blob: 45c8c864104ee7cb8f6a856ae322772da174c088 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070027 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
Emil Tantilov675ad472010-04-27 14:02:58 +000033#include "e1000.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034
Joe Perches406874a2008-04-03 10:06:32 -070035static s32 e1000_check_downshift(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070036static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
Nicholas Nunley35574762006-09-27 12:53:34 -070038static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39static void e1000_clear_vfta(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070040static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
Joe Perches64798842008-07-11 15:17:02 -070041 bool link_up);
Joe Perches406874a2008-04-03 10:06:32 -070042static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070044static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070045static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
Joe Perches406874a2008-04-03 10:06:32 -070047static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070048static s32 e1000_id_led_init(struct e1000_hw *hw);
Nicholas Nunley35574762006-09-27 12:53:34 -070049static void e1000_init_rx_addrs(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070050static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
Joe Perches64798842008-07-11 15:17:02 -070052static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
Joe Perches406874a2008-04-03 10:06:32 -070054static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
Joe Perches406874a2008-04-03 10:06:32 -070055static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57static s32 e1000_set_phy_type(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070058static void e1000_phy_init_script(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070059static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070066static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070067static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070070 u16 words, u16 *data);
Joe Perches64798842008-07-11 15:17:02 -070071static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
Joe Perches406874a2008-04-03 10:06:32 -070073static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
Joe Perches64798842008-07-11 15:17:02 -070076static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070077static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070078 u16 phy_data);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070079static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070080 u16 *phy_data);
Joe Perches406874a2008-04-03 10:06:32 -070081static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070083static void e1000_release_eeprom(struct e1000_hw *hw);
84static void e1000_standby_eeprom(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070085static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070088static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
Linus Torvalds1da177e2005-04-16 15:20:36 -070092
93/* IGP cable length table */
94static const
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070095u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
Christopher Li78566fe2008-09-05 14:04:05 -0700109static DEFINE_SPINLOCK(e1000_eeprom_lock);
Maxime Bizonac565582012-10-20 14:53:40 +0000110static DEFINE_SPINLOCK(e1000_phy_lock);
Christopher Li78566fe2008-09-05 14:04:05 -0700111
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700112/**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
Joe Perches64798842008-07-11 15:17:02 -0700116static s32 e1000_set_phy_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700118 if (hw->mac_type == e1000_undefined)
119 return -E1000_ERR_PHY_TYPE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700121 switch (hw->phy_id) {
122 case M88E1000_E_PHY_ID:
123 case M88E1000_I_PHY_ID:
124 case M88E1011_I_PHY_ID:
125 case M88E1111_I_PHY_ID:
Florian Fainellicf8e09b2011-01-24 14:48:03 +0000126 case M88E1118_E_PHY_ID:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700127 hw->phy_type = e1000_phy_m88;
128 break;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
Dirk Brandewie5377a412011-01-06 14:29:54 +0000133 hw->mac_type == e1000_82547_rev_2)
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700134 hw->phy_type = e1000_phy_igp;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000135 break;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
138 break;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
141 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700142 default:
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
146 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700148 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149}
150
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700151/**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
Joe Perches64798842008-07-11 15:17:02 -0700155static void e1000_phy_init_script(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700157 u32 ret_val;
158 u16 phy_saved_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700160 if (hw->phy_init_script) {
161 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000163 /* Save off the current value of register 0x2F5B to be restored
164 * at the end of this routine.
165 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700168 /* Disabled the PHY transmitter */
169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700172 e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700175 switch (hw->mac_type) {
176 case e1000_82541:
177 case e1000_82547:
178 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700188
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700189 case e1000_82541_rev_2:
190 case e1000_82547_rev_2:
191 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 break;
193 default:
194 break;
195 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700197 e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700200 /* Now enable the transmitter */
201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700203 if (hw->mac_type == e1000_82547) {
204 u16 fused, fine, coarse;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700206 /* Move to analog registers page */
207 e1000_read_phy_reg(hw,
208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 e1000_read_phy_reg(hw,
213 IGP01E1000_ANALOG_FUSE_STATUS,
214 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 coarse =
218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700220 if (coarse >
221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 coarse -=
223 IGP01E1000_ANALOG_FUSE_COARSE_10;
224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 } else if (coarse ==
226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700228
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700229 fused =
230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 (coarse &
233 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700235 e1000_write_phy_reg(hw,
236 IGP01E1000_ANALOG_FUSE_CONTROL,
237 fused);
238 e1000_write_phy_reg(hw,
239 IGP01E1000_ANALOG_FUSE_BYPASS,
240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 }
242 }
243 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244}
245
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700246/**
247 * e1000_set_mac_type - Set the mac type member in the hw struct.
