Dimitris Michailidis | 625ba2c | 2010-04-01 15:28:25 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| 3 | * |
| 4 | * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. |
| 5 | * |
| 6 | * This software is available to you under a choice of one of two |
| 7 | * licenses. You may choose to be licensed under the terms of the GNU |
| 8 | * General Public License (GPL) Version 2, available from the file |
| 9 | * COPYING in the main directory of this source tree, or the |
| 10 | * OpenIB.org BSD license below: |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or |
| 13 | * without modification, are permitted provided that the following |
| 14 | * conditions are met: |
| 15 | * |
| 16 | * - Redistributions of source code must retain the above |
| 17 | * copyright notice, this list of conditions and the following |
| 18 | * disclaimer. |
| 19 | * |
| 20 | * - Redistributions in binary form must reproduce the above |
| 21 | * copyright notice, this list of conditions and the following |
| 22 | * disclaimer in the documentation and/or other materials |
| 23 | * provided with the distribution. |
| 24 | * |
| 25 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 26 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 27 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 28 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 29 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 30 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 31 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 32 | * SOFTWARE. |
| 33 | */ |
| 34 | |
| 35 | #include <linux/skbuff.h> |
| 36 | #include <linux/netdevice.h> |
| 37 | #include <linux/if.h> |
| 38 | #include <linux/if_vlan.h> |
| 39 | #include <linux/jhash.h> |
| 40 | #include <net/neighbour.h> |
| 41 | #include "cxgb4.h" |
| 42 | #include "l2t.h" |
| 43 | #include "t4_msg.h" |
| 44 | #include "t4fw_api.h" |
| 45 | |
| 46 | #define VLAN_NONE 0xfff |
| 47 | |
| 48 | /* identifies sync vs async L2T_WRITE_REQs */ |
| 49 | #define F_SYNC_WR (1 << 12) |
| 50 | |
| 51 | enum { |
| 52 | L2T_STATE_VALID, /* entry is up to date */ |
| 53 | L2T_STATE_STALE, /* entry may be used but needs revalidation */ |
| 54 | L2T_STATE_RESOLVING, /* entry needs address resolution */ |
| 55 | L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ |
| 56 | |
| 57 | /* when state is one of the below the entry is not hashed */ |
| 58 | L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ |
| 59 | L2T_STATE_UNUSED /* entry not in use */ |
| 60 | }; |
| 61 | |
| 62 | struct l2t_data { |
| 63 | rwlock_t lock; |
| 64 | atomic_t nfree; /* number of free entries */ |
| 65 | struct l2t_entry *rover; /* starting point for next allocation */ |
| 66 | struct l2t_entry l2tab[L2T_SIZE]; |
| 67 | }; |
| 68 | |
| 69 | static inline unsigned int vlan_prio(const struct l2t_entry *e) |
| 70 | { |
| 71 | return e->vlan >> 13; |
| 72 | } |
| 73 | |
| 74 | static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) |
| 75 | { |
| 76 | if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ |
| 77 | atomic_dec(&d->nfree); |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * To avoid having to check address families we do not allow v4 and v6 |
| 82 | * neighbors to be on the same hash chain. We keep v4 entries in the first |
| 83 | * half of available hash buckets and v6 in the second. |
| 84 | */ |
| 85 | enum { |
| 86 | L2T_SZ_HALF = L2T_SIZE / 2, |
| 87 | L2T_HASH_MASK = L2T_SZ_HALF - 1 |
| 88 | }; |
| 89 | |
| 90 | static inline unsigned int arp_hash(const u32 *key, int ifindex) |
| 91 | { |
