blob: c77e6972ab48aec3c504a193d78b20f196800d01 [file] [log] [blame]
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001/* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
Daniel Borkmanna67edbf2017-01-25 02:28:18 +010035#include <linux/bpf_trace.h>
Mintz, Yuvalcdda9262017-01-01 13:57:01 +020036#include <net/udp_tunnel.h>
37#include <linux/ip.h>
38#include <net/ipv6.h>
39#include <net/tcp.h>
40#include <linux/if_ether.h>
41#include <linux/if_vlan.h>
42#include <net/ip6_checksum.h>
Sudarsana Reddy Kalluru4c552152017-02-15 10:24:11 +020043#include "qede_ptp.h"
Mintz, Yuvalcdda9262017-01-01 13:57:01 +020044
45#include <linux/qed/qed_if.h>
46#include "qede.h"
47/*********************************
48 * Content also used by slowpath *
49 *********************************/
50
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +020051int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
Mintz, Yuvalcdda9262017-01-01 13:57:01 +020052{
53 struct sw_rx_data *sw_rx_data;
54 struct eth_rx_bd *rx_bd;
55 dma_addr_t mapping;
56 struct page *data;
57
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +020058 /* In case lazy-allocation is allowed, postpone allocation until the
59 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 * sufficient buffers to guarantee an additional Rx interrupt.
61 */
62 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 rxq->filled_buffers--;
64 return 0;
65 }
66
Mintz, Yuvalcdda9262017-01-01 13:57:01 +020067 data = alloc_pages(GFP_ATOMIC, 0);
68 if (unlikely(!data))
69 return -ENOMEM;
70
71 /* Map the entire page as it would be used
72 * for multiple RX buffer segment size mapping.
73 */
74 mapping = dma_map_page(rxq->dev, data, 0,
75 PAGE_SIZE, rxq->data_direction);
76 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 __free_page(data);
78 return -ENOMEM;
79 }
80
81 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 sw_rx_data->page_offset = 0;
83 sw_rx_data->data = data;
84 sw_rx_data->mapping = mapping;
85
86 /* Advance PROD and get BD pointer */
87 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 WARN_ON(!rx_bd);
89 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
91
92 rxq->sw_rx_prod++;
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +020093 rxq->filled_buffers++;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +020094
95 return 0;
96}
97
98/* Unmap the data and free skb */
99int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
100{
101 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
102 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
103 struct eth_tx_1st_bd *first_bd;
104 struct eth_tx_bd *tx_data_bd;
105 int bds_consumed = 0;
106 int nbds;
107 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
108 int i, split_bd_len = 0;
109
110 if (unlikely(!skb)) {
111 DP_ERR(edev,
112 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
113 idx, txq->sw_tx_cons, txq->sw_tx_prod);
114 return -1;
115 }
116
117 *len = skb->len;
118
119 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
120
121 bds_consumed++;
122
123 nbds = first_bd->data.nbds;
124
125 if (data_split) {
126 struct eth_tx_bd *split = (struct eth_tx_bd *)
127 qed_chain_consume(&txq->tx_pbl);
128 split_bd_len = BD_UNMAP_LEN(split);
129 bds_consumed++;
130 }
131 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
132 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
133
134 /* Unmap the data of the skb frags */
135 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
136 tx_data_bd = (struct eth_tx_bd *)
137 qed_chain_consume(&txq->tx_pbl);
138 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
139 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
140 }
141
142 while (bds_consumed++ < nbds)
143 qed_chain_consume(&txq->tx_pbl);
144
145 /* Free skb */
146 dev_kfree_skb_any(skb);
147 txq->sw_tx_ring.skbs[idx].skb = NULL;
148 txq->sw_tx_ring.skbs[idx].flags = 0;
149
150 return 0;
151}
152
153/* Unmap the data and free skb when mapping failed during start_xmit */
154static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
155 struct eth_tx_1st_bd *first_bd,
156 int nbd, bool data_split)
157{
158 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
159 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
160 struct eth_tx_bd *tx_data_bd;
161 int i, split_bd_len = 0;
162
163 /* Return prod to its position before this skb was handled */
164 qed_chain_set_prod(&txq->tx_pbl,
165 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
166
167 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
168
169 if (data_split) {
170 struct eth_tx_bd *split = (struct eth_tx_bd *)
171 qed_chain_produce(&txq->tx_pbl);
172 split_bd_len = BD_UNMAP_LEN(split);
173 nbd--;
174 }
175
176 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
177 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
178
179 /* Unmap the data of the skb frags */
180 for (i = 0; i < nbd; i++) {
181 tx_data_bd = (struct eth_tx_bd *)
182 qed_chain_produce(&txq->tx_pbl);
183 if (tx_data_bd->nbytes)
184 dma_unmap_page(txq->dev,
185 BD_UNMAP_ADDR(tx_data_bd),
186 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
187 }
188
189 /* Return again prod to its position before this skb was handled */
190 qed_chain_set_prod(&txq->tx_pbl,
191 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
192
193 /* Free skb */
194 dev_kfree_skb_any(skb);
195 txq->sw_tx_ring.skbs[idx].skb = NULL;
196 txq->sw_tx_ring.skbs[idx].flags = 0;
197}
198
199static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
200{
201 u32 rc = XMIT_L4_CSUM;
202 __be16 l3_proto;
203
204 if (skb->ip_summed != CHECKSUM_PARTIAL)
205 return XMIT_PLAIN;
206
207 l3_proto = vlan_get_protocol(skb);
208 if (l3_proto == htons(ETH_P_IPV6) &&
209 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
210 *ipv6_ext = 1;
211
212 if (skb->encapsulation) {
213 rc |= XMIT_ENC;
214 if (skb_is_gso(skb)) {
215 unsigned short gso_type = skb_shinfo(skb)->gso_type;
216
217 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
218 (gso_type & SKB_GSO_GRE_CSUM))
219 rc |= XMIT_ENC_GSO_L4_CSUM;
220
221 rc |= XMIT_LSO;
222 return rc;
223 }
224 }
225
226 if (skb_is_gso(skb))
227 rc |= XMIT_LSO;
228
229 return rc;
230}
231
232static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
233 struct eth_tx_2nd_bd *second_bd,
234 struct eth_tx_3rd_bd *third_bd)
235{
236 u8 l4_proto;
237 u16 bd2_bits1 = 0, bd2_bits2 = 0;
238
239 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
240
241 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
242 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
243 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
244
245 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
246 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
247
248 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
249 l4_proto = ipv6_hdr(skb)->nexthdr;
250 else
251 l4_proto = ip_hdr(skb)->protocol;
252
253 if (l4_proto == IPPROTO_UDP)
254 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
255
256 if (third_bd)
257 third_bd->data.bitfields |=
258 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
259 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
260 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
261
262 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
263 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
264}
265
266static int map_frag_to_bd(struct qede_tx_queue *txq,
267 skb_frag_t *frag, struct eth_tx_bd *bd)
268{
269 dma_addr_t mapping;
270
271 /* Map skb non-linear frag data for DMA */
272 mapping = skb_frag_dma_map(txq->dev, frag, 0,
273 skb_frag_size(frag), DMA_TO_DEVICE);
274 if (unlikely(dma_mapping_error(txq->dev, mapping)))
275 return -ENOMEM;
276
277 /* Setup the data pointer of the frag data */
278 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
279
280 return 0;
281}
282
283static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
284{
285 if (is_encap_pkt)
286 return (skb_inner_transport_header(skb) +
287 inner_tcp_hdrlen(skb) - skb->data);
288 else
289 return (skb_transport_header(skb) +
290 tcp_hdrlen(skb) - skb->data);
291}
292
293/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
294#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
295static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
296{
297 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
298
299 if (xmit_type & XMIT_LSO) {
300 int hlen;
301
302 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
303
304 /* linear payload would require its own BD */
305 if (skb_headlen(skb) > hlen)
306 allowed_frags--;
307 }
308
309 return (skb_shinfo(skb)->nr_frags > allowed_frags);
310}
311#endif
312
313static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
314{
315 /* wmb makes sure that the BDs data is updated before updating the
316 * producer, otherwise FW may read old data from the BDs.
