| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2008 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/notifier.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/in.h> |
| #include <linux/crc32.h> |
| #include <linux/ethtool.h> |
| #include "net_driver.h" |
| #include "gmii.h" |
| #include "ethtool.h" |
| #include "tx.h" |
| #include "rx.h" |
| #include "efx.h" |
| #include "mdio_10g.h" |
| #include "falcon.h" |
| #include "workarounds.h" |
| #include "mac.h" |
| |
| #define EFX_MAX_MTU (9 * 1024) |
| |
| /* RX slow fill workqueue. If memory allocation fails in the fast path, |
| * a work item is pushed onto this work queue to retry the allocation later, |
| * to avoid the NIC being starved of RX buffers. Since this is a per cpu |
| * workqueue, there is nothing to be gained in making it per NIC |
| */ |
| static struct workqueue_struct *refill_workqueue; |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| *************************************************************************/ |
| |
| /* |
| * Enable large receive offload (LRO) aka soft segment reassembly (SSR) |
| * |
| * This sets the default for new devices. It can be controlled later |
| * using ethtool. |
| */ |
| static int lro = 1; |
| module_param(lro, int, 0644); |
| MODULE_PARM_DESC(lro, "Large receive offload acceleration"); |
| |
| /* |
| * Use separate channels for TX and RX events |
| * |
| * Set this to 1 to use separate channels for TX and RX. It allows us to |
| * apply a higher level of interrupt moderation to TX events. |
| * |
| * This is forced to 0 for MSI interrupt mode as the interrupt vector |
| * is not written |
| */ |
| static unsigned int separate_tx_and_rx_channels = 1; |
| |
| /* This is the weight assigned to each of the (per-channel) virtual |
| * NAPI devices. |
| */ |
| static int napi_weight = 64; |
| |
| /* This is the time (in jiffies) between invocations of the hardware |
| * monitor, which checks for known hardware bugs and resets the |
| * hardware and driver as necessary. |
| */ |
| unsigned int efx_monitor_interval = 1 * HZ; |
| |
| /* This controls whether or not the hardware monitor will trigger a |
| * reset when it detects an error condition. |
| */ |
| static unsigned int monitor_reset = 1; |
| |
| /* This controls whether or not the driver will initialise devices |
| * with invalid MAC addresses stored in the EEPROM or flash. If true, |
| * such devices will be initialised with a random locally-generated |
| * MAC address. This allows for loading the sfc_mtd driver to |
| * reprogram the flash, even if the flash contents (including the MAC |
| * address) have previously been erased. |
| */ |
| static unsigned int allow_bad_hwaddr; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * The default for RX should strike a balance between increasing the |
| * round-trip latency and reducing overhead. |
| */ |
| static unsigned int rx_irq_mod_usec = 60; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * This default is chosen to ensure that a 10G link does not go idle |
| * while a TX queue is stopped after it has become full. A queue is |
| * restarted when it drops below half full. The time this takes (assuming |
| * worst case 3 descriptors per packet and 1024 descriptors) is |
| * 512 / 3 * 1.2 = 205 usec. |
| */ |
| static unsigned int tx_irq_mod_usec = 150; |
| |
| /* This is the first interrupt mode to try out of: |
| * 0 => MSI-X |
| * 1 => MSI |
| * 2 => legacy |
| */ |
| static unsigned int interrupt_mode; |
| |
| /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| * i.e. the number of CPUs among which we may distribute simultaneous |
| * interrupt handling. |
| * |
| * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| * The default (0) means to assign an interrupt to each package (level II cache) |
| */ |
| static unsigned int rss_cpus; |
| module_param(rss_cpus, uint, 0444); |
| MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| |
| /************************************************************************** |
| * |
| * Utility functions and prototypes |
| * |
| *************************************************************************/ |
| static void efx_remove_channel(struct efx_channel *channel); |
| static void efx_remove_port(struct efx_nic *efx); |
| static void efx_fini_napi(struct efx_nic *efx); |
| static void efx_fini_channels(struct efx_nic *efx); |
| |
| #define EFX_ASSERT_RESET_SERIALISED(efx) \ |
| do { \ |
| if ((efx->state == STATE_RUNNING) || \ |
| (efx->state == STATE_RESETTING)) \ |
| ASSERT_RTNL(); \ |
| } while (0) |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * |
| *************************************************************************/ |
| |
| /* Process channel's event queue |
| * |
| * This function is responsible for processing the event queue of a |
| * single channel. The caller must guarantee that this function will |
| * never be concurrently called more than once on the same channel, |
| * though different channels may be being processed concurrently. |
| */ |
| static inline int efx_process_channel(struct efx_channel *channel, int rx_quota) |
| { |
| int rxdmaqs; |
| struct efx_rx_queue *rx_queue; |
| |
| if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE || |
| !channel->enabled)) |
| return rx_quota; |
| |
| rxdmaqs = falcon_process_eventq(channel, &rx_quota); |
| |
| /* Deliver last RX packet. */ |
| if (channel->rx_pkt) { |
| __efx_rx_packet(channel, channel->rx_pkt, |
| channel->rx_pkt_csummed); |
| channel->rx_pkt = NULL; |
| } |
| |
| efx_flush_lro(channel); |
| efx_rx_strategy(channel); |
| |
| /* Refill descriptor rings as necessary */ |
| rx_queue = &channel->efx->rx_queue[0]; |
| while (rxdmaqs) { |
| if (rxdmaqs & 0x01) |
| efx_fast_push_rx_descriptors(rx_queue); |
| rx_queue++; |
| rxdmaqs >>= 1; |
| } |
| |
| return rx_quota; |
| } |
| |
| /* Mark channel as finished processing |
| * |
| * Note that since we will not receive further interrupts for this |
| * channel before we finish processing and call the eventq_read_ack() |
| * method, there is no need to use the interrupt hold-off timers. |
| */ |
| static inline void efx_channel_processed(struct efx_channel *channel) |
| { |
| /* Write to EVQ_RPTR_REG. If a new event arrived in a race |
| * with finishing processing, a new interrupt will be raised. |
| */ |
| channel->work_pending = 0; |
| smp_wmb(); /* Ensure channel updated before any new interrupt. */ |
| falcon_eventq_read_ack(channel); |
| } |
| |
| /* NAPI poll handler |
| * |
| * NAPI guarantees serialisation of polls of the same device, which |
| * provides the guarantee required by efx_process_channel(). |
| */ |
| static int efx_poll(struct napi_struct *napi, int budget) |
| { |
| struct efx_channel *channel = |
| container_of(napi, struct efx_channel, napi_str); |
| struct net_device *napi_dev = channel->napi_dev; |
| int unused; |
| int rx_packets; |
| |
| EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n", |
| channel->channel, raw_smp_processor_id()); |
| |
| unused = efx_process_channel(channel, budget); |
| rx_packets = (budget - unused); |
| |
| if (rx_packets < budget) { |
| /* There is no race here; although napi_disable() will |
| * only wait for netif_rx_complete(), this isn't a problem |
| * since efx_channel_processed() will have no effect if |
| * interrupts have already been disabled. |
| */ |
| netif_rx_complete(napi_dev, napi); |
| efx_channel_processed(channel); |
| } |
| |
| return rx_packets; |
| } |
| |
| /* Process the eventq of the specified channel immediately on this CPU |