| 92 | return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; |
| 93 | } |
| 94 | |
| 95 | static inline unsigned int ipv6_hash(const u32 *key, int ifindex) |
| 96 | { |
| 97 | u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; |
| 98 | |
| 99 | return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); |
| 100 | } |
| 101 | |
| 102 | static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) |
| 103 | { |
| 104 | return addr_len == 4 ? arp_hash(addr, ifindex) : |
| 105 | ipv6_hash(addr, ifindex); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Checks if an L2T entry is for the given IP/IPv6 address. It does not check |
| 110 | * whether the L2T entry and the address are of the same address family. |
| 111 | * Callers ensure an address is only checked against L2T entries of the same |
| 112 | * family, something made trivial by the separation of IP and IPv6 hash chains |
| 113 | * mentioned above. Returns 0 if there's a match, |
| 114 | */ |
| 115 | static int addreq(const struct l2t_entry *e, const u32 *addr) |
| 116 | { |
| 117 | if (e->v6) |
| 118 | return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | |
| 119 | (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); |
| 120 | return e->addr[0] ^ addr[0]; |
| 121 | } |
| 122 | |
| 123 | static void neigh_replace(struct l2t_entry *e, struct neighbour *n) |
| 124 | { |
| 125 | neigh_hold(n); |
| 126 | if (e->neigh) |
| 127 | neigh_release(e->neigh); |
| 128 | e->neigh = n; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Write an L2T entry. Must be called with the entry locked. |
| 133 | * The write may be synchronous or asynchronous. |
| 134 | */ |
| 135 | static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) |
| 136 | { |
| 137 | struct sk_buff *skb; |
| 138 | struct cpl_l2t_write_req *req; |
| 139 | |
| 140 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); |
| 141 | if (!skb) |
| 142 | return -ENOMEM; |
| 143 | |
| 144 | req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); |
| 145 | INIT_TP_WR(req, 0); |
| 146 | |
| 147 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, |
| 148 | e->idx | (sync ? F_SYNC_WR : 0) | |
| 149 | TID_QID(adap->sge.fw_evtq.abs_id))); |
| 150 | req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync)); |
| 151 | req->l2t_idx = htons(e->idx); |
| 152 | req->vlan = htons(e->vlan); |
| 153 | if (e->neigh) |
| 154 | memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); |
| 155 | memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); |
| 156 | |
| 157 | set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); |
| 158 | t4_ofld_send(adap, skb); |
| 159 | |
| 160 | if (sync && e->state != L2T_STATE_SWITCHING) |
| 161 | e->state = L2T_STATE_SYNC_WRITE; |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Send packets waiting in an L2T entry's ARP queue. Must be called with the |
| 167 | * entry locked. |
| 168 | */ |
| 169 | static void send_pending(struct adapter *adap, struct l2t_entry *e) |
| 170 | { |
| 171 | while (e->arpq_head) { |
| 172 | struct sk_buff *skb = e->arpq_head; |
| 173 | |
| 174 | e->arpq_head = skb->next; |
| 175 | skb->next = NULL; |
| 176 | t4_ofld_send(adap, skb); |
| 177 | } |
| 178 | e->arpq_tail = NULL; |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a |
| 183 | * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T |
| 184 | * index it refers to. |
| 185 | */ |
| 186 | void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) |
| 187 | { |
| 188 | unsigned int tid = GET_TID(rpl); |
| 189 | unsigned int idx = tid & (L2T_SIZE - 1); |
| 190 | |
| 191 | if (unlikely(rpl->status != CPL_ERR_NONE)) { |