317 */
318 wmb();
319 barrier();
320 writel(txq->tx_db.raw, txq->doorbell_addr);
321
322 /* mmiowb is needed to synchronize doorbell writes from more than one
323 * processor. It guarantees that the write arrives to the device before
324 * the queue lock is released and another start_xmit is called (possibly
325 * on another CPU). Without this barrier, the next doorbell can bypass
326 * this doorbell. This is applicable to IA64/Altix systems.
327 */
328 mmiowb();
329}
330
331static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
332 struct sw_rx_data *metadata, u16 padding, u16 length)
333{
334 struct qede_tx_queue *txq = fp->xdp_tx;
335 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336 struct eth_tx_1st_bd *first_bd;
337
338 if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
339 txq->stopped_cnt++;
340 return -ENOMEM;
341 }
342
343 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344
345 memset(first_bd, 0, sizeof(*first_bd));
346 first_bd->data.bd_flags.bitfields =
347 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
348 first_bd->data.bitfields |=
349 (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
350 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
351 first_bd->data.nbds = 1;
352
353 /* We can safely ignore the offset, as it's 0 for XDP */
354 BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
355
356 /* Synchronize the buffer back to device, as program [probably]
357 * has changed it.
358 */
359 dma_sync_single_for_device(&edev->pdev->dev,
360 metadata->mapping + padding,
361 length, PCI_DMA_TODEVICE);
362
363 txq->sw_tx_ring.pages[idx] = metadata->data;
364 txq->sw_tx_prod++;
365
366 /* Mark the fastpath for future XDP doorbell */
367 fp->xdp_xmit = 1;
368
369 return 0;
370}
371
372int qede_txq_has_work(struct qede_tx_queue *txq)
373{
374 u16 hw_bd_cons;
375
376 /* Tell compiler that consumer and producer can change */
377 barrier();
378 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
379 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
380 return 0;
381
382 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
383}
384
385static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
386{
387 struct eth_tx_1st_bd *bd;
388 u16 hw_bd_cons;
389
390 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
391 barrier();
392
393 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
394 bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
395
396 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd),
397 PAGE_SIZE, DMA_BIDIRECTIONAL);
398 __free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons &
399 NUM_TX_BDS_MAX]);
400
401 txq->sw_tx_cons++;
402 txq->xmit_pkts++;
403 }
404}
405
406static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
407{
408 struct netdev_queue *netdev_txq;
409 u16 hw_bd_cons;
410 unsigned int pkts_compl = 0, bytes_compl = 0;
411 int rc;
412
413 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
414
415 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
416 barrier();
417
418 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
419 int len = 0;
420
421 rc = qede_free_tx_pkt(edev, txq, &len);
422 if (rc) {
423 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
424 hw_bd_cons,
425 qed_chain_get_cons_idx(&txq->tx_pbl));
426 break;
427 }
428
429 bytes_compl += len;
430 pkts_compl++;
431 txq->sw_tx_cons++;
432 txq->xmit_pkts++;
433 }
434
435 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
436
437 /* Need to make the tx_bd_cons update visible to start_xmit()
438 * before checking for netif_tx_queue_stopped(). Without the
439 * memory barrier, there is a small possibility that
440 * start_xmit() will miss it and cause the queue to be stopped
441 * forever.
442 * On the other hand we need an rmb() here to ensure the proper
443 * ordering of bit testing in the following
444 * netif_tx_queue_stopped(txq) call.