248 * @hw: Struct containing variables accessed by shared code
249 */
Joe Perches64798842008-07-11 15:17:02 -0700250s32 e1000_set_mac_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251{
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500252 switch (hw->device_id) {
253 case E1000_DEV_ID_82542:
254 switch (hw->revision_id) {
255 case E1000_82542_2_0_REV_ID:
256 hw->mac_type = e1000_82542_rev2_0;
257 break;
258 case E1000_82542_2_1_REV_ID:
259 hw->mac_type = e1000_82542_rev2_1;
260 break;
261 default:
262 /* Invalid 82542 revision ID */
263 return -E1000_ERR_MAC_TYPE;
264 }
265 break;
266 case E1000_DEV_ID_82543GC_FIBER:
267 case E1000_DEV_ID_82543GC_COPPER:
268 hw->mac_type = e1000_82543;
269 break;
270 case E1000_DEV_ID_82544EI_COPPER:
271 case E1000_DEV_ID_82544EI_FIBER:
272 case E1000_DEV_ID_82544GC_COPPER:
273 case E1000_DEV_ID_82544GC_LOM:
274 hw->mac_type = e1000_82544;
275 break;
276 case E1000_DEV_ID_82540EM:
277 case E1000_DEV_ID_82540EM_LOM:
278 case E1000_DEV_ID_82540EP:
279 case E1000_DEV_ID_82540EP_LOM:
280 case E1000_DEV_ID_82540EP_LP:
281 hw->mac_type = e1000_82540;
282 break;
283 case E1000_DEV_ID_82545EM_COPPER:
284 case E1000_DEV_ID_82545EM_FIBER:
285 hw->mac_type = e1000_82545;
286 break;
287 case E1000_DEV_ID_82545GM_COPPER:
288 case E1000_DEV_ID_82545GM_FIBER:
289 case E1000_DEV_ID_82545GM_SERDES:
290 hw->mac_type = e1000_82545_rev_3;
291 break;
292 case E1000_DEV_ID_82546EB_COPPER:
293 case E1000_DEV_ID_82546EB_FIBER:
294 case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 hw->mac_type = e1000_82546;
296 break;
297 case E1000_DEV_ID_82546GB_COPPER:
298 case E1000_DEV_ID_82546GB_FIBER:
299 case E1000_DEV_ID_82546GB_SERDES:
300 case E1000_DEV_ID_82546GB_PCIE:
301 case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 hw->mac_type = e1000_82546_rev_3;
304 break;
305 case E1000_DEV_ID_82541EI:
306 case E1000_DEV_ID_82541EI_MOBILE:
307 case E1000_DEV_ID_82541ER_LOM:
308 hw->mac_type = e1000_82541;
309 break;
310 case E1000_DEV_ID_82541ER:
311 case E1000_DEV_ID_82541GI:
312 case E1000_DEV_ID_82541GI_LF:
313 case E1000_DEV_ID_82541GI_MOBILE:
314 hw->mac_type = e1000_82541_rev_2;
315 break;
316 case E1000_DEV_ID_82547EI:
317 case E1000_DEV_ID_82547EI_MOBILE:
318 hw->mac_type = e1000_82547;
319 break;
320 case E1000_DEV_ID_82547GI:
321 hw->mac_type = e1000_82547_rev_2;
322 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000323 case E1000_DEV_ID_INTEL_CE4100_GBE:
324 hw->mac_type = e1000_ce4100;
325 break;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500326 default:
327 /* Should never have loaded on this device */
328 return -E1000_ERR_MAC_TYPE;
329 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500331 switch (hw->mac_type) {
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500332 case e1000_82541:
333 case e1000_82547:
334 case e1000_82541_rev_2:
335 case e1000_82547_rev_2:
Joe Perchesc3033b02008-03-21 11:06:25 -0700336 hw->asf_firmware_present = true;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500337 break;
338 default:
339 break;
340 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341
Jeff Garzik167fb282006-12-15 10:41:15 -0500342 /* The 82543 chip does not count tx_carrier_errors properly in
343 * FD mode
344 */
345 if (hw->mac_type == e1000_82543)
Joe Perchesc3033b02008-03-21 11:06:25 -0700346 hw->bad_tx_carr_stats_fd = true;
Jeff Garzik167fb282006-12-15 10:41:15 -0500347
Jeff Garzik15e376b2006-12-15 11:16:33 -0500348 if (hw->mac_type > e1000_82544)
Joe Perchesc3033b02008-03-21 11:06:25 -0700349 hw->has_smbus = true;
Jeff Garzik15e376b2006-12-15 11:16:33 -0500350
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500351 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352}
353
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700354/**
355 * e1000_set_media_type - Set media type and TBI compatibility.
