| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). |
| * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/stddef.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/initrd.h> |
| #include <linux/pagemap.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/prom.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/btext.h> |
| #include <asm/tlb.h> |
| #include <asm/prom.h> |
| #include <asm/lmb.h> |
| #include <asm/sections.h> |
| #include <asm/vdso.h> |
| |
| #include "mmu_decl.h" |
| |
| #ifndef CPU_FTR_COHERENT_ICACHE |
| #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ |
| #define CPU_FTR_NOEXECUTE 0 |
| #endif |
| |
| int init_bootmem_done; |
| int mem_init_done; |
| unsigned long memory_limit; |
| |
| extern void hash_preload(struct mm_struct *mm, unsigned long ea, |
| unsigned long access, unsigned long trap); |
| |
| /* |
| * This is called by /dev/mem to know if a given address has to |
| * be mapped non-cacheable or not |
| */ |
| int page_is_ram(unsigned long pfn) |
| { |
| unsigned long paddr = (pfn << PAGE_SHIFT); |
| |
| #ifndef CONFIG_PPC64 /* XXX for now */ |
| return paddr < __pa(high_memory); |
| #else |
| int i; |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long base; |
| |
| base = lmb.memory.region[i].base; |
| |
| if ((paddr >= base) && |
| (paddr < (base + lmb.memory.region[i].size))) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| #endif |
| } |
| EXPORT_SYMBOL(page_is_ram); |
| |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| if (ppc_md.phys_mem_access_prot) |
| return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); |
| |
| if (!page_is_ram(pfn)) |
| vma_prot = __pgprot(pgprot_val(vma_prot) |
| | _PAGE_GUARDED | _PAGE_NO_CACHE); |
| return vma_prot; |
| } |
| EXPORT_SYMBOL(phys_mem_access_prot); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| |
| void online_page(struct page *page) |
| { |
| ClearPageReserved(page); |
| set_page_count(page, 0); |
| free_cold_page(page); |
| totalram_pages++; |
| num_physpages++; |
| } |
| |
| /* |
| * This works only for the non-NUMA case. Later, we'll need a lookup |
| * to convert from real physical addresses to nid, that doesn't use |
| * pfn_to_nid(). |
| */ |
| int __devinit add_memory(u64 start, u64 size) |
| { |
| struct pglist_data *pgdata = NODE_DATA(0); |
| struct zone *zone; |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| |
| start += KERNELBASE; |
| create_section_mapping(start, start + size); |
| |
| /* this should work for most non-highmem platforms */ |
| zone = pgdata->node_zones; |
| |
| return __add_pages(zone, start_pfn, nr_pages); |
| |
| return 0; |
| } |
| |
| /* |
| * First pass at this code will check to determine if the remove |
| * request is within the RMO. Do not allow removal within the RMO. |
| */ |
| int __devinit remove_memory(u64 start, u64 size) |
| { |
| struct zone *zone; |
| unsigned long start_pfn, end_pfn, nr_pages; |
| |
| start_pfn = start >> PAGE_SHIFT; |
| nr_pages = size >> PAGE_SHIFT; |
| end_pfn = start_pfn + nr_pages; |
| |
| printk("%s(): Attempting to remove memoy in range " |
| "%lx to %lx\n", __func__, start, start+size); |
| /* |
| * check for range within RMO |
| */ |
| zone = page_zone(pfn_to_page(start_pfn)); |
| |
| printk("%s(): memory will be removed from " |
| "the %s zone\n", __func__, zone->name); |
| |
| /* |
| * not handling removing memory ranges that |
| * overlap multiple zones yet |
| */ |
| if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages)) |
| goto overlap; |
| |
| /* make sure it is NOT in RMO */ |
| if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) { |
| printk("%s(): range to be removed must NOT be in RMO!\n", |
| __func__); |
| goto in_rmo; |
| } |
| |
| return __remove_pages(zone, start_pfn, nr_pages); |
| |
| overlap: |
| printk("%s(): memory range to be removed overlaps " |
| "multiple zones!!!\n", __func__); |
| in_rmo: |
| return -1; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| void show_mem(void) |
| { |
| unsigned long total = 0, reserved = 0; |
| unsigned long shared = 0, cached = 0; |
| unsigned long highmem = 0; |
| struct page *page; |
| pg_data_t *pgdat; |
| unsigned long i; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_pgdat(pgdat) { |
| unsigned long flags; |
| pgdat_resize_lock(pgdat, &flags); |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| if (!pfn_valid(pgdat->node_start_pfn + i)) |
| continue; |
| page = pgdat_page_nr(pgdat, i); |
| total++; |
| if (PageHighMem(page)) |
| highmem++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| pgdat_resize_unlock(pgdat, &flags); |
| } |
| printk("%ld pages of RAM\n", total); |
| #ifdef CONFIG_HIGHMEM |
| printk("%ld pages of HIGHMEM\n", highmem); |
| #endif |
| printk("%ld reserved pages\n", reserved); |
| printk("%ld pages shared\n", shared); |
| printk("%ld pages swap cached\n", cached); |
| } |
| |
| /* |
| * Initialize the bootmem system and give it all the memory we |