445 */
446 smp_mb();
447
448 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
449 /* Taking tx_lock is needed to prevent reenabling the queue
450 * while it's empty. This could have happen if rx_action() gets
451 * suspended in qede_tx_int() after the condition before
452 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
453 *
454 * stops the queue->sees fresh tx_bd_cons->releases the queue->
455 * sends some packets consuming the whole queue again->
456 * stops the queue
457 */
458
459 __netif_tx_lock(netdev_txq, smp_processor_id());
460
461 if ((netif_tx_queue_stopped(netdev_txq)) &&
462 (edev->state == QEDE_STATE_OPEN) &&
463 (qed_chain_get_elem_left(&txq->tx_pbl)
464 >= (MAX_SKB_FRAGS + 1))) {
465 netif_tx_wake_queue(netdev_txq);
466 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
467 "Wake queue was called\n");
468 }
469
470 __netif_tx_unlock(netdev_txq);
471 }
472
473 return 0;
474}
475
476bool qede_has_rx_work(struct qede_rx_queue *rxq)
477{
478 u16 hw_comp_cons, sw_comp_cons;
479
480 /* Tell compiler that status block fields can change */
481 barrier();
482
483 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
484 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
485
486 return hw_comp_cons != sw_comp_cons;
487}
488
489static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
490{
491 qed_chain_consume(&rxq->rx_bd_ring);
492 rxq->sw_rx_cons++;
493}
494
495/* This function reuses the buffer(from an offset) from
496 * consumer index to producer index in the bd ring
497 */
498static inline void qede_reuse_page(struct qede_rx_queue *rxq,
499 struct sw_rx_data *curr_cons)
500{
501 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
502 struct sw_rx_data *curr_prod;
503 dma_addr_t new_mapping;
504
505 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
506 *curr_prod = *curr_cons;
507
508 new_mapping = curr_prod->mapping + curr_prod->page_offset;
509
510 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
511 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
512
513 rxq->sw_rx_prod++;
514 curr_cons->data = NULL;
515}
516
517/* In case of allocation failures reuse buffers
518 * from consumer index to produce buffers for firmware
519 */
520void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
521{
522 struct sw_rx_data *curr_cons;
523
524 for (; count > 0; count--) {
525 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
526 qede_reuse_page(rxq, curr_cons);
527 qede_rx_bd_ring_consume(rxq);
528 }
529}
530
531static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
532 struct sw_rx_data *curr_cons)
533{
534 /* Move to the next segment in the page */
535 curr_cons->page_offset += rxq->rx_buf_seg_size;
536
537 if (curr_cons->page_offset == PAGE_SIZE) {
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +0200538 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200539 /* Since we failed to allocate new buffer
540 * current buffer can be used again.
541 */
542 curr_cons->page_offset -= rxq->rx_buf_seg_size;
543
544 return -ENOMEM;
545 }
546
547 dma_unmap_page(rxq->dev, curr_cons->mapping,
548 PAGE_SIZE, rxq->data_direction);
549 } else {
550 /* Increment refcount of the page as we don't want
551 * network stack to take the ownership of the page
552 * which can be recycled multiple times by the driver.
553 */
554 page_ref_inc(curr_cons->data);
555 qede_reuse_page(rxq, curr_cons);
556 }
557
558 return 0;
559}
560
561void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
562{
563 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
564 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
565 struct eth_rx_prod_data rx_prods = {0};
566
567 /* Update producers */
568 rx_prods.bd_prod = cpu_to_le16(bd_prod);
569 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
570
571 /* Make sure that the BD and SGE data is updated before updating the
572 * producers since FW might read the BD/SGE right after the producer
573 * is updated.
574 */
575 wmb();
576
577 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
578 (u32 *)&rx_prods);
579
580 /* mmiowb is needed to synchronize doorbell writes from more than one
581 * processor. It guarantees that the write arrives to the device before
582 * the napi lock is released and another qede_poll is called (possibly
583 * on another CPU). Without this barrier, the next doorbell can bypass
584 * this doorbell. This is applicable to IA64/Altix systems.
585 */
586 mmiowb();
587}
588
589static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
590{
591 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
592 enum rss_hash_type htype;
593 u32 hash = 0;
594
595 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
596 if (htype) {
597 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
598 (htype == RSS_HASH_TYPE_IPV6)) ?
599 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
600 hash = le32_to_cpu(rss_hash);
601 }
602 skb_set_hash(skb, hash, hash_type);
603}
604
605static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
606{
607 skb_checksum_none_assert(skb);
608
609 if (csum_flag & QEDE_CSUM_UNNECESSARY)
610 skb->ip_summed = CHECKSUM_UNNECESSARY;
611
Manish Chopra7ca547b2017-01-01 13:57:05 +0200612 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200613 skb->csum_level = 1;
Manish Chopra7ca547b2017-01-01 13:57:05 +0200614 skb->encapsulation = 1;
615 }
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200616}
617
618static inline void qede_skb_receive(struct qede_dev *edev,
619 struct qede_fastpath *fp,
620 struct qede_rx_queue *rxq,
621 struct sk_buff *skb, u16 vlan_tag)
622{
623 if (vlan_tag)
624 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
625
626 napi_gro_receive(&fp->napi, skb);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200627}
628
629static void qede_set_gro_params(struct qede_dev *edev,
630 struct sk_buff *skb,
631 struct eth_fast_path_rx_tpa_start_cqe *cqe)
632{
633 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
634
635 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
636 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
637 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
638 else
639 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
640
641 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
642 cqe->header_len;
643}
644
645static int qede_fill_frag_skb(struct qede_dev *edev,
646 struct qede_rx_queue *rxq,
647 u8 tpa_agg_index, u16 len_on_bd)
648{
649 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
650 NUM_RX_BDS_MAX];
651 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
652 struct sk_buff *skb = tpa_info->skb;
653
654 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
655 goto out;
656
657 /* Add one frag and update the appropriate fields in the skb */
658 skb_fill_page_desc(skb, tpa_info->frag_id++,
659 current_bd->data, current_bd->page_offset,
660 len_on_bd);
661
662 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
663 /* Incr page ref count to reuse on allocation failure
664 * so that it doesn't get freed while freeing SKB.
665 */
666 page_ref_inc(current_bd->data);
667 goto out;
668 }
669
670 qed_chain_consume(&rxq->rx_bd_ring);
671 rxq->sw_rx_cons++;
672
673 skb->data_len += len_on_bd;
674 skb->truesize += rxq->rx_buf_seg_size;
675 skb->len += len_on_bd;
676
677 return 0;
678
679out:
680 tpa_info->state = QEDE_AGG_STATE_ERROR;
681 qede_recycle_rx_bd_ring(rxq, 1);
682
683 return -ENOMEM;
684}
685
686static bool qede_tunn_exist(u16 flag)
687{
688 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
689 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
690}
691
692static u8 qede_check_tunn_csum(u16 flag)
693{
694 u16 csum_flag = 0;
695 u8 tcsum = 0;
696
697 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
698 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
699 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
700 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
701
702 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
703 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
704 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
705 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
706 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
707 }
708
709 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
710 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
711 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
712 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
713
714 if (csum_flag & flag)
715 return QEDE_CSUM_ERROR;
716
717 return QEDE_CSUM_UNNECESSARY | tcsum;
718}
719
720static void qede_tpa_start(struct qede_dev *edev,
721 struct qede_rx_queue *rxq,
722 struct eth_fast_path_rx_tpa_start_cqe *cqe)
723{
724 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
725 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
726 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
727 struct sw_rx_data *replace_buf = &tpa_info->buffer;
728 dma_addr_t mapping = tpa_info->buffer_mapping;
729 struct sw_rx_data *sw_rx_data_cons;
730 struct sw_rx_data *sw_rx_data_prod;
731
732 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
733 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
734
735 /* Use pre-allocated replacement buffer - we can't release the agg.