| * |
| * Disable hardware generated interrupts, wait for any existing |
| * processing to finish, then directly poll (and ack ) the eventq. |
| * Finally reenable NAPI and interrupts. |
| * |
| * Since we are touching interrupts the caller should hold the suspend lock |
| */ |
| void efx_process_channel_now(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| |
| BUG_ON(!channel->used_flags); |
| BUG_ON(!channel->enabled); |
| |
| /* Disable interrupts and wait for ISRs to complete */ |
| falcon_disable_interrupts(efx); |
| if (efx->legacy_irq) |
| synchronize_irq(efx->legacy_irq); |
| if (channel->has_interrupt && channel->irq) |
| synchronize_irq(channel->irq); |
| |
| /* Wait for any NAPI processing to complete */ |
| napi_disable(&channel->napi_str); |
| |
| /* Poll the channel */ |
| (void) efx_process_channel(channel, efx->type->evq_size); |
| |
| /* Ack the eventq. This may cause an interrupt to be generated |
| * when they are reenabled */ |
| efx_channel_processed(channel); |
| |
| napi_enable(&channel->napi_str); |
| falcon_enable_interrupts(efx); |
| } |
| |
| /* Create event queue |
| * Event queue memory allocations are done only once. If the channel |
| * is reset, the memory buffer will be reused; this guards against |
| * errors during channel reset and also simplifies interrupt handling. |
| */ |
| static int efx_probe_eventq(struct efx_channel *channel) |
| { |
| EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel); |
| |
| return falcon_probe_eventq(channel); |
| } |
| |
| /* Prepare channel's event queue */ |
| static int efx_init_eventq(struct efx_channel *channel) |
| { |
| EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel); |
| |
| channel->eventq_read_ptr = 0; |
| |
| return falcon_init_eventq(channel); |
| } |
| |
| static void efx_fini_eventq(struct efx_channel *channel) |
| { |
| EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel); |
| |
| falcon_fini_eventq(channel); |
| } |
| |
| static void efx_remove_eventq(struct efx_channel *channel) |
| { |
| EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel); |
| |
| falcon_remove_eventq(channel); |
| } |
| |
| /************************************************************************** |
| * |
| * Channel handling |
| * |
| *************************************************************************/ |
| |
| /* Setup per-NIC RX buffer parameters. |
| * Calculate the rx buffer allocation parameters required to support |
| * the current MTU, including padding for header alignment and overruns. |
| */ |
| static void efx_calc_rx_buffer_params(struct efx_nic *efx) |
| { |
| unsigned int order, len; |
| |
| len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + |
| EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| efx->type->rx_buffer_padding); |
| |
| /* Calculate page-order */ |
| for (order = 0; ((1u << order) * PAGE_SIZE) < len; ++order) |
| ; |
| |
| efx->rx_buffer_len = len; |
| efx->rx_buffer_order = order; |
| } |
| |
| static int efx_probe_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| EFX_LOG(channel->efx, "creating channel %d\n", channel->channel); |
| |
| rc = efx_probe_eventq(channel); |
| if (rc) |
| goto fail1; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| rc = efx_probe_tx_queue(tx_queue); |
| if (rc) |
| goto fail2; |
| } |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| rc = efx_probe_rx_queue(rx_queue); |
| if (rc) |
| goto fail3; |
| } |
| |
| channel->n_rx_frm_trunc = 0; |
| |
| return 0; |
| |
| fail3: |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_remove_rx_queue(rx_queue); |
| fail2: |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_remove_tx_queue(tx_queue); |
| fail1: |
| return rc; |
| } |
| |
| |
| /* Channels are shutdown and reinitialised whilst the NIC is running |
| * to propagate configuration changes (mtu, checksum offload), or |
| * to clear hardware error conditions |
| */ |
| static int efx_init_channels(struct efx_nic *efx) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| struct efx_channel *channel; |
| int rc = 0; |
| |
| efx_calc_rx_buffer_params(efx); |
| |
| /* Initialise the channels */ |
| efx_for_each_channel(channel, efx) { |
| EFX_LOG(channel->efx, "init chan %d\n", channel->channel); |
| |
| rc = efx_init_eventq(channel); |
| if (rc) |
| goto err; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| rc = efx_init_tx_queue(tx_queue); |
| if (rc) |
| goto err; |
| } |
| |
| /* The rx buffer allocation strategy is MTU dependent */ |
| efx_rx_strategy(channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| rc = efx_init_rx_queue(rx_queue); |
| if (rc) |
| goto err; |
| } |
| |
| WARN_ON(channel->rx_pkt != NULL); |
| efx_rx_strategy(channel); |
| } |
| |
| return 0; |
| |
| err: |
| EFX_ERR(efx, "failed to initialise channel %d\n", |
| channel ? channel->channel : -1); |
| efx_fini_channels(efx); |
| return rc; |
| } |
| |
| /* This enables event queue processing and packet transmission. |
| * |
| * Note that this function is not allowed to fail, since that would |
| * introduce too much complexity into the suspend/resume path. |
| */ |
| static void efx_start_channel(struct efx_channel *channel) |
| { |
| struct efx_rx_queue *rx_queue; |
| |
| EFX_LOG(channel->efx, "starting chan %d\n", channel->channel); |
| |
| if (!(channel->efx->net_dev->flags & IFF_UP)) |
| netif_napi_add(channel->napi_dev, &channel->napi_str, |
| efx_poll, napi_weight); |
| |
| channel->work_pending = 0; |
| channel->enabled = 1; |
| smp_wmb(); /* ensure channel updated before first interrupt */ |
| |
| napi_enable(&channel->napi_str); |
| |
| /* Load up RX descriptors */ |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_fast_push_rx_descriptors(rx_queue); |
| } |
| |
| /* This disables event queue processing and packet transmission. |
| * This function does not guarantee that all queue processing |
| * (e.g. RX refill) is complete. |
| */ |
| static void efx_stop_channel(struct efx_channel *channel) |
| { |
| struct efx_rx_queue *rx_queue; |
| |
| if (!channel->enabled) |
| return; |
| |
| EFX_LOG(channel->efx, "stop chan %d\n", channel->channel); |
| |
| channel->enabled = 0; |
| napi_disable(&channel->napi_str); |
| |
| /* Ensure that any worker threads have exited or will be no-ops */ |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| spin_lock_bh(&rx_queue->add_lock); |
| spin_unlock_bh(&rx_queue->add_lock); |
| } |
| } |
| |
| static void efx_fini_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->port_enabled); |
| |
| efx_for_each_channel(channel, efx) { |
| EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_fini_rx_queue(rx_queue); |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_fini_tx_queue(tx_queue); |
| } |
| |
| /* Do the event queues last so that we can handle flush events |
| * for all DMA queues. */ |
| efx_for_each_channel(channel, efx) { |
| EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel); |
| |
| efx_fini_eventq(channel); |
| } |
| } |
| |
| static void efx_remove_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| |
| EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_remove_rx_queue(rx_queue); |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_remove_tx_queue(tx_queue); |
| efx_remove_eventq(channel); |
| |
| channel->used_flags = 0; |
| } |
| |
| void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay) |
| { |
| queue_delayed_work(refill_workqueue, &rx_queue->work, delay); |
| } |
| |
| /************************************************************************** |