356 * @hw: Struct containing variables accessed by shared code
357 */
Joe Perches64798842008-07-11 15:17:02 -0700358void e1000_set_media_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700360 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700362 if (hw->mac_type != e1000_82543) {
363 /* tbi_compatibility is only valid on 82543 */
364 hw->tbi_compatibility_en = false;
365 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700367 switch (hw->device_id) {
368 case E1000_DEV_ID_82545GM_SERDES:
369 case E1000_DEV_ID_82546GB_SERDES:
370 hw->media_type = e1000_media_type_internal_serdes;
371 break;
372 default:
373 switch (hw->mac_type) {
374 case e1000_82542_rev2_0:
375 case e1000_82542_rev2_1:
376 hw->media_type = e1000_media_type_fiber;
377 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000378 case e1000_ce4100:
379 hw->media_type = e1000_media_type_copper;
380 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700381 default:
382 status = er32(STATUS);
383 if (status & E1000_STATUS_TBIMODE) {
384 hw->media_type = e1000_media_type_fiber;
385 /* tbi_compatibility not valid on fiber */
386 hw->tbi_compatibility_en = false;
387 } else {
388 hw->media_type = e1000_media_type_copper;
389 }
390 break;
391 }
392 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393}
394
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700395/**
Ben Hutchings49ce9c22012-07-10 10:56:00 +0000396 * e1000_reset_hw - reset the hardware completely
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700397 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700399 * Reset the transmit and receive units; mask and clear all interrupts.
400 */
Joe Perches64798842008-07-11 15:17:02 -0700401s32 e1000_reset_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700403 u32 ctrl;
404 u32 ctrl_ext;
405 u32 icr;
406 u32 manc;
407 u32 led_ctrl;
408 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000412 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700413 e1000_pci_clear_mwi(hw);
414 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700416 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000417 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700418 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700420 /* Disable the Transmit and Receive units. Then delay to allow
421 * any pending transactions to complete before we hit the MAC with
422 * the global reset.
423 */
424 ew32(RCTL, 0);
425 ew32(TCTL, E1000_TCTL_PSP);
426 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 hw->tbi_compatibility_on = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700431 /* Delay to allow any outstanding PCI transactions to complete before
432 * resetting the device
433 */
434 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700436 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700438 /* Must reset the PHY before resetting the MAC */
439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
Jesse Brandeburg945a5152011-07-20 00:56:21 +0000441 E1000_WRITE_FLUSH();
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700442 msleep(5);
443 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700445 /* Issue a global reset to the MAC. This will reset the chip's
446 * transmit, receive, DMA, and link units. It will not effect
447 * the current PCI configuration. The global reset bit is self-
448 * clearing, and should clear within a microsecond.