| 192 | dev_err(adap->pdev_dev, |
| 193 | "Unexpected L2T_WRITE_RPL status %u for entry %u\n", |
| 194 | rpl->status, idx); |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | if (tid & F_SYNC_WR) { |
| 199 | struct l2t_entry *e = &adap->l2t->l2tab[idx]; |
| 200 | |
| 201 | spin_lock(&e->lock); |
| 202 | if (e->state != L2T_STATE_SWITCHING) { |
| 203 | send_pending(adap, e); |
| 204 | e->state = (e->neigh->nud_state & NUD_STALE) ? |
| 205 | L2T_STATE_STALE : L2T_STATE_VALID; |
| 206 | } |
| 207 | spin_unlock(&e->lock); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * Add a packet to an L2T entry's queue of packets awaiting resolution. |
| 213 | * Must be called with the entry's lock held. |
| 214 | */ |
| 215 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) |
| 216 | { |
| 217 | skb->next = NULL; |
| 218 | if (e->arpq_head) |
| 219 | e->arpq_tail->next = skb; |
| 220 | else |
| 221 | e->arpq_head = skb; |
| 222 | e->arpq_tail = skb; |
| 223 | } |
| 224 | |
| 225 | int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, |
| 226 | struct l2t_entry *e) |
| 227 | { |
| 228 | struct adapter *adap = netdev2adap(dev); |
| 229 | |
| 230 | again: |
| 231 | switch (e->state) { |
| 232 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ |
| 233 | neigh_event_send(e->neigh, NULL); |
| 234 | spin_lock_bh(&e->lock); |
| 235 | if (e->state == L2T_STATE_STALE) |
| 236 | e->state = L2T_STATE_VALID; |
| 237 | spin_unlock_bh(&e->lock); |
| 238 | case L2T_STATE_VALID: /* fast-path, send the packet on */ |
| 239 | return t4_ofld_send(adap, skb); |
| 240 | case L2T_STATE_RESOLVING: |
| 241 | case L2T_STATE_SYNC_WRITE: |
| 242 | spin_lock_bh(&e->lock); |
| 243 | if (e->state != L2T_STATE_SYNC_WRITE && |
| 244 | e->state != L2T_STATE_RESOLVING) { |
| 245 | spin_unlock_bh(&e->lock); |
| 246 | goto again; |
| 247 | } |
| 248 | arpq_enqueue(e, skb); |
| 249 | spin_unlock_bh(&e->lock); |
| 250 | |
| 251 | if (e->state == L2T_STATE_RESOLVING && |
| 252 | !neigh_event_send(e->neigh, NULL)) { |
| 253 | spin_lock_bh(&e->lock); |
| 254 | if (e->state == L2T_STATE_RESOLVING && e->arpq_head) |
| 255 | write_l2e(adap, e, 1); |
| 256 | spin_unlock_bh(&e->lock); |
| 257 | } |
| 258 | } |
| 259 | return 0; |
| 260 | } |
| 261 | EXPORT_SYMBOL(cxgb4_l2t_send); |
| 262 | |
| 263 | /* |
| 264 | * Allocate a free L2T entry. Must be called with l2t_data.lock held. |
| 265 | */ |
| 266 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) |
| 267 | { |
| 268 | struct l2t_entry *end, *e, **p; |
| 269 | |
| 270 | if (!atomic_read(&d->nfree)) |
| 271 | return NULL; |
| 272 | |
| 273 | /* there's definitely a free entry */ |
| 274 | for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) |
| 275 | if (atomic_read(&e->refcnt) == 0) |
| 276 | goto found; |
| 277 | |
| 278 | for (e = d->l2tab; atomic_read(&e->refcnt); ++e) |
| 279 | ; |
| 280 | found: |
| 281 | d->rover = e + 1; |
| 282 | atomic_dec(&d->nfree); |
| 283 | |
| 284 | /* |
| 285 | * The entry we found may be an inactive entry that is |
| 286 | * presently in the hash table. We need to remove it. |
| 287 | */ |
| 288 | if (e->state < L2T_STATE_SWITCHING) |
| 289 | for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) |
| 290 | if (*p == e) { |
| 291 | *p = e->next; |
| 292 | e->next = NULL; |
| 293 | break; |
| 294 | } |
| 295 | |
| 296 | e->state = L2T_STATE_UNUSED; |
| 297 | return e; |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Called when an L2T entry has no more users. |
| 302 | */ |
| 303 | static void t4_l2e_free(struct l2t_entry *e) |
| 304 | { |
| 305 | struct l2t_data *d; |
| 306 | |
