
| */ |
| if (sp->device_type == XFRAME_I_DEVICE) |
| if (!write_eeprom(sp, 0, 0, 3)) |
| fail = 1; |
| |
| /* Save current values at offsets 0x4F0 and 0x7F0 */ |
| if (!read_eeprom(sp, 0x4F0, &org_4F0)) |
| saved_4F0 = 1; |
| if (!read_eeprom(sp, 0x7F0, &org_7F0)) |
| saved_7F0 = 1; |
| |
| /* Test Write at offset 4f0 */ |
| if (write_eeprom(sp, 0x4F0, 0x012345, 3)) |
| fail = 1; |
| if (read_eeprom(sp, 0x4F0, &ret_data)) |
| fail = 1; |
| |
| if (ret_data != 0x012345) { |
| DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " |
| "Data written %llx Data read %llx\n", |
| dev->name, (unsigned long long)0x12345, |
| (unsigned long long)ret_data); |
| fail = 1; |
| } |
| |
| /* Reset the EEPROM data go FFFF */ |
| write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); |
| |
| /* Test Write Request Error at offset 0x7c */ |
| if (sp->device_type == XFRAME_I_DEVICE) |
| if (!write_eeprom(sp, 0x07C, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Request at offset 0x7f0 */ |
| if (write_eeprom(sp, 0x7F0, 0x012345, 3)) |
| fail = 1; |
| if (read_eeprom(sp, 0x7F0, &ret_data)) |
| fail = 1; |
| |
| if (ret_data != 0x012345) { |
| DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " |
| "Data written %llx Data read %llx\n", |
| dev->name, (unsigned long long)0x12345, |
| (unsigned long long)ret_data); |
| fail = 1; |
| } |
| |
| /* Reset the EEPROM data go FFFF */ |
| write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); |
| |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| /* Test Write Error at offset 0x80 */ |
| if (!write_eeprom(sp, 0x080, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 0xfc */ |
| if (!write_eeprom(sp, 0x0FC, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 0x100 */ |
| if (!write_eeprom(sp, 0x100, 0, 3)) |
| fail = 1; |
| |
| /* Test Write Error at offset 4ec */ |
| if (!write_eeprom(sp, 0x4EC, 0, 3)) |
| fail = 1; |
| } |
| |
| /* Restore values at offsets 0x4F0 and 0x7F0 */ |
| if (saved_4F0) |
| write_eeprom(sp, 0x4F0, org_4F0, 3); |
| if (saved_7F0) |
| write_eeprom(sp, 0x7F0, org_7F0, 3); |
| |
| *data = fail; |
| return fail; |
| } |
| |
| /** |
| * s2io_bist_test - invokes the MemBist test of the card . |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data:variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * This invokes the MemBist test of the card. We give around |
| * 2 secs time for the Test to complete. If it's still not complete |
| * within this peiod, we consider that the test failed. |
| * Return value: |
| * 0 on success and -1 on failure. |
| */ |
| |
| static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data) |
| { |
| u8 bist = 0; |
| int cnt = 0, ret = -1; |
| |
| pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| bist |= PCI_BIST_START; |
| pci_write_config_word(sp->pdev, PCI_BIST, bist); |
| |
| while (cnt < 20) { |
| pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| if (!(bist & PCI_BIST_START)) { |
| *data = (bist & PCI_BIST_CODE_MASK); |
| ret = 0; |
| break; |
| } |
| msleep(100); |
| cnt++; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s2io-link_test - verifies the link state of the nic |
| * @sp ; private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data: variable that returns the result of each of the test conducted by |
| * the driver. |
| * Description: |
| * The function verifies the link state of the NIC and updates the input |
| * argument 'data' appropriately. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_link_test(struct s2io_nic * sp, uint64_t * data) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| |
| val64 = readq(&bar0->adapter_status); |
| if(!(LINK_IS_UP(val64))) |
| *data = 1; |
| else |
| *data = 0; |
| |
| return *data; |
| } |
| |
| /** |
| * s2io_rldram_test - offline test for access to the RldRam chip on the NIC |
| * @sp - private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @data - variable that returns the result of each of the test |
| * conducted by the driver. |
| * Description: |
| * This is one of the offline test that tests the read and write |
| * access to the RldRam chip on the NIC. |
| * Return value: |
| * 0 on success. |
| */ |
| |
| static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data) |
| { |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int cnt, iteration = 0, test_fail = 0; |
| |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~ADAPTER_ECC_EN; |
| writeq(val64, &bar0->adapter_control); |
| |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| val64 |= MC_RLDRAM_TEST_MODE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| val64 = readq(&bar0->mc_rldram_mrs); |
| val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| |
| val64 |= MC_RLDRAM_MRS_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| |
| while (iteration < 2) { |
| val64 = 0x55555555aaaa0000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d0); |
| |
| val64 = 0xaaaa5a5555550000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d1); |
| |
| val64 = 0x55aaaaaaaa5a0000ULL; |
| if (iteration == 1) { |
| val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| } |
| writeq(val64, &bar0->mc_rldram_test_d2); |
| |
| val64 = (u64) (0x0000003ffffe0100ULL); |
| writeq(val64, &bar0->mc_rldram_test_add); |
| |
| val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | |
| MC_RLDRAM_TEST_GO; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| for (cnt = 0; cnt < 5; cnt++) { |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (val64 & MC_RLDRAM_TEST_DONE) |
| break; |
| msleep(200); |
| } |
| |
| if (cnt == 5) |
| break; |
| |
| val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); |
| |
| for (cnt = 0; cnt < 5; cnt++) { |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (val64 & MC_RLDRAM_TEST_DONE) |
| break; |
| msleep(500); |
| } |
| |
| if (cnt == 5) |
| break; |
| |
| val64 = readq(&bar0->mc_rldram_test_ctrl); |
| if (!(val64 & MC_RLDRAM_TEST_PASS)) |
| test_fail = 1; |
| |
| iteration++; |
| } |
| |
| *data = test_fail; |
| |
| /* Bring the adapter out of test mode */ |
| SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); |
| |
| return test_fail; |
| } |
| |
| /** |
| * s2io_ethtool_test - conducts 6 tsets to determine the health of card. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @ethtest : pointer to a ethtool command specific structure that will be |
| * returned to the user. |
| * @data : variable that returns the result of each of the test |
| * conducted by the driver. |
| * Description: |
| * This function conducts 6 tests ( 4 offline and 2 online) to determine |
| * the health of the card. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_ethtool_test(struct net_device *dev, |
| struct ethtool_test *ethtest, |
| uint64_t * data) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| int orig_state = netif_running(sp->dev); |
| |
| if (ethtest->flags == ETH_TEST_FL_OFFLINE) { |
| /* Offline Tests. */ |
| if (orig_state) |
| s2io_close(sp->dev); |
| |
| if (s2io_register_test(sp, &data[0])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| s2io_reset(sp); |
| |
| if (s2io_rldram_test(sp, &data[3])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| s2io_reset(sp); |
| |
| if (s2io_eeprom_test(sp, &data[1])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| if (s2io_bist_test(sp, &data[4])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| if (orig_state) |
| s2io_open(sp->dev); |
| |
| data[2] = 0; |
| } else { |
| /* Online Tests. */ |
| if (!orig_state) { |
| DBG_PRINT(ERR_DBG, |
| "%s: is not up, cannot run test\n", |
| dev->name); |
| data[0] = -1; |
| data[1] = -1; |
| data[2] = -1; |
| data[3] = -1; |
| data[4] = -1; |
| } |
| |
| if (s2io_link_test(sp, &data[2])) |
| ethtest->flags |= ETH_TEST_FL_FAILED; |
| |
| data[0] = 0; |
| data[1] = 0; |
| data[3] = 0; |
| data[4] = 0; |
| } |
| } |
| |
| static void s2io_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *estats, |
| u64 * tmp_stats) |
| { |
| int i = 0, k; |
| struct s2io_nic *sp = netdev_priv(dev); |
| struct stat_block *stat_info = sp->mac_control.stats_info; |
| |
| s2io_updt_stats(sp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_data_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_mcst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_bcst_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_ttl_octets); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_ucst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_nucst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_any_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_vld_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_drop_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_icmp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_rst_tcp); |
| tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); |
| tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->tmac_udp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_data_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_mcst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_vld_bcst_frms); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_ttl_octets); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow) |
| << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow) |
| << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_discarded_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow) |
| << 32 | le32_to_cpu(stat_info->rmac_drop_events); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_usized_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_osized_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_frag_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_jabber_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_ip); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_drop_ip); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_icmp); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_udp); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_err_drp_udp); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6); |
| tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_pause_cnt); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt); |
| tmp_stats[i++] = |
| (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 | |
| le32_to_cpu(stat_info->rmac_accepted_ip); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt); |
| |
| /* Enhanced statistics exist only for Hercules */ |
| if(sp->device_type == XFRAME_II_DEVICE) { |
| tmp_stats[i++] = |
| le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms); |
| tmp_stats[i++] = |
| le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms); |
| tmp_stats[i++] = |
| le64_to_cpu(stat_info->rmac_ttl_8192_max_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms); |
| tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard); |
| tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt); |
| } |
| |
| tmp_stats[i++] = 0; |
| tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs; |
| tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs; |
| tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt; |
| for (k = 0; k < MAX_RX_RINGS; k++) |
| tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k]; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high; |
| tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high; |
| tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low; |
| tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.sending_both; |
| tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts; |
| tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts; |
| if (stat_info->sw_stat.num_aggregations) { |
| u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated; |
| int count = 0; |
| /* |
| * Since 64-bit divide does not work on all platforms, |
| * do repeated subtraction. |
| */ |
| while (tmp >= stat_info->sw_stat.num_aggregations) { |
| tmp -= stat_info->sw_stat.num_aggregations; |
| count++; |
| } |
| tmp_stats[i++] = count; |
| } |
| else |
| tmp_stats[i++] = 0; |
| tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.mem_allocated; |
| tmp_stats[i++] = stat_info->sw_stat.mem_freed; |
| tmp_stats[i++] = stat_info->sw_stat.link_up_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.link_down_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.link_up_time; |
| tmp_stats[i++] = stat_info->sw_stat.link_down_time; |
| |
| tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt; |
| |
| tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt; |
| tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt; |
| } |
| |
| static int s2io_ethtool_get_regs_len(struct net_device *dev) |
| { |
| return (XENA_REG_SPACE); |
| } |
| |
| |
| static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| return (sp->rx_csum); |
| } |
| |
| static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| if (data) |
| sp->rx_csum = 1; |
| else |
| sp->rx_csum = 0; |
| |
| return 0; |
| } |
| |
| static int s2io_get_eeprom_len(struct net_device *dev) |
| { |
| return (XENA_EEPROM_SPACE); |
| } |
| |
| static int s2io_get_sset_count(struct net_device *dev, int sset) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| switch (sset) { |
| case ETH_SS_TEST: |
| return S2IO_TEST_LEN; |
| case ETH_SS_STATS: |
| switch(sp->device_type) { |
| case XFRAME_I_DEVICE: |
| return XFRAME_I_STAT_LEN; |
| case XFRAME_II_DEVICE: |
| return XFRAME_II_STAT_LEN; |
| default: |
| return 0; |
| } |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void s2io_ethtool_get_strings(struct net_device *dev, |
| u32 stringset, u8 * data) |
| { |
| int stat_size = 0; |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| switch (stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); |
| break; |
| case ETH_SS_STATS: |
| stat_size = sizeof(ethtool_xena_stats_keys); |
| memcpy(data, ðtool_xena_stats_keys,stat_size); |
| if(sp->device_type == XFRAME_II_DEVICE) { |
| memcpy(data + stat_size, |
| ðtool_enhanced_stats_keys, |
| sizeof(ethtool_enhanced_stats_keys)); |
| stat_size += sizeof(ethtool_enhanced_stats_keys); |
| } |
| |
| memcpy(data + stat_size, ðtool_driver_stats_keys, |
| sizeof(ethtool_driver_stats_keys)); |
| } |
| } |
| |
| static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) |
| { |
| if (data) |
| dev->features |= NETIF_F_IP_CSUM; |
| else |
| dev->features &= ~NETIF_F_IP_CSUM; |
| |
| return 0; |
| } |
| |
| static u32 s2io_ethtool_op_get_tso(struct net_device *dev) |
| { |
| return (dev->features & NETIF_F_TSO) != 0; |
| } |
| static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data) |
| { |
| if (data) |
| dev->features |= (NETIF_F_TSO | NETIF_F_TSO6); |
| else |
| dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| |
| return 0; |
| } |
| |
| static const struct ethtool_ops netdev_ethtool_ops = { |
| .get_settings = s2io_ethtool_gset, |
| .set_settings = s2io_ethtool_sset, |
| .get_drvinfo = s2io_ethtool_gdrvinfo, |
| .get_regs_len = s2io_ethtool_get_regs_len, |
| .get_regs = s2io_ethtool_gregs, |
| .get_link = ethtool_op_get_link, |
| .get_eeprom_len = s2io_get_eeprom_len, |
| .get_eeprom = s2io_ethtool_geeprom, |
| .set_eeprom = s2io_ethtool_seeprom, |
| .get_ringparam = s2io_ethtool_gringparam, |
| .get_pauseparam = s2io_ethtool_getpause_data, |
| .set_pauseparam = s2io_ethtool_setpause_data, |
| .get_rx_csum = s2io_ethtool_get_rx_csum, |
| .set_rx_csum = s2io_ethtool_set_rx_csum, |
| .set_tx_csum = s2io_ethtool_op_set_tx_csum, |
| .set_sg = ethtool_op_set_sg, |
| .get_tso = s2io_ethtool_op_get_tso, |
| .set_tso = s2io_ethtool_op_set_tso, |
| .set_ufo = ethtool_op_set_ufo, |
| .self_test = s2io_ethtool_test, |
| .get_strings = s2io_ethtool_get_strings, |
| .phys_id = s2io_ethtool_idnic, |
| .get_ethtool_stats = s2io_get_ethtool_stats, |
| .get_sset_count = s2io_get_sset_count, |
| }; |
| |
| /** |
| * s2io_ioctl - Entry point for the Ioctl |
| * @dev : Device pointer. |
| * @ifr : An IOCTL specefic structure, that can contain a pointer to |
| * a proprietary structure used to pass information to the driver. |
| * @cmd : This is used to distinguish between the different commands that |
| * can be passed to the IOCTL functions. |
| * Description: |
| * Currently there are no special functionality supported in IOCTL, hence |
| * function always return EOPNOTSUPPORTED |
| */ |
| |
| static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * s2io_change_mtu - entry point to change MTU size for the device. |
| * @dev : device pointer. |
| * @new_mtu : the new MTU size for the device. |
| * Description: A driver entry point to change MTU size for the device. |
| * Before changing the MTU the device must be stopped. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| static int s2io_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| int ret = 0; |
| |
| if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { |
| DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", |
| dev->name); |
| return -EPERM; |
| } |
| |
| dev->mtu = new_mtu; |
| if (netif_running(dev)) { |
| s2io_stop_all_tx_queue(sp); |
| s2io_card_down(sp); |
| ret = s2io_card_up(sp); |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", |
| __func__); |
| return ret; |
| } |
| s2io_wake_all_tx_queue(sp); |
| } else { /* Device is down */ |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| u64 val64 = new_mtu; |
| |
| writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s2io_set_link - Set the LInk status |
| * @data: long pointer to device private structue |
| * Description: Sets the link status for the adapter |
| */ |
| |
| static void s2io_set_link(struct work_struct *work) |
| { |
| struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task); |
| struct net_device *dev = nic->dev; |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64; |
| u16 subid; |
| |
| rtnl_lock(); |
| |
| if (!netif_running(dev)) |
| goto out_unlock; |
| |
| if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { |
| /* The card is being reset, no point doing anything */ |
| goto out_unlock; |
| } |
| |
| subid = nic->pdev->subsystem_device; |
| if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { |
| /* |
| * Allow a small delay for the NICs self initiated |
| * cleanup to complete. |
| */ |
| msleep(100); |
| } |
| |
| val64 = readq(&bar0->adapter_status); |
| if (LINK_IS_UP(val64)) { |
| if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { |
| if (verify_xena_quiescence(nic)) { |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_CNTL_EN; |
| writeq(val64, &bar0->adapter_control); |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS( |
| nic->device_type, subid)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| val64 = readq(&bar0->gpio_control); |
| } else { |
| val64 |= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| } |
| nic->device_enabled_once = TRUE; |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); |
| DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); |
| s2io_stop_all_tx_queue(nic); |
| } |
| } |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_LED_ON; |
| writeq(val64, &bar0->adapter_control); |
| s2io_link(nic, LINK_UP); |
| } else { |
| if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, |
| subid)) { |
| val64 = readq(&bar0->gpio_control); |
| val64 &= ~GPIO_CTRL_GPIO_0; |
| writeq(val64, &bar0->gpio_control); |
| val64 = readq(&bar0->gpio_control); |
| } |
| /* turn off LED */ |
| val64 = readq(&bar0->adapter_control); |
| val64 = val64 &(~ADAPTER_LED_ON); |
| writeq(val64, &bar0->adapter_control); |
| s2io_link(nic, LINK_DOWN); |
| } |
| clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); |
| |
| out_unlock: |
| rtnl_unlock(); |
| } |
| |
| static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, |
| struct buffAdd *ba, |
| struct sk_buff **skb, u64 *temp0, u64 *temp1, |
| u64 *temp2, int size) |
| { |
| struct net_device *dev = sp->dev; |
| struct swStat *stats = &sp->mac_control.stats_info->sw_stat; |
| |
| if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { |
| struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; |
| /* allocate skb */ |
| if (*skb) { |
| DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); |
| /* |
| * As Rx frame are not going to be processed, |
| * using same mapped address for the Rxd |
| * buffer pointer |
| */ |
| rxdp1->Buffer0_ptr = *temp0; |
| } else { |
| *skb = dev_alloc_skb(size); |
| if (!(*skb)) { |
| DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name); |
| DBG_PRINT(INFO_DBG, "memory to allocate "); |
| DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n"); |
| sp->mac_control.stats_info->sw_stat. \ |
| mem_alloc_fail_cnt++; |
| return -ENOMEM ; |
| } |
| sp->mac_control.stats_info->sw_stat.mem_allocated |
| += (*skb)->truesize; |
| /* storing the mapped addr in a temp variable |
| * such it will be used for next rxd whose |
| * Host Control is NULL |
| */ |
| rxdp1->Buffer0_ptr = *temp0 = |
| pci_map_single( sp->pdev, (*skb)->data, |
| size - NET_IP_ALIGN, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) |
| goto memalloc_failed; |
| rxdp->Host_Control = (unsigned long) (*skb); |
| } |
| } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { |
| struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; |
| /* Two buffer Mode */ |
| if (*skb) { |
| rxdp3->Buffer2_ptr = *temp2; |
| rxdp3->Buffer0_ptr = *temp0; |
| rxdp3->Buffer1_ptr = *temp1; |
| } else { |
| *skb = dev_alloc_skb(size); |
| if (!(*skb)) { |
| DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name); |
| DBG_PRINT(INFO_DBG, "memory to allocate "); |
| DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n"); |
| sp->mac_control.stats_info->sw_stat. \ |
| mem_alloc_fail_cnt++; |
| return -ENOMEM; |
| } |
| sp->mac_control.stats_info->sw_stat.mem_allocated |
| += (*skb)->truesize; |
| rxdp3->Buffer2_ptr = *temp2 = |
| pci_map_single(sp->pdev, (*skb)->data, |
| dev->mtu + 4, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) |
| goto memalloc_failed; |
| rxdp3->Buffer0_ptr = *temp0 = |
| pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(sp->pdev, |
| rxdp3->Buffer0_ptr)) { |
| pci_unmap_single (sp->pdev, |
| (dma_addr_t)rxdp3->Buffer2_ptr, |
| dev->mtu + 4, PCI_DMA_FROMDEVICE); |
| goto memalloc_failed; |
| } |
| rxdp->Host_Control = (unsigned long) (*skb); |
| |
| /* Buffer-1 will be dummy buffer not used */ |
| rxdp3->Buffer1_ptr = *temp1 = |
| pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(sp->pdev, |
| rxdp3->Buffer1_ptr)) { |
| pci_unmap_single (sp->pdev, |
| (dma_addr_t)rxdp3->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single (sp->pdev, |
| (dma_addr_t)rxdp3->Buffer2_ptr, |
| dev->mtu + 4, PCI_DMA_FROMDEVICE); |
| goto memalloc_failed; |
| } |
| } |
| } |
| return 0; |
| memalloc_failed: |
| stats->pci_map_fail_cnt++; |
| stats->mem_freed += (*skb)->truesize; |
| dev_kfree_skb(*skb); |
| return -ENOMEM; |
| } |
| |
| static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, |
| int size) |
| { |
| struct net_device *dev = sp->dev; |
| if (sp->rxd_mode == RXD_MODE_1) { |
| rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN); |
| } else if (sp->rxd_mode == RXD_MODE_3B) { |
| rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); |
| rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); |
| rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4); |
| } |
| } |
| |
| static int rxd_owner_bit_reset(struct s2io_nic *sp) |
| { |
| int i, j, k, blk_cnt = 0, size; |
| struct mac_info * mac_control = &sp->mac_control; |
| struct config_param *config = &sp->config; |
| struct net_device *dev = sp->dev; |
| struct RxD_t *rxdp = NULL; |
| struct sk_buff *skb = NULL; |
| struct buffAdd *ba = NULL; |
| u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; |
| |
| /* Calculate the size based on ring mode */ |
| size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + HEADER_SNAP_SIZE; |
| if (sp->rxd_mode == RXD_MODE_1) |
| size += NET_IP_ALIGN; |
| else if (sp->rxd_mode == RXD_MODE_3B) |
| size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = config->rx_cfg[i].num_rxd / |
| (rxd_count[sp->rxd_mode] +1); |
| |
| for (j = 0; j < blk_cnt; j++) { |
| for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { |
| rxdp = mac_control->rings[i]. |
| rx_blocks[j].rxds[k].virt_addr; |
| if(sp->rxd_mode == RXD_MODE_3B) |
| ba = &mac_control->rings[i].ba[j][k]; |
| if (set_rxd_buffer_pointer(sp, rxdp, ba, |
| &skb,(u64 *)&temp0_64, |
| (u64 *)&temp1_64, |
| (u64 *)&temp2_64, |
| size) == -ENOMEM) { |
| return 0; |
| } |
| |
| set_rxd_buffer_size(sp, rxdp, size); |
| wmb(); |
| /* flip the Ownership bit to Hardware */ |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| } |
| } |
| } |
| return 0; |
| |
| } |
| |
| static int s2io_add_isr(struct s2io_nic * sp) |
| { |
| int ret = 0; |
| struct net_device *dev = sp->dev; |
| int err = 0; |
| |
| if (sp->config.intr_type == MSI_X) |
| ret = s2io_enable_msi_x(sp); |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); |
| sp->config.intr_type = INTA; |
| } |
| |
| /* Store the values of the MSIX table in the struct s2io_nic structure */ |
| store_xmsi_data(sp); |
| |
| /* After proper initialization of H/W, register ISR */ |
| if (sp->config.intr_type == MSI_X) { |
| int i, msix_rx_cnt = 0; |
| |
| for (i = 0; i < sp->num_entries; i++) { |
| if (sp->s2io_entries[i].in_use == MSIX_FLG) { |
| if (sp->s2io_entries[i].type == |
| MSIX_RING_TYPE) { |
| sprintf(sp->desc[i], "%s:MSI-X-%d-RX", |
| dev->name, i); |
| err = request_irq(sp->entries[i].vector, |
| s2io_msix_ring_handle, 0, |
| sp->desc[i], |
| sp->s2io_entries[i].arg); |
| } else if (sp->s2io_entries[i].type == |
| MSIX_ALARM_TYPE) { |
| sprintf(sp->desc[i], "%s:MSI-X-%d-TX", |
| dev->name, i); |
| err = request_irq(sp->entries[i].vector, |
| s2io_msix_fifo_handle, 0, |
| sp->desc[i], |
| sp->s2io_entries[i].arg); |
| |
| } |
| /* if either data or addr is zero print it. */ |
| if (!(sp->msix_info[i].addr && |
| sp->msix_info[i].data)) { |
| DBG_PRINT(ERR_DBG, |
| "%s @Addr:0x%llx Data:0x%llx\n", |
| sp->desc[i], |
| (unsigned long long) |
| sp->msix_info[i].addr, |
| (unsigned long long) |
| ntohl(sp->msix_info[i].data)); |
| } else |
| msix_rx_cnt++; |
| if (err) { |
| remove_msix_isr(sp); |
| |
| DBG_PRINT(ERR_DBG, |
| "%s:MSI-X-%d registration " |
| "failed\n", dev->name, i); |
| |
| DBG_PRINT(ERR_DBG, |
| "%s: Defaulting to INTA\n", |
| dev->name); |
| sp->config.intr_type = INTA; |
| break; |
| } |
| sp->s2io_entries[i].in_use = |
| MSIX_REGISTERED_SUCCESS; |
| } |
| } |
| if (!err) { |
| printk(KERN_INFO "MSI-X-RX %d entries enabled\n", |
| --msix_rx_cnt); |
| DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled" |
| " through alarm vector\n"); |
| } |
| } |
| if (sp->config.intr_type == INTA) { |
| err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED, |
| sp->name, dev); |
| if (err) { |
| DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", |
| dev->name); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| static void s2io_rem_isr(struct s2io_nic * sp) |
| { |
| if (sp->config.intr_type == MSI_X) |
| remove_msix_isr(sp); |
| else |
| remove_inta_isr(sp); |
| } |
| |
| static void do_s2io_card_down(struct s2io_nic * sp, int do_io) |
