blob: 8717e11fe3f59ca8a251993958800b0f81dd1696 [file] [log] [blame]
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001/*
Jubin John05d6ac12016-02-14 20:22:17 -08002 * Copyright(c) 2015, 2016 Intel Corporation.
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05003 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05009 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
Mitko Haralanovf727a0c2016-02-05 11:57:46 -050020 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47#include <asm/page.h>
48
49#include "user_exp_rcv.h"
50#include "trace.h"
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -080051#include "mmu_rb.h"
Mitko Haralanovf727a0c2016-02-05 11:57:46 -050052
Mitko Haralanovb8abe342016-02-05 11:57:51 -050053struct tid_group {
54 struct list_head list;
55 unsigned base;
56 u8 size;
57 u8 used;
58 u8 map;
59};
60
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -080061struct tid_rb_node {
62 struct mmu_rb_node mmu;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -050063 unsigned long phys;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -050064 struct tid_group *grp;
65 u32 rcventry;
66 dma_addr_t dma_addr;
67 bool freed;
68 unsigned npages;
69 struct page *pages[0];
70};
71
Mitko Haralanovf88e0c82016-02-05 11:57:52 -050072struct tid_pageset {
73 u16 idx;
74 u16 count;
75};
76
Mitko Haralanovb8abe342016-02-05 11:57:51 -050077#define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
Mitko Haralanov3abb33a2016-02-05 11:57:54 -050079#define num_user_pages(vaddr, len) \
80 (1 + (((((unsigned long)(vaddr) + \
81 (unsigned long)(len) - 1) & PAGE_MASK) - \
82 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
Mitko Haralanovf88e0c82016-02-05 11:57:52 -050084static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
Dean Luicke0b09ac2016-07-28 15:21:20 -040085 struct hfi1_filedata *);
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -050086static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -050087static int set_rcvarray_entry(struct file *, unsigned long, u32,
Mitko Haralanov3abb33a2016-02-05 11:57:54 -050088 struct tid_group *, struct page **, unsigned);
Dean Luicke0b09ac2016-07-28 15:21:20 -040089static int tid_rb_insert(void *, struct mmu_rb_node *);
Dean Luick082b3532016-07-28 15:21:25 -040090static void tid_rb_remove(void *, struct mmu_rb_node *);
Dean Luicke0b09ac2016-07-28 15:21:20 -040091static int tid_rb_invalidate(void *, struct mmu_rb_node *);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -050092static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
93 struct tid_pageset *, unsigned, u16, struct page **,
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -050094 u32 *, unsigned *, unsigned *);
Mitko Haralanov455d7f12016-02-05 11:57:56 -050095static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
Ira Weiny5ed3b152016-07-28 12:27:32 -040096static void clear_tid_node(struct hfi1_filedata *, struct tid_rb_node *);
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -080097
98static struct mmu_rb_ops tid_rb_ops = {
Dean Luicka7cd2dc2016-07-28 12:27:37 -040099 .insert = tid_rb_insert,
100 .remove = tid_rb_remove,
101 .invalidate = tid_rb_invalidate
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800102};
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500103
104static inline u32 rcventry2tidinfo(u32 rcventry)
105{
106 u32 pair = rcventry & ~0x1;
107
108 return EXP_TID_SET(IDX, pair >> 1) |
109 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
110}
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500111
Mitko Haralanovb8abe342016-02-05 11:57:51 -0500112static inline void exp_tid_group_init(struct exp_tid_set *set)
113{
114 INIT_LIST_HEAD(&set->list);
115 set->count = 0;
116}
117
118static inline void tid_group_remove(struct tid_group *grp,
119 struct exp_tid_set *set)
120{
121 list_del_init(&grp->list);
122 set->count--;
123}
124
125static inline void tid_group_add_tail(struct tid_group *grp,
126 struct exp_tid_set *set)
127{
128 list_add_tail(&grp->list, &set->list);
129 set->count++;
130}
131
132static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
133{
134 struct tid_group *grp =
135 list_first_entry(&set->list, struct tid_group, list);
136 list_del_init(&grp->list);
137 set->count--;
138 return grp;
139}
140
141static inline void tid_group_move(struct tid_group *group,
142 struct exp_tid_set *s1,
143 struct exp_tid_set *s2)
144{
145 tid_group_remove(group, s1);
146 tid_group_add_tail(group, s2);
147}
148
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500149/*
150 * Initialize context and file private data needed for Expected
151 * receive caching. This needs to be done after the context has
152 * been configured with the eager/expected RcvEntry counts.