| * have available. If we are using highmem, we only put the |
| * lowmem into the bootmem system. |
| */ |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| void __init do_init_bootmem(void) |
| { |
| unsigned long i; |
| unsigned long start, bootmap_pages; |
| unsigned long total_pages; |
| int boot_mapsize; |
| |
| max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| #ifdef CONFIG_HIGHMEM |
| total_pages = total_lowmem >> PAGE_SHIFT; |
| #endif |
| |
| /* |
| * Find an area to use for the bootmem bitmap. Calculate the size of |
| * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. |
| * Add 1 additional page in case the address isn't page-aligned. |
| */ |
| bootmap_pages = bootmem_bootmap_pages(total_pages); |
| |
| start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); |
| BUG_ON(!start); |
| |
| boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); |
| |
| /* Add all physical memory to the bootmem map, mark each area |
| * present. |
| */ |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| unsigned long base = lmb.memory.region[i].base; |
| unsigned long size = lmb_size_bytes(&lmb.memory, i); |
| #ifdef CONFIG_HIGHMEM |
| if (base >= total_lowmem) |
| continue; |
| if (base + size > total_lowmem) |
| size = total_lowmem - base; |
| #endif |
| free_bootmem(base, size); |
| } |
| |
| /* reserve the sections we're already using */ |
| for (i = 0; i < lmb.reserved.cnt; i++) |
| reserve_bootmem(lmb.reserved.region[i].base, |
| lmb_size_bytes(&lmb.reserved, i)); |
| |
| /* XXX need to clip this if using highmem? */ |
| for (i = 0; i < lmb.memory.cnt; i++) |
| memory_present(0, lmb_start_pfn(&lmb.memory, i), |
| lmb_end_pfn(&lmb.memory, i)); |
| init_bootmem_done = 1; |
| } |
| |
| /* |
| * paging_init() sets up the page tables - in fact we've already done this. |
| */ |
| void __init paging_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long total_ram = lmb_phys_mem_size(); |
| unsigned long top_of_ram = lmb_end_of_DRAM(); |
| |
| #ifdef CONFIG_HIGHMEM |
| map_page(PKMAP_BASE, 0, 0); /* XXX gross */ |
| pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k |
| (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); |
| map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ |
| kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k |
| (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN); |
| kmap_prot = PAGE_KERNEL; |
| #endif /* CONFIG_HIGHMEM */ |
| |
| printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_INFO "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| /* |
| * All pages are DMA-able so we put them all in the DMA zone. |
| */ |
| memset(zones_size, 0, sizeof(zones_size)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| |
| zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; |
| zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; |
| |
| #ifdef CONFIG_HIGHMEM |
| zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; |
| zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT; |
| zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT; |
| #else |
| zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; |
| zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; |
| #endif /* CONFIG_HIGHMEM */ |
| |
| free_area_init_node(0, NODE_DATA(0), zones_size, |
| __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); |
| } |
| #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ |
| |
| void __init mem_init(void) |
| { |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int nid; |
| #endif |
| pg_data_t *pgdat; |
| unsigned long i; |
| struct page *page; |
| unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; |
| |
| num_physpages = lmb.memory.size >> PAGE_SHIFT; |
| high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| for_each_online_node(nid) { |
| if (NODE_DATA(nid)->node_spanned_pages != 0) { |
| printk("freeing bootmem node %x\n", nid); |
| totalram_pages += |
| free_all_bootmem_node(NODE_DATA(nid)); |
| } |
| } |
| #else |
| max_mapnr = max_pfn; |
| totalram_pages += free_all_bootmem(); |
| #endif |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| if (!pfn_valid(pgdat->node_start_pfn + i)) |
| continue; |
| page = pgdat_page_nr(pgdat, i); |
| if (PageReserved(page)) |
| reservedpages++; |
| } |
| } |
| |
| codesize = (unsigned long)&_sdata - (unsigned long)&_stext; |
| datasize = (unsigned long)&_edata - (unsigned long)&_sdata; |
| initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; |
| bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; |
| |
| #ifdef CONFIG_HIGHMEM |
| { |
| unsigned long pfn, highmem_mapnr; |
| |
| highmem_mapnr = total_lowmem >> PAGE_SHIFT; |
| for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { |
| struct page *page = pfn_to_page(pfn); |
| |
| ClearPageReserved(page); |
| set_page_count(page, 1); |
| __free_page(page); |
| totalhigh_pages++; |
| } |
| totalram_pages += totalhigh_pages; |
| printk(KERN_INFO "High memory: %luk\n", |