| * |
| * Port handling |
| * |
| **************************************************************************/ |
| |
| /* This ensures that the kernel is kept informed (via |
| * netif_carrier_on/off) of the link status, and also maintains the |
| * link status's stop on the port's TX queue. |
| */ |
| static void efx_link_status_changed(struct efx_nic *efx) |
| { |
| int carrier_ok; |
| |
| /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| * that no events are triggered between unregister_netdev() and the |
| * driver unloading. A more general condition is that NETDEV_CHANGE |
| * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| if (!netif_running(efx->net_dev)) |
| return; |
| |
| carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0; |
| if (efx->link_up != carrier_ok) { |
| efx->n_link_state_changes++; |
| |
| if (efx->link_up) |
| netif_carrier_on(efx->net_dev); |
| else |
| netif_carrier_off(efx->net_dev); |
| } |
| |
| /* Status message for kernel log */ |
| if (efx->link_up) { |
| struct mii_if_info *gmii = &efx->mii; |
| unsigned adv, lpa; |
| /* NONE here means direct XAUI from the controller, with no |
| * MDIO-attached device we can query. */ |
| if (efx->phy_type != PHY_TYPE_NONE) { |
| adv = gmii_advertised(gmii); |
| lpa = gmii_lpa(gmii); |
| } else { |
| lpa = GM_LPA_10000 | LPA_DUPLEX; |
| adv = lpa; |
| } |
| EFX_INFO(efx, "link up at %dMbps %s-duplex " |
| "(adv %04x lpa %04x) (MTU %d)%s\n", |
| (efx->link_options & GM_LPA_10000 ? 10000 : |
| (efx->link_options & GM_LPA_1000 ? 1000 : |
| (efx->link_options & GM_LPA_100 ? 100 : |
| 10))), |
| (efx->link_options & GM_LPA_DUPLEX ? |
| "full" : "half"), |
| adv, lpa, |
| efx->net_dev->mtu, |
| (efx->promiscuous ? " [PROMISC]" : "")); |
| } else { |
| EFX_INFO(efx, "link down\n"); |
| } |
| |
| } |
| |
| /* This call reinitialises the MAC to pick up new PHY settings. The |
| * caller must hold the mac_lock */ |
| static void __efx_reconfigure_port(struct efx_nic *efx) |
| { |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| falcon_reconfigure_xmac(efx); |
| |
| /* Inform kernel of loss/gain of carrier */ |
| efx_link_status_changed(efx); |
| } |
| |
| /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| * disabled. */ |
| void efx_reconfigure_port(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all() |
| * we don't efx_reconfigure_port() if the port is disabled. Care is taken |
| * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */ |
| static void efx_reconfigure_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, |
| reconfigure_work); |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->port_enabled) |
| __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| static int efx_probe_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_LOG(efx, "create port\n"); |
| |
| /* Connect up MAC/PHY operations table and read MAC address */ |
| rc = falcon_probe_port(efx); |
| if (rc) |
| goto err; |
| |
| /* Sanity check MAC address */ |
| if (is_valid_ether_addr(efx->mac_address)) { |
| memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN); |
| } else { |
| DECLARE_MAC_BUF(mac); |
| |
| EFX_ERR(efx, "invalid MAC address %s\n", |
| print_mac(mac, efx->mac_address)); |
| if (!allow_bad_hwaddr) { |
| rc = -EINVAL; |
| goto err; |
| } |
| random_ether_addr(efx->net_dev->dev_addr); |
| EFX_INFO(efx, "using locally-generated MAC %s\n", |
| print_mac(mac, efx->net_dev->dev_addr)); |
| } |
| |
| return 0; |
| |
| err: |
| efx_remove_port(efx); |
| return rc; |
| } |
| |
| static int efx_init_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_LOG(efx, "init port\n"); |
| |
| /* Initialise the MAC and PHY */ |
| rc = falcon_init_xmac(efx); |
| if (rc) |
| return rc; |
| |
| efx->port_initialized = 1; |
| |
| /* Reconfigure port to program MAC registers */ |
| falcon_reconfigure_xmac(efx); |
| |
| return 0; |
| } |
| |
| /* Allow efx_reconfigure_port() to be scheduled, and close the window |
| * between efx_stop_port and efx_flush_all whereby a previously scheduled |
| * efx_reconfigure_port() may have been cancelled */ |
| static void efx_start_port(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "start port\n"); |
| BUG_ON(efx->port_enabled); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = 1; |
| __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| /* Prevent efx_reconfigure_work and efx_monitor() from executing, and |
| * efx_set_multicast_list() from scheduling efx_reconfigure_work. |
| * efx_reconfigure_work can still be scheduled via NAPI processing |
| * until efx_flush_all() is called */ |
| static void efx_stop_port(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "stop port\n"); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = 0; |
| mutex_unlock(&efx->mac_lock); |
| |
| /* Serialise against efx_set_multicast_list() */ |
| if (NET_DEV_REGISTERED(efx)) { |
| netif_tx_lock_bh(efx->net_dev); |
| netif_tx_unlock_bh(efx->net_dev); |
| } |
| } |
| |
| static void efx_fini_port(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "shut down port\n"); |
| |
| if (!efx->port_initialized) |
| return; |
| |
| falcon_fini_xmac(efx); |
| efx->port_initialized = 0; |
| |
| efx->link_up = 0; |
| efx_link_status_changed(efx); |
| } |
| |
| static void efx_remove_port(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "destroying port\n"); |
| |
| falcon_remove_port(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC handling |
| * |
| **************************************************************************/ |
| |
| /* This configures the PCI device to enable I/O and DMA. */ |
| static int efx_init_io(struct efx_nic *efx) |
| { |
| struct pci_dev *pci_dev = efx->pci_dev; |
| dma_addr_t dma_mask = efx->type->max_dma_mask; |
| int rc; |
| |
| EFX_LOG(efx, "initialising I/O\n"); |
| |
| rc = pci_enable_device(pci_dev); |
| if (rc) { |
| EFX_ERR(efx, "failed to enable PCI device\n"); |
| goto fail1; |
| } |
| |
| pci_set_master(pci_dev); |
| |
| /* Set the PCI DMA mask. Try all possibilities from our |
| * genuine mask down to 32 bits, because some architectures |
| * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit |
| * masks event though they reject 46 bit masks. |
| */ |
| while (dma_mask > 0x7fffffffUL) { |
| if (pci_dma_supported(pci_dev, dma_mask) && |
| ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) |
| break; |
| dma_mask >>= 1; |
| } |
| if (rc) { |
| EFX_ERR(efx, "could not find a suitable DMA mask\n"); |
| goto fail2; |
| } |
| EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); |
| if (rc) { |
| /* pci_set_consistent_dma_mask() is not *allowed* to |
| * fail with a mask that pci_set_dma_mask() accepted, |
| * but just in case... |
| */ |
| EFX_ERR(efx, "failed to set consistent DMA mask\n"); |
| goto fail2; |
| } |
| |
| efx->membase_phys = pci_resource_start(efx->pci_dev, |
| efx->type->mem_bar); |
| rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc"); |
| if (rc) { |
| EFX_ERR(efx, "request for memory BAR failed\n"); |
| rc = -EIO; |
| goto fail3; |
| } |
| efx->membase = ioremap_nocache(efx->membase_phys, |
| efx->type->mem_map_size); |
| if (!efx->membase) { |
| EFX_ERR(efx, "could not map memory BAR %d at %lx+%x\n", |
| efx->type->mem_bar, efx->membase_phys, |
| efx->type->mem_map_size); |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| EFX_LOG(efx, "memory BAR %u at %lx+%x (virtual %p)\n", |
| efx->type->mem_bar, efx->membase_phys, efx->type->mem_map_size, |
| efx->membase); |
| |
| return 0; |
| |
| fail4: |
| release_mem_region(efx->membase_phys, efx->type->mem_map_size); |