153 */
154int hfi1_user_exp_rcv_init(struct file *fp)
155{
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500156 struct hfi1_filedata *fd = fp->private_data;
157 struct hfi1_ctxtdata *uctxt = fd->uctxt;
158 struct hfi1_devdata *dd = uctxt->dd;
159 unsigned tidbase;
160 int i, ret = 0;
161
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500162 spin_lock_init(&fd->tid_lock);
163 spin_lock_init(&fd->invalid_lock);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500164
165 if (!uctxt->subctxt_cnt || !fd->subctxt) {
166 exp_tid_group_init(&uctxt->tid_group_list);
167 exp_tid_group_init(&uctxt->tid_used_list);
168 exp_tid_group_init(&uctxt->tid_full_list);
169
170 tidbase = uctxt->expected_base;
171 for (i = 0; i < uctxt->expected_count /
172 dd->rcv_entries.group_size; i++) {
173 struct tid_group *grp;
174
175 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
176 if (!grp) {
177 /*
178 * If we fail here, the groups already
179 * allocated will be freed by the close
180 * call.
181 */
182 ret = -ENOMEM;
183 goto done;
184 }
185 grp->size = dd->rcv_entries.group_size;
186 grp->base = tidbase;
187 tid_group_add_tail(grp, &uctxt->tid_group_list);
188 tidbase += dd->rcv_entries.group_size;
189 }
190 }
191
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800192 fd->entry_to_rb = kcalloc(uctxt->expected_count,
193 sizeof(struct rb_node *),
194 GFP_KERNEL);
195 if (!fd->entry_to_rb)
196 return -ENOMEM;
197
Dean Luick622c2022016-07-28 15:21:21 -0400198 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500199 fd->invalid_tid_idx = 0;
200 fd->invalid_tids = kzalloc(uctxt->expected_count *
201 sizeof(u32), GFP_KERNEL);
202 if (!fd->invalid_tids) {
203 ret = -ENOMEM;
204 goto done;
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800205 }
206
207 /*
208 * Register MMU notifier callbacks. If the registration
Dean Luick622c2022016-07-28 15:21:21 -0400209 * fails, continue without TID caching for this context.
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800210 */
Dean Luickb85ced92016-07-28 15:21:24 -0400211 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
212 dd->pport->hfi1_wq,
213 &fd->handler);
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800214 if (ret) {
215 dd_dev_info(dd,
216 "Failed MMU notifier registration %d\n",
217 ret);
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800218 ret = 0;
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500219 }
220 }
221
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500222 /*
223 * PSM does not have a good way to separate, count, and
224 * effectively enforce a limit on RcvArray entries used by
225 * subctxts (when context sharing is used) when TID caching
226 * is enabled. To help with that, we calculate a per-process
227 * RcvArray entry share and enforce that.
228 * If TID caching is not in use, PSM deals with usage on its
229 * own. In that case, we allow any subctxt to take all of the
230 * entries.
231 *
232 * Make sure that we set the tid counts only after successful
233 * init.
234 */
Mitko Haralanov455d7f12016-02-05 11:57:56 -0500235 spin_lock(&fd->tid_lock);
Dean Luick622c2022016-07-28 15:21:21 -0400236 if (uctxt->subctxt_cnt && fd->handler) {
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500237 u16 remainder;
238
239 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
240 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
241 if (remainder && fd->subctxt < remainder)
242 fd->tid_limit++;
243 } else {
244 fd->tid_limit = uctxt->expected_count;
245 }
Mitko Haralanov455d7f12016-02-05 11:57:56 -0500246 spin_unlock(&fd->tid_lock);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500247done:
248 return ret;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500249}
250
251int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
252{
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500253 struct hfi1_ctxtdata *uctxt = fd->uctxt;
254 struct tid_group *grp, *gptr;
255
Mitko Haralanov94158442016-04-20 06:05:36 -0700256 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
257 return 0;
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500258 /*
259 * The notifier would have been removed when the process'es mm
260 * was freed.
261 */
Dean Luick622c2022016-07-28 15:21:21 -0400262 if (fd->handler)
Dean Luicke0b09ac2016-07-28 15:21:20 -0400263 hfi1_mmu_rb_unregister(fd->handler);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500264
265 kfree(fd->invalid_tids);
266
267 if (!uctxt->cnt) {
268 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
Dean Luicke0b09ac2016-07-28 15:21:20 -0400269 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500270 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
Dean Luicke0b09ac2016-07-28 15:21:20 -0400271 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500272 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
273 list) {
274 list_del_init(&grp->list);
275 kfree(grp);
276 }
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500277 hfi1_clear_tids(uctxt);
278 }
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800279
280 kfree(fd->entry_to_rb);
Mitko Haralanov3abb33a2016-02-05 11:57:54 -0500281 return 0;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500282}
283
Mitko Haralanovb8abe342016-02-05 11:57:51 -0500284/*
285 * Write an "empty" RcvArray entry.