736 * start until its over and we don't want to risk allocation failing
737 * here, so re-allocate when aggregation will be over.
738 */
739 sw_rx_data_prod->mapping = replace_buf->mapping;
740
741 sw_rx_data_prod->data = replace_buf->data;
742 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
743 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
744 sw_rx_data_prod->page_offset = replace_buf->page_offset;
745
746 rxq->sw_rx_prod++;
747
748 /* move partial skb from cons to pool (don't unmap yet)
749 * save mapping, incase we drop the packet later on.
750 */
751 tpa_info->buffer = *sw_rx_data_cons;
752 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
753 le32_to_cpu(rx_bd_cons->addr.lo));
754
755 tpa_info->buffer_mapping = mapping;
756 rxq->sw_rx_cons++;
757
758 /* set tpa state to start only if we are able to allocate skb
759 * for this aggregation, otherwise mark as error and aggregation will
760 * be dropped
761 */
762 tpa_info->skb = netdev_alloc_skb(edev->ndev,
763 le16_to_cpu(cqe->len_on_first_bd));
764 if (unlikely(!tpa_info->skb)) {
765 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
766 tpa_info->state = QEDE_AGG_STATE_ERROR;
767 goto cons_buf;
768 }
769
770 /* Start filling in the aggregation info */
771 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
772 tpa_info->frag_id = 0;
773 tpa_info->state = QEDE_AGG_STATE_START;
774
775 /* Store some information from first CQE */
776 tpa_info->start_cqe_placement_offset = cqe->placement_offset;
777 tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
778 if ((le16_to_cpu(cqe->pars_flags.flags) >>
779 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
780 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
781 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
782 else
783 tpa_info->vlan_tag = 0;
784
785 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
786
787 /* This is needed in order to enable forwarding support */
788 qede_set_gro_params(edev, tpa_info->skb, cqe);
789
790cons_buf: /* We still need to handle bd_len_list to consume buffers */
791 if (likely(cqe->ext_bd_len_list[0]))
792 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
793 le16_to_cpu(cqe->ext_bd_len_list[0]));
794
795 if (unlikely(cqe->ext_bd_len_list[1])) {
796 DP_ERR(edev,
797 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
798 tpa_info->state = QEDE_AGG_STATE_ERROR;
799 }
800}
801
802#ifdef CONFIG_INET
803static void qede_gro_ip_csum(struct sk_buff *skb)
804{
805 const struct iphdr *iph = ip_hdr(skb);
806 struct tcphdr *th;
807
808 skb_set_transport_header(skb, sizeof(struct iphdr));
809 th = tcp_hdr(skb);
810
811 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
812 iph->saddr, iph->daddr, 0);
813
814 tcp_gro_complete(skb);
815}
816
817static void qede_gro_ipv6_csum(struct sk_buff *skb)
818{
819 struct ipv6hdr *iph = ipv6_hdr(skb);
820 struct tcphdr *th;
821
822 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
823 th = tcp_hdr(skb);
824
825 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
826 &iph->saddr, &iph->daddr, 0);
827 tcp_gro_complete(skb);
828}
829#endif
830
831static void qede_gro_receive(struct qede_dev *edev,
832 struct qede_fastpath *fp,
833 struct sk_buff *skb,
834 u16 vlan_tag)
835{
836 /* FW can send a single MTU sized packet from gro flow
837 * due to aggregation timeout/last segment etc. which
838 * is not expected to be a gro packet. If a skb has zero
839 * frags then simply push it in the stack as non gso skb.
840 */
841 if (unlikely(!skb->data_len)) {
842 skb_shinfo(skb)->gso_type = 0;
843 skb_shinfo(skb)->gso_size = 0;
844 goto send_skb;
845 }
846
847#ifdef CONFIG_INET
848 if (skb_shinfo(skb)->gso_size) {
849 skb_reset_network_header(skb);
850
851 switch (skb->protocol) {
852 case htons(ETH_P_IP):
853 qede_gro_ip_csum(skb);
854 break;
855 case htons(ETH_P_IPV6):
856 qede_gro_ipv6_csum(skb);
857 break;
858 default:
859 DP_ERR(edev,
860 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
861 ntohs(skb->protocol));
862 }
863 }
864#endif
865
866send_skb:
867 skb_record_rx_queue(skb, fp->rxq->rxq_id);
868 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
869}
870
871static inline void qede_tpa_cont(struct qede_dev *edev,
872 struct qede_rx_queue *rxq,
873 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
874{
875 int i;
876
877 for (i = 0; cqe->len_list[i]; i++)
878 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
879 le16_to_cpu(cqe->len_list[i]));
880
881 if (unlikely(i > 1))
882 DP_ERR(edev,
883 "Strange - TPA cont with more than a single len_list entry\n");
884}
885
Mintz, Yuval10a01762017-04-07 11:04:57 +0300886static int qede_tpa_end(struct qede_dev *edev,
887 struct qede_fastpath *fp,
888 struct eth_fast_path_rx_tpa_end_cqe *cqe)
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200889{
890 struct qede_rx_queue *rxq = fp->rxq;
891 struct qede_agg_info *tpa_info;
892 struct sk_buff *skb;
893 int i;
894
895 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
896 skb = tpa_info->skb;
897
898 for (i = 0; cqe->len_list[i]; i++)
899 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
900 le16_to_cpu(cqe->len_list[i]));
901 if (unlikely(i > 1))
902 DP_ERR(edev,
903 "Strange - TPA emd with more than a single len_list entry\n");
904
905 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
906 goto err;
907
908 /* Sanity */
909 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
910 DP_ERR(edev,
911 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
912 cqe->num_of_bds, tpa_info->frag_id);
913 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
914 DP_ERR(edev,
915 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
916 le16_to_cpu(cqe->total_packet_len), skb->len);
917
918 memcpy(skb->data,
919 page_address(tpa_info->buffer.data) +
920 tpa_info->start_cqe_placement_offset +