| { |
| int cnt = 0; |
| struct XENA_dev_config __iomem *bar0 = sp->bar0; |
| register u64 val64 = 0; |
| struct config_param *config; |
| config = &sp->config; |
| |
| if (!is_s2io_card_up(sp)) |
| return; |
| |
| del_timer_sync(&sp->alarm_timer); |
| /* If s2io_set_link task is executing, wait till it completes. */ |
| while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) { |
| msleep(50); |
| } |
| clear_bit(__S2IO_STATE_CARD_UP, &sp->state); |
| |
| /* Disable napi */ |
| if (sp->config.napi) { |
| int off = 0; |
| if (config->intr_type == MSI_X) { |
| for (; off < sp->config.rx_ring_num; off++) |
| napi_disable(&sp->mac_control.rings[off].napi); |
| } |
| else |
| napi_disable(&sp->napi); |
| } |
| |
| /* disable Tx and Rx traffic on the NIC */ |
| if (do_io) |
| stop_nic(sp); |
| |
| s2io_rem_isr(sp); |
| |
| /* stop the tx queue, indicate link down */ |
| s2io_link(sp, LINK_DOWN); |
| |
| /* Check if the device is Quiescent and then Reset the NIC */ |
| while(do_io) { |
| /* As per the HW requirement we need to replenish the |
| * receive buffer to avoid the ring bump. Since there is |
| * no intention of processing the Rx frame at this pointwe are |
| * just settting the ownership bit of rxd in Each Rx |
| * ring to HW and set the appropriate buffer size |
| * based on the ring mode |
| */ |
| rxd_owner_bit_reset(sp); |
| |
| val64 = readq(&bar0->adapter_status); |
| if (verify_xena_quiescence(sp)) { |
| if(verify_pcc_quiescent(sp, sp->device_enabled_once)) |
| break; |
| } |
| |
| msleep(50); |
| cnt++; |
| if (cnt == 10) { |
| DBG_PRINT(ERR_DBG, |
| "s2io_close:Device not Quiescent "); |
| DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", |
| (unsigned long long) val64); |
| break; |
| } |
| } |
| if (do_io) |
| s2io_reset(sp); |
| |
| /* Free all Tx buffers */ |
| free_tx_buffers(sp); |
| |
| /* Free all Rx buffers */ |
| free_rx_buffers(sp); |
| |
| clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); |
| } |
| |
| static void s2io_card_down(struct s2io_nic * sp) |
| { |
| do_s2io_card_down(sp, 1); |
| } |
| |
| static int s2io_card_up(struct s2io_nic * sp) |
| { |
| int i, ret = 0; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| struct net_device *dev = (struct net_device *) sp->dev; |
| u16 interruptible; |
| |
| /* Initialize the H/W I/O registers */ |
| ret = init_nic(sp); |
| if (ret != 0) { |
| DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| dev->name); |
| if (ret != -EIO) |
| s2io_reset(sp); |
| return ret; |
| } |
| |
| /* |
| * Initializing the Rx buffers. For now we are considering only 1 |
| * Rx ring and initializing buffers into 30 Rx blocks |
| */ |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| mac_control->rings[i].mtu = dev->mtu; |
| ret = fill_rx_buffers(sp, &mac_control->rings[i], 1); |
| if (ret) { |
| DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", |
| dev->name); |
| s2io_reset(sp); |
| free_rx_buffers(sp); |
| return -ENOMEM; |
| } |
| DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, |
| mac_control->rings[i].rx_bufs_left); |
| } |
| |
| /* Initialise napi */ |
| if (config->napi) { |
| int i; |
| if (config->intr_type == MSI_X) { |
| for (i = 0; i < sp->config.rx_ring_num; i++) |
| napi_enable(&sp->mac_control.rings[i].napi); |
| } else { |
| napi_enable(&sp->napi); |
| } |
| } |
| |
| /* Maintain the state prior to the open */ |
| if (sp->promisc_flg) |
| sp->promisc_flg = 0; |
| if (sp->m_cast_flg) { |
| sp->m_cast_flg = 0; |
| sp->all_multi_pos= 0; |
| } |
| |
| /* Setting its receive mode */ |
| s2io_set_multicast(dev); |
| |
| if (sp->lro) { |
| /* Initialize max aggregatable pkts per session based on MTU */ |
| sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; |
| /* Check if we can use(if specified) user provided value */ |
| if (lro_max_pkts < sp->lro_max_aggr_per_sess) |
| sp->lro_max_aggr_per_sess = lro_max_pkts; |
| } |
| |
| /* Enable Rx Traffic and interrupts on the NIC */ |
| if (start_nic(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); |
| s2io_reset(sp); |
| free_rx_buffers(sp); |
| return -ENODEV; |
| } |
| |
| /* Add interrupt service routine */ |
| if (s2io_add_isr(sp) != 0) { |
| if (sp->config.intr_type == MSI_X) |
| s2io_rem_isr(sp); |
| s2io_reset(sp); |
| free_rx_buffers(sp); |
| return -ENODEV; |
| } |
| |
| S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); |
| |
| set_bit(__S2IO_STATE_CARD_UP, &sp->state); |
| |
| /* Enable select interrupts */ |
| en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); |
| if (sp->config.intr_type != INTA) { |
| interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; |
| en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); |
| } else { |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; |
| interruptible |= TX_PIC_INTR; |
| en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_restart_nic - Resets the NIC. |
| * @data : long pointer to the device private structure |
| * Description: |
| * This function is scheduled to be run by the s2io_tx_watchdog |
| * function after 0.5 secs to reset the NIC. The idea is to reduce |
| * the run time of the watch dog routine which is run holding a |
| * spin lock. |
| */ |
| |
| static void s2io_restart_nic(struct work_struct *work) |
| { |
| struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); |
| struct net_device *dev = sp->dev; |
| |
| rtnl_lock(); |
| |
| if (!netif_running(dev)) |
| goto out_unlock; |
| |
| s2io_card_down(sp); |
| if (s2io_card_up(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", |
| dev->name); |
| } |
| s2io_wake_all_tx_queue(sp); |
| DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", |
| dev->name); |
| out_unlock: |
| rtnl_unlock(); |
| } |
| |
| /** |
| * s2io_tx_watchdog - Watchdog for transmit side. |
| * @dev : Pointer to net device structure |
| * Description: |
| * This function is triggered if the Tx Queue is stopped |
| * for a pre-defined amount of time when the Interface is still up. |
| * If the Interface is jammed in such a situation, the hardware is |
| * reset (by s2io_close) and restarted again (by s2io_open) to |
| * overcome any problem that might have been caused in the hardware. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_tx_watchdog(struct net_device *dev) |
| { |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| if (netif_carrier_ok(dev)) { |
| sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++; |
| schedule_work(&sp->rst_timer_task); |
| sp->mac_control.stats_info->sw_stat.soft_reset_cnt++; |
| } |
| } |
| |
| /** |
| * rx_osm_handler - To perform some OS related operations on SKB. |
| * @sp: private member of the device structure,pointer to s2io_nic structure. |
| * @skb : the socket buffer pointer. |
| * @len : length of the packet |
| * @cksum : FCS checksum of the frame. |
| * @ring_no : the ring from which this RxD was extracted. |
| * Description: |
| * This function is called by the Rx interrupt serivce routine to perform |
| * some OS related operations on the SKB before passing it to the upper |
| * layers. It mainly checks if the checksum is OK, if so adds it to the |
| * SKBs cksum variable, increments the Rx packet count and passes the SKB |
| * to the upper layer. If the checksum is wrong, it increments the Rx |
| * packet error count, frees the SKB and returns error. |
| * Return value: |
| * SUCCESS on success and -1 on failure. |
| */ |
| static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) |
| { |
| struct s2io_nic *sp = ring_data->nic; |
| struct net_device *dev = (struct net_device *) ring_data->dev; |
| struct sk_buff *skb = (struct sk_buff *) |
| ((unsigned long) rxdp->Host_Control); |
| int ring_no = ring_data->ring_no; |
| u16 l3_csum, l4_csum; |
| unsigned long long err = rxdp->Control_1 & RXD_T_CODE; |
| struct lro *uninitialized_var(lro); |
| u8 err_mask; |
| |
| skb->dev = dev; |
| |
| if (err) { |
| /* Check for parity error */ |
| if (err & 0x1) { |
| sp->mac_control.stats_info->sw_stat.parity_err_cnt++; |
| } |
| err_mask = err >> 48; |
| switch(err_mask) { |
| case 1: |
| sp->mac_control.stats_info->sw_stat. |
| rx_parity_err_cnt++; |
| break; |
| |
| case 2: |
| sp->mac_control.stats_info->sw_stat. |
| rx_abort_cnt++; |
| break; |
| |
| case 3: |
| sp->mac_control.stats_info->sw_stat. |
| rx_parity_abort_cnt++; |
| break; |
| |
| case 4: |
| sp->mac_control.stats_info->sw_stat. |
| rx_rda_fail_cnt++; |
| break; |
| |
| case 5: |
| sp->mac_control.stats_info->sw_stat. |
| rx_unkn_prot_cnt++; |
| break; |
| |
| case 6: |
| sp->mac_control.stats_info->sw_stat. |
| rx_fcs_err_cnt++; |
| break; |
| |
| case 7: |
| sp->mac_control.stats_info->sw_stat. |
| rx_buf_size_err_cnt++; |
| break; |
| |
| case 8: |
| sp->mac_control.stats_info->sw_stat. |
| rx_rxd_corrupt_cnt++; |
| break; |
| |
| case 15: |
| sp->mac_control.stats_info->sw_stat. |
| rx_unkn_err_cnt++; |
| break; |
| } |
| /* |
| * Drop the packet if bad transfer code. Exception being |
| * 0x5, which could be due to unsupported IPv6 extension header. |
| * In this case, we let stack handle the packet. |