286 * This function exists so the TID registaration code can use it
287 * to write to unused/unneeded entries and still take advantage
288 * of the WC performance improvements. The HFI will ignore this
289 * write to the RcvArray entry.
290 */
291static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
292{
293 /*
294 * Doing the WC fill writes only makes sense if the device is
295 * present and the RcvArray has been mapped as WC memory.
296 */
297 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
298 writeq(0, dd->rcvarray_wc + (index * 8));
299}
300
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500301/*
302 * RcvArray entry allocation for Expected Receives is done by the
303 * following algorithm:
304 *
305 * The context keeps 3 lists of groups of RcvArray entries:
306 * 1. List of empty groups - tid_group_list
307 * This list is created during user context creation and
308 * contains elements which describe sets (of 8) of empty
309 * RcvArray entries.
310 * 2. List of partially used groups - tid_used_list
311 * This list contains sets of RcvArray entries which are
312 * not completely used up. Another mapping request could
313 * use some of all of the remaining entries.
314 * 3. List of full groups - tid_full_list
315 * This is the list where sets that are completely used
316 * up go.
317 *
318 * An attempt to optimize the usage of RcvArray entries is
319 * made by finding all sets of physically contiguous pages in a
320 * user's buffer.
321 * These physically contiguous sets are further split into
322 * sizes supported by the receive engine of the HFI. The
323 * resulting sets of pages are stored in struct tid_pageset,
324 * which describes the sets as:
325 * * .count - number of pages in this set
326 * * .idx - starting index into struct page ** array
327 * of this set
328 *
329 * From this point on, the algorithm deals with the page sets
330 * described above. The number of pagesets is divided by the
331 * RcvArray group size to produce the number of full groups
332 * needed.
333 *
334 * Groups from the 3 lists are manipulated using the following
335 * rules:
336 * 1. For each set of 8 pagesets, a complete group from
337 * tid_group_list is taken, programmed, and moved to
338 * the tid_full_list list.
339 * 2. For all remaining pagesets:
340 * 2.1 If the tid_used_list is empty and the tid_group_list
341 * is empty, stop processing pageset and return only
342 * what has been programmed up to this point.
343 * 2.2 If the tid_used_list is empty and the tid_group_list
344 * is not empty, move a group from tid_group_list to
345 * tid_used_list.
346 * 2.3 For each group is tid_used_group, program as much as
347 * can fit into the group. If the group becomes fully
348 * used, move it to tid_full_list.
349 */
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500350int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
351{
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500352 int ret = 0, need_group = 0, pinned;
353 struct hfi1_filedata *fd = fp->private_data;
354 struct hfi1_ctxtdata *uctxt = fd->uctxt;
355 struct hfi1_devdata *dd = uctxt->dd;
356 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
357 tididx = 0, mapped, mapped_pages = 0;
358 unsigned long vaddr = tinfo->vaddr;
359 struct page **pages = NULL;
360 u32 *tidlist = NULL;
361 struct tid_pageset *pagesets = NULL;
362
363 /* Get the number of pages the user buffer spans */
364 npages = num_user_pages(vaddr, tinfo->length);
365 if (!npages)
366 return -EINVAL;
367
368 if (npages > uctxt->expected_count) {
369 dd_dev_err(dd, "Expected buffer too big\n");
370 return -EINVAL;
371 }
372
373 /* Verify that access is OK for the user buffer */
374 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
375 npages * PAGE_SIZE)) {
376 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
377 (void *)vaddr, npages);
378 return -EFAULT;
379 }
380
381 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
382 GFP_KERNEL);
383 if (!pagesets)
384 return -ENOMEM;
385
386 /* Allocate the array of struct page pointers needed for pinning */
387 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
388 if (!pages) {
389 ret = -ENOMEM;
390 goto bail;
391 }
392
393 /*
394 * Pin all the pages of the user buffer. If we can't pin all the
395 * pages, accept the amount pinned so far and program only that.
396 * User space knows how to deal with partially programmed buffers.