921 tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
922
923 /* Finalize the SKB */
924 skb->protocol = eth_type_trans(skb, edev->ndev);
925 skb->ip_summed = CHECKSUM_UNNECESSARY;
926
927 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
928 * to skb_shinfo(skb)->gso_segs
929 */
930 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
931
932 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
933
934 tpa_info->state = QEDE_AGG_STATE_NONE;
935
Mintz, Yuval10a01762017-04-07 11:04:57 +0300936 return 1;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200937err:
938 tpa_info->state = QEDE_AGG_STATE_NONE;
939 dev_kfree_skb_any(tpa_info->skb);
940 tpa_info->skb = NULL;
Mintz, Yuval10a01762017-04-07 11:04:57 +0300941 return 0;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +0200942}
943
944static u8 qede_check_notunn_csum(u16 flag)
945{
946 u16 csum_flag = 0;
947 u8 csum = 0;
948
949 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
950 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
951 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
952 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
953 csum = QEDE_CSUM_UNNECESSARY;
954 }
955
956 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
957 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
958
959 if (csum_flag & flag)
960 return QEDE_CSUM_ERROR;
961
962 return csum;
963}
964
965static u8 qede_check_csum(u16 flag)
966{
967 if (!qede_tunn_exist(flag))
968 return qede_check_notunn_csum(flag);
969 else
970 return qede_check_tunn_csum(flag);
971}
972
973static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
974 u16 flag)
975{
976 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
977
978 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
979 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
980 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
981 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
982 return true;
983
984 return false;
985}
986
987/* Return true iff packet is to be passed to stack */
988static bool qede_rx_xdp(struct qede_dev *edev,
989 struct qede_fastpath *fp,
990 struct qede_rx_queue *rxq,
991 struct bpf_prog *prog,
992 struct sw_rx_data *bd,
993 struct eth_fast_path_rx_reg_cqe *cqe)
994{
995 u16 len = le16_to_cpu(cqe->len_on_first_bd);
996 struct xdp_buff xdp;
997 enum xdp_action act;
998
999 xdp.data = page_address(bd->data) + cqe->placement_offset;
1000 xdp.data_end = xdp.data + len;
1001
1002 /* Queues always have a full reset currently, so for the time
1003 * being until there's atomic program replace just mark read
1004 * side for map helpers.
1005 */
1006 rcu_read_lock();
1007 act = bpf_prog_run_xdp(prog, &xdp);
1008 rcu_read_unlock();
1009
1010 if (act == XDP_PASS)
1011 return true;
1012
1013 /* Count number of packets not to be passed to stack */
1014 rxq->xdp_no_pass++;
1015
1016 switch (act) {
1017 case XDP_TX:
1018 /* We need the replacement buffer before transmit. */
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +02001019 if (qede_alloc_rx_buffer(rxq, true)) {
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001020 qede_recycle_rx_bd_ring(rxq, 1);
Daniel Borkmanna67edbf2017-01-25 02:28:18 +01001021 trace_xdp_exception(edev->ndev, prog, act);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001022 return false;
1023 }
1024
1025 /* Now if there's a transmission problem, we'd still have to
1026 * throw current buffer, as replacement was already allocated.
1027 */
1028 if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) {
1029 dma_unmap_page(rxq->dev, bd->mapping,
1030 PAGE_SIZE, DMA_BIDIRECTIONAL);
1031 __free_page(bd->data);
Daniel Borkmanna67edbf2017-01-25 02:28:18 +01001032 trace_xdp_exception(edev->ndev, prog, act);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001033 }
1034
1035 /* Regardless, we've consumed an Rx BD */
1036 qede_rx_bd_ring_consume(rxq);
1037 return false;
1038
1039 default:
1040 bpf_warn_invalid_xdp_action(act);
1041 case XDP_ABORTED:
Daniel Borkmanna67edbf2017-01-25 02:28:18 +01001042 trace_xdp_exception(edev->ndev, prog, act);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001043 case XDP_DROP:
1044 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1045 }
1046
1047 return false;
1048}
1049
1050static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1051 struct qede_rx_queue *rxq,
1052 struct sw_rx_data *bd, u16 len,
1053 u16 pad)
1054{
1055 unsigned int offset = bd->page_offset;
1056 struct skb_frag_struct *frag;
1057 struct page *page = bd->data;
1058 unsigned int pull_len;
1059 struct sk_buff *skb;
1060 unsigned char *va;
1061
1062 /* Allocate a new SKB with a sufficient large header len */
1063 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1064 if (unlikely(!skb))
1065 return NULL;
1066
1067 /* Copy data into SKB - if it's small, we can simply copy it and
1068 * re-use the already allcoated & mapped memory.
1069 */
1070 if (len + pad <= edev->rx_copybreak) {
1071 memcpy(skb_put(skb, len),
1072 page_address(page) + pad + offset, len);
1073 qede_reuse_page(rxq, bd);
1074 goto out;
1075 }
1076
1077 frag = &skb_shinfo(skb)->frags[0];
1078
1079 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1080 page, pad + offset, len, rxq->rx_buf_seg_size);
1081
1082 va = skb_frag_address(frag);
1083 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1084
1085 /* Align the pull_len to optimize memcpy */
1086 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1087
1088 /* Correct the skb & frag sizes offset after the pull */
1089 skb_frag_size_sub(frag, pull_len);
1090 frag->page_offset += pull_len;
1091 skb->data_len -= pull_len;
1092 skb->tail += pull_len;
1093
1094 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1095 /* Incr page ref count to reuse on allocation failure so
1096 * that it doesn't get freed while freeing SKB [as its
1097 * already mapped there].