| 307 | spin_lock_bh(&e->lock); |
| 308 | if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ |
| 309 | if (e->neigh) { |
| 310 | neigh_release(e->neigh); |
| 311 | e->neigh = NULL; |
| 312 | } |
Dimitris Michailidis | 204dc3c | 2010-06-18 10:05:29 +0000 | [diff] [blame] | 313 | while (e->arpq_head) { |
| 314 | struct sk_buff *skb = e->arpq_head; |
| 315 | |
| 316 | e->arpq_head = skb->next; |
Denis Kirjanov | 05eda04 | 2010-06-30 23:45:52 +0000 | [diff] [blame^] | 317 | kfree_skb(skb); |
Dimitris Michailidis | 204dc3c | 2010-06-18 10:05:29 +0000 | [diff] [blame] | 318 | } |
| 319 | e->arpq_tail = NULL; |
Dimitris Michailidis | 625ba2c | 2010-04-01 15:28:25 +0000 | [diff] [blame] | 320 | } |
| 321 | spin_unlock_bh(&e->lock); |
| 322 | |
| 323 | d = container_of(e, struct l2t_data, l2tab[e->idx]); |
| 324 | atomic_inc(&d->nfree); |
| 325 | } |
| 326 | |
| 327 | void cxgb4_l2t_release(struct l2t_entry *e) |
| 328 | { |
| 329 | if (atomic_dec_and_test(&e->refcnt)) |
| 330 | t4_l2e_free(e); |
| 331 | } |
| 332 | EXPORT_SYMBOL(cxgb4_l2t_release); |
| 333 | |
| 334 | /* |
| 335 | * Update an L2T entry that was previously used for the same next hop as neigh. |
| 336 | * Must be called with softirqs disabled. |
| 337 | */ |
| 338 | static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) |
| 339 | { |
| 340 | unsigned int nud_state; |
| 341 | |
| 342 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| 343 | if (neigh != e->neigh) |
| 344 | neigh_replace(e, neigh); |
| 345 | nud_state = neigh->nud_state; |
| 346 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || |
| 347 | !(nud_state & NUD_VALID)) |
| 348 | e->state = L2T_STATE_RESOLVING; |
| 349 | else if (nud_state & NUD_CONNECTED) |
| 350 | e->state = L2T_STATE_VALID; |
| 351 | else |
| 352 | e->state = L2T_STATE_STALE; |
| 353 | spin_unlock(&e->lock); |
| 354 | } |
| 355 | |
| 356 | struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, |
| 357 | const struct net_device *physdev, |
| 358 | unsigned int priority) |
| 359 | { |
| 360 | u8 lport; |
| 361 | u16 vlan; |
| 362 | struct l2t_entry *e; |
| 363 | int addr_len = neigh->tbl->key_len; |
| 364 | u32 *addr = (u32 *)neigh->primary_key; |
| 365 | int ifidx = neigh->dev->ifindex; |
| 366 | int hash = addr_hash(addr, addr_len, ifidx); |
| 367 | |
| 368 | if (neigh->dev->flags & IFF_LOOPBACK) |
| 369 | lport = netdev2pinfo(physdev)->tx_chan + 4; |
| 370 | else |
| 371 | lport = netdev2pinfo(physdev)->lport; |
| 372 | |
| 373 | if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) |
| 374 | vlan = vlan_dev_vlan_id(neigh->dev); |
| 375 | else |
| 376 | vlan = VLAN_NONE; |
| 377 | |
| 378 | write_lock_bh(&d->lock); |
| 379 | for (e = d->l2tab[hash].first; e; e = e->next) |
| 380 | if (!addreq(e, addr) && e->ifindex == ifidx && |
| 381 | e->vlan == vlan && e->lport == lport) { |
| 382 | l2t_hold(d, e); |
| 383 | if (atomic_read(&e->refcnt) == 1) |
| 384 | reuse_entry(e, neigh); |
| 385 | goto done; |
| 386 | } |
| 387 | |
| 388 | /* Need to allocate a new entry */ |
| 389 | e = alloc_l2e(d); |
| 390 | if (e) { |
| 391 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| 392 | e->state = L2T_STATE_RESOLVING; |
| 393 | memcpy(e->addr, addr, addr_len); |
| 394 | e->ifindex = ifidx; |
| 395 | e->hash = hash; |
| 396 | e->lport = lport; |
| 397 | e->v6 = addr_len == 16; |
| 398 | atomic_set(&e->refcnt, 1); |
| 399 | neigh_replace(e, neigh); |
| 400 | e->vlan = vlan; |
| 401 | e->next = d->l2tab[hash].first; |
| 402 | d->l2tab[hash].first = e; |
| 403 | spin_unlock(&e->lock); |
| 404 | } |
| 405 | done: |
| 406 | write_unlock_bh(&d->lock); |