| totalhigh_pages << (PAGE_SHIFT-10)); |
| } |
| #endif /* CONFIG_HIGHMEM */ |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " |
| "%luk reserved, %luk data, %luk bss, %luk init)\n", |
| (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), |
| num_physpages << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| bsssize >> 10, |
| initsize >> 10); |
| |
| mem_init_done = 1; |
| |
| /* Initialize the vDSO */ |
| vdso_init(); |
| } |
| |
| /* |
| * This is called when a page has been modified by the kernel. |
| * It just marks the page as not i-cache clean. We do the i-cache |
| * flush later when the page is given to a user process, if necessary. |
| */ |
| void flush_dcache_page(struct page *page) |
| { |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &page->flags)) |
| clear_bit(PG_arch_1, &page->flags); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| |
| void flush_dcache_icache_page(struct page *page) |
| { |
| #ifdef CONFIG_BOOKE |
| void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); |
| __flush_dcache_icache(start); |
| kunmap_atomic(start, KM_PPC_SYNC_ICACHE); |
| #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) |
| /* On 8xx there is no need to kmap since highmem is not supported */ |
| __flush_dcache_icache(page_address(page)); |
| #else |
| __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); |
| #endif |
| |
| } |
| void clear_user_page(void *page, unsigned long vaddr, struct page *pg) |
| { |
| clear_page(page); |
| |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| /* |
| * We shouldnt have to do this, but some versions of glibc |
| * require it (ld.so assumes zero filled pages are icache clean) |
| * - Anton |
| */ |
| |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| clear_bit(PG_arch_1, &pg->flags); |
| } |
| EXPORT_SYMBOL(clear_user_page); |
| |
| void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, |
| struct page *pg) |
| { |
| copy_page(vto, vfrom); |
| |
| /* |
| * We should be able to use the following optimisation, however |
| * there are two problems. |
| * Firstly a bug in some versions of binutils meant PLT sections |
| * were not marked executable. |
| * Secondly the first word in the GOT section is blrl, used |
| * to establish the GOT address. Until recently the GOT was |
| * not marked executable. |
| * - Anton |
| */ |
| #if 0 |
| if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) |
| return; |
| #endif |
| |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| clear_bit(PG_arch_1, &pg->flags); |
| } |
| |
| void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, |
| unsigned long addr, int len) |
| { |
| unsigned long maddr; |
| |
| maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); |
| flush_icache_range(maddr, maddr + len); |
| kunmap(page); |
| } |
| EXPORT_SYMBOL(flush_icache_user_range); |
| |
| /* |
| * This is called at the end of handling a user page fault, when the |
| * fault has been handled by updating a PTE in the linux page tables. |
| * We use it to preload an HPTE into the hash table corresponding to |
| * the updated linux PTE. |
| * |
| * This must always be called with the mm->page_table_lock held |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, |
| pte_t pte) |
| { |
| #ifdef CONFIG_PPC_STD_MMU |
| unsigned long access = 0, trap; |
| #endif |
| unsigned long pfn = pte_pfn(pte); |
| |
| /* handle i-cache coherency */ |
| if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && |
| !cpu_has_feature(CPU_FTR_NOEXECUTE) && |
| pfn_valid(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| if (!PageReserved(page) |
| && !test_bit(PG_arch_1, &page->flags)) { |
| if (vma->vm_mm == current->active_mm) { |
| #ifdef CONFIG_8xx |
| /* On 8xx, cache control instructions (particularly |
| * "dcbst" from flush_dcache_icache) fault as write |
| * operation if there is an unpopulated TLB entry |
| * for the address in question. To workaround that, |
| * we invalidate the TLB here, thus avoiding dcbst |
| * misbehaviour. |
| */ |
| _tlbie(address); |
| #endif |
| __flush_dcache_icache((void *) address); |
| } else |
| flush_dcache_icache_page(page); |
| set_bit(PG_arch_1, &page->flags); |
| } |
| } |
| |
| #ifdef CONFIG_PPC_STD_MMU |
| /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ |
| if (!pte_young(pte) || address >= TASK_SIZE) |
| return; |
| |
| /* We try to figure out if we are coming from an instruction |
| * access fault and pass that down to __hash_page so we avoid |
| * double-faulting on execution of fresh text. We have to test |
| * for regs NULL since init will get here first thing at boot |
| * |
| * We also avoid filling the hash if not coming from a fault |
| */ |
| if (current->thread.regs == NULL) |
| return; |
| trap = TRAP(current->thread.regs); |
| if (trap == 0x400) |
| access |= _PAGE_EXEC; |
| else if (trap != 0x300) |
| return; |
| hash_preload(vma->vm_mm, address, access, trap); |
| #endif /* CONFIG_PPC_STD_MMU */ |
| } |