397 */
Ira Weiny3faa3d92016-07-28 15:21:19 -0400398 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
Mitko Haralanov0ad2d3d2016-04-12 10:46:29 -0700399 ret = -ENOMEM;
400 goto bail;
401 }
402
Ira Weiny3faa3d92016-07-28 15:21:19 -0400403 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500404 if (pinned <= 0) {
405 ret = pinned;
406 goto bail;
407 }
Mitko Haralanova7922f72016-03-08 11:15:39 -0800408 fd->tid_n_pinned += npages;
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500409
410 /* Find sets of physically contiguous pages */
411 npagesets = find_phys_blocks(pages, pinned, pagesets);
412
413 /*
414 * We don't need to access this under a lock since tid_used is per
415 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
416 * and hfi1_user_exp_rcv_setup() at the same time.
417 */
418 spin_lock(&fd->tid_lock);
419 if (fd->tid_used + npagesets > fd->tid_limit)
420 pageset_count = fd->tid_limit - fd->tid_used;
421 else
422 pageset_count = npagesets;
423 spin_unlock(&fd->tid_lock);
424
425 if (!pageset_count)
426 goto bail;
427
428 ngroups = pageset_count / dd->rcv_entries.group_size;
429 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
430 if (!tidlist) {
431 ret = -ENOMEM;
432 goto nomem;
433 }
434
435 tididx = 0;
436
437 /*
438 * From this point on, we are going to be using shared (between master
439 * and subcontexts) context resources. We need to take the lock.
440 */
441 mutex_lock(&uctxt->exp_lock);
442 /*
443 * The first step is to program the RcvArray entries which are complete
444 * groups.
445 */
446 while (ngroups && uctxt->tid_group_list.count) {
447 struct tid_group *grp =
448 tid_group_pop(&uctxt->tid_group_list);
449
450 ret = program_rcvarray(fp, vaddr, grp, pagesets,
451 pageidx, dd->rcv_entries.group_size,
452 pages, tidlist, &tididx, &mapped);
453 /*
454 * If there was a failure to program the RcvArray
455 * entries for the entire group, reset the grp fields
456 * and add the grp back to the free group list.
457 */
458 if (ret <= 0) {
459 tid_group_add_tail(grp, &uctxt->tid_group_list);
460 hfi1_cdbg(TID,
461 "Failed to program RcvArray group %d", ret);
462 goto unlock;
463 }
464
465 tid_group_add_tail(grp, &uctxt->tid_full_list);
466 ngroups--;
467 pageidx += ret;
468 mapped_pages += mapped;
469 }
470
471 while (pageidx < pageset_count) {
472 struct tid_group *grp, *ptr;
473 /*
474 * If we don't have any partially used tid groups, check
475 * if we have empty groups. If so, take one from there and
476 * put in the partially used list.
477 */
478 if (!uctxt->tid_used_list.count || need_group) {
479 if (!uctxt->tid_group_list.count)
480 goto unlock;
481
482 grp = tid_group_pop(&uctxt->tid_group_list);
483 tid_group_add_tail(grp, &uctxt->tid_used_list);
484 need_group = 0;
485 }
486 /*
487 * There is an optimization opportunity here - instead of
488 * fitting as many page sets as we can, check for a group
489 * later on in the list that could fit all of them.
490 */
491 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
492 list) {
493 unsigned use = min_t(unsigned, pageset_count - pageidx,
494 grp->size - grp->used);
495
496 ret = program_rcvarray(fp, vaddr, grp, pagesets,
497 pageidx, use, pages, tidlist,
498 &tididx, &mapped);
499 if (ret < 0) {
500 hfi1_cdbg(TID,
501 "Failed to program RcvArray entries %d",
502 ret);
503 ret = -EFAULT;
504 goto unlock;
505 } else if (ret > 0) {
506 if (grp->used == grp->size)
507 tid_group_move(grp,
508 &uctxt->tid_used_list,
509 &uctxt->tid_full_list);
510 pageidx += ret;
511 mapped_pages += mapped;
512 need_group = 0;
513 /* Check if we are done so we break out early */
514 if (pageidx >= pageset_count)
515 break;
516 } else if (WARN_ON(ret == 0)) {
517 /*
518 * If ret is 0, we did not program any entries
519 * into this group, which can only happen if
520 * we've screwed up the accounting somewhere.
521 * Warn and try to continue.
522 */
523 need_group = 1;
524 }
525 }
526 }
527unlock:
528 mutex_unlock(&uctxt->exp_lock);
529nomem:
530 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
531 mapped_pages, ret);
532 if (tididx) {
533 spin_lock(&fd->tid_lock);
534 fd->tid_used += tididx;
535 spin_unlock(&fd->tid_lock);
536 tinfo->tidcnt = tididx;
537 tinfo->length = mapped_pages * PAGE_SIZE;
538
539 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
540 tidlist, sizeof(tidlist[0]) * tididx)) {
541 /*
542 * On failure to copy to the user level, we need to undo
543 * everything done so far so we don't leak resources.