1098 */
1099 page_ref_inc(page);
1100 dev_kfree_skb_any(skb);
1101 return NULL;
1102 }
1103
1104out:
1105 /* We've consumed the first BD and prepared an SKB */
1106 qede_rx_bd_ring_consume(rxq);
1107 return skb;
1108}
1109
1110static int qede_rx_build_jumbo(struct qede_dev *edev,
1111 struct qede_rx_queue *rxq,
1112 struct sk_buff *skb,
1113 struct eth_fast_path_rx_reg_cqe *cqe,
1114 u16 first_bd_len)
1115{
1116 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1117 struct sw_rx_data *bd;
1118 u16 bd_cons_idx;
1119 u8 num_frags;
1120
1121 pkt_len -= first_bd_len;
1122
1123 /* We've already used one BD for the SKB. Now take care of the rest */
1124 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1125 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1126 pkt_len;
1127
1128 if (unlikely(!cur_size)) {
1129 DP_ERR(edev,
1130 "Still got %d BDs for mapping jumbo, but length became 0\n",
1131 num_frags);
1132 goto out;
1133 }
1134
1135 /* We need a replacement buffer for each BD */
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +02001136 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001137 goto out;
1138
1139 /* Now that we've allocated the replacement buffer,
1140 * we can safely consume the next BD and map it to the SKB.
1141 */
1142 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1143 bd = &rxq->sw_rx_ring[bd_cons_idx];
1144 qede_rx_bd_ring_consume(rxq);
1145
1146 dma_unmap_page(rxq->dev, bd->mapping,
1147 PAGE_SIZE, DMA_FROM_DEVICE);
1148
1149 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1150 bd->data, 0, cur_size);
1151
1152 skb->truesize += PAGE_SIZE;
1153 skb->data_len += cur_size;
1154 skb->len += cur_size;
1155 pkt_len -= cur_size;
1156 }
1157
1158 if (unlikely(pkt_len))
1159 DP_ERR(edev,
1160 "Mapped all BDs of jumbo, but still have %d bytes\n",
1161 pkt_len);
1162
1163out:
1164 return num_frags;
1165}
1166
1167static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1168 struct qede_fastpath *fp,
1169 struct qede_rx_queue *rxq,
1170 union eth_rx_cqe *cqe,
1171 enum eth_rx_cqe_type type)
1172{
1173 switch (type) {
1174 case ETH_RX_CQE_TYPE_TPA_START:
1175 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1176 return 0;
1177 case ETH_RX_CQE_TYPE_TPA_CONT:
1178 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1179 return 0;
1180 case ETH_RX_CQE_TYPE_TPA_END:
Mintz, Yuval10a01762017-04-07 11:04:57 +03001181 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001182 default:
1183 return 0;
1184 }
1185}
1186
1187static int qede_rx_process_cqe(struct qede_dev *edev,
1188 struct qede_fastpath *fp,
1189 struct qede_rx_queue *rxq)
1190{
1191 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1192 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1193 u16 len, pad, bd_cons_idx, parse_flag;
1194 enum eth_rx_cqe_type cqe_type;
1195 union eth_rx_cqe *cqe;
1196 struct sw_rx_data *bd;
1197 struct sk_buff *skb;
1198 __le16 flags;
1199 u8 csum_flag;
1200
1201 /* Get the CQE from the completion ring */
1202 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1203 cqe_type = cqe->fast_path_regular.type;
1204
1205 /* Process an unlikely slowpath event */
1206 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1207 struct eth_slow_path_rx_cqe *sp_cqe;
1208
1209 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1210 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1211 return 0;
1212 }
1213
1214 /* Handle TPA cqes */
1215 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1216 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1217
1218 /* Get the data from the SW ring; Consume it only after it's evident
1219 * we wouldn't recycle it.
1220 */
1221 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1222 bd = &rxq->sw_rx_ring[bd_cons_idx];
1223
1224 fp_cqe = &cqe->fast_path_regular;
1225 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1226 pad = fp_cqe->placement_offset;
1227
1228 /* Run eBPF program if one is attached */
1229 if (xdp_prog)
1230 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe))
Mintz, Yuval10a01762017-04-07 11:04:57 +03001231 return 0;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001232
1233 /* If this is an error packet then drop it */
1234 flags = cqe->fast_path_regular.pars_flags.flags;
1235 parse_flag = le16_to_cpu(flags);
1236
1237 csum_flag = qede_check_csum(parse_flag);
1238 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1239 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1240 rxq->rx_ip_frags++;
1241 } else {
1242 DP_NOTICE(edev,
1243 "CQE has error, flags = %x, dropping incoming packet\n",
1244 parse_flag);
1245 rxq->rx_hw_errors++;
1246 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1247 return 0;
1248 }
1249 }
1250
1251 /* Basic validation passed; Need to prepare an SKB. This would also
1252 * guarantee to finally consume the first BD upon success.
1253 */
1254 skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1255 if (!skb) {
1256 rxq->rx_alloc_errors++;
1257 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1258 return 0;
1259 }
1260
1261 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1262 * by a single cqe.
1263 */
1264 if (fp_cqe->bd_num > 1) {
1265 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1266 fp_cqe, len);
1267
1268 if (unlikely(unmapped_frags > 0)) {
1269 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1270 dev_kfree_skb_any(skb);
1271 return 0;
1272 }
1273 }
1274
1275 /* The SKB contains all the data. Now prepare meta-magic */
1276 skb->protocol = eth_type_trans(skb, edev->ndev);
1277 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1278 qede_set_skb_csum(skb, csum_flag);
1279 skb_record_rx_queue(skb, rxq->rxq_id);
Sudarsana Reddy Kalluru4c552152017-02-15 10:24:11 +02001280 qede_ptp_record_rx_ts(edev, cqe, skb);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001281
1282 /* SKB is prepared - pass it to stack */
1283 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1284
1285 return 1;
1286}
1287
1288static int qede_rx_int(struct qede_fastpath *fp, int budget)
1289{
1290 struct qede_rx_queue *rxq = fp->rxq;
1291 struct qede_dev *edev = fp->edev;
Mintz, Yuval10a01762017-04-07 11:04:57 +03001292 int work_done = 0, rcv_pkts = 0;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001293 u16 hw_comp_cons, sw_comp_cons;
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001294
1295 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1296 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1297
1298 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1299 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1300 * read before it is written by FW, then FW writes CQE and SB, and then
1301 * the CPU reads the hw_comp_cons, it will use an old CQE.