449 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000450 e_dbg("Issuing a global reset to MAC\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700452 switch (hw->mac_type) {
453 case e1000_82544:
454 case e1000_82540:
455 case e1000_82545:
456 case e1000_82546:
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 /* These controllers can't ack the 64-bit write when issuing the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000460 * reset, so use IO-mapping as a workaround to issue the reset
461 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 break;
464 case e1000_82545_rev_3:
465 case e1000_82546_rev_3:
466 /* Reset is performed on a shadow of the control register */
467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000469 case e1000_ce4100:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700470 default:
471 ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 break;
473 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000475 /* After MAC reset, force reload of EEPROM to restore power-on settings
476 * to device. Later controllers reload the EEPROM automatically, so
477 * just wait for reload to complete.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700478 */
479 switch (hw->mac_type) {
480 case e1000_82542_rev2_0:
481 case e1000_82542_rev2_1:
482 case e1000_82543:
483 case e1000_82544:
484 /* Wait for reset to complete */
485 udelay(10);
486 ctrl_ext = er32(CTRL_EXT);
487 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 ew32(CTRL_EXT, ctrl_ext);
489 E1000_WRITE_FLUSH();
490 /* Wait for EEPROM reload */
491 msleep(2);
492 break;
493 case e1000_82541:
494 case e1000_82541_rev_2:
495 case e1000_82547:
496 case e1000_82547_rev_2:
497 /* Wait for EEPROM reload */
498 msleep(20);
499 break;
500 default:
501 /* Auto read done will delay 5ms or poll based on mac type */
502 ret_val = e1000_get_auto_rd_done(hw);
503 if (ret_val)
504 return ret_val;
505 break;
506 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700508 /* Disable HW ARPs on ASF enabled adapters */
509 if (hw->mac_type >= e1000_82540) {
510 manc = er32(MANC);
511 manc &= ~(E1000_MANC_ARP_EN);
512 ew32(MANC, manc);
513 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700518 /* Configure activity LED after PHY reset */
519 led_ctrl = er32(LEDCTL);
520 led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 ew32(LEDCTL, led_ctrl);
523 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700525 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000526 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700527 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700529 /* Clear any pending interrupt events. */
530 icr = er32(ICR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700532 /* If MWI was previously enabled, reenable it. */
533 if (hw->mac_type == e1000_82542_rev2_0) {
534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 e1000_pci_set_mwi(hw);
536 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700538 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539}
540
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700541/**
Ben Hutchings49ce9c22012-07-10 10:56:00 +0000542 * e1000_init_hw - Performs basic configuration of the adapter.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700543 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544 *
545 * Assumes that the controller has previously been reset and is in a
546 * post-reset uninitialized state. Initializes the receive address registers,
547 * multicast table, and VLAN filter table. Calls routines to setup link
548 * configuration and flow control settings. Clears all on-chip counters. Leaves
549 * the transmit and receive units disabled and uninitialized.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700550 */
Joe Perches64798842008-07-11 15:17:02 -0700551s32 e1000_init_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700553 u32 ctrl;
554 u32 i;
555 s32 ret_val;
556 u32 mta_size;
557 u32 ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700558
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700559 /* Initialize Identification LED */
560 ret_val = e1000_id_led_init(hw);
561 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000562 e_dbg("Error Initializing Identification LED\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700563 return ret_val;
564 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700566 /* Set the media type and TBI compatibility */
567 e1000_set_media_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700568
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700569 /* Disabling VLAN filtering. */
Emil Tantilov675ad472010-04-27 14:02:58 +0000570 e_dbg("Initializing the IEEE VLAN\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700571 if (hw->mac_type < e1000_82545_rev_3)
572 ew32(VET, 0);
573 e1000_clear_vfta(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000577 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700578 e1000_pci_clear_mwi(hw);
579 ew32(RCTL, E1000_RCTL_RST);
580 E1000_WRITE_FLUSH();
581 msleep(5);
582 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000584 /* Setup the receive address. This involves initializing all of the
585 * Receive Address Registers (RARs 0 - 15).
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700586 */
587 e1000_init_rx_addrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700588
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 if (hw->mac_type == e1000_82542_rev2_0) {
591 ew32(RCTL, 0);
592 E1000_WRITE_FLUSH();
593 msleep(1);
594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 e1000_pci_set_mwi(hw);
596 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700598 /* Zero out the Multicast HASH table */
Emil Tantilov675ad472010-04-27 14:02:58 +0000599 e_dbg("Zeroing the MTA\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700600 mta_size = E1000_MC_TBL_SIZE;
601 for (i = 0; i < mta_size; i++) {
602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 /* use write flush to prevent Memory Write Block (MWB) from
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000604 * occurring when accessing our register space
605 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700606 E1000_WRITE_FLUSH();
607 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700609 /* Set the PCI priority bit correctly in the CTRL register. This
610 * determines if the adapter gives priority to receives, or if it
611 * gives equal priority to transmits and receives. Valid only on
612 * 82542 and 82543 silicon.
613 */
614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 ctrl = er32(CTRL);
616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700619 switch (hw->mac_type) {
620 case e1000_82545_rev_3:
621 case e1000_82546_rev_3:
622 break;
623 default:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000624 /* Workaround for PCI-X problem when BIOS sets MMRBC
625 * incorrectly.
626 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700627 if (hw->bus_type == e1000_bus_type_pcix
628 && e1000_pcix_get_mmrbc(hw) > 2048)
629 e1000_pcix_set_mmrbc(hw, 2048);
630 break;
631 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700633 /* Call a subroutine to configure the link and setup flow control. */
634 ret_val = e1000_setup_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700636 /* Set the transmit descriptor write-back policy */
637 if (hw->mac_type > e1000_82544) {
638 ctrl = er32(TXDCTL);
639 ctrl =
640 (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 E1000_TXDCTL_FULL_TX_DESC_WB;
642 ew32(TXDCTL, ctrl);
643 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700645 /* Clear all of the statistics registers (clear on read). It is
646 * important that we do this after we have tried to establish link
647 * because the symbol error count will increment wildly if there
648 * is no link.