544 */
545 tinfo->tidlist = (unsigned long)&tidlist;
546 hfi1_user_exp_rcv_clear(fp, tinfo);
547 tinfo->tidlist = 0;
548 ret = -EFAULT;
549 goto bail;
550 }
551 }
552
553 /*
554 * If not everything was mapped (due to insufficient RcvArray entries,
555 * for example), unpin all unmapped pages so we can pin them nex time.
556 */
Mitko Haralanova7922f72016-03-08 11:15:39 -0800557 if (mapped_pages != pinned) {
Ira Weiny3faa3d92016-07-28 15:21:19 -0400558 hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500559 pinned - mapped_pages,
560 false);
Mitko Haralanova7922f72016-03-08 11:15:39 -0800561 fd->tid_n_pinned -= pinned - mapped_pages;
562 }
Mitko Haralanov7e7a436e2016-02-05 11:57:57 -0500563bail:
564 kfree(pagesets);
565 kfree(pages);
566 kfree(tidlist);
567 return ret > 0 ? 0 : ret;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500568}
569
570int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
571{
Mitko Haralanov455d7f12016-02-05 11:57:56 -0500572 int ret = 0;
573 struct hfi1_filedata *fd = fp->private_data;
574 struct hfi1_ctxtdata *uctxt = fd->uctxt;
575 u32 *tidinfo;
576 unsigned tididx;
577
578 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
579 if (!tidinfo)
580 return -ENOMEM;
581
582 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
583 tinfo->tidlist, sizeof(tidinfo[0]) *
584 tinfo->tidcnt)) {
585 ret = -EFAULT;
586 goto done;
587 }
588
589 mutex_lock(&uctxt->exp_lock);
590 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
591 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
592 if (ret) {
593 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
594 ret);
595 break;
596 }
597 }
598 spin_lock(&fd->tid_lock);
599 fd->tid_used -= tididx;
600 spin_unlock(&fd->tid_lock);
601 tinfo->tidcnt = tididx;
602 mutex_unlock(&uctxt->exp_lock);
603done:
604 kfree(tidinfo);
605 return ret;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500606}
607
608int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
609{
Mitko Haralanov455d7f12016-02-05 11:57:56 -0500610 struct hfi1_filedata *fd = fp->private_data;
611 struct hfi1_ctxtdata *uctxt = fd->uctxt;
612 unsigned long *ev = uctxt->dd->events +
613 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
614 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
615 u32 *array;
616 int ret = 0;
617
618 if (!fd->invalid_tids)
619 return -EINVAL;
620
621 /*
622 * copy_to_user() can sleep, which will leave the invalid_lock
623 * locked and cause the MMU notifier to be blocked on the lock
624 * for a long time.
625 * Copy the data to a local buffer so we can release the lock.
626 */
627 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
628 if (!array)
629 return -EFAULT;
630
631 spin_lock(&fd->invalid_lock);
632 if (fd->invalid_tid_idx) {
633 memcpy(array, fd->invalid_tids, sizeof(*array) *
634 fd->invalid_tid_idx);
635 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
636 fd->invalid_tid_idx);
637 tinfo->tidcnt = fd->invalid_tid_idx;
638 fd->invalid_tid_idx = 0;
639 /*
640 * Reset the user flag while still holding the lock.
641 * Otherwise, PSM can miss events.
642 */
643 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
644 } else {
645 tinfo->tidcnt = 0;
646 }
647 spin_unlock(&fd->invalid_lock);
648
649 if (tinfo->tidcnt) {
650 if (copy_to_user((void __user *)tinfo->tidlist,
651 array, sizeof(*array) * tinfo->tidcnt))
652 ret = -EFAULT;
653 }
654 kfree(array);
655
656 return ret;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500657}
658
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500659static u32 find_phys_blocks(struct page **pages, unsigned npages,
660 struct tid_pageset *list)
661{
662 unsigned pagecount, pageidx, setcount = 0, i;
663 unsigned long pfn, this_pfn;
664
665 if (!npages)
666 return 0;
667
668 /*
669 * Look for sets of physically contiguous pages in the user buffer.
670 * This will allow us to optimize Expected RcvArray entry usage by
671 * using the bigger supported sizes.
672 */
673 pfn = page_to_pfn(pages[0]);
674 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
675 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
676
677 /*
678 * If the pfn's are not sequential, pages are not physically
679 * contiguous.