| 407 | return e; |
| 408 | } |
| 409 | EXPORT_SYMBOL(cxgb4_l2t_get); |
| 410 | |
| 411 | /* |
| 412 | * Called when address resolution fails for an L2T entry to handle packets |
| 413 | * on the arpq head. If a packet specifies a failure handler it is invoked, |
| 414 | * otherwise the packet is sent to the device. |
| 415 | */ |
| 416 | static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) |
| 417 | { |
| 418 | while (arpq) { |
| 419 | struct sk_buff *skb = arpq; |
| 420 | const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); |
| 421 | |
| 422 | arpq = skb->next; |
| 423 | skb->next = NULL; |
| 424 | if (cb->arp_err_handler) |
| 425 | cb->arp_err_handler(cb->handle, skb); |
| 426 | else |
| 427 | t4_ofld_send(adap, skb); |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Called when the host's neighbor layer makes a change to some entry that is |
| 433 | * loaded into the HW L2 table. |
| 434 | */ |
| 435 | void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) |
| 436 | { |
| 437 | struct l2t_entry *e; |
| 438 | struct sk_buff *arpq = NULL; |
| 439 | struct l2t_data *d = adap->l2t; |
| 440 | int addr_len = neigh->tbl->key_len; |
| 441 | u32 *addr = (u32 *) neigh->primary_key; |
| 442 | int ifidx = neigh->dev->ifindex; |
| 443 | int hash = addr_hash(addr, addr_len, ifidx); |
| 444 | |
| 445 | read_lock_bh(&d->lock); |
| 446 | for (e = d->l2tab[hash].first; e; e = e->next) |
| 447 | if (!addreq(e, addr) && e->ifindex == ifidx) { |
| 448 | spin_lock(&e->lock); |
| 449 | if (atomic_read(&e->refcnt)) |
| 450 | goto found; |
| 451 | spin_unlock(&e->lock); |
| 452 | break; |
| 453 | } |
| 454 | read_unlock_bh(&d->lock); |
| 455 | return; |
| 456 | |
| 457 | found: |
| 458 | read_unlock(&d->lock); |
| 459 | |
| 460 | if (neigh != e->neigh) |
| 461 | neigh_replace(e, neigh); |
| 462 | |
| 463 | if (e->state == L2T_STATE_RESOLVING) { |
| 464 | if (neigh->nud_state & NUD_FAILED) { |
| 465 | arpq = e->arpq_head; |
| 466 | e->arpq_head = e->arpq_tail = NULL; |
| 467 | } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && |
| 468 | e->arpq_head) { |
| 469 | write_l2e(adap, e, 1); |
| 470 | } |
| 471 | } else { |
| 472 | e->state = neigh->nud_state & NUD_CONNECTED ? |
| 473 | L2T_STATE_VALID : L2T_STATE_STALE; |
| 474 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) |
| 475 | write_l2e(adap, e, 0); |
| 476 | } |
| 477 | |
| 478 | spin_unlock_bh(&e->lock); |
| 479 | |
| 480 | if (arpq) |
| 481 | handle_failed_resolution(adap, arpq); |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Allocate an L2T entry for use by a switching rule. Such entries need to be |
| 486 | * explicitly freed and while busy they are not on any hash chain, so normal |
| 487 | * address resolution updates do not see them. |
| 488 | */ |
| 489 | struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d) |
| 490 | { |
| 491 | struct l2t_entry *e; |
| 492 | |
| 493 | write_lock_bh(&d->lock); |
| 494 | e = alloc_l2e(d); |
| 495 | if (e) { |
| 496 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| 497 | e->state = L2T_STATE_SWITCHING; |
| 498 | atomic_set(&e->refcnt, 1); |
| 499 | spin_unlock(&e->lock); |
| 500 | } |
| 501 | write_unlock_bh(&d->lock); |
| 502 | return e; |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * Sets/updates the contents of a switching L2T entry that has been allocated |
| 507 | * with an earlier call to @t4_l2t_alloc_switching. |
| 508 | */ |
| 509 | int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan, |
| 510 | u8 port, u8 *eth_addr) |
| 511 | { |
| 512 | e->vlan = vlan; |
| 513 | e->lport = port; |