| * Note that in this case, since checksum will be incorrect, |
| * stack will validate the same. |
| */ |
| if (err_mask != 0x5) { |
| DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", |
| dev->name, err_mask); |
| dev->stats.rx_crc_errors++; |
| sp->mac_control.stats_info->sw_stat.mem_freed |
| += skb->truesize; |
| dev_kfree_skb(skb); |
| ring_data->rx_bufs_left -= 1; |
| rxdp->Host_Control = 0; |
| return 0; |
| } |
| } |
| |
| /* Updating statistics */ |
| ring_data->rx_packets++; |
| rxdp->Host_Control = 0; |
| if (sp->rxd_mode == RXD_MODE_1) { |
| int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); |
| |
| ring_data->rx_bytes += len; |
| skb_put(skb, len); |
| |
| } else if (sp->rxd_mode == RXD_MODE_3B) { |
| int get_block = ring_data->rx_curr_get_info.block_index; |
| int get_off = ring_data->rx_curr_get_info.offset; |
| int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); |
| int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); |
| unsigned char *buff = skb_push(skb, buf0_len); |
| |
| struct buffAdd *ba = &ring_data->ba[get_block][get_off]; |
| ring_data->rx_bytes += buf0_len + buf2_len; |
| memcpy(buff, ba->ba_0, buf0_len); |
| skb_put(skb, buf2_len); |
| } |
| |
| if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) || |
| (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && |
| (sp->rx_csum)) { |
| l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); |
| l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { |
| /* |
| * NIC verifies if the Checksum of the received |
| * frame is Ok or not and accordingly returns |
| * a flag in the RxD. |
| */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| if (ring_data->lro) { |
| u32 tcp_len; |
| u8 *tcp; |
| int ret = 0; |
| |
| ret = s2io_club_tcp_session(ring_data, |
| skb->data, &tcp, &tcp_len, &lro, |
| rxdp, sp); |
| switch (ret) { |
| case 3: /* Begin anew */ |
| lro->parent = skb; |
| goto aggregate; |
| case 1: /* Aggregate */ |
| { |
| lro_append_pkt(sp, lro, |
| skb, tcp_len); |
| goto aggregate; |
| } |
| case 4: /* Flush session */ |
| { |
| lro_append_pkt(sp, lro, |
| skb, tcp_len); |
| queue_rx_frame(lro->parent, |
| lro->vlan_tag); |
| clear_lro_session(lro); |
| sp->mac_control.stats_info-> |
| sw_stat.flush_max_pkts++; |
| goto aggregate; |
| } |
| case 2: /* Flush both */ |
| lro->parent->data_len = |
| lro->frags_len; |
| sp->mac_control.stats_info-> |
| sw_stat.sending_both++; |
| queue_rx_frame(lro->parent, |
| lro->vlan_tag); |
| clear_lro_session(lro); |
| goto send_up; |
| case 0: /* sessions exceeded */ |
| case -1: /* non-TCP or not |
| * L2 aggregatable |
| */ |
| case 5: /* |
| * First pkt in session not |
| * L3/L4 aggregatable |
| */ |
| break; |
| default: |
| DBG_PRINT(ERR_DBG, |
| "%s: Samadhana!!\n", |
| __func__); |
| BUG(); |
| } |
| } |
| } else { |
| /* |
| * Packet with erroneous checksum, let the |
| * upper layers deal with it. |
| */ |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| } else |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; |
| send_up: |
| queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); |
| aggregate: |
| sp->mac_control.rings[ring_no].rx_bufs_left -= 1; |
| return SUCCESS; |
| } |
| |
| /** |
| * s2io_link - stops/starts the Tx queue. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * @link : inidicates whether link is UP/DOWN. |
| * Description: |
| * This function stops/starts the Tx queue depending on whether the link |
| * status of the NIC is is down or up. This is called by the Alarm |
| * interrupt handler whenever a link change interrupt comes up. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_link(struct s2io_nic * sp, int link) |
| { |
| struct net_device *dev = (struct net_device *) sp->dev; |
| |
| if (link != sp->last_link_state) { |
| init_tti(sp, link); |
| if (link == LINK_DOWN) { |
| DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); |
| s2io_stop_all_tx_queue(sp); |
| netif_carrier_off(dev); |
| if(sp->mac_control.stats_info->sw_stat.link_up_cnt) |
| sp->mac_control.stats_info->sw_stat.link_up_time = |
| jiffies - sp->start_time; |
| sp->mac_control.stats_info->sw_stat.link_down_cnt++; |
| } else { |
| DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); |
| if (sp->mac_control.stats_info->sw_stat.link_down_cnt) |
| sp->mac_control.stats_info->sw_stat.link_down_time = |
| jiffies - sp->start_time; |
| sp->mac_control.stats_info->sw_stat.link_up_cnt++; |
| netif_carrier_on(dev); |
| s2io_wake_all_tx_queue(sp); |
| } |
| } |
| sp->last_link_state = link; |
| sp->start_time = jiffies; |
| } |
| |
| /** |
| * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * Description: |
| * This function initializes a few of the PCI and PCI-X configuration registers |
| * with recommended values. |
| * Return value: |
| * void |
| */ |
| |
| static void s2io_init_pci(struct s2io_nic * sp) |
| { |
| u16 pci_cmd = 0, pcix_cmd = 0; |
| |
| /* Enable Data Parity Error Recovery in PCI-X command register. */ |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| &(pcix_cmd)); |
| pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| (pcix_cmd | 1)); |
| pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| &(pcix_cmd)); |
| |
| /* Set the PErr Response bit in PCI command register. */ |
| pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| pci_write_config_word(sp->pdev, PCI_COMMAND, |
| (pci_cmd | PCI_COMMAND_PARITY)); |
| pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| } |
| |
| static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, |
| u8 *dev_multiq) |
| { |
| if ((tx_fifo_num > MAX_TX_FIFOS) || |
| (tx_fifo_num < 1)) { |
| DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos " |
| "(%d) not supported\n", tx_fifo_num); |
| |
| if (tx_fifo_num < 1) |
| tx_fifo_num = 1; |
| else |
| tx_fifo_num = MAX_TX_FIFOS; |
| |
| DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num); |
| DBG_PRINT(ERR_DBG, "tx fifos\n"); |
| } |
| |
| if (multiq) |
| *dev_multiq = multiq; |
| |
| if (tx_steering_type && (1 == tx_fifo_num)) { |
| if (tx_steering_type != TX_DEFAULT_STEERING) |
| DBG_PRINT(ERR_DBG, |
| "s2io: Tx steering is not supported with " |
| "one fifo. Disabling Tx steering.\n"); |
| tx_steering_type = NO_STEERING; |
| } |
| |
| if ((tx_steering_type < NO_STEERING) || |
| (tx_steering_type > TX_DEFAULT_STEERING)) { |
| DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not " |
| "supported\n"); |
| DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n"); |
| tx_steering_type = NO_STEERING; |
| } |
| |
| if (rx_ring_num > MAX_RX_RINGS) { |
| DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not " |
| "supported\n"); |
| DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n", |
| MAX_RX_RINGS); |
| rx_ring_num = MAX_RX_RINGS; |
| } |
| |
| if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { |
| DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. " |
| "Defaulting to INTA\n"); |
| *dev_intr_type = INTA; |
| } |
| |
| if ((*dev_intr_type == MSI_X) && |
| ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && |
| (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { |
| DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. " |
| "Defaulting to INTA\n"); |
| *dev_intr_type = INTA; |
| } |
| |
| if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { |
| DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n"); |
| DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n"); |
| rx_ring_mode = 1; |
| } |
| return SUCCESS; |
| } |
| |
| /** |
| * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS |
| * or Traffic class respectively. |
| * @nic: device private variable |
| * Description: The function configures the receive steering to |
| * desired receive ring. |
| * Return Value: SUCCESS on success and |
| * '-1' on failure (endian settings incorrect). |
| */ |
| static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) |
| { |
| struct XENA_dev_config __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| |
| if (ds_codepoint > 63) |
| return FAILURE; |
| |
| val64 = RTS_DS_MEM_DATA(ring); |
| writeq(val64, &bar0->rts_ds_mem_data); |
| |
| val64 = RTS_DS_MEM_CTRL_WE | |
| RTS_DS_MEM_CTRL_STROBE_NEW_CMD | |
| RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); |
| |
| writeq(val64, &bar0->rts_ds_mem_ctrl); |
| |
| return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, |
| RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, |
| S2IO_BIT_RESET); |
| } |
| |
| static const struct net_device_ops s2io_netdev_ops = { |
| .ndo_open = s2io_open, |
| .ndo_stop = s2io_close, |
| .ndo_get_stats = s2io_get_stats, |
| .ndo_start_xmit = s2io_xmit, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_multicast_list = s2io_set_multicast, |
| .ndo_do_ioctl = s2io_ioctl, |
| .ndo_set_mac_address = s2io_set_mac_addr, |
| .ndo_change_mtu = s2io_change_mtu, |
| .ndo_vlan_rx_register = s2io_vlan_rx_register, |
| .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid, |
| .ndo_tx_timeout = s2io_tx_watchdog, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = s2io_netpoll, |