| fail3: |
| efx->membase_phys = 0UL; |
| fail2: |
| pci_disable_device(efx->pci_dev); |
| fail1: |
| return rc; |
| } |
| |
| static void efx_fini_io(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "shutting down I/O\n"); |
| |
| if (efx->membase) { |
| iounmap(efx->membase); |
| efx->membase = NULL; |
| } |
| |
| if (efx->membase_phys) { |
| pci_release_region(efx->pci_dev, efx->type->mem_bar); |
| efx->membase_phys = 0UL; |
| } |
| |
| pci_disable_device(efx->pci_dev); |
| } |
| |
| /* Probe the number and type of interrupts we are able to obtain. */ |
| static void efx_probe_interrupts(struct efx_nic *efx) |
| { |
| int max_channel = efx->type->phys_addr_channels - 1; |
| struct msix_entry xentries[EFX_MAX_CHANNELS]; |
| int rc, i; |
| |
| if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { |
| BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX)); |
| |
| efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus(); |
| efx->rss_queues = min(efx->rss_queues, max_channel + 1); |
| efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS); |
| |
| /* Request maximum number of MSI interrupts, and fill out |
| * the channel interrupt information the allowed allocation */ |
| for (i = 0; i < efx->rss_queues; i++) |
| xentries[i].entry = i; |
| rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues); |
| if (rc > 0) { |
| EFX_BUG_ON_PARANOID(rc >= efx->rss_queues); |
| efx->rss_queues = rc; |
| rc = pci_enable_msix(efx->pci_dev, xentries, |
| efx->rss_queues); |
| } |
| |
| if (rc == 0) { |
| for (i = 0; i < efx->rss_queues; i++) { |
| efx->channel[i].has_interrupt = 1; |
| efx->channel[i].irq = xentries[i].vector; |
| } |
| } else { |
| /* Fall back to single channel MSI */ |
| efx->interrupt_mode = EFX_INT_MODE_MSI; |
| EFX_ERR(efx, "could not enable MSI-X\n"); |
| } |
| } |
| |
| /* Try single interrupt MSI */ |
| if (efx->interrupt_mode == EFX_INT_MODE_MSI) { |
| efx->rss_queues = 1; |
| rc = pci_enable_msi(efx->pci_dev); |
| if (rc == 0) { |
| efx->channel[0].irq = efx->pci_dev->irq; |
| efx->channel[0].has_interrupt = 1; |
| } else { |
| EFX_ERR(efx, "could not enable MSI\n"); |
| efx->interrupt_mode = EFX_INT_MODE_LEGACY; |
| } |
| } |
| |
| /* Assume legacy interrupts */ |
| if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { |
| efx->rss_queues = 1; |
| /* Every channel is interruptible */ |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) |
| efx->channel[i].has_interrupt = 1; |
| efx->legacy_irq = efx->pci_dev->irq; |
| } |
| } |
| |
| static void efx_remove_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| /* Remove MSI/MSI-X interrupts */ |
| efx_for_each_channel_with_interrupt(channel, efx) |
| channel->irq = 0; |
| pci_disable_msi(efx->pci_dev); |
| pci_disable_msix(efx->pci_dev); |
| |
| /* Remove legacy interrupt */ |
| efx->legacy_irq = 0; |
| } |
| |
| /* Select number of used resources |
| * Should be called after probe_interrupts() |
| */ |
| static void efx_select_used(struct efx_nic *efx) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int i; |
| |
| /* TX queues. One per port per channel with TX capability |
| * (more than one per port won't work on Linux, due to out |
| * of order issues... but will be fine on Solaris) |
| */ |
| tx_queue = &efx->tx_queue[0]; |
| |
| /* Perform this for each channel with TX capabilities. |
| * At the moment, we only support a single TX queue |
| */ |
| tx_queue->used = 1; |
| if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels) |
| tx_queue->channel = &efx->channel[1]; |
| else |
| tx_queue->channel = &efx->channel[0]; |
| tx_queue->channel->used_flags |= EFX_USED_BY_TX; |
| tx_queue++; |
| |
| /* RX queues. Each has a dedicated channel. */ |
| for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { |
| rx_queue = &efx->rx_queue[i]; |
| |
| if (i < efx->rss_queues) { |
| rx_queue->used = 1; |
| /* If we allow multiple RX queues per channel |
| * we need to decide that here |
| */ |
| rx_queue->channel = &efx->channel[rx_queue->queue]; |
| rx_queue->channel->used_flags |= EFX_USED_BY_RX; |
| rx_queue++; |
| } |
| } |
| } |
| |
| static int efx_probe_nic(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_LOG(efx, "creating NIC\n"); |
| |
| /* Carry out hardware-type specific initialisation */ |
| rc = falcon_probe_nic(efx); |
| if (rc) |
| return rc; |
| |
| /* Determine the number of channels and RX queues by trying to hook |
| * in MSI-X interrupts. */ |
| efx_probe_interrupts(efx); |
| |
| /* Determine number of RX queues and TX queues */ |
| efx_select_used(efx); |
| |
| /* Initialise the interrupt moderation settings */ |
| efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec); |
| |
| return 0; |
| } |
| |
| static void efx_remove_nic(struct efx_nic *efx) |
| { |
| EFX_LOG(efx, "destroying NIC\n"); |
| |
| efx_remove_interrupts(efx); |
| falcon_remove_nic(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC startup/shutdown |
| * |
| *************************************************************************/ |
| |
| static int efx_probe_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| /* Create NIC */ |
| rc = efx_probe_nic(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to create NIC\n"); |
| goto fail1; |
| } |
| |
| /* Create port */ |
| rc = efx_probe_port(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to create port\n"); |
| goto fail2; |
| } |
| |
| /* Create channels */ |
| efx_for_each_channel(channel, efx) { |
| rc = efx_probe_channel(channel); |
| if (rc) { |
| EFX_ERR(efx, "failed to create channel %d\n", |
| channel->channel); |
| goto fail3; |
| } |
| } |
| |
| return 0; |
| |
| fail3: |
| efx_for_each_channel(channel, efx) |
| efx_remove_channel(channel); |
| efx_remove_port(efx); |
| fail2: |
| efx_remove_nic(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* Called after previous invocation(s) of efx_stop_all, restarts the |
| * port, kernel transmit queue, NAPI processing and hardware interrupts, |
| * and ensures that the port is scheduled to be reconfigured. |
| * This function is safe to call multiple times when the NIC is in any |
| * state. */ |
| static void efx_start_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* Check that it is appropriate to restart the interface. All |
| * of these flags are safe to read under just the rtnl lock */ |
| if (efx->port_enabled) |
| return; |
| if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) |
| return; |
| if (NET_DEV_REGISTERED(efx) && !netif_running(efx->net_dev)) |
| return; |
| |
| /* Mark the port as enabled so port reconfigurations can start, then |
| * restart the transmit interface early so the watchdog timer stops */ |
| efx_start_port(efx); |
| efx_wake_queue(efx); |
| |
| efx_for_each_channel(channel, efx) |
| efx_start_channel(channel); |
| |
| falcon_enable_interrupts(efx); |
| |
| /* Start hardware monitor if we're in RUNNING */ |
| if (efx->state == STATE_RUNNING) |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } |
| |
| /* Flush all delayed work. Should only be called when no more delayed work |
| * will be scheduled. This doesn't flush pending online resets (efx_reset), |
| * since we're holding the rtnl_lock at this point. */ |
| static void efx_flush_all(struct efx_nic *efx) |
| { |
| struct efx_rx_queue *rx_queue; |
| |
| /* Make sure the hardware monitor is stopped */ |
| cancel_delayed_work_sync(&efx->monitor_work); |
| |
| /* Ensure that all RX slow refills are complete. */ |
| efx_for_each_rx_queue(rx_queue, efx) { |
