blob: d338b7086013fc1faf2b55d9a67f9a81e5e66bbe [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Kent Overstreetcafe5632013-03-23 16:11:31 -07002#ifndef _BCACHE_H
3#define _BCACHE_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
179#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
180
Kent Overstreet81ab4192013-10-31 15:46:42 -0700181#include <linux/bcache.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700182#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700183#include <linux/kobject.h>
184#include <linux/list.h>
185#include <linux/mutex.h>
186#include <linux/rbtree.h>
187#include <linux/rwsem.h>
Elena Reshetova3b304d22017-10-30 14:46:32 -0700188#include <linux/refcount.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700189#include <linux/types.h>
190#include <linux/workqueue.h>
Coly Li771f3932018-03-18 17:36:17 -0700191#include <linux/kthread.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700192
Kent Overstreet67539e82013-09-10 22:53:34 -0700193#include "bset.h"
Kent Overstreetcafe5632013-03-23 16:11:31 -0700194#include "util.h"
195#include "closure.h"
196
197struct bucket {
198 atomic_t pin;
199 uint16_t prio;
200 uint8_t gen;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700201 uint8_t last_gc; /* Most out of date gen in the btree */
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800202 uint16_t gc_mark; /* Bitfield used by GC. See below for field */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700203};
204
205/*
206 * I'd use bitfields for these, but I don't trust the compiler not to screw me
207 * as multiple threads touch struct bucket without locking
208 */
209
210BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
Kent Overstreet4fe6a812014-03-13 13:46:29 -0700211#define GC_MARK_RECLAIMABLE 1
212#define GC_MARK_DIRTY 2
213#define GC_MARK_METADATA 3
Darrick J. Wong94717442014-01-28 16:57:39 -0800214#define GC_SECTORS_USED_SIZE 13
215#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
216BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800217BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700218
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219#include "journal.h"
220#include "stats.h"
221struct search;
222struct btree;
223struct keybuf;
224
225struct keybuf_key {
226 struct rb_node node;
227 BKEY_PADDED(key);
228 void *private;
229};
230
Kent Overstreetcafe5632013-03-23 16:11:31 -0700231struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700232 struct bkey last_scanned;
233 spinlock_t lock;
234
235 /*
236 * Beginning and end of range in rb tree - so that we can skip taking
237 * lock and checking the rb tree when we need to check for overlapping
238 * keys.
239 */
240 struct bkey start;
241 struct bkey end;
242
243 struct rb_root keys;
244
Kent Overstreet48a915a2013-10-31 15:43:22 -0700245#define KEYBUF_NR 500
Kent Overstreetcafe5632013-03-23 16:11:31 -0700246 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
247};
248
Kent Overstreetcafe5632013-03-23 16:11:31 -0700249struct bcache_device {
250 struct closure cl;
251
252 struct kobject kobj;
253
254 struct cache_set *c;
255 unsigned id;
256#define BCACHEDEVNAME_SIZE 12
257 char name[BCACHEDEVNAME_SIZE];
258
259 struct gendisk *disk;
260
Kent Overstreetc4d951d2013-08-21 17:49:09 -0700261 unsigned long flags;
Coly Li3fd47bf2018-03-18 17:36:16 -0700262#define BCACHE_DEV_CLOSING 0