| 514 | memcpy(e->dmac, eth_addr, ETH_ALEN); |
| 515 | return write_l2e(adap, e, 0); |
| 516 | } |
| 517 | |
| 518 | struct l2t_data *t4_init_l2t(void) |
| 519 | { |
| 520 | int i; |
| 521 | struct l2t_data *d; |
| 522 | |
| 523 | d = t4_alloc_mem(sizeof(*d)); |
| 524 | if (!d) |
| 525 | return NULL; |
| 526 | |
| 527 | d->rover = d->l2tab; |
| 528 | atomic_set(&d->nfree, L2T_SIZE); |
| 529 | rwlock_init(&d->lock); |
| 530 | |
| 531 | for (i = 0; i < L2T_SIZE; ++i) { |
| 532 | d->l2tab[i].idx = i; |
| 533 | d->l2tab[i].state = L2T_STATE_UNUSED; |
| 534 | spin_lock_init(&d->l2tab[i].lock); |
| 535 | atomic_set(&d->l2tab[i].refcnt, 0); |
| 536 | } |
| 537 | return d; |
| 538 | } |
| 539 | |
| 540 | #include <linux/module.h> |
| 541 | #include <linux/debugfs.h> |
| 542 | #include <linux/seq_file.h> |
| 543 | |
| 544 | static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) |
| 545 | { |
| 546 | struct l2t_entry *l2tab = seq->private; |
| 547 | |
| 548 | return pos >= L2T_SIZE ? NULL : &l2tab[pos]; |
| 549 | } |
| 550 | |
| 551 | static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) |
| 552 | { |
| 553 | return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; |
| 554 | } |
| 555 | |
| 556 | static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 557 | { |
| 558 | v = l2t_get_idx(seq, *pos); |
| 559 | if (v) |
| 560 | ++*pos; |
| 561 | return v; |
| 562 | } |
| 563 | |
| 564 | static void l2t_seq_stop(struct seq_file *seq, void *v) |
| 565 | { |
| 566 | } |
| 567 | |
| 568 | static char l2e_state(const struct l2t_entry *e) |
| 569 | { |
| 570 | switch (e->state) { |
| 571 | case L2T_STATE_VALID: return 'V'; |
| 572 | case L2T_STATE_STALE: return 'S'; |
| 573 | case L2T_STATE_SYNC_WRITE: return 'W'; |
| 574 | case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; |
| 575 | case L2T_STATE_SWITCHING: return 'X'; |
| 576 | default: |
| 577 | return 'U'; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | static int l2t_seq_show(struct seq_file *seq, void *v) |
| 582 | { |
| 583 | if (v == SEQ_START_TOKEN) |
| 584 | seq_puts(seq, " Idx IP address " |
| 585 | "Ethernet address VLAN/P LP State Users Port\n"); |
| 586 | else { |
| 587 | char ip[60]; |
| 588 | struct l2t_entry *e = v; |
| 589 | |
| 590 | spin_lock_bh(&e->lock); |
| 591 | if (e->state == L2T_STATE_SWITCHING) |
| 592 | ip[0] = '\0'; |
| 593 | else |
| 594 | sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); |
| 595 | seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", |
| 596 | e->idx, ip, e->dmac, |
| 597 | e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, |
| 598 | l2e_state(e), atomic_read(&e->refcnt), |
| 599 | e->neigh ? e->neigh->dev->name : ""); |
| 600 | spin_unlock_bh(&e->lock); |
| 601 | } |
| 602 | return 0; |
| 603 | } |
| 604 | |
| 605 | static const struct seq_operations l2t_seq_ops = { |
| 606 | .start = l2t_seq_start, |
| 607 | .next = l2t_seq_next, |
| 608 | .stop = l2t_seq_stop, |
| 609 | .show = l2t_seq_show |
| 610 | }; |
| 611 | |
| 612 | static int l2t_seq_open(struct inode *inode, struct file *file) |
| 613 | { |
| 614 | int rc = seq_open(file, &l2t_seq_ops); |
| 615 | |
| 616 | if (!rc) { |
| 617 | struct adapter *adap = inode->i_private; |
| 618 | struct seq_file *seq = file->private_data; |
| 619 | |
| 620 | seq->private = adap->l2t->l2tab; |
| 621 | } |
| 622 | return rc; |
| 623 | } |
| 624 | |
| 625 | const struct file_operations t4_l2t_fops = { |
| 626 | .owner = THIS_MODULE, |
| 627 | .open = l2t_seq_open, |
| 628 | .read = seq_read, |
| 629 | .llseek = seq_lseek, |
| 630 | .release = seq_release, |
| 631 | }; |