680 */
681 if (this_pfn != ++pfn) {
682 /*
683 * At this point we have to loop over the set of
684 * physically contiguous pages and break them down it
685 * sizes supported by the HW.
686 * There are two main constraints:
687 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
688 * If the total set size is bigger than that
689 * program only a MAX_EXPECTED_BUFFER chunk.
690 * 2. The buffer size has to be a power of two. If
691 * it is not, round down to the closes power of
692 * 2 and program that size.
693 */
694 while (pagecount) {
695 int maxpages = pagecount;
696 u32 bufsize = pagecount * PAGE_SIZE;
697
698 if (bufsize > MAX_EXPECTED_BUFFER)
699 maxpages =
700 MAX_EXPECTED_BUFFER >>
701 PAGE_SHIFT;
702 else if (!is_power_of_2(bufsize))
703 maxpages =
704 rounddown_pow_of_two(bufsize) >>
705 PAGE_SHIFT;
706
707 list[setcount].idx = pageidx;
708 list[setcount].count = maxpages;
709 pagecount -= maxpages;
710 pageidx += maxpages;
711 setcount++;
712 }
713 pageidx = i;
714 pagecount = 1;
715 pfn = this_pfn;
716 } else {
717 pagecount++;
718 }
719 }
720 return setcount;
721}
722
723/**
724 * program_rcvarray() - program an RcvArray group with receive buffers
725 * @fp: file pointer
726 * @vaddr: starting user virtual address
727 * @grp: RcvArray group
728 * @sets: array of struct tid_pageset holding information on physically
729 * contiguous chunks from the user buffer
730 * @start: starting index into sets array
731 * @count: number of struct tid_pageset's to program
732 * @pages: an array of struct page * for the user buffer
733 * @tidlist: the array of u32 elements when the information about the
734 * programmed RcvArray entries is to be encoded.
735 * @tididx: starting offset into tidlist
736 * @pmapped: (output parameter) number of pages programmed into the RcvArray
737 * entries.
738 *
739 * This function will program up to 'count' number of RcvArray entries from the
740 * group 'grp'. To make best use of write-combining writes, the function will
741 * perform writes to the unused RcvArray entries which will be ignored by the
742 * HW. Each RcvArray entry will be programmed with a physically contiguous
743 * buffer chunk from the user's virtual buffer.
744 *
745 * Return:
746 * -EINVAL if the requested count is larger than the size of the group,
747 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
748 * number of RcvArray entries programmed.
749 */
750static int program_rcvarray(struct file *fp, unsigned long vaddr,
751 struct tid_group *grp,
752 struct tid_pageset *sets,
753 unsigned start, u16 count, struct page **pages,
754 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
755{
756 struct hfi1_filedata *fd = fp->private_data;
757 struct hfi1_ctxtdata *uctxt = fd->uctxt;
758 struct hfi1_devdata *dd = uctxt->dd;
759 u16 idx;
760 u32 tidinfo = 0, rcventry, useidx = 0;
761 int mapped = 0;
762
763 /* Count should never be larger than the group size */
764 if (count > grp->size)
765 return -EINVAL;
766
767 /* Find the first unused entry in the group */
768 for (idx = 0; idx < grp->size; idx++) {
769 if (!(grp->map & (1 << idx))) {
770 useidx = idx;
771 break;
772 }
773 rcv_array_wc_fill(dd, grp->base + idx);
774 }
775
776 idx = 0;
777 while (idx < count) {
778 u16 npages, pageidx, setidx = start + idx;
779 int ret = 0;
780
781 /*
782 * If this entry in the group is used, move to the next one.
783 * If we go past the end of the group, exit the loop.
784 */
785 if (useidx >= grp->size) {
786 break;
787 } else if (grp->map & (1 << useidx)) {
788 rcv_array_wc_fill(dd, grp->base + useidx);
789 useidx++;
790 continue;
791 }
792
793 rcventry = grp->base + useidx;
794 npages = sets[setidx].count;
795 pageidx = sets[setidx].idx;
796
797 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
798 rcventry, grp, pages + pageidx,
799 npages);
800 if (ret)
801 return ret;
802 mapped += npages;
803
804 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
805 EXP_TID_SET(LEN, npages);
806 tidlist[(*tididx)++] = tidinfo;
807 grp->used++;
808 grp->map |= 1 << useidx++;
809 idx++;
810 }
811
812 /* Fill the rest of the group with "blank" writes */
813 for (; useidx < grp->size; useidx++)
814 rcv_array_wc_fill(dd, grp->base + useidx);
815 *pmapped = mapped;
816 return idx;
817}
818
819static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
820 u32 rcventry, struct tid_group *grp,
821 struct page **pages, unsigned npages)
822{
823 int ret;
824 struct hfi1_filedata *fd = fp->private_data;
825 struct hfi1_ctxtdata *uctxt = fd->uctxt;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800826 struct tid_rb_node *node;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500827 struct hfi1_devdata *dd = uctxt->dd;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500828 dma_addr_t phys;
829
830 /*
831 * Allocate the node first so we can handle a potential
832 * failure before we've programmed anything.