| cancel_delayed_work_sync(&rx_queue->work); |
| } |
| |
| /* Stop scheduled port reconfigurations */ |
| cancel_work_sync(&efx->reconfigure_work); |
| |
| } |
| |
| /* Quiesce hardware and software without bringing the link down. |
| * Safe to call multiple times, when the nic and interface is in any |
| * state. The caller is guaranteed to subsequently be in a position |
| * to modify any hardware and software state they see fit without |
| * taking locks. */ |
| static void efx_stop_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* port_enabled can be read safely under the rtnl lock */ |
| if (!efx->port_enabled) |
| return; |
| |
| /* Disable interrupts and wait for ISR to complete */ |
| falcon_disable_interrupts(efx); |
| if (efx->legacy_irq) |
| synchronize_irq(efx->legacy_irq); |
| efx_for_each_channel_with_interrupt(channel, efx) |
| if (channel->irq) |
| synchronize_irq(channel->irq); |
| |
| /* Stop all NAPI processing and synchronous rx refills */ |
| efx_for_each_channel(channel, efx) |
| efx_stop_channel(channel); |
| |
| /* Stop all asynchronous port reconfigurations. Since all |
| * event processing has already been stopped, there is no |
| * window to loose phy events */ |
| efx_stop_port(efx); |
| |
| /* Flush reconfigure_work, refill_workqueue, monitor_work */ |
| efx_flush_all(efx); |
| |
| /* Isolate the MAC from the TX and RX engines, so that queue |
| * flushes will complete in a timely fashion. */ |
| falcon_deconfigure_mac_wrapper(efx); |
| falcon_drain_tx_fifo(efx); |
| |
| /* Stop the kernel transmit interface late, so the watchdog |
| * timer isn't ticking over the flush */ |
| efx_stop_queue(efx); |
| if (NET_DEV_REGISTERED(efx)) { |
| netif_tx_lock_bh(efx->net_dev); |
| netif_tx_unlock_bh(efx->net_dev); |
| } |
| } |
| |
| static void efx_remove_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_remove_channel(channel); |
| efx_remove_port(efx); |
| efx_remove_nic(efx); |
| } |
| |
| /* A convinience function to safely flush all the queues */ |
| int efx_flush_queues(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| efx_stop_all(efx); |
| |
| efx_fini_channels(efx); |
| rc = efx_init_channels(efx); |
| if (rc) { |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| return rc; |
| } |
| |
| efx_start_all(efx); |
| |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Interrupt moderation |
| * |
| **************************************************************************/ |
| |
| /* Set interrupt moderation parameters */ |
| void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| efx_for_each_tx_queue(tx_queue, efx) |
| tx_queue->channel->irq_moderation = tx_usecs; |
| |
| efx_for_each_rx_queue(rx_queue, efx) |
| rx_queue->channel->irq_moderation = rx_usecs; |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware monitor |
| * |
| **************************************************************************/ |
| |
| /* Run periodically off the general workqueue. Serialised against |
| * efx_reconfigure_port via the mac_lock */ |
| static void efx_monitor(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, |
| monitor_work.work); |
| int rc = 0; |
| |
| EFX_TRACE(efx, "hardware monitor executing on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| |
| /* If the mac_lock is already held then it is likely a port |
| * reconfiguration is already in place, which will likely do |
| * most of the work of check_hw() anyway. */ |
| if (!mutex_trylock(&efx->mac_lock)) { |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| return; |
| } |
| |
| if (efx->port_enabled) |
| rc = falcon_check_xmac(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| if (rc) { |
| if (monitor_reset) { |
| EFX_ERR(efx, "hardware monitor detected a fault: " |
| "triggering reset\n"); |
| efx_schedule_reset(efx, RESET_TYPE_MONITOR); |
| } else { |
| EFX_ERR(efx, "hardware monitor detected a fault, " |
| "skipping reset\n"); |
| } |
| } |
| |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } |
| |
| /************************************************************************** |
| * |
| * ioctls |
| * |
| *************************************************************************/ |
| |
| /* Net device ioctl |
| * Context: process, rtnl_lock() held. |
| */ |
| static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL); |
| } |
| |
| /************************************************************************** |
| * |
| * NAPI interface |
| * |
| **************************************************************************/ |
| |
| static int efx_init_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| efx_for_each_channel(channel, efx) { |
| channel->napi_dev = efx->net_dev; |
| rc = efx_lro_init(&channel->lro_mgr, efx); |
| if (rc) |
| goto err; |
| } |
| return 0; |
| err: |
| efx_fini_napi(efx); |
| return rc; |
| } |
| |
| static void efx_fini_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) { |
| efx_lro_fini(&channel->lro_mgr); |
| channel->napi_dev = NULL; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Kernel netpoll interface |
| * |
| *************************************************************************/ |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| |
| /* Although in the common case interrupts will be disabled, this is not |
| * guaranteed. However, all our work happens inside the NAPI callback, |
| * so no locking is required. |
| */ |
| static void efx_netpoll(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| struct efx_channel *channel; |
| |
| efx_for_each_channel_with_interrupt(channel, efx) |
| efx_schedule_channel(channel); |
| } |
| |
| #endif |
| |
| /************************************************************************** |
| * |
| * Kernel net device interface |
| * |
| *************************************************************************/ |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_net_open(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name, |
| raw_smp_processor_id()); |
| |
| efx_start_all(efx); |
| return 0; |
| } |
| |
| /* Context: process, rtnl_lock() held. |
| * Note that the kernel will ignore our return code; this method |
| * should really be a void. |
| */ |
| static int efx_net_stop(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| int rc; |
| |
| EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name, |
| raw_smp_processor_id()); |
| |
| /* Stop the device and flush all the channels */ |
| efx_stop_all(efx); |
| efx_fini_channels(efx); |
| rc = efx_init_channels(efx); |
| if (rc) |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| |
| return 0; |
| } |
| |
| /* Context: process, dev_base_lock held, non-blocking. */ |
| static struct net_device_stats *efx_net_stats(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| struct efx_mac_stats *mac_stats = &efx->mac_stats; |
| struct net_device_stats *stats = &net_dev->stats; |
| |
| if (!spin_trylock(&efx->stats_lock)) |
| return stats; |
| if (efx->state == STATE_RUNNING) { |
| falcon_update_stats_xmac(efx); |
| falcon_update_nic_stats(efx); |
| } |
| spin_unlock(&efx->stats_lock); |
| |
| stats->rx_packets = mac_stats->rx_packets; |
| stats->tx_packets = mac_stats->tx_packets; |
| stats->rx_bytes = mac_stats->rx_bytes; |
| stats->tx_bytes = mac_stats->tx_bytes; |
| stats->multicast = mac_stats->rx_multicast; |
| stats->collisions = mac_stats->tx_collision; |
| stats->rx_length_errors = (mac_stats->rx_gtjumbo + |
| mac_stats->rx_length_error); |
| stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt; |
| stats->rx_crc_errors = mac_stats->rx_bad; |