649 */
650 e1000_clear_hw_cntrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 ctrl_ext = er32(CTRL_EXT);
655 /* Relaxed ordering must be disabled to avoid a parity
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000656 * error crash in a PCI slot.
657 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 ew32(CTRL_EXT, ctrl_ext);
660 }
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800661
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700662 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663}
664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700665/**
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667 * @hw: Struct containing variables accessed by shared code.
668 */
Joe Perches64798842008-07-11 15:17:02 -0700669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700670{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700671 u16 eeprom_data;
672 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700674 if (hw->media_type != e1000_media_type_internal_serdes)
675 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700677 switch (hw->mac_type) {
678 case e1000_82545_rev_3:
679 case e1000_82546_rev_3:
680 break;
681 default:
682 return E1000_SUCCESS;
683 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686 &eeprom_data);
687 if (ret_val) {
688 return ret_val;
689 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700690
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700691 if (eeprom_data != EEPROM_RESERVED_WORD) {
692 /* Adjust SERDES output amplitude only. */
693 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694 ret_val =
695 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696 if (ret_val)
697 return ret_val;
698 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700699
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700700 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701}
702
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700703/**
704 * e1000_setup_link - Configures flow control and link settings.
705 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700707 * Determines which flow control settings to use. Calls the appropriate media-
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 * specific link configuration function. Configures the flow control settings.
709 * Assuming the adapter has a valid link partner, a valid link should be
710 * established. Assumes the hardware has previously been reset and the
711 * transmitter and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700712 */
Joe Perches64798842008-07-11 15:17:02 -0700713s32 e1000_setup_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700715 u32 ctrl_ext;
716 s32 ret_val;
717 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700719 /* Read and store word 0x0F of the EEPROM. This word contains bits
720 * that determine the hardware's default PAUSE (flow control) mode,
721 * a bit that determines whether the HW defaults to enabling or
722 * disabling auto-negotiation, and the direction of the
723 * SW defined pins. If there is no SW over-ride of the flow
724 * control setting, then the variable hw->fc will
725 * be initialized based on a value in the EEPROM.
726 */
727 if (hw->fc == E1000_FC_DEFAULT) {
728 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729 1, &eeprom_data);
730 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000731 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700732 return -E1000_ERR_EEPROM;
733 }
734 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735 hw->fc = E1000_FC_NONE;
736 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737 EEPROM_WORD0F_ASM_DIR)
738 hw->fc = E1000_FC_TX_PAUSE;
739 else
740 hw->fc = E1000_FC_FULL;
741 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700743 /* We want to save off the original Flow Control configuration just
744 * in case we get disconnected and then reconnected into a different
745 * hub or switch with different Flow Control capabilities.
746 */
747 if (hw->mac_type == e1000_82542_rev2_0)
748 hw->fc &= (~E1000_FC_TX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700750 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751 hw->fc &= (~E1000_FC_RX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700753 hw->original_fc = hw->fc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754
Emil Tantilov675ad472010-04-27 14:02:58 +0000755 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700757 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
758 * polarity value for the SW controlled pins, and setup the
759 * Extended Device Control reg with that info.
760 * This is needed because one of the SW controlled pins is used for
761 * signal detection. So this should be done before e1000_setup_pcs_link()
762 * or e1000_phy_setup() is called.
763 */
764 if (hw->mac_type == e1000_82543) {
765 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766 1, &eeprom_data);
767 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000768 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700769 return -E1000_ERR_EEPROM;
770 }
771 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772 SWDPIO__EXT_SHIFT);
773 ew32(CTRL_EXT, ctrl_ext);
774 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700776 /* Call the necessary subroutine to configure the link. */
777 ret_val = (hw->media_type == e1000_media_type_copper) ?
778 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700780 /* Initialize the flow control address, type, and PAUSE timer
781 * registers to their default values. This is done even if flow
782 * control is disabled, because it does not hurt anything to
783 * initialize these registers.