1302 */
1303 rmb();
1304
1305 /* Loop to complete all indicated BDs */
1306 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
Mintz, Yuval10a01762017-04-07 11:04:57 +03001307 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001308 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1309 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1310 work_done++;
1311 }
1312
Mintz, Yuval10a01762017-04-07 11:04:57 +03001313 rxq->rcv_pkts += rcv_pkts;
1314
Mintz, Yuvale3eef7e2017-01-01 13:57:04 +02001315 /* Allocate replacement buffers */
1316 while (rxq->num_rx_buffers - rxq->filled_buffers)
1317 if (qede_alloc_rx_buffer(rxq, false))
1318 break;
1319
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001320 /* Update producers */
1321 qede_update_rx_prod(edev, rxq);
1322
1323 return work_done;
1324}
1325
1326static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1327{
1328 qed_sb_update_sb_idx(fp->sb_info);
1329
1330 /* *_has_*_work() reads the status block, thus we need to ensure that
1331 * status block indices have been actually read (qed_sb_update_sb_idx)
1332 * prior to this check (*_has_*_work) so that we won't write the
1333 * "newer" value of the status block to HW (if there was a DMA right
1334 * after qede_has_rx_work and if there is no rmb, the memory reading
1335 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1336 * In this case there will never be another interrupt until there is
1337 * another update of the status block, while there is still unhandled
1338 * work.
1339 */
1340 rmb();
1341
1342 if (likely(fp->type & QEDE_FASTPATH_RX))
1343 if (qede_has_rx_work(fp->rxq))
1344 return true;
1345
1346 if (fp->type & QEDE_FASTPATH_XDP)
1347 if (qede_txq_has_work(fp->xdp_tx))
1348 return true;
1349
1350 if (likely(fp->type & QEDE_FASTPATH_TX))
1351 if (qede_txq_has_work(fp->txq))
1352 return true;
1353
1354 return false;
1355}
1356
1357/*********************
1358 * NDO & API related *
1359 *********************/
1360int qede_poll(struct napi_struct *napi, int budget)
1361{
1362 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1363 napi);
1364 struct qede_dev *edev = fp->edev;
1365 int rx_work_done = 0;
1366
1367 if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1368 qede_tx_int(edev, fp->txq);
1369
1370 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1371 qede_xdp_tx_int(edev, fp->xdp_tx);
1372
1373 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1374 qede_has_rx_work(fp->rxq)) ?
1375 qede_rx_int(fp, budget) : 0;
1376 if (rx_work_done < budget) {
1377 if (!qede_poll_is_more_work(fp)) {
Eric Dumazet6ad20162017-01-30 08:22:01 -08001378 napi_complete_done(napi, rx_work_done);
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001379
1380 /* Update and reenable interrupts */
1381 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1382 } else {
1383 rx_work_done = budget;
1384 }
1385 }
1386
1387 if (fp->xdp_xmit) {
1388 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1389
1390 fp->xdp_xmit = 0;
1391 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1392 qede_update_tx_producer(fp->xdp_tx);
1393 }
1394
1395 return rx_work_done;
1396}
1397
1398irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1399{
1400 struct qede_fastpath *fp = fp_cookie;
1401
1402 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1403
1404 napi_schedule_irqoff(&fp->napi);
1405 return IRQ_HANDLED;
1406}
1407
1408/* Main transmit function */
1409netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1410{
1411 struct qede_dev *edev = netdev_priv(ndev);
1412 struct netdev_queue *netdev_txq;
1413 struct qede_tx_queue *txq;
1414 struct eth_tx_1st_bd *first_bd;
1415 struct eth_tx_2nd_bd *second_bd = NULL;
1416 struct eth_tx_3rd_bd *third_bd = NULL;
1417 struct eth_tx_bd *tx_data_bd = NULL;
1418 u16 txq_index;
1419 u8 nbd = 0;
1420 dma_addr_t mapping;
1421 int rc, frag_idx = 0, ipv6_ext = 0;
1422 u8 xmit_type;
1423 u16 idx;
1424 u16 hlen;
1425 bool data_split = false;
1426
1427 /* Get tx-queue context and netdev index */
1428 txq_index = skb_get_queue_mapping(skb);
1429 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1430 txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1431 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1432
1433 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1434
1435 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1436
1437#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1438 if (qede_pkt_req_lin(skb, xmit_type)) {
1439 if (skb_linearize(skb)) {
1440 DP_NOTICE(edev,
1441 "SKB linearization failed - silently dropping this SKB\n");
1442 dev_kfree_skb_any(skb);
1443 return NETDEV_TX_OK;
1444 }
1445 }
1446#endif
1447
1448 /* Fill the entry in the SW ring and the BDs in the FW ring */
1449 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
1450 txq->sw_tx_ring.skbs[idx].skb = skb;
1451 first_bd = (struct eth_tx_1st_bd *)
1452 qed_chain_produce(&txq->tx_pbl);
1453 memset(first_bd, 0, sizeof(*first_bd));
1454 first_bd->data.bd_flags.bitfields =
1455 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1456
Sudarsana Reddy Kalluru4c552152017-02-15 10:24:11 +02001457 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1458 qede_ptp_tx_ts(edev, skb);
1459
Mintz, Yuvalcdda9262017-01-01 13:57:01 +02001460 /* Map skb linear data for DMA and set in the first BD */
1461 mapping = dma_map_single(txq->dev, skb->data,
1462 skb_headlen(skb), DMA_TO_DEVICE);
1463 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1464 DP_NOTICE(edev, "SKB mapping failed\n");
1465 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1466 qede_update_tx_producer(txq);
1467 return NETDEV_TX_OK;
1468 }
1469 nbd++;
1470 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1471
1472 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1473 * 3rd BDs.
1474 */
1475 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1476 second_bd = (struct eth_tx_2nd_bd *)
1477 qed_chain_produce(&txq->tx_pbl);
1478 memset(second_bd, 0, sizeof(*second_bd));
1479
1480 nbd++;
1481 third_bd = (struct eth_tx_3rd_bd *)
1482 qed_chain_produce(&txq->tx_pbl);
1483 memset(third_bd, 0, sizeof(*third_bd));
1484
1485 nbd++;
1486 /* We need to fill in additional data in second_bd... */
1487 tx_data_bd = (struct eth_tx_bd *)second_bd;
1488 }
1489
1490 if (skb_vlan_tag_present(skb)) {
1491 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1492 first_bd->data.bd_flags.bitfields |=
1493 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1494 }
1495
1496 /* Fill the parsing flags & params according to the requested offload */
1497 if (xmit_type & XMIT_L4_CSUM) {
1498 /* We don't re-calculate IP checksum as it is already done by
1499 * the upper stack
1500 */
1501 first_bd->data.bd_flags.bitfields |=
1502 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1503
1504 if (xmit_type & XMIT_ENC) {
1505 first_bd->data.bd_flags.bitfields |=
1506 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1507 first_bd->data.bitfields |=
1508 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1509 }
1510
1511 /* Legacy FW had flipped behavior in regard to this bit -
1512 * I.e., needed to set to prevent FW from touching encapsulated
1513 * packets when it didn't need to.