263#define BCACHE_DEV_DETACHING 1
264#define BCACHE_DEV_UNLINK_DONE 2
265#define BCACHE_DEV_WB_RUNNING 3
266#define BCACHE_DEV_RATE_DW_RUNNING 4
Kent Overstreet48a915a2013-10-31 15:43:22 -0700267 unsigned nr_stripes;
Kent Overstreet2d679fc2013-08-17 02:13:15 -0700268 unsigned stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700269 atomic_t *stripe_sectors_dirty;
Kent Overstreet48a915a2013-10-31 15:43:22 -0700270 unsigned long *full_dirty_stripes;
Kent Overstreet279afba2013-06-05 06:21:07 -0700271
Kent Overstreetcafe5632013-03-23 16:11:31 -0700272 struct bio_set *bio_split;
273
274 unsigned data_csum:1;
275
276 int (*cache_miss)(struct btree *, struct search *,
277 struct bio *, unsigned);
278 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700279};
280
281struct io {
282 /* Used to track sequential IO so it can be skipped */
283 struct hlist_node hash;
284 struct list_head lru;
285
286 unsigned long jiffies;
287 unsigned sequential;
288 sector_t last;
289};
290
Coly Li7e027ca2018-03-18 17:36:18 -0700291enum stop_on_failure {
292 BCH_CACHED_DEV_STOP_AUTO = 0,
293 BCH_CACHED_DEV_STOP_ALWAYS,
294 BCH_CACHED_DEV_STOP_MODE_MAX,
295};
296
Kent Overstreetcafe5632013-03-23 16:11:31 -0700297struct cached_dev {
298 struct list_head list;
299 struct bcache_device disk;
300 struct block_device *bdev;
301
302 struct cache_sb sb;
303 struct bio sb_bio;
304 struct bio_vec sb_bv[1];
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800305 struct closure sb_write;
306 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700307
308 /* Refcount on the cache set. Always nonzero when we're caching. */
Elena Reshetova3b304d22017-10-30 14:46:32 -0700309 refcount_t count;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700310 struct work_struct detach;
311
312 /*
313 * Device might not be running if it's dirty and the cache set hasn't
314 * showed up yet.
315 */
316 atomic_t running;
317
318 /*
319 * Writes take a shared lock from start to finish; scanning for dirty
320 * data to refill the rb tree requires an exclusive lock.
321 */
322 struct rw_semaphore writeback_lock;
323
324 /*
325 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
326 * data in the cache. Protected by writeback_lock; must have an
327 * shared lock to set and exclusive lock to clear.
328 */
329 atomic_t has_dirty;
330
Michael Lyleb1092c92018-01-08 12:21:24 -0800331 /*
332 * Set to zero by things that touch the backing volume-- except
333 * writeback. Incremented by writeback. Used to determine when to
334 * accelerate idle writeback.
335 */
336 atomic_t backing_idle;
337
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700338 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700339 struct delayed_work writeback_rate_update;
340
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700341 /* Limit number of writeback bios in flight */
342 struct semaphore in_flight;
Kent Overstreet5e6926da2013-07-24 17:50:06 -0700343 struct task_struct *writeback_thread;
Tang Junhui9baf3092017-09-06 14:25:59 +0800344 struct workqueue_struct *writeback_write_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700345
346 struct keybuf writeback_keys;
347
Michael Lyle6e6ccc62018-01-08 12:21:23 -0800348 /*
349 * Order the write-half of writeback operations strongly in dispatch
350 * order. (Maintain LBA order; don't allow reads completing out of
351 * order to re-order the writes...)