833 */
834 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
835 GFP_KERNEL);
836 if (!node)
837 return -ENOMEM;
838
839 phys = pci_map_single(dd->pcidev,
840 __va(page_to_phys(pages[0])),
841 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
842 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
843 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
844 phys);
845 kfree(node);
846 return -EFAULT;
847 }
848
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800849 node->mmu.addr = vaddr;
850 node->mmu.len = npages * PAGE_SIZE;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500851 node->phys = page_to_phys(pages[0]);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500852 node->npages = npages;
853 node->rcventry = rcventry;
854 node->dma_addr = phys;
855 node->grp = grp;
856 node->freed = false;
857 memcpy(node->pages, pages, sizeof(struct page *) * npages);
858
Dean Luick622c2022016-07-28 15:21:21 -0400859 if (!fd->handler)
Dean Luicke0b09ac2016-07-28 15:21:20 -0400860 ret = tid_rb_insert(fd, &node->mmu);
Mitko Haralanov368f2b52016-03-08 11:14:42 -0800861 else
Dean Luicke0b09ac2016-07-28 15:21:20 -0400862 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500863
864 if (ret) {
865 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800866 node->rcventry, node->mmu.addr, node->phys, ret);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500867 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
868 PCI_DMA_FROMDEVICE);
869 kfree(node);
870 return -EFAULT;
871 }
872 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800873 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
874 node->mmu.addr, node->phys, phys);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500875 return 0;
876}
877
878static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
879 struct tid_group **grp)
880{
881 struct hfi1_filedata *fd = fp->private_data;
882 struct hfi1_ctxtdata *uctxt = fd->uctxt;
883 struct hfi1_devdata *dd = uctxt->dd;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800884 struct tid_rb_node *node;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500885 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800886 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500887
888 if (tididx >= uctxt->expected_count) {
889 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
890 tididx, uctxt->ctxt);
891 return -EINVAL;
892 }
893
894 if (tidctrl == 0x3)
895 return -EINVAL;
896
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800897 rcventry = tididx + (tidctrl - 1);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500898
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800899 node = fd->entry_to_rb[rcventry];
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800900 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500901 return -EBADF;
Dean Luick622c2022016-07-28 15:21:21 -0400902 if (!fd->handler)
Dean Luick082b3532016-07-28 15:21:25 -0400903 tid_rb_remove(fd, &node->mmu);
Mitko Haralanov368f2b52016-03-08 11:14:42 -0800904 else
Dean Luicke0b09ac2016-07-28 15:21:20 -0400905 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800906
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500907 if (grp)
908 *grp = node->grp;
Ira Weiny5ed3b152016-07-28 12:27:32 -0400909 clear_tid_node(fd, node);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500910 return 0;
911}
912
Ira Weiny5ed3b152016-07-28 12:27:32 -0400913static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500914{
915 struct hfi1_ctxtdata *uctxt = fd->uctxt;
916 struct hfi1_devdata *dd = uctxt->dd;
917
Mitko Haralanov0b091fb2016-02-05 11:57:58 -0500918 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800919 node->npages, node->mmu.addr, node->phys,
Mitko Haralanov0b091fb2016-02-05 11:57:58 -0500920 node->dma_addr);
921
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500922 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
923 /*
924 * Make sure device has seen the write before we unpin the
925 * pages.