1514 */
1515 if (unlikely(txq->is_legacy))
1516 first_bd->data.bitfields ^=
1517 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1518
1519 /* If the packet is IPv6 with extension header, indicate that
1520 * to FW and pass few params, since the device cracker doesn't
1521 * support parsing IPv6 with extension header/s.
1522 */
1523 if (unlikely(ipv6_ext))
1524 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1525 }
1526
1527 if (xmit_type & XMIT_LSO) {
1528 first_bd->data.bd_flags.bitfields |=
1529 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1530 third_bd->data.lso_mss =
1531 cpu_to_le16(skb_shinfo(skb)->gso_size);
1532
1533 if (unlikely(xmit_type & XMIT_ENC)) {
1534 first_bd->data.bd_flags.bitfields |=
1535 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1536
1537 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1538 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1539
1540 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1541 }
1542 hlen = qede_get_skb_hlen(skb, true);
1543 } else {
1544 first_bd->data.bd_flags.bitfields |=
1545 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1546 hlen = qede_get_skb_hlen(skb, false);
1547 }
1548
1549 /* @@@TBD - if will not be removed need to check */
1550 third_bd->data.bitfields |=
1551 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1552
1553 /* Make life easier for FW guys who can't deal with header and
1554 * data on same BD. If we need to split, use the second bd...
1555 */
1556 if (unlikely(skb_headlen(skb) > hlen)) {
1557 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1558 "TSO split header size is %d (%x:%x)\n",
1559 first_bd->nbytes, first_bd->addr.hi,
1560 first_bd->addr.lo);
1561
1562 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1563 le32_to_cpu(first_bd->addr.lo)) +
1564 hlen;
1565
1566 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1567 le16_to_cpu(first_bd->nbytes) -
1568 hlen);
1569
1570 /* this marks the BD as one that has no
1571 * individual mapping
1572 */
1573 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1574
1575 first_bd->nbytes = cpu_to_le16(hlen);
1576
1577 tx_data_bd = (struct eth_tx_bd *)third_bd;
1578 data_split = true;
1579 }
1580 } else {
1581 first_bd->data.bitfields |=
1582 (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1583 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1584 }
1585
1586 /* Handle fragmented skb */
1587 /* special handle for frags inside 2nd and 3rd bds.. */
1588 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1589 rc = map_frag_to_bd(txq,
1590 &skb_shinfo(skb)->frags[frag_idx],
1591 tx_data_bd);
1592 if (rc) {
1593 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1594 qede_update_tx_producer(txq);
1595 return NETDEV_TX_OK;
1596 }
1597
1598 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1599 tx_data_bd = (struct eth_tx_bd *)third_bd;
1600 else
1601 tx_data_bd = NULL;
1602
1603 frag_idx++;
1604 }
1605
1606 /* map last frags into 4th, 5th .... */
1607 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1608 tx_data_bd = (struct eth_tx_bd *)
1609 qed_chain_produce(&txq->tx_pbl);
1610
1611 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1612
1613 rc = map_frag_to_bd(txq,
1614 &skb_shinfo(skb)->frags[frag_idx],
1615 tx_data_bd);
1616 if (rc) {
1617 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1618 qede_update_tx_producer(txq);
1619 return NETDEV_TX_OK;
1620 }
1621 }
1622
1623 /* update the first BD with the actual num BDs */
1624 first_bd->data.nbds = nbd;
1625
1626 netdev_tx_sent_queue(netdev_txq, skb->len);
1627
1628 skb_tx_timestamp(skb);
1629
1630 /* Advance packet producer only before sending the packet since mapping
1631 * of pages may fail.
1632 */
1633 txq->sw_tx_prod++;
1634
1635 /* 'next page' entries are counted in the producer value */
1636 txq->tx_db.data.bd_prod =
1637 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1638
1639 if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1640 qede_update_tx_producer(txq);
1641
1642 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1643 < (MAX_SKB_FRAGS + 1))) {
1644 if (skb->xmit_more)
1645 qede_update_tx_producer(txq);
1646
1647 netif_tx_stop_queue(netdev_txq);
1648 txq->stopped_cnt++;
1649 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1650 "Stop queue was called\n");
1651 /* paired memory barrier is in qede_tx_int(), we have to keep
1652 * ordering of set_bit() in netif_tx_stop_queue() and read of
1653 * fp->bd_tx_cons
1654 */
1655 smp_mb();
1656
1657 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1658 (MAX_SKB_FRAGS + 1)) &&
1659 (edev->state == QEDE_STATE_OPEN)) {
1660 netif_tx_wake_queue(netdev_txq);
1661 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1662 "Wake queue was called\n");
1663 }
1664 }
1665
1666 return NETDEV_TX_OK;
1667}
1668
1669/* 8B udp header + 8B base tunnel header + 32B option length */
1670#define QEDE_MAX_TUN_HDR_LEN 48
1671
1672netdev_features_t qede_features_check(struct sk_buff *skb,
1673 struct net_device *dev,
1674 netdev_features_t features)
1675{
1676 if (skb->encapsulation) {
1677 u8 l4_proto = 0;
1678
1679 switch (vlan_get_protocol(skb)) {
1680 case htons(ETH_P_IP):
1681 l4_proto = ip_hdr(skb)->protocol;
1682 break;
1683 case htons(ETH_P_IPV6):
1684 l4_proto = ipv6_hdr(skb)->nexthdr;
1685 break;
1686 default:
1687 return features;
1688 }
1689
1690 /* Disable offloads for geneve tunnels, as HW can't parse
1691 * the geneve header which has option length greater than 32B.
1692 */
1693 if ((l4_proto == IPPROTO_UDP) &&
1694 ((skb_inner_mac_header(skb) -
1695 skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
1696 return features & ~(NETIF_F_CSUM_MASK |
1697 NETIF_F_GSO_MASK);
1698 }
1699
1700 return features;
1701}