352 */
353 struct closure_waitlist writeback_ordering_wait;
354 atomic_t writeback_sequence_next;
355
Kent Overstreetcafe5632013-03-23 16:11:31 -0700356 /* For tracking sequential IO */
357#define RECENT_IO_BITS 7
358#define RECENT_IO (1 << RECENT_IO_BITS)
359 struct io io[RECENT_IO];
360 struct hlist_head io_hash[RECENT_IO + 1];
361 struct list_head io_lru;
362 spinlock_t io_lock;
363
364 struct cache_accounting accounting;
365
366 /* The rest of this all shows up in sysfs */
367 unsigned sequential_cutoff;
368 unsigned readahead;
369
Coly Lic7b7bd02018-03-18 17:36:25 -0700370 unsigned io_disable:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700371 unsigned verify:1;
Kent Overstreet5ceaaad2013-09-10 14:27:42 -0700372 unsigned bypass_torture_test:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700373
Kent Overstreet72c27062013-06-05 06:24:39 -0700374 unsigned partial_stripes_expensive:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700375 unsigned writeback_metadata:1;
376 unsigned writeback_running:1;
377 unsigned char writeback_percent;
378 unsigned writeback_delay;
379
Kent Overstreetcafe5632013-03-23 16:11:31 -0700380 uint64_t writeback_rate_target;
Kent Overstreet16749c22013-11-11 13:58:34 -0800381 int64_t writeback_rate_proportional;
Michael Lyle1d316e62017-10-13 16:35:36 -0700382 int64_t writeback_rate_integral;
383 int64_t writeback_rate_integral_scaled;
Michael Lylee41166c2017-10-13 16:35:38 -0700384 int32_t writeback_rate_change;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700385
386 unsigned writeback_rate_update_seconds;
Michael Lyle1d316e62017-10-13 16:35:36 -0700387 unsigned writeback_rate_i_term_inverse;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700388 unsigned writeback_rate_p_term_inverse;
Michael Lyle1d316e62017-10-13 16:35:36 -0700389 unsigned writeback_rate_minimum;
Coly Li7e027ca2018-03-18 17:36:18 -0700390
391 enum stop_on_failure stop_when_cache_set_failed;
Coly Lic7b7bd02018-03-18 17:36:25 -0700392#define DEFAULT_CACHED_DEV_ERROR_LIMIT 64
393 atomic_t io_errors;
394 unsigned error_limit;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700395};
396
Kent Overstreet78365412013-12-17 01:29:34 -0800397enum alloc_reserve {
398 RESERVE_BTREE,
399 RESERVE_PRIO,
400 RESERVE_MOVINGGC,
401 RESERVE_NONE,
402 RESERVE_NR,
Kent Overstreetcafe5632013-03-23 16:11:31 -0700403};
404
405struct cache {
406 struct cache_set *set;
407 struct cache_sb sb;
408 struct bio sb_bio;
409 struct bio_vec sb_bv[1];
410
411 struct kobject kobj;
412 struct block_device *bdev;
413
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700414 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700415
416 struct closure prio;
417 struct prio_set *disk_buckets;
418
419 /*
420 * When allocating new buckets, prio_write() gets first dibs - since we
421 * may not be allocate at all without writing priorities and gens.
422 * prio_buckets[] contains the last buckets we wrote priorities to (so
423 * gc can mark them as metadata), prio_next[] contains the buckets
424 * allocated for the next prio write.
425 */
426 uint64_t *prio_buckets;
427 uint64_t *prio_last_buckets;
428
429 /*
430 * free: Buckets that are ready to be used
431 *
432 * free_inc: Incoming buckets - these are buckets that currently have
433 * cached data in them, and we can't reuse them until after we write
434 * their new gen to disk. After prio_write() finishes writing the new
435 * gens/prios, they'll be moved to the free list (and possibly discarded
436 * in the process)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700437 */
Kent Overstreet78365412013-12-17 01:29:34 -0800438 DECLARE_FIFO(long, free)[RESERVE_NR];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700439 DECLARE_FIFO(long, free_inc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700440
441 size_t fifo_last_bucket;
442
443 /* Allocation stuff: */
444 struct bucket *buckets;
445
446 DECLARE_HEAP(struct bucket *, heap);
447
448 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700449 * If nonzero, we know we aren't going to find any buckets to invalidate
450 * until a gc finishes - otherwise we could pointlessly burn a ton of
451 * cpu
452 */
Kent Overstreetbe628be2016-10-26 20:31:17 -0700453 unsigned invalidate_needs_gc;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700454
455 bool discard; /* Get rid of? */
456
Kent Overstreetcafe5632013-03-23 16:11:31 -0700457 struct journal_device journal;
458
459 /* The rest of this all shows up in sysfs */
460#define IO_ERROR_SHIFT 20
461 atomic_t io_errors;
462 atomic_t io_count;
463
464 atomic_long_t meta_sectors_written;
465 atomic_long_t btree_sectors_written;
466 atomic_long_t sectors_written;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700467};
468
469struct gc_stat {
470 size_t nodes;
471 size_t key_bytes;
472
473 size_t nkeys;
474 uint64_t data; /* sectors */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700475 unsigned in_use; /* percent */
476};
477
478/*
479 * Flag bits, for how the cache set is shutting down, and what phase it's at:
480 *
481 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
482 * all the backing devices first (their cached data gets invalidated, and they
483 * won't automatically reattach).