| #endif |
| }; |
| |
| /** |
| * s2io_init_nic - Initialization of the adapter . |
| * @pdev : structure containing the PCI related information of the device. |
| * @pre: List of PCI devices supported by the driver listed in s2io_tbl. |
| * Description: |
| * The function initializes an adapter identified by the pci_dec structure. |
| * All OS related initialization including memory and device structure and |
| * initlaization of the device private variable is done. Also the swapper |
| * control register is initialized to enable read and write into the I/O |
| * registers of the device. |
| * Return value: |
| * returns 0 on success and negative on failure. |
| */ |
| |
| static int __devinit |
| s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) |
| { |
| struct s2io_nic *sp; |
| struct net_device *dev; |
| int i, j, ret; |
| int dma_flag = FALSE; |
| u32 mac_up, mac_down; |
| u64 val64 = 0, tmp64 = 0; |
| struct XENA_dev_config __iomem *bar0 = NULL; |
| u16 subid; |
| struct mac_info *mac_control; |
| struct config_param *config; |
| int mode; |
| u8 dev_intr_type = intr_type; |
| u8 dev_multiq = 0; |
| |
| ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); |
| if (ret) |
| return ret; |
| |
| if ((ret = pci_enable_device(pdev))) { |
| DBG_PRINT(ERR_DBG, |
| "s2io_init_nic: pci_enable_device failed\n"); |
| return ret; |
| } |
| |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); |
| dma_flag = TRUE; |
| if (pci_set_consistent_dma_mask |
| (pdev, DMA_64BIT_MASK)) { |
| DBG_PRINT(ERR_DBG, |
| "Unable to obtain 64bit DMA for \ |
| consistent allocations\n"); |
| pci_disable_device(pdev); |
| return -ENOMEM; |
| } |
| } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { |
| DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); |
| } else { |
| pci_disable_device(pdev); |
| return -ENOMEM; |
| } |
| if ((ret = pci_request_regions(pdev, s2io_driver_name))) { |
| DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret); |
| pci_disable_device(pdev); |
| return -ENODEV; |
| } |
| if (dev_multiq) |
| dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); |
| else |
| dev = alloc_etherdev(sizeof(struct s2io_nic)); |
| if (dev == NULL) { |
| DBG_PRINT(ERR_DBG, "Device allocation failed\n"); |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| return -ENODEV; |
| } |
| |
| pci_set_master(pdev); |
| pci_set_drvdata(pdev, dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| /* Private member variable initialized to s2io NIC structure */ |
| sp = netdev_priv(dev); |
| memset(sp, 0, sizeof(struct s2io_nic)); |
| sp->dev = dev; |
| sp->pdev = pdev; |
| sp->high_dma_flag = dma_flag; |
| sp->device_enabled_once = FALSE; |
| if (rx_ring_mode == 1) |
| sp->rxd_mode = RXD_MODE_1; |
| if (rx_ring_mode == 2) |
| sp->rxd_mode = RXD_MODE_3B; |
| |
| sp->config.intr_type = dev_intr_type; |
| |
| if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || |
| (pdev->device == PCI_DEVICE_ID_HERC_UNI)) |
| sp->device_type = XFRAME_II_DEVICE; |
| else |
| sp->device_type = XFRAME_I_DEVICE; |
| |
| sp->lro = lro_enable; |
| |
| /* Initialize some PCI/PCI-X fields of the NIC. */ |
| s2io_init_pci(sp); |
| |
| /* |
| * Setting the device configuration parameters. |
| * Most of these parameters can be specified by the user during |
| * module insertion as they are module loadable parameters. If |
| * these parameters are not not specified during load time, they |
| * are initialized with default values. |
| */ |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| config->napi = napi; |
| config->tx_steering_type = tx_steering_type; |
| |
| /* Tx side parameters. */ |
| if (config->tx_steering_type == TX_PRIORITY_STEERING) |
| config->tx_fifo_num = MAX_TX_FIFOS; |
| else |
| config->tx_fifo_num = tx_fifo_num; |
| |
| /* Initialize the fifos used for tx steering */ |
| if (config->tx_fifo_num < 5) { |
| if (config->tx_fifo_num == 1) |
| sp->total_tcp_fifos = 1; |
| else |
| sp->total_tcp_fifos = config->tx_fifo_num - 1; |
| sp->udp_fifo_idx = config->tx_fifo_num - 1; |
| sp->total_udp_fifos = 1; |
| sp->other_fifo_idx = sp->total_tcp_fifos - 1; |
| } else { |
| sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - |
| FIFO_OTHER_MAX_NUM); |
| sp->udp_fifo_idx = sp->total_tcp_fifos; |
| sp->total_udp_fifos = FIFO_UDP_MAX_NUM; |
| sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; |
| } |
| |
| config->multiq = dev_multiq; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| config->tx_cfg[i].fifo_len = tx_fifo_len[i]; |
| config->tx_cfg[i].fifo_priority = i; |
| } |
| |
| /* mapping the QoS priority to the configured fifos */ |
| for (i = 0; i < MAX_TX_FIFOS; i++) |
| config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; |
| |
| /* map the hashing selector table to the configured fifos */ |
| for (i = 0; i < config->tx_fifo_num; i++) |
| sp->fifo_selector[i] = fifo_selector[i]; |
| |
| |
| config->tx_intr_type = TXD_INT_TYPE_UTILZ; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| config->tx_cfg[i].f_no_snoop = |
| (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); |
| if (config->tx_cfg[i].fifo_len < 65) { |
| config->tx_intr_type = TXD_INT_TYPE_PER_LIST; |
| break; |
| } |
| } |
| /* + 2 because one Txd for skb->data and one Txd for UFO */ |
| config->max_txds = MAX_SKB_FRAGS + 2; |
| |
| /* Rx side parameters. */ |
| config->rx_ring_num = rx_ring_num; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| config->rx_cfg[i].num_rxd = rx_ring_sz[i] * |
| (rxd_count[sp->rxd_mode] + 1); |
| config->rx_cfg[i].ring_priority = i; |
| mac_control->rings[i].rx_bufs_left = 0; |
| mac_control->rings[i].rxd_mode = sp->rxd_mode; |
| mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode]; |
| mac_control->rings[i].pdev = sp->pdev; |
| mac_control->rings[i].dev = sp->dev; |
| } |
| |
| for (i = 0; i < rx_ring_num; i++) { |
| config->rx_cfg[i].ring_org = RING_ORG_BUFF1; |
| config->rx_cfg[i].f_no_snoop = |
| (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); |
| } |
| |
| /* Setting Mac Control parameters */ |
| mac_control->rmac_pause_time = rmac_pause_time; |
| mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; |
| mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; |
| |
| |
| /* initialize the shared memory used by the NIC and the host */ |
| if (init_shared_mem(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto mem_alloc_failed; |
| } |
| |
| sp->bar0 = pci_ioremap_bar(pdev, 0); |
| if (!sp->bar0) { |
| DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto bar0_remap_failed; |
| } |
| |
| sp->bar1 = pci_ioremap_bar(pdev, 2); |
| if (!sp->bar1) { |
| DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto bar1_remap_failed; |
| } |
| |
| dev->irq = pdev->irq; |
| dev->base_addr = (unsigned long) sp->bar0; |
| |
| /* Initializing the BAR1 address as the start of the FIFO pointer. */ |
| for (j = 0; j < MAX_TX_FIFOS; j++) { |
| mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *) |
| (sp->bar1 + (j * 0x00020000)); |
| } |
| |
| /* Driver entry points */ |
| dev->netdev_ops = &s2io_netdev_ops; |
| SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| |
| dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; |
| if (sp->high_dma_flag == TRUE) |
| dev->features |= NETIF_F_HIGHDMA; |
| dev->features |= NETIF_F_TSO; |
| dev->features |= NETIF_F_TSO6; |
| if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) { |
| dev->features |= NETIF_F_UFO; |
| dev->features |= NETIF_F_HW_CSUM; |
| } |
| dev->watchdog_timeo = WATCH_DOG_TIMEOUT; |
| INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); |
| INIT_WORK(&sp->set_link_task, s2io_set_link); |
| |
| pci_save_state(sp->pdev); |
| |
| /* Setting swapper control on the NIC, for proper reset operation */ |
| if (s2io_set_swapper(sp)) { |
| DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", |
| dev->name); |
| ret = -EAGAIN; |
| goto set_swap_failed; |
| } |
| |
| /* Verify if the Herc works on the slot its placed into */ |
| if (sp->device_type & XFRAME_II_DEVICE) { |
| mode = s2io_verify_pci_mode(sp); |
| if (mode < 0) { |
| DBG_PRINT(ERR_DBG, "%s: ", __func__); |
| DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); |
| ret = -EBADSLT; |
| goto set_swap_failed; |
| } |
| } |
| |
| if (sp->config.intr_type == MSI_X) { |
| sp->num_entries = config->rx_ring_num + 1; |
| ret = s2io_enable_msi_x(sp); |
| |
| if (!ret) { |
| ret = s2io_test_msi(sp); |
| /* rollback MSI-X, will re-enable during add_isr() */ |
| remove_msix_isr(sp); |
| } |
| if (ret) { |
| |
| DBG_PRINT(ERR_DBG, |
| "%s: MSI-X requested but failed to enable\n", |
| dev->name); |
| sp->config.intr_type = INTA; |
| } |
| } |
| |
| if (config->intr_type == MSI_X) { |
| for (i = 0; i < config->rx_ring_num ; i++) |
| netif_napi_add(dev, &mac_control->rings[i].napi, |
| s2io_poll_msix, 64); |
| } else { |
| netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); |
| } |
| |
| /* Not needed for Herc */ |
| if (sp->device_type & XFRAME_I_DEVICE) { |
| /* |
| * Fix for all "FFs" MAC address problems observed on |