784 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000785 e_dbg("Initializing the Flow Control address, type and timer regs\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700787 ew32(FCT, FLOW_CONTROL_TYPE);
788 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700790
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700791 ew32(FCTTV, hw->fc_pause_time);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700793 /* Set the flow control receive threshold registers. Normally,
794 * these registers will be set to a default threshold that may be
795 * adjusted later by the driver's runtime code. However, if the
796 * ability to transmit pause frames in not enabled, then these
797 * registers will be set to 0.
798 */
799 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800 ew32(FCRTL, 0);
801 ew32(FCRTH, 0);
802 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000803 /* We need to set up the Receive Threshold high and low water
804 * marks as well as (optionally) enabling the transmission of
805 * XON frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700806 */
807 if (hw->fc_send_xon) {
808 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809 ew32(FCRTH, hw->fc_high_water);
810 } else {
811 ew32(FCRTL, hw->fc_low_water);
812 ew32(FCRTH, hw->fc_high_water);
813 }
814 }
815 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816}
817
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700818/**
819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821 *
822 * Manipulates Physical Coding Sublayer functions in order to configure
823 * link. Assumes the hardware has been previously reset and the transmitter
824 * and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700825 */
Joe Perches64798842008-07-11 15:17:02 -0700826static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700828 u32 ctrl;
829 u32 status;
830 u32 txcw = 0;
831 u32 i;
832 u32 signal = 0;
833 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700835 /* On adapters with a MAC newer than 82544, SWDP 1 will be
836 * set when the optics detect a signal. On older adapters, it will be
837 * cleared when there is a signal. This applies to fiber media only.
838 * If we're on serdes media, adjust the output amplitude to value
839 * set in the EEPROM.
840 */
841 ctrl = er32(CTRL);
842 if (hw->media_type == e1000_media_type_fiber)
843 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700845 ret_val = e1000_adjust_serdes_amplitude(hw);
846 if (ret_val)
847 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700849 /* Take the link out of reset */
850 ctrl &= ~(E1000_CTRL_LRST);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700852 /* Adjust VCO speed to improve BER performance */
853 ret_val = e1000_set_vco_speed(hw);
854 if (ret_val)
855 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700857 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700859 /* Check for a software override of the flow control settings, and setup
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000860 * the device accordingly. If auto-negotiation is enabled, then
861 * software will have to set the "PAUSE" bits to the correct value in
862 * the Tranmsit Config Word Register (TXCW) and re-start
863 * auto-negotiation. However, if auto-negotiation is disabled, then
864 * software will have to manually configure the two flow control enable
865 * bits in the CTRL register.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700866 *
867 * The possible values of the "fc" parameter are:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000868 * 0: Flow control is completely disabled
869 * 1: Rx flow control is enabled (we can receive pause frames, but
870 * not send pause frames).
871 * 2: Tx flow control is enabled (we can send pause frames but we do
872 * not support receiving pause frames).
873 * 3: Both Rx and TX flow control (symmetric) are enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700874 */
875 switch (hw->fc) {
876 case E1000_FC_NONE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000877 /* Flow ctrl is completely disabled by a software over-ride */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700878 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879 break;
880 case E1000_FC_RX_PAUSE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000881 /* Rx Flow control is enabled and Tx Flow control is disabled by
882 * a software over-ride. Since there really isn't a way to
883 * advertise that we are capable of Rx Pause ONLY, we will
884 * advertise that we support both symmetric and asymmetric Rx
885 * PAUSE. Later, we will disable the adapter's ability to send
886 * PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700887 */
888 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889 break;
890 case E1000_FC_TX_PAUSE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000891 /* Tx Flow control is enabled, and Rx Flow control is disabled,
892 * by a software over-ride.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700893 */
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895 break;
896 case E1000_FC_FULL:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000897 /* Flow control (both Rx and Tx) is enabled by a software
898 * over-ride.