484 *
485 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
486 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
487 * flushing dirty data).
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700488 *
489 * CACHE_SET_RUNNING means all cache devices have been registered and journal
490 * replay is complete.
Coly Li771f3932018-03-18 17:36:17 -0700491 *
492 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
493 * external and internal I/O should be denied when this flag is set.
494 *
Kent Overstreetcafe5632013-03-23 16:11:31 -0700495 */
496#define CACHE_SET_UNREGISTERING 0
497#define CACHE_SET_STOPPING 1
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700498#define CACHE_SET_RUNNING 2
Coly Li771f3932018-03-18 17:36:17 -0700499#define CACHE_SET_IO_DISABLE 3
Kent Overstreetcafe5632013-03-23 16:11:31 -0700500
501struct cache_set {
502 struct closure cl;
503
504 struct list_head list;
505 struct kobject kobj;
506 struct kobject internal;
507 struct dentry *debug;
508 struct cache_accounting accounting;
509
510 unsigned long flags;
511
512 struct cache_sb sb;
513
514 struct cache *cache[MAX_CACHES_PER_SET];
515 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
516 int caches_loaded;
517
518 struct bcache_device **devices;
Coly Li28312312018-01-08 12:21:28 -0800519 unsigned devices_max_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700520 struct list_head cached_devs;
521 uint64_t cached_dev_sectors;
522 struct closure caching;
523
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800524 struct closure sb_write;
525 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700526
527 mempool_t *search;
528 mempool_t *bio_meta;
529 struct bio_set *bio_split;
530
531 /* For the btree cache */
532 struct shrinker shrink;
533
Kent Overstreetcafe5632013-03-23 16:11:31 -0700534 /* For the btree cache and anything allocation related */
535 struct mutex bucket_lock;
536
537 /* log2(bucket_size), in sectors */
538 unsigned short bucket_bits;
539
540 /* log2(block_size), in sectors */
541 unsigned short block_bits;
542
543 /*
544 * Default number of pages for a new btree node - may be less than a
545 * full bucket
546 */
547 unsigned btree_pages;
548
549 /*
550 * Lists of struct btrees; lru is the list for structs that have memory
551 * allocated for actual btree node, freed is for structs that do not.
552 *
553 * We never free a struct btree, except on shutdown - we just put it on
554 * the btree_cache_freed list and reuse it later. This simplifies the
555 * code, and it doesn't cost us much memory as the memory usage is
556 * dominated by buffers that hold the actual btree node data and those
557 * can be freed - and the number of struct btrees allocated is
558 * effectively bounded.
559 *
560 * btree_cache_freeable effectively is a small cache - we use it because
561 * high order page allocations can be rather expensive, and it's quite
562 * common to delete and allocate btree nodes in quick succession. It
563 * should never grow past ~2-3 nodes in practice.
564 */
565 struct list_head btree_cache;
566 struct list_head btree_cache_freeable;
567 struct list_head btree_cache_freed;
568
569 /* Number of elements in btree_cache + btree_cache_freeable lists */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700570 unsigned btree_cache_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700571
572 /*
573 * If we need to allocate memory for a new btree node and that
574 * allocation fails, we can cannibalize another node in the btree cache
Kent Overstreet0a63b662014-03-17 17:15:53 -0700575 * to satisfy the allocation - lock to guarantee only one thread does
576 * this at a time:
Kent Overstreetcafe5632013-03-23 16:11:31 -0700577 */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700578 wait_queue_head_t btree_cache_wait;
579 struct task_struct *btree_cache_alloc_lock;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700580
581 /*
582 * When we free a btree node, we increment the gen of the bucket the
583 * node is in - but we can't rewrite the prios and gens until we
584 * finished whatever it is we were doing, otherwise after a crash the
585 * btree node would be freed but for say a split, we might not have the
586 * pointers to the new nodes inserted into the btree yet.