| * Alpha platforms |
| */ |
| fix_mac_address(sp); |
| s2io_reset(sp); |
| } |
| |
| /* |
| * MAC address initialization. |
| * For now only one mac address will be read and used. |
| */ |
| bar0 = sp->bar0; |
| val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, |
| RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET); |
| tmp64 = readq(&bar0->rmac_addr_data0_mem); |
| mac_down = (u32) tmp64; |
| mac_up = (u32) (tmp64 >> 32); |
| |
| sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); |
| sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); |
| sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); |
| sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); |
| sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); |
| sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); |
| |
| /* Set the factory defined MAC address initially */ |
| dev->addr_len = ETH_ALEN; |
| memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); |
| memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); |
| |
| /* initialize number of multicast & unicast MAC entries variables */ |
| if (sp->device_type == XFRAME_I_DEVICE) { |
| config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; |
| config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; |
| config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; |
| } else if (sp->device_type == XFRAME_II_DEVICE) { |
| config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; |
| config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; |
| config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; |
| } |
| |
| /* store mac addresses from CAM to s2io_nic structure */ |
| do_s2io_store_unicast_mc(sp); |
| |
| /* Configure MSIX vector for number of rings configured plus one */ |
| if ((sp->device_type == XFRAME_II_DEVICE) && |
| (config->intr_type == MSI_X)) |
| sp->num_entries = config->rx_ring_num + 1; |
| |
| /* Store the values of the MSIX table in the s2io_nic structure */ |
| store_xmsi_data(sp); |
| /* reset Nic and bring it to known state */ |
| s2io_reset(sp); |
| |
| /* |
| * Initialize link state flags |
| * and the card state parameter |
| */ |
| sp->state = 0; |
| |
| /* Initialize spinlocks */ |
| for (i = 0; i < sp->config.tx_fifo_num; i++) |
| spin_lock_init(&mac_control->fifos[i].tx_lock); |
| |
| /* |
| * SXE-002: Configure link and activity LED to init state |
| * on driver load. |
| */ |
| subid = sp->pdev->subsystem_device; |
| if ((subid & 0xFF) >= 0x07) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *) bar0 + 0x2700); |
| val64 = readq(&bar0->gpio_control); |
| } |
| |
| sp->rx_csum = 1; /* Rx chksum verify enabled by default */ |
| |
| if (register_netdev(dev)) { |
| DBG_PRINT(ERR_DBG, "Device registration failed\n"); |
| ret = -ENODEV; |
| goto register_failed; |
| } |
| s2io_vpd_read(sp); |
| DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n"); |
| DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name, |
| sp->product_name, pdev->revision); |
| DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, |
| s2io_driver_version); |
| DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr); |
| DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num); |
| if (sp->device_type & XFRAME_II_DEVICE) { |
| mode = s2io_print_pci_mode(sp); |
| if (mode < 0) { |
| DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); |
| ret = -EBADSLT; |
| unregister_netdev(dev); |
| goto set_swap_failed; |
| } |
| } |
| switch(sp->rxd_mode) { |
| case RXD_MODE_1: |
| DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", |
| dev->name); |
| break; |
| case RXD_MODE_3B: |
| DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", |
| dev->name); |
| break; |
| } |
| |
| switch (sp->config.napi) { |
| case 0: |
| DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); |
| break; |
| case 1: |
| DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); |
| break; |
| } |
| |
| DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, |
| sp->config.tx_fifo_num); |
| |
| DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, |
| sp->config.rx_ring_num); |
| |
| switch(sp->config.intr_type) { |
| case INTA: |
| DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); |
| break; |
| case MSI_X: |
| DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); |
| break; |
| } |
| if (sp->config.multiq) { |
| for (i = 0; i < sp->config.tx_fifo_num; i++) |
| mac_control->fifos[i].multiq = config->multiq; |
| DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", |
| dev->name); |
| } else |
| DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", |
| dev->name); |
| |
| switch (sp->config.tx_steering_type) { |
| case NO_STEERING: |
| DBG_PRINT(ERR_DBG, "%s: No steering enabled for" |
| " transmit\n", dev->name); |
| break; |
| case TX_PRIORITY_STEERING: |
| DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for" |
| " transmit\n", dev->name); |
| break; |
| case TX_DEFAULT_STEERING: |
| DBG_PRINT(ERR_DBG, "%s: Default steering enabled for" |
| " transmit\n", dev->name); |
| } |
| |
| if (sp->lro) |
| DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", |
| dev->name); |
| if (ufo) |
| DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)" |
| " enabled\n", dev->name); |
| /* Initialize device name */ |
| sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); |
| |
| if (vlan_tag_strip) |
| sp->vlan_strip_flag = 1; |
| else |
| sp->vlan_strip_flag = 0; |
| |
| /* |
| * Make Link state as off at this point, when the Link change |
| * interrupt comes the state will be automatically changed to |
| * the right state. |
| */ |
| netif_carrier_off(dev); |
| |
| return 0; |
| |
| register_failed: |
| set_swap_failed: |
| iounmap(sp->bar1); |
| bar1_remap_failed: |
| iounmap(sp->bar0); |
| bar0_remap_failed: |
| mem_alloc_failed: |
| free_shared_mem(sp); |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); |
| |
| return ret; |
| } |
| |
| /** |
| * s2io_rem_nic - Free the PCI device |
| * @pdev: structure containing the PCI related information of the device. |
| * Description: This function is called by the Pci subsystem to release a |
| * PCI device and free up all resource held up by the device. This could |
| * be in response to a Hot plug event or when the driver is to be removed |
| * from memory. |
| */ |
| |
| static void __devexit s2io_rem_nic(struct pci_dev *pdev) |
| { |
| struct net_device *dev = |
| (struct net_device *) pci_get_drvdata(pdev); |
| struct s2io_nic *sp; |
| |
| if (dev == NULL) { |
| DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); |
| return; |
| } |
| |
| flush_scheduled_work(); |
| |
| sp = netdev_priv(dev); |
| unregister_netdev(dev); |
| |
| free_shared_mem(sp); |
| iounmap(sp->bar0); |
| iounmap(sp->bar1); |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); |
| pci_disable_device(pdev); |
| } |
| |
| /** |
| * s2io_starter - Entry point for the driver |
| * Description: This function is the entry point for the driver. It verifies |
| * the module loadable parameters and initializes PCI configuration space. |
| */ |
| |
| static int __init s2io_starter(void) |
| { |
| return pci_register_driver(&s2io_driver); |
| } |
| |
| /** |
| * s2io_closer - Cleanup routine for the driver |
| * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. |
| */ |
| |
| static __exit void s2io_closer(void) |
| { |
| pci_unregister_driver(&s2io_driver); |
| DBG_PRINT(INIT_DBG, "cleanup done\n"); |
| } |
| |
| module_init(s2io_starter); |
| module_exit(s2io_closer); |
| |
| static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, |
| struct tcphdr **tcp, struct RxD_t *rxdp, |
| struct s2io_nic *sp) |
| { |
| int ip_off; |
| u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; |
| |
| if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { |
| DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n", |
| __func__); |
| return -1; |
| } |
| |
| /* Checking for DIX type or DIX type with VLAN */ |
| if ((l2_type == 0) |
| || (l2_type == 4)) { |
| ip_off = HEADER_ETHERNET_II_802_3_SIZE; |
| /* |
| * If vlan stripping is disabled and the frame is VLAN tagged, |
| * shift the offset by the VLAN header size bytes. |
| */ |
| if ((!sp->vlan_strip_flag) && |
| (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) |
| ip_off += HEADER_VLAN_SIZE; |
| } else { |
| /* LLC, SNAP etc are considered non-mergeable */ |
| return -1; |
| } |
| |
| *ip = (struct iphdr *)((u8 *)buffer + ip_off); |
| ip_len = (u8)((*ip)->ihl); |
| ip_len <<= 2; |
| *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); |
| |
| return 0; |
| } |
| |
| static int check_for_socket_match(struct lro *lro, struct iphdr *ip, |
| struct tcphdr *tcp) |
| { |
| DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__); |
| if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) || |
| (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest)) |
| return -1; |
| return 0; |
| } |
| |
| static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) |
| { |
| return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2)); |
| } |
| |