899 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901 break;
902 default:
Emil Tantilov675ad472010-04-27 14:02:58 +0000903 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700904 return -E1000_ERR_CONFIG;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700905 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000907 /* Since auto-negotiation is enabled, take the link out of reset (the
908 * link will be in reset, because we previously reset the chip). This
909 * will restart auto-negotiation. If auto-negotiation is successful
910 * then the link-up status bit will be set and the flow control enable
911 * bits (RFCE and TFCE) will be set according to their negotiated value.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700912 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000913 e_dbg("Auto-negotiation enabled\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700915 ew32(TXCW, txcw);
916 ew32(CTRL, ctrl);
917 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700919 hw->txcw = txcw;
920 msleep(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000922 /* If we have a signal (the cable is plugged in) then poll for a
923 * "Link-Up" indication in the Device Status Register. Time-out if a
924 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925 * complete in less than 500 milliseconds even if the other end is doing
926 * it in SW). For internal serdes, we just assume a signal is present,
927 * then poll.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700928 */
929 if (hw->media_type == e1000_media_type_internal_serdes ||
930 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000931 e_dbg("Looking for Link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700932 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933 msleep(10);
934 status = er32(STATUS);
935 if (status & E1000_STATUS_LU)
936 break;
937 }
938 if (i == (LINK_UP_TIMEOUT / 10)) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000939 e_dbg("Never got a valid link from auto-neg!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700940 hw->autoneg_failed = 1;
941 /* AutoNeg failed to achieve a link, so we'll call
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000942 * e1000_check_for_link. This routine will force the
943 * link up if we detect a signal. This will allow us to
944 * communicate with non-autonegotiating link partners.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700945 */
946 ret_val = e1000_check_for_link(hw);
947 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000948 e_dbg("Error while checking for link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700949 return ret_val;
950 }
951 hw->autoneg_failed = 0;
952 } else {
953 hw->autoneg_failed = 0;
Emil Tantilov675ad472010-04-27 14:02:58 +0000954 e_dbg("Valid Link Found\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700955 }
956 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +0000957 e_dbg("No Signal Detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700958 }
959 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960}
961
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700962/**
Dirk Brandewie5377a412011-01-06 14:29:54 +0000963 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964 * @hw: Struct containing variables accessed by shared code
965 *
966 * Commits changes to PHY configuration by calling e1000_phy_reset().
967 */
968static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969{
970 s32 ret_val;
971
972 /* SW reset the PHY so all changes take effect */
973 ret_val = e1000_phy_reset(hw);
974 if (ret_val) {
975 e_dbg("Error Resetting the PHY\n");
976 return ret_val;
977 }
978
979 return E1000_SUCCESS;
980}
981
982static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983{
984 s32 ret_val;
985 u32 ctrl_aux;
986
987 switch (hw->phy_type) {
988 case e1000_phy_8211:
989 ret_val = e1000_copper_link_rtl_setup(hw);
990 if (ret_val) {
991 e_dbg("e1000_copper_link_rtl_setup failed!\n");
992 return ret_val;
993 }
994 break;
995 case e1000_phy_8201:
996 /* Set RMII mode */
997 ctrl_aux = er32(CTL_AUX);
998 ctrl_aux |= E1000_CTL_AUX_RMII;
999 ew32(CTL_AUX, ctrl_aux);
1000 E1000_WRITE_FLUSH();
1001
1002 /* Disable the J/K bits required for receive */
1003 ctrl_aux = er32(CTL_AUX);
1004 ctrl_aux |= 0x4;
1005 ctrl_aux &= ~0x2;
1006 ew32(CTL_AUX, ctrl_aux);
1007 E1000_WRITE_FLUSH();
1008 ret_val = e1000_copper_link_rtl_setup(hw);
1009
1010 if (ret_val) {
1011 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012 return ret_val;
1013 }
1014 break;
1015 default:
1016 e_dbg("Error Resetting the PHY\n");
1017 return E1000_ERR_PHY_TYPE;
1018 }
1019
1020 return E1000_SUCCESS;
1021}
1022
1023/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001024 * e1000_copper_link_preconfig - early configuration for copper
1025 * @hw: Struct containing variables accessed by shared code
1026 *
1027 * Make sure we have a valid PHY and change PHY mode before link setup.