587 *
588 * This is a refcount that blocks prio_write() until the new keys are
589 * written.
590 */
591 atomic_t prio_blocked;
Kent Overstreet35fcd842013-07-24 17:29:09 -0700592 wait_queue_head_t bucket_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700593
594 /*
595 * For any bio we don't skip we subtract the number of sectors from
596 * rescale; when it hits 0 we rescale all the bucket priorities.
597 */
598 atomic_t rescale;
599 /*
600 * When we invalidate buckets, we use both the priority and the amount
601 * of good data to determine which buckets to reuse first - to weight
602 * those together consistently we keep track of the smallest nonzero
603 * priority of any bucket.
604 */
605 uint16_t min_prio;
606
607 /*
Kent Overstreet3a2fd9d2014-02-27 17:51:12 -0800608 * max(gen - last_gc) for all buckets. When it gets too big we have to gc
Kent Overstreetcafe5632013-03-23 16:11:31 -0700609 * to keep gens from wrapping around.
610 */
611 uint8_t need_gc;
612 struct gc_stat gc_stats;
613 size_t nbuckets;
Tang Junhuid44c2f92017-10-30 14:46:33 -0700614 size_t avail_nbuckets;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700615
Kent Overstreet72a44512013-10-24 17:19:26 -0700616 struct task_struct *gc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700617 /* Where in the btree gc currently is */
618 struct bkey gc_done;
619
620 /*
621 * The allocation code needs gc_mark in struct bucket to be correct, but
622 * it's not while a gc is in progress. Protected by bucket_lock.
623 */
624 int gc_mark_valid;
625
626 /* Counts how many sectors bio_insert has added to the cache */
627 atomic_t sectors_to_gc;
Kent Overstreetbe628be2016-10-26 20:31:17 -0700628 wait_queue_head_t gc_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700629
Kent Overstreetcafe5632013-03-23 16:11:31 -0700630 struct keybuf moving_gc_keys;
631 /* Number of moving GC bios in flight */
Kent Overstreet72a44512013-10-24 17:19:26 -0700632 struct semaphore moving_in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700633
Nicholas Swensonda415a02014-01-09 16:03:04 -0800634 struct workqueue_struct *moving_gc_wq;
635
Kent Overstreetcafe5632013-03-23 16:11:31 -0700636 struct btree *root;
637
638#ifdef CONFIG_BCACHE_DEBUG
639 struct btree *verify_data;
Kent Overstreet78b77bf2013-12-17 22:49:08 -0800640 struct bset *verify_ondisk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700641 struct mutex verify_lock;
642#endif
643
644 unsigned nr_uuids;
645 struct uuid_entry *uuids;
646 BKEY_PADDED(uuid_bucket);
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800647 struct closure uuid_write;
648 struct semaphore uuid_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700649
650 /*
651 * A btree node on disk could have too many bsets for an iterator to fit
Kent Overstreet57943512013-04-25 13:58:35 -0700652 * on the stack - have to dynamically allocate them
Kent Overstreetcafe5632013-03-23 16:11:31 -0700653 */
Kent Overstreet57943512013-04-25 13:58:35 -0700654 mempool_t *fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700655
Kent Overstreet67539e82013-09-10 22:53:34 -0700656 struct bset_sort_state sort;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700657
658 /* List of buckets we're currently writing data to */
659 struct list_head data_buckets;
660 spinlock_t data_bucket_lock;
661
662 struct journal journal;
663
664#define CONGESTED_MAX 1024
665 unsigned congested_last_us;
666 atomic_t congested;
667
668 /* The rest of this all shows up in sysfs */
669 unsigned congested_read_threshold_us;
670 unsigned congested_write_threshold_us;
671
Kent Overstreetcafe5632013-03-23 16:11:31 -0700672 struct time_stats btree_gc_time;
673 struct time_stats btree_split_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700674 struct time_stats btree_read_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700675