| static void initiate_new_session(struct lro *lro, u8 *l2h, |
| struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag) |
| { |
| DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__); |
| lro->l2h = l2h; |
| lro->iph = ip; |
| lro->tcph = tcp; |
| lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); |
| lro->tcp_ack = tcp->ack_seq; |
| lro->sg_num = 1; |
| lro->total_len = ntohs(ip->tot_len); |
| lro->frags_len = 0; |
| lro->vlan_tag = vlan_tag; |
| /* |
| * check if we saw TCP timestamp. Other consistency checks have |
| * already been done. |
| */ |
| if (tcp->doff == 8) { |
| __be32 *ptr; |
| ptr = (__be32 *)(tcp+1); |
| lro->saw_ts = 1; |
| lro->cur_tsval = ntohl(*(ptr+1)); |
| lro->cur_tsecr = *(ptr+2); |
| } |
| lro->in_use = 1; |
| } |
| |
| static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) |
| { |
| struct iphdr *ip = lro->iph; |
| struct tcphdr *tcp = lro->tcph; |
| __sum16 nchk; |
| struct stat_block *statinfo = sp->mac_control.stats_info; |
| DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__); |
| |
| /* Update L3 header */ |
| ip->tot_len = htons(lro->total_len); |
| ip->check = 0; |
| nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl); |
| ip->check = nchk; |
| |
| /* Update L4 header */ |
| tcp->ack_seq = lro->tcp_ack; |
| tcp->window = lro->window; |
| |
| /* Update tsecr field if this session has timestamps enabled */ |
| if (lro->saw_ts) { |
| __be32 *ptr = (__be32 *)(tcp + 1); |
| *(ptr+2) = lro->cur_tsecr; |
| } |
| |
| /* Update counters required for calculation of |
| * average no. of packets aggregated. |
| */ |
| statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num; |
| statinfo->sw_stat.num_aggregations++; |
| } |
| |
| static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, |
| struct tcphdr *tcp, u32 l4_pyld) |
| { |
| DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__); |
| lro->total_len += l4_pyld; |
| lro->frags_len += l4_pyld; |
| lro->tcp_next_seq += l4_pyld; |
| lro->sg_num++; |
| |
| /* Update ack seq no. and window ad(from this pkt) in LRO object */ |
| lro->tcp_ack = tcp->ack_seq; |
| lro->window = tcp->window; |
| |
| if (lro->saw_ts) { |
| __be32 *ptr; |
| /* Update tsecr and tsval from this packet */ |
| ptr = (__be32 *)(tcp+1); |
| lro->cur_tsval = ntohl(*(ptr+1)); |
| lro->cur_tsecr = *(ptr + 2); |
| } |
| } |
| |
| static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, |
| struct tcphdr *tcp, u32 tcp_pyld_len) |
| { |
| u8 *ptr; |
| |
| DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__); |
| |
| if (!tcp_pyld_len) { |
| /* Runt frame or a pure ack */ |
| return -1; |
| } |
| |
| if (ip->ihl != 5) /* IP has options */ |
| return -1; |
| |
| /* If we see CE codepoint in IP header, packet is not mergeable */ |
| if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) |
| return -1; |
| |
| /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ |
| if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin || |
| tcp->ece || tcp->cwr || !tcp->ack) { |
| /* |
| * Currently recognize only the ack control word and |
| * any other control field being set would result in |
| * flushing the LRO session |
| */ |
| return -1; |
| } |
| |
| /* |
| * Allow only one TCP timestamp option. Don't aggregate if |
| * any other options are detected. |
| */ |
| if (tcp->doff != 5 && tcp->doff != 8) |
| return -1; |
| |
| if (tcp->doff == 8) { |
| ptr = (u8 *)(tcp + 1); |
| while (*ptr == TCPOPT_NOP) |
| ptr++; |
| if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) |
| return -1; |
| |
| /* Ensure timestamp value increases monotonically */ |
| if (l_lro) |
| if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) |
| return -1; |
| |
| /* timestamp echo reply should be non-zero */ |
| if (*((__be32 *)(ptr+6)) == 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp, |
| u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp, |
| struct s2io_nic *sp) |
| { |
| struct iphdr *ip; |
| struct tcphdr *tcph; |
| int ret = 0, i; |
| u16 vlan_tag = 0; |
| |
| if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, |
| rxdp, sp))) { |
| DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n", |
| ip->saddr, ip->daddr); |
| } else |
| return ret; |
| |
| vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); |
| tcph = (struct tcphdr *)*tcp; |
| *tcp_len = get_l4_pyld_length(ip, tcph); |
| for (i=0; i<MAX_LRO_SESSIONS; i++) { |
| struct lro *l_lro = &ring_data->lro0_n[i]; |
| if (l_lro->in_use) { |
| if (check_for_socket_match(l_lro, ip, tcph)) |
| continue; |
| /* Sock pair matched */ |
| *lro = l_lro; |
| |
| if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { |
| DBG_PRINT(INFO_DBG, "%s:Out of order. expected " |
| "0x%x, actual 0x%x\n", __func__, |
| (*lro)->tcp_next_seq, |
| ntohl(tcph->seq)); |
| |
| sp->mac_control.stats_info-> |
| sw_stat.outof_sequence_pkts++; |
| ret = 2; |
| break; |
| } |
| |
| if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len)) |
| ret = 1; /* Aggregate */ |
| else |
| ret = 2; /* Flush both */ |
| break; |
| } |
| } |
| |
| if (ret == 0) { |
| /* Before searching for available LRO objects, |
| * check if the pkt is L3/L4 aggregatable. If not |
| * don't create new LRO session. Just send this |
| * packet up. |
| */ |
| if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) { |
| return 5; |
| } |
| |
| for (i=0; i<MAX_LRO_SESSIONS; i++) { |
| struct lro *l_lro = &ring_data->lro0_n[i]; |
| if (!(l_lro->in_use)) { |
| *lro = l_lro; |
| ret = 3; /* Begin anew */ |
| break; |
| } |
| } |
| } |
| |
| if (ret == 0) { /* sessions exceeded */ |
| DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n", |
| __func__); |
| *lro = NULL; |
| return ret; |
| } |
| |
| switch (ret) { |
| case 3: |
| initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, |
| vlan_tag); |
| break; |
| case 2: |
| update_L3L4_header(sp, *lro); |
| break; |
| case 1: |
| aggregate_new_rx(*lro, ip, tcph, *tcp_len); |
| if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { |
| update_L3L4_header(sp, *lro); |
| ret = 4; /* Flush the LRO */ |
| } |
| break; |
| default: |
| DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n", |
| __func__); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void clear_lro_session(struct lro *lro) |
| { |
| static u16 lro_struct_size = sizeof(struct lro); |
| |
| memset(lro, 0, lro_struct_size); |
| } |
| |
| static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) |
| { |
| struct net_device *dev = skb->dev; |
| struct s2io_nic *sp = netdev_priv(dev); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| if (sp->vlgrp && vlan_tag |
| && (sp->vlan_strip_flag)) { |
| /* Queueing the vlan frame to the upper layer */ |
| if (sp->config.napi) |
| vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag); |
| else |
| vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag); |
| } else { |
| if (sp->config.napi) |
| netif_receive_skb(skb); |
| else |
| netif_rx(skb); |
| } |
| } |
| |
| static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, |
| struct sk_buff *skb, |
| u32 tcp_len) |
| { |
| struct sk_buff *first = lro->parent; |
| |
| first->len += tcp_len; |
| first->data_len = lro->frags_len; |
| skb_pull(skb, (skb->len - tcp_len)); |
| if (skb_shinfo(first)->frag_list) |
| lro->last_frag->next = skb; |
| else |
| skb_shinfo(first)->frag_list = skb; |
| first->truesize += skb->truesize; |
| lro->last_frag = skb; |
| sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++; |
| return; |
| } |
| |
| /** |
| * s2io_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct s2io_nic *sp = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) { |
| /* Bring down the card, while avoiding PCI I/O */ |
| do_s2io_card_down(sp, 0); |
| } |
| pci_disable_device(pdev); |
| |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * s2io_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. |
| * At this point, the card has exprienced a hard reset, |
| * followed by fixups by BIOS, and has its config space |
| * set up identically to what it was at cold boot. |
| */ |
| static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct s2io_nic *sp = netdev_priv(netdev); |
| |
| if (pci_enable_device(pdev)) { |
| printk(KERN_ERR "s2io: " |
| "Cannot re-enable PCI device after reset.\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| pci_set_master(pdev); |
| s2io_reset(sp); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * s2io_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells |
| * us that its OK to resume normal operation. |
| */ |
| static void s2io_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct s2io_nic *sp = netdev_priv(netdev); |
| |
| if (netif_running(netdev)) { |
| if (s2io_card_up(sp)) { |
| printk(KERN_ERR "s2io: " |
| "Can't bring device back up after reset.\n"); |
| return; |
| } |
| |
| if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { |
| s2io_card_down(sp); |
| printk(KERN_ERR "s2io: " |
| "Can't resetore mac addr after reset.\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| netif_tx_wake_all_queues(netdev); |
| } |