| stats->rx_frame_errors = mac_stats->rx_align_error; |
| stats->rx_fifo_errors = mac_stats->rx_overflow; |
| stats->rx_missed_errors = mac_stats->rx_missed; |
| stats->tx_window_errors = mac_stats->tx_late_collision; |
| |
| stats->rx_errors = (stats->rx_length_errors + |
| stats->rx_over_errors + |
| stats->rx_crc_errors + |
| stats->rx_frame_errors + |
| stats->rx_fifo_errors + |
| stats->rx_missed_errors + |
| mac_stats->rx_symbol_error); |
| stats->tx_errors = (stats->tx_window_errors + |
| mac_stats->tx_bad); |
| |
| return stats; |
| } |
| |
| /* Context: netif_tx_lock held, BHs disabled. */ |
| static void efx_watchdog(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| |
| EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n", |
| atomic_read(&efx->netif_stop_count), efx->port_enabled, |
| monitor_reset ? "resetting channels" : "skipping reset"); |
| |
| if (monitor_reset) |
| efx_schedule_reset(efx, RESET_TYPE_MONITOR); |
| } |
| |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| int rc = 0; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (new_mtu > EFX_MAX_MTU) |
| return -EINVAL; |
| |
| efx_stop_all(efx); |
| |
| EFX_LOG(efx, "changing MTU to %d\n", new_mtu); |
| |
| efx_fini_channels(efx); |
| net_dev->mtu = new_mtu; |
| rc = efx_init_channels(efx); |
| if (rc) |
| goto fail; |
| |
| efx_start_all(efx); |
| return rc; |
| |
| fail: |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| return rc; |
| } |
| |
| static int efx_set_mac_address(struct net_device *net_dev, void *data) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| struct sockaddr *addr = data; |
| char *new_addr = addr->sa_data; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (!is_valid_ether_addr(new_addr)) { |
| DECLARE_MAC_BUF(mac); |
| EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n", |
| print_mac(mac, new_addr)); |
| return -EINVAL; |
| } |
| |
| memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); |
| |
| /* Reconfigure the MAC */ |
| efx_reconfigure_port(efx); |
| |
| return 0; |
| } |
| |
| /* Context: netif_tx_lock held, BHs disabled. */ |
| static void efx_set_multicast_list(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = net_dev->priv; |
| struct dev_mc_list *mc_list = net_dev->mc_list; |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| int promiscuous; |
| u32 crc; |
| int bit; |
| int i; |
| |
| /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */ |
| promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0; |
| if (efx->promiscuous != promiscuous) { |
| efx->promiscuous = promiscuous; |
| /* Close the window between efx_stop_port() and efx_flush_all() |
| * by only queuing work when the port is enabled. */ |
| if (efx->port_enabled) |
| queue_work(efx->workqueue, &efx->reconfigure_work); |
| } |
| |
| /* Build multicast hash table */ |
| if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) { |
| memset(mc_hash, 0xff, sizeof(*mc_hash)); |
| } else { |
| memset(mc_hash, 0x00, sizeof(*mc_hash)); |
| for (i = 0; i < net_dev->mc_count; i++) { |
| crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr); |
| bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); |
| set_bit_le(bit, mc_hash->byte); |
| mc_list = mc_list->next; |
| } |
| } |
| |
| /* Create and activate new global multicast hash table */ |
| falcon_set_multicast_hash(efx); |
| } |
| |
| static int efx_netdev_event(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| struct net_device *net_dev = (struct net_device *)ptr; |
| |
| if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) { |
| struct efx_nic *efx = net_dev->priv; |
| |
| strcpy(efx->name, net_dev->name); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block efx_netdev_notifier = { |
| .notifier_call = efx_netdev_event, |
| }; |
| |
| static int efx_register_netdev(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| int rc; |
| |
| net_dev->watchdog_timeo = 5 * HZ; |
| net_dev->irq = efx->pci_dev->irq; |
| net_dev->open = efx_net_open; |
| net_dev->stop = efx_net_stop; |
| net_dev->get_stats = efx_net_stats; |
| net_dev->tx_timeout = &efx_watchdog; |
| net_dev->hard_start_xmit = efx_hard_start_xmit; |
| net_dev->do_ioctl = efx_ioctl; |
| net_dev->change_mtu = efx_change_mtu; |
| net_dev->set_mac_address = efx_set_mac_address; |
| net_dev->set_multicast_list = efx_set_multicast_list; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| net_dev->poll_controller = efx_netpoll; |
| #endif |
| SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev); |
| SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); |
| |
| /* Always start with carrier off; PHY events will detect the link */ |
| netif_carrier_off(efx->net_dev); |
| |
| /* Clear MAC statistics */ |
| falcon_update_stats_xmac(efx); |
| memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); |
| |
| rc = register_netdev(net_dev); |
| if (rc) { |
| EFX_ERR(efx, "could not register net dev\n"); |
| return rc; |
| } |
| strcpy(efx->name, net_dev->name); |
| |
| return 0; |
| } |
| |
| static void efx_unregister_netdev(struct efx_nic *efx) |
| { |
| struct efx_tx_queue *tx_queue; |
| |
| if (!efx->net_dev) |
| return; |
| |
| BUG_ON(efx->net_dev->priv != efx); |
| |
| /* Free up any skbs still remaining. This has to happen before |
| * we try to unregister the netdev as running their destructors |
| * may be needed to get the device ref. count to 0. */ |
| efx_for_each_tx_queue(tx_queue, efx) |
| efx_release_tx_buffers(tx_queue); |
| |
| if (NET_DEV_REGISTERED(efx)) { |
| strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| unregister_netdev(efx->net_dev); |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset and suspend |
| * |
| **************************************************************************/ |
| |
| /* The final hardware and software finalisation before reset. */ |
| static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| rc = falcon_xmac_get_settings(efx, ecmd); |
| if (rc) { |
| EFX_ERR(efx, "could not back up PHY settings\n"); |
| goto fail; |
| } |
| |
| efx_fini_channels(efx); |
| return 0; |
| |
| fail: |
| return rc; |
| } |
| |
| /* The first part of software initialisation after a hardware reset |
| * This function does not handle serialisation with the kernel, it |
| * assumes the caller has done this */ |
| static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd) |
| { |
| int rc; |
| |
| rc = efx_init_channels(efx); |
| if (rc) |
| goto fail1; |
| |
| /* Restore MAC and PHY settings. */ |
| rc = falcon_xmac_set_settings(efx, ecmd); |
| if (rc) { |
| EFX_ERR(efx, "could not restore PHY settings\n"); |
| goto fail2; |
| } |
| |
| return 0; |
| |
| fail2: |
| efx_fini_channels(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* Reset the NIC as transparently as possible. Do not reset the PHY |
| * Note that the reset may fail, in which case the card will be left |
| * in a most-probably-unusable state. |
| * |
| * This function will sleep. You cannot reset from within an atomic |
| * state; use efx_schedule_reset() instead. |
| * |
| * Grabs the rtnl_lock. |
| */ |
| static int efx_reset(struct efx_nic *efx) |
| { |
| struct ethtool_cmd ecmd; |
| enum reset_type method = efx->reset_pending; |
| int rc; |
| |
| /* Serialise with kernel interfaces */ |
| rtnl_lock(); |
| |
| /* If we're not RUNNING then don't reset. Leave the reset_pending |
| * flag set so that efx_pci_probe_main will be retried */ |
| if (efx->state != STATE_RUNNING) { |
| EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n"); |
| goto unlock_rtnl; |