676 atomic_long_t cache_read_races;
677 atomic_long_t writeback_keys_done;
678 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700679
Tang Junhuia728eac2018-02-07 11:41:39 -0800680 atomic_long_t reclaim;
681 atomic_long_t flush_write;
682 atomic_long_t retry_flush_write;
683
Kent Overstreet77c320e2013-07-11 19:42:51 -0700684 enum {
685 ON_ERROR_UNREGISTER,
686 ON_ERROR_PANIC,
687 } on_error;
Coly Li7ba0d832018-02-07 11:41:42 -0800688#define DEFAULT_IO_ERROR_LIMIT 8
Kent Overstreetcafe5632013-03-23 16:11:31 -0700689 unsigned error_limit;
690 unsigned error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700691
Kent Overstreetcafe5632013-03-23 16:11:31 -0700692 unsigned short journal_delay_ms;
Kent Overstreeta85e9682013-12-20 17:28:16 -0800693 bool expensive_debug_checks;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700694 unsigned verify:1;
695 unsigned key_merging_disabled:1;
696 unsigned gc_always_rewrite:1;
697 unsigned shrinker_disabled:1;
698 unsigned copy_gc_enabled:1;
699
700#define BUCKET_HASH_BITS 12
701 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
Tang Junhuic4dc2492018-02-07 11:41:40 -0800702
703 DECLARE_HEAP(struct btree *, flush_btree);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700704};
705
Kent Overstreetcafe5632013-03-23 16:11:31 -0700706struct bbio {
707 unsigned submit_time_us;
708 union {
709 struct bkey key;
710 uint64_t _pad[3];
711 /*
712 * We only need pad = 3 here because we only ever carry around a
713 * single pointer - i.e. the pointer we're doing io to/from.
714 */
715 };
716 struct bio bio;
717};
718
Kent Overstreetcafe5632013-03-23 16:11:31 -0700719#define BTREE_PRIO USHRT_MAX
Kent Overstreete0a985a2013-11-12 13:49:10 -0800720#define INITIAL_PRIO 32768U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700721
722#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
723#define btree_blocks(b) \
724 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
725
726#define btree_default_blocks(c) \
727 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
728
729#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
730#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
731#define block_bytes(c) ((c)->sb.block_size << 9)
732
Kent Overstreetcafe5632013-03-23 16:11:31 -0700733#define prios_per_bucket(c) \
734 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
735 sizeof(struct bucket_disk))
736#define prio_buckets(c) \
737 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
738
Kent Overstreetcafe5632013-03-23 16:11:31 -0700739static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
740{
741 return s >> c->bucket_bits;
742}
743
744static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
745{
746 return ((sector_t) b) << c->bucket_bits;
747}
748
749static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
750{
751 return s & (c->sb.bucket_size - 1);
752}
753
754static inline struct cache *PTR_CACHE(struct cache_set *c,
755 const struct bkey *k,
756 unsigned ptr)
757{
758 return c->cache[PTR_DEV(k, ptr)];
759}
760
761static inline size_t PTR_BUCKET_NR(struct cache_set *c,
762 const struct bkey *k,
763 unsigned ptr)
764{
765 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
766}
767
768static inline struct bucket *PTR_BUCKET(struct cache_set *c,
769 const struct bkey *k,
770 unsigned ptr)
771{
772 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
773}
774
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800775static inline uint8_t gen_after(uint8_t a, uint8_t b)
776{
777 uint8_t r = a - b;
778 return r > 128U ? 0 : r;
779}
780
781static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
782 unsigned i)
783{
784 return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
785}
786
787static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
788 unsigned i)
789{
790 return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