926 */
927 flush_wc();
928
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800929 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500930 PCI_DMA_FROMDEVICE);
Ira Weiny3faa3d92016-07-28 15:21:19 -0400931 hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
Mitko Haralanova7922f72016-03-08 11:15:39 -0800932 fd->tid_n_pinned -= node->npages;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500933
934 node->grp->used--;
935 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
936
937 if (node->grp->used == node->grp->size - 1)
938 tid_group_move(node->grp, &uctxt->tid_full_list,
939 &uctxt->tid_used_list);
940 else if (!node->grp->used)
941 tid_group_move(node->grp, &uctxt->tid_used_list,
942 &uctxt->tid_group_list);
943 kfree(node);
944}
945
946static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
Dean Luicke0b09ac2016-07-28 15:21:20 -0400947 struct exp_tid_set *set,
948 struct hfi1_filedata *fd)
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500949{
950 struct tid_group *grp, *ptr;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500951 int i;
952
953 list_for_each_entry_safe(grp, ptr, &set->list, list) {
954 list_del_init(&grp->list);
955
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500956 for (i = 0; i < grp->size; i++) {
957 if (grp->map & (1 << i)) {
958 u16 rcventry = grp->base + i;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800959 struct tid_rb_node *node;
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500960
Mitko Haralanova92ba6d2016-02-03 14:34:41 -0800961 node = fd->entry_to_rb[rcventry -
962 uctxt->expected_base];
963 if (!node || node->rcventry != rcventry)
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500964 continue;
Dean Luick622c2022016-07-28 15:21:21 -0400965 if (!fd->handler)
Dean Luick082b3532016-07-28 15:21:25 -0400966 tid_rb_remove(fd, &node->mmu);
Mitko Haralanov368f2b52016-03-08 11:14:42 -0800967 else
Dean Luicke0b09ac2016-07-28 15:21:20 -0400968 hfi1_mmu_rb_remove(fd->handler,
Mitko Haralanov368f2b52016-03-08 11:14:42 -0800969 &node->mmu);
Ira Weiny5ed3b152016-07-28 12:27:32 -0400970 clear_tid_node(fd, node);
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500971 }
972 }
Mitko Haralanovf88e0c82016-02-05 11:57:52 -0500973 }
974}
975
Dean Luicke0b09ac2016-07-28 15:21:20 -0400976static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500977{
Dean Luicke0b09ac2016-07-28 15:21:20 -0400978 struct hfi1_filedata *fdata = arg;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800979 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
980 struct tid_rb_node *node =
981 container_of(mnode, struct tid_rb_node, mmu);
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500982
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800983 if (node->freed)
984 return 0;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -0500985
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800986 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
987 node->rcventry, node->npages, node->dma_addr);
988 node->freed = true;
Mitko Haralanovb5eb3b22016-02-05 11:57:55 -0500989
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -0800990 spin_lock(&fdata->invalid_lock);
991 if (fdata->invalid_tid_idx < uctxt->expected_count) {
992 fdata->invalid_tids[fdata->invalid_tid_idx] =
993 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
994 fdata->invalid_tids[fdata->invalid_tid_idx] |=
995 EXP_TID_SET(LEN, node->npages);
996 if (!fdata->invalid_tid_idx) {
997 unsigned long *ev;
Mitko Haralanov0b091fb2016-02-05 11:57:58 -0500998
Mitko Haralanovb5eb3b22016-02-05 11:57:55 -0500999 /*
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001000 * hfi1_set_uevent_bits() sets a user event flag
1001 * for all processes. Because calling into the
1002 * driver to process TID cache invalidations is
1003 * expensive and TID cache invalidations are
1004 * handled on a per-process basis, we can
1005 * optimize this to set the flag only for the
1006 * process in question.
Mitko Haralanovb5eb3b22016-02-05 11:57:55 -05001007 */
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001008 ev = uctxt->dd->events +
1009 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1010 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1011 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
Mitko Haralanovb5eb3b22016-02-05 11:57:55 -05001012 }
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001013 fdata->invalid_tid_idx++;
Mitko Haralanovb5eb3b22016-02-05 11:57:55 -05001014 }
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001015 spin_unlock(&fdata->invalid_lock);
1016 return 0;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001017}
1018
Dean Luicke0b09ac2016-07-28 15:21:20 -04001019static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001020{
Dean Luicke0b09ac2016-07-28 15:21:20 -04001021 struct hfi1_filedata *fdata = arg;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001022 struct tid_rb_node *tnode =
1023 container_of(node, struct tid_rb_node, mmu);
Mitko Haralanova92ba6d2016-02-03 14:34:41 -08001024 u32 base = fdata->uctxt->expected_base;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001025
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001026 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001027 return 0;
1028}
1029
Dean Luick082b3532016-07-28 15:21:25 -04001030static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001031{
Dean Luicke0b09ac2016-07-28 15:21:20 -04001032 struct hfi1_filedata *fdata = arg;
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001033 struct tid_rb_node *tnode =
1034 container_of(node, struct tid_rb_node, mmu);
Mitko Haralanova92ba6d2016-02-03 14:34:41 -08001035 u32 base = fdata->uctxt->expected_base;
Mitko Haralanovf727a0c2016-02-05 11:57:46 -05001036
Mitko Haralanov06e0ffa2016-03-08 11:14:20 -08001037 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
Mitko Haralanova92ba6d2016-02-03 14:34:41 -08001038}