| } |
| |
| efx->state = STATE_RESETTING; |
| EFX_INFO(efx, "resetting (%d)\n", method); |
| |
| /* The net_dev->get_stats handler is quite slow, and will fail |
| * if a fetch is pending over reset. Serialise against it. */ |
| spin_lock(&efx->stats_lock); |
| spin_unlock(&efx->stats_lock); |
| |
| efx_stop_all(efx); |
| mutex_lock(&efx->mac_lock); |
| |
| rc = efx_reset_down(efx, &ecmd); |
| if (rc) |
| goto fail1; |
| |
| rc = falcon_reset_hw(efx, method); |
| if (rc) { |
| EFX_ERR(efx, "failed to reset hardware\n"); |
| goto fail2; |
| } |
| |
| /* Allow resets to be rescheduled. */ |
| efx->reset_pending = RESET_TYPE_NONE; |
| |
| /* Reinitialise bus-mastering, which may have been turned off before |
| * the reset was scheduled. This is still appropriate, even in the |
| * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| * can respond to requests. */ |
| pci_set_master(efx->pci_dev); |
| |
| /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE |
| * case so the driver can talk to external SRAM */ |
| rc = falcon_init_nic(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to initialise NIC\n"); |
| goto fail3; |
| } |
| |
| /* Leave device stopped if necessary */ |
| if (method == RESET_TYPE_DISABLE) { |
| /* Reinitialise the device anyway so the driver unload sequence |
| * can talk to the external SRAM */ |
| (void) falcon_init_nic(efx); |
| rc = -EIO; |
| goto fail4; |
| } |
| |
| rc = efx_reset_up(efx, &ecmd); |
| if (rc) |
| goto fail5; |
| |
| mutex_unlock(&efx->mac_lock); |
| EFX_LOG(efx, "reset complete\n"); |
| |
| efx->state = STATE_RUNNING; |
| efx_start_all(efx); |
| |
| unlock_rtnl: |
| rtnl_unlock(); |
| return 0; |
| |
| fail5: |
| fail4: |
| fail3: |
| fail2: |
| fail1: |
| EFX_ERR(efx, "has been disabled\n"); |
| efx->state = STATE_DISABLED; |
| |
| mutex_unlock(&efx->mac_lock); |
| rtnl_unlock(); |
| efx_unregister_netdev(efx); |
| efx_fini_port(efx); |
| return rc; |
| } |
| |
| /* The worker thread exists so that code that cannot sleep can |
| * schedule a reset for later. |
| */ |
| static void efx_reset_work(struct work_struct *data) |
| { |
| struct efx_nic *nic = container_of(data, struct efx_nic, reset_work); |
| |
| efx_reset(nic); |
| } |
| |
| void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| { |
| enum reset_type method; |
| |
| if (efx->reset_pending != RESET_TYPE_NONE) { |
| EFX_INFO(efx, "quenching already scheduled reset\n"); |
| return; |
| } |
| |
| switch (type) { |
| case RESET_TYPE_INVISIBLE: |
| case RESET_TYPE_ALL: |
| case RESET_TYPE_WORLD: |
| case RESET_TYPE_DISABLE: |
| method = type; |
| break; |
| case RESET_TYPE_RX_RECOVERY: |
| case RESET_TYPE_RX_DESC_FETCH: |
| case RESET_TYPE_TX_DESC_FETCH: |
| case RESET_TYPE_TX_SKIP: |
| method = RESET_TYPE_INVISIBLE; |
| break; |
| default: |
| method = RESET_TYPE_ALL; |
| break; |
| } |
| |
| if (method != type) |
| EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method); |
| else |
| EFX_LOG(efx, "scheduling reset (%d)\n", method); |
| |
| efx->reset_pending = method; |
| |
| queue_work(efx->workqueue, &efx->reset_work); |
| } |
| |
| /************************************************************************** |
| * |
| * List of NICs we support |
| * |
| **************************************************************************/ |
| |
| /* PCI device ID table */ |
| static struct pci_device_id efx_pci_table[] __devinitdata = { |
| {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), |
| .driver_data = (unsigned long) &falcon_a_nic_type}, |
| {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), |
| .driver_data = (unsigned long) &falcon_b_nic_type}, |
| {0} /* end of list */ |
| }; |
| |
| /************************************************************************** |
| * |
| * Dummy PHY/MAC/Board operations |
| * |
| * Can be used where the MAC does not implement this operation |
| * Needed so all function pointers are valid and do not have to be tested |
| * before use |
| * |
| **************************************************************************/ |
| int efx_port_dummy_op_int(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {} |
| |
| static struct efx_phy_operations efx_dummy_phy_operations = { |
| .init = efx_port_dummy_op_int, |
| .reconfigure = efx_port_dummy_op_void, |
| .check_hw = efx_port_dummy_op_int, |
| .fini = efx_port_dummy_op_void, |
| .clear_interrupt = efx_port_dummy_op_void, |
| .reset_xaui = efx_port_dummy_op_void, |
| }; |
| |
| /* Dummy board operations */ |
| static int efx_nic_dummy_op_int(struct efx_nic *nic) |
| { |
| return 0; |
| } |
| |
| static struct efx_board efx_dummy_board_info = { |
| .init = efx_nic_dummy_op_int, |
| .init_leds = efx_port_dummy_op_int, |
| .set_fault_led = efx_port_dummy_op_blink, |
| }; |
| |
| /************************************************************************** |
| * |
| * Data housekeeping |
| * |
| **************************************************************************/ |
| |
| /* This zeroes out and then fills in the invariants in a struct |
| * efx_nic (including all sub-structures). |
| */ |
| static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type, |
| struct pci_dev *pci_dev, struct net_device *net_dev) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int i, rc; |
| |
| /* Initialise common structures */ |
| memset(efx, 0, sizeof(*efx)); |
| spin_lock_init(&efx->biu_lock); |
| spin_lock_init(&efx->phy_lock); |
| INIT_WORK(&efx->reset_work, efx_reset_work); |
| INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| efx->pci_dev = pci_dev; |
| efx->state = STATE_INIT; |
| efx->reset_pending = RESET_TYPE_NONE; |
| strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| efx->board_info = efx_dummy_board_info; |
| |
| efx->net_dev = net_dev; |
| efx->rx_checksum_enabled = 1; |
| spin_lock_init(&efx->netif_stop_lock); |
| spin_lock_init(&efx->stats_lock); |
| mutex_init(&efx->mac_lock); |
| efx->phy_op = &efx_dummy_phy_operations; |
| efx->mii.dev = net_dev; |
| INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work); |
| atomic_set(&efx->netif_stop_count, 1); |
| |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) { |
| channel = &efx->channel[i]; |
| channel->efx = efx; |
| channel->channel = i; |
| channel->evqnum = i; |
| channel->work_pending = 0; |
| } |
| for (i = 0; i < EFX_MAX_TX_QUEUES; i++) { |
| tx_queue = &efx->tx_queue[i]; |
| tx_queue->efx = efx; |
| tx_queue->queue = i; |
| tx_queue->buffer = NULL; |
| tx_queue->channel = &efx->channel[0]; /* for safety */ |
| } |
| for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { |
| rx_queue = &efx->rx_queue[i]; |
| rx_queue->efx = efx; |
| rx_queue->queue = i; |
| rx_queue->channel = &efx->channel[0]; /* for safety */ |
| rx_queue->buffer = NULL; |
| spin_lock_init(&rx_queue->add_lock); |
| INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work); |
| } |
| |
| efx->type = type; |
| |
| /* Sanity-check NIC type */ |
| EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask & |
| (efx->type->txd_ring_mask + 1)); |
| EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask & |
| (efx->type->rxd_ring_mask + 1)); |
| EFX_BUG_ON_PARANOID(efx->type->evq_size & |
| (efx->type->evq_size - 1)); |
| /* As close as we can get to guaranteeing that we don't overflow */ |
| EFX_BUG_ON_PARANOID(efx->type->evq_size < |
| (efx->type->txd_ring_mask + 1 + |
| efx->type->rxd_ring_mask + 1)); |
| EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); |
| |
| /* Higher numbered interrupt modes are less capable! */ |
| efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| interrupt_mode); |
| |
| efx->workqueue = create_singlethread_workqueue("sfc_work"); |
| if (!efx->workqueue) { |
| rc = -ENOMEM; |
| goto fail1; |
| } |
| |
| return 0; |
| |
| fail1: |
| return rc; |
| } |
| |
| static void efx_fini_struct(struct efx_nic *efx) |
| { |
| if (efx->workqueue) { |
| destroy_workqueue(efx->workqueue); |
| efx->workqueue = NULL; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * PCI interface |
| * |
| **************************************************************************/ |
| |
| /* Main body of final NIC shutdown code |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove_main(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* Skip everything if we never obtained a valid membase */ |
| if (!efx->membase) |
| return; |
| |
| efx_fini_channels(efx); |
| efx_fini_port(efx); |
| |
| /* Shutdown the board, then the NIC and board state */ |
| falcon_fini_interrupt(efx); |
| |
| efx_fini_napi(efx); |
| efx_remove_all(efx); |
| } |
| |
| /* Final NIC shutdown |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove(struct pci_dev *pci_dev) |
| { |
| struct efx_nic *efx; |
| |
| efx = pci_get_drvdata(pci_dev); |
| if (!efx) |
| return; |
| |
| /* Mark the NIC as fini, then stop the interface */ |
| rtnl_lock(); |
| efx->state = STATE_FINI; |
| dev_close(efx->net_dev); |
| |
| /* Allow any queued efx_resets() to complete */ |
| rtnl_unlock(); |
| |
| if (efx->membase == NULL) |
| goto out; |
| |
| efx_unregister_netdev(efx); |
| |
| /* Wait for any scheduled resets to complete. No more will be |
| * scheduled from this point because efx_stop_all() has been |
| * called, we are no longer registered with driverlink, and |
| * the net_device's have been removed. */ |
| flush_workqueue(efx->workqueue); |
| |
| efx_pci_remove_main(efx); |
| |
| out: |
| efx_fini_io(efx); |
| EFX_LOG(efx, "shutdown successful\n"); |
| |
| pci_set_drvdata(pci_dev, NULL); |
| efx_fini_struct(efx); |
| free_netdev(efx->net_dev); |
| }; |
| |
| /* Main body of NIC initialisation |
| * This is called at module load (or hotplug insertion, theoretically). |
| */ |
| static int efx_pci_probe_main(struct efx_nic *efx) |
| { |
| int rc; |
| |
| /* Do start-of-day initialisation */ |
| rc = efx_probe_all(efx); |
| if (rc) |
| goto fail1; |
| |
| rc = efx_init_napi(efx); |
| if (rc) |
| goto fail2; |
| |
| /* Initialise the board */ |
| rc = efx->board_info.init(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to initialise board\n"); |
| goto fail3; |
| } |
| |
| rc = falcon_init_nic(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to initialise NIC\n"); |
| goto fail4; |
| } |
| |
| rc = efx_init_port(efx); |
| if (rc) { |
| EFX_ERR(efx, "failed to initialise port\n"); |
| goto fail5; |
| } |
| |
| rc = efx_init_channels(efx); |
| if (rc) |
| goto fail6; |
| |
| rc = falcon_init_interrupt(efx); |
| if (rc) |
| goto fail7; |
| |
| return 0; |
| |
| fail7: |
| efx_fini_channels(efx); |
| fail6: |
| efx_fini_port(efx); |
| fail5: |
| fail4: |
| fail3: |
| efx_fini_napi(efx); |
| fail2: |
| efx_remove_all(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* NIC initialisation |
| * |
| * This is called at module load (or hotplug insertion, |
| * theoretically). It sets up PCI mappings, tests and resets the NIC, |
| * sets up and registers the network devices with the kernel and hooks |
| * the interrupt service routine. It does not prepare the device for |
| * transmission; this is left to the first time one of the network |
| * interfaces is brought up (i.e. efx_net_open). |
| */ |
| static int __devinit efx_pci_probe(struct pci_dev *pci_dev, |
| const struct pci_device_id *entry) |
| { |
| struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data; |
| struct net_device *net_dev; |
| struct efx_nic *efx; |
| int i, rc; |
| |
| /* Allocate and initialise a struct net_device and struct efx_nic */ |
| net_dev = alloc_etherdev(sizeof(*efx)); |
| if (!net_dev) |
| return -ENOMEM; |
| net_dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA; |
| if (lro) |
| net_dev->features |= NETIF_F_LRO; |
| efx = net_dev->priv; |
| pci_set_drvdata(pci_dev, efx); |
| rc = efx_init_struct(efx, type, pci_dev, net_dev); |
| if (rc) |
| goto fail1; |
| |
| EFX_INFO(efx, "Solarflare Communications NIC detected\n"); |
| |
| /* Set up basic I/O (BAR mappings etc) */ |
| rc = efx_init_io(efx); |
| if (rc) |
| goto fail2; |
| |
| /* No serialisation is required with the reset path because |
| * we're in STATE_INIT. */ |
| for (i = 0; i < 5; i++) { |
| rc = efx_pci_probe_main(efx); |
| if (rc == 0) |
| break; |
| |
| /* Serialise against efx_reset(). No more resets will be |
| * scheduled since efx_stop_all() has been called, and we |
| * have not and never have been registered with either |
| * the rtnetlink or driverlink layers. */ |
| cancel_work_sync(&efx->reset_work); |
| |
| /* Retry if a recoverably reset event has been scheduled */ |
| if ((efx->reset_pending != RESET_TYPE_INVISIBLE) && |
| (efx->reset_pending != RESET_TYPE_ALL)) |
| goto fail3; |
| |
| efx->reset_pending = RESET_TYPE_NONE; |
| } |
| |
| if (rc) { |
| EFX_ERR(efx, "Could not reset NIC\n"); |
| goto fail4; |
| } |
| |
| /* Switch to the running state before we expose the device to |
| * the OS. This is to ensure that the initial gathering of |
| * MAC stats succeeds. */ |
| rtnl_lock(); |
| efx->state = STATE_RUNNING; |
| rtnl_unlock(); |
| |
| rc = efx_register_netdev(efx); |
| if (rc) |
| goto fail5; |
| |
| EFX_LOG(efx, "initialisation successful\n"); |
| |
| return 0; |
| |
| fail5: |
| efx_pci_remove_main(efx); |
| fail4: |
| fail3: |
| efx_fini_io(efx); |
| fail2: |
| efx_fini_struct(efx); |
| fail1: |
| EFX_LOG(efx, "initialisation failed. rc=%d\n", rc); |
| free_netdev(net_dev); |
| return rc; |
| } |
| |
| static struct pci_driver efx_pci_driver = { |
| .name = EFX_DRIVER_NAME, |
| .id_table = efx_pci_table, |
| .probe = efx_pci_probe, |
| .remove = efx_pci_remove, |
| }; |
| |
| /************************************************************************** |
| * |
| * Kernel module interface |
| * |
| *************************************************************************/ |
| |
| module_param(interrupt_mode, uint, 0444); |
| MODULE_PARM_DESC(interrupt_mode, |
| "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| |
| static int __init efx_init_module(void) |
| { |
| int rc; |
| |
| printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); |
| |
| rc = register_netdevice_notifier(&efx_netdev_notifier); |
| if (rc) |
| goto err_notifier; |
| |
| refill_workqueue = create_workqueue("sfc_refill"); |
| if (!refill_workqueue) { |
| rc = -ENOMEM; |
| goto err_refill; |
| } |
| |
| rc = pci_register_driver(&efx_pci_driver); |
| if (rc < 0) |
| goto err_pci; |
| |
| return 0; |
| |
| err_pci: |
| destroy_workqueue(refill_workqueue); |
| err_refill: |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| err_notifier: |
| return rc; |
| } |
| |
| static void __exit efx_exit_module(void) |
| { |
| printk(KERN_INFO "Solarflare NET driver unloading\n"); |
| |
| pci_unregister_driver(&efx_pci_driver); |
| destroy_workqueue(refill_workqueue); |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| |
| } |
| |
| module_init(efx_init_module); |
| module_exit(efx_exit_module); |
| |
| MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and " |
| "Solarflare Communications"); |
| MODULE_DESCRIPTION("Solarflare Communications network driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, efx_pci_table); |