791}
792
Kent Overstreetcafe5632013-03-23 16:11:31 -0700793/* Btree key macros */
794
Kent Overstreetcafe5632013-03-23 16:11:31 -0700795/*
796 * This is used for various on disk data structures - cache_sb, prio_set, bset,
797 * jset: The checksum is _always_ the first 8 bytes of these structs
798 */
799#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600800 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetfafff812013-12-17 21:56:21 -0800801 ((void *) bset_bkey_last(i)) - \
802 (((void *) (i)) + sizeof(uint64_t)))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700803
804/* Error handling macros */
805
806#define btree_bug(b, ...) \
807do { \
808 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
809 dump_stack(); \
810} while (0)
811
812#define cache_bug(c, ...) \
813do { \
814 if (bch_cache_set_error(c, __VA_ARGS__)) \
815 dump_stack(); \
816} while (0)
817
818#define btree_bug_on(cond, b, ...) \
819do { \
820 if (cond) \
821 btree_bug(b, __VA_ARGS__); \
822} while (0)
823
824#define cache_bug_on(cond, c, ...) \
825do { \
826 if (cond) \
827 cache_bug(c, __VA_ARGS__); \
828} while (0)
829
830#define cache_set_err_on(cond, c, ...) \
831do { \
832 if (cond) \
833 bch_cache_set_error(c, __VA_ARGS__); \
834} while (0)
835
836/* Looping macros */
837
838#define for_each_cache(ca, cs, iter) \
839 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
840
841#define for_each_bucket(b, ca) \
842 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
843 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
844
Kent Overstreetcafe5632013-03-23 16:11:31 -0700845static inline void cached_dev_put(struct cached_dev *dc)
846{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700847 if (refcount_dec_and_test(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700848 schedule_work(&dc->detach);
849}
850
851static inline bool cached_dev_get(struct cached_dev *dc)
852{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700853 if (!refcount_inc_not_zero(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700854 return false;
855
856 /* Paired with the mb in cached_dev_attach */
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100857 smp_mb__after_atomic();
Kent Overstreetcafe5632013-03-23 16:11:31 -0700858 return true;
859}
860
861/*
862 * bucket_gc_gen() returns the difference between the bucket's current gen and
863 * the oldest gen of any pointer into that bucket in the btree (last_gc).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700864 */
865
866static inline uint8_t bucket_gc_gen(struct bucket *b)
867{
868 return b->gen - b->last_gc;
869}
870
Kent Overstreetcafe5632013-03-23 16:11:31 -0700871#define BUCKET_GC_GEN_MAX 96U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700872
873#define kobj_attribute_write(n, fn) \
874 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
875
876#define kobj_attribute_rw(n, show, store) \
877 static struct kobj_attribute ksysfs_##n = \
878 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
879
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700880static inline void wake_up_allocators(struct cache_set *c)
881{
882 struct cache *ca;
883 unsigned i;
884
885 for_each_cache(ca, c, i)
886 wake_up_process(ca->alloc_thread);
887}
888
Coly Li771f3932018-03-18 17:36:17 -0700889static inline void closure_bio_submit(struct cache_set *c,
890 struct bio *bio,
891 struct closure *cl)
892{
893 closure_get(cl);
894 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
895 bio->bi_status = BLK_STS_IOERR;
896 bio_endio(bio);
897 return;
898 }
899 generic_make_request(bio);
900}
901
902/*
903 * Prevent the kthread exits directly, and make sure when kthread_stop()
904 * is called to stop a kthread, it is still alive. If a kthread might be
905 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
906 * necessary before the kthread returns.
907 */
908static inline void wait_for_kthread_stop(void)
909{
910 while (!kthread_should_stop()) {
911 set_current_state(TASK_INTERRUPTIBLE);
912 schedule();
913 }
914}
915
Kent Overstreetcafe5632013-03-23 16:11:31 -0700916/* Forward declarations */
917
Coly Lic7b7bd02018-03-18 17:36:25 -0700918void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
Coly Li5138ac62018-01-08 12:21:29 -0800919void bch_count_io_errors(struct cache *, blk_status_t, int, const char *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700920void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200921 blk_status_t, const char *);
922void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
923 const char *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700924void bch_bbio_free(struct bio *, struct cache_set *);
925struct bio *bch_bbio_alloc(struct cache_set *);
926
Kent Overstreetcafe5632013-03-23 16:11:31 -0700927void __bch_submit_bbio(struct bio *, struct cache_set *);
928void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
929
930uint8_t bch_inc_gen(struct cache *, struct bucket *);
931void bch_rescale_priorities(struct cache_set *, int);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700932
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700933bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
934void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
935
936void __bch_bucket_free(struct cache *, struct bucket *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700937void bch_bucket_free(struct cache_set *, struct bkey *);
938
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700939long bch_bucket_alloc(struct cache *, unsigned, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700940int __bch_bucket_alloc_set(struct cache_set *, unsigned,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700941 struct bkey *, int, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700942int bch_bucket_alloc_set(struct cache_set *, unsigned,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700943 struct bkey *, int, bool);
Kent Overstreet2599b532013-07-24 18:11:11 -0700944bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
945 unsigned, unsigned, bool);
Coly Lic7b7bd02018-03-18 17:36:25 -0700946bool bch_cached_dev_error(struct cached_dev *dc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700947
948__printf(2, 3)
949bool bch_cache_set_error(struct cache_set *, const char *, ...);
950
951void bch_prio_write(struct cache *);
952void bch_write_bdev_super(struct cached_dev *, struct closure *);
953
Kent Overstreet72a44512013-10-24 17:19:26 -0700954extern struct workqueue_struct *bcache_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700955extern const char * const bch_cache_modes[];
Coly Li7e027ca2018-03-18 17:36:18 -0700956extern const char * const bch_stop_on_failure_modes[];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700957extern struct mutex bch_register_lock;
958extern struct list_head bch_cache_sets;
959
960extern struct kobj_type bch_cached_dev_ktype;
961extern struct kobj_type bch_flash_dev_ktype;
962extern struct kobj_type bch_cache_set_ktype;
963extern struct kobj_type bch_cache_set_internal_ktype;
964extern struct kobj_type bch_cache_ktype;
965
966void bch_cached_dev_release(struct kobject *);
967void bch_flash_dev_release(struct kobject *);
968void bch_cache_set_release(struct kobject *);
969void bch_cache_release(struct kobject *);
970
971int bch_uuid_write(struct cache_set *);
972void bcache_write_super(struct cache_set *);
973
974int bch_flash_dev_create(struct cache_set *c, uint64_t size);
975
Tang Junhui73ac1052018-02-07 11:41:46 -0800976int bch_cached_dev_attach(struct cached_dev *, struct cache_set *, uint8_t *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700977void bch_cached_dev_detach(struct cached_dev *);
978void bch_cached_dev_run(struct cached_dev *);
979void bcache_device_stop(struct bcache_device *);
980
981void bch_cache_set_unregister(struct cache_set *);
982void bch_cache_set_stop(struct cache_set *);
983
984struct cache_set *bch_cache_set_alloc(struct cache_sb *);
985void bch_btree_cache_free(struct cache_set *);
986int bch_btree_cache_alloc(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700987void bch_moving_init_cache_set(struct cache_set *);
Kent Overstreet2599b532013-07-24 18:11:11 -0700988int bch_open_buckets_alloc(struct cache_set *);
989void bch_open_buckets_free(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700990
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700991int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700992
993void bch_debug_exit(void);
994int bch_debug_init(struct kobject *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700995void bch_request_exit(void);
996int bch_request_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700997
998#endif /* _BCACHE_H */