1028 */
Joe Perches64798842008-07-11 15:17:02 -07001029static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001031 u32 ctrl;
1032 s32 ret_val;
1033 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001035 ctrl = er32(CTRL);
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001036 /* With 82543, we need to force speed and duplex on the MAC equal to
1037 * what the PHY speed and duplex configuration is. In addition, we need
1038 * to perform a hardware reset on the PHY to take it out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001039 */
1040 if (hw->mac_type > e1000_82543) {
1041 ctrl |= E1000_CTRL_SLU;
1042 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043 ew32(CTRL, ctrl);
1044 } else {
1045 ctrl |=
1046 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047 ew32(CTRL, ctrl);
1048 ret_val = e1000_phy_hw_reset(hw);
1049 if (ret_val)
1050 return ret_val;
1051 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001053 /* Make sure we have a valid PHY */
1054 ret_val = e1000_detect_gig_phy(hw);
1055 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001056 e_dbg("Error, did not detect valid phy.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001057 return ret_val;
1058 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001059 e_dbg("Phy ID = %x\n", hw->phy_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001061 /* Set PHY to class A mode (if necessary) */
1062 ret_val = e1000_set_phy_mode(hw);
1063 if (ret_val)
1064 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001066 if ((hw->mac_type == e1000_82545_rev_3) ||
1067 (hw->mac_type == e1000_82546_rev_3)) {
1068 ret_val =
1069 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070 phy_data |= 0x00000008;
1071 ret_val =
1072 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001075 if (hw->mac_type <= e1000_82543 ||
1076 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077 hw->mac_type == e1000_82541_rev_2
1078 || hw->mac_type == e1000_82547_rev_2)
1079 hw->phy_reset_disable = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001081 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001082}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001084/**
1085 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086 * @hw: Struct containing variables accessed by shared code
1087 */
Joe Perches64798842008-07-11 15:17:02 -07001088static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001089{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001090 u32 led_ctrl;
1091 s32 ret_val;
1092 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001094 if (hw->phy_reset_disable)
1095 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001096
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001097 ret_val = e1000_phy_reset(hw);
1098 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001099 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001100 return ret_val;
1101 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001103 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1104 msleep(15);
1105 /* Configure activity LED after PHY reset */
1106 led_ctrl = er32(LEDCTL);
1107 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109 ew32(LEDCTL, led_ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001110
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001111 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112 if (hw->phy_type == e1000_phy_igp) {
1113 /* disable lplu d3 during driver init */
1114 ret_val = e1000_set_d3_lplu_state(hw, false);
1115 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001116 e_dbg("Error Disabling LPLU D3\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001117 return ret_val;
1118 }
1119 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001121 /* Configure mdi-mdix settings */
1122 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123 if (ret_val)
1124 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001125
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001126 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127 hw->dsp_config_state = e1000_dsp_config_disabled;
1128 /* Force MDI for earlier revs of the IGP PHY */
1129 phy_data &=
1130 ~(IGP01E1000_PSCR_AUTO_MDIX |
1131 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132 hw->mdix = 1;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001133
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001134 } else {
1135 hw->dsp_config_state = e1000_dsp_config_enabled;
1136 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001137
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001138 switch (hw->mdix) {
1139 case 1:
1140 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141 break;
1142 case 2:
1143 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144 break;
1145 case 0:
1146 default:
1147 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148 break;
1149 }
1150 }
1151 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152 if (ret_val)
1153 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001154
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001155 /* set auto-master slave resolution settings */
1156 if (hw->autoneg) {
1157 e1000_ms_type phy_ms_setting = hw->master_slave;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001158
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001159 if (hw->ffe_config_state == e1000_ffe_config_active)
1160 hw->ffe_config_state = e1000_ffe_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001161
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001162 if (hw->dsp_config_state == e1000_dsp_config_activated)
1163 hw->dsp_config_state = e1000_dsp_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001165 /* when autonegotiation advertisement is only 1000Mbps then we
1166 * should disable SmartSpeed and enable Auto MasterSlave
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001167 * resolution as hardware default.
1168 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001169 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170 /* Disable SmartSpeed */
1171 ret_val =
1172 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173 &phy_data);
1174 if (ret_val)
1175 return ret_val;
1176 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177 ret_val =
1178 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179 phy_data);
1180 if (ret_val)
1181 return ret_val;
1182 /* Set auto Master/Slave resolution process */
1183 ret_val =
1184 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185 if (ret_val)
1186 return ret_val;
1187 phy_data &= ~CR_1000T_MS_ENABLE;
1188 ret_val =
1189 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190 if (ret_val)
1191 return ret_val;
1192 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001194 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195 if (ret_val)
1196 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001198 /* load defaults for future use */
1199 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200 ((phy_data & CR_1000T_MS_VALUE) ?
1201 e1000_ms_force_master :
1202 e1000_ms_force_slave) : e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001204 switch (phy_ms_setting) {
1205 case e1000_ms_force_master:
1206 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207 break;
1208 case e1000_ms_force_slave:
1209 phy_data |= CR_1000T_MS_ENABLE;
1210 phy_data &= ~(CR_1000T_MS_VALUE);
1211 break;
1212 case e1000_ms_auto:
1213 phy_data &= ~CR_1000T_MS_ENABLE;
1214 default:
1215 break;
1216 }
1217 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218 if (ret_val)
1219 return ret_val;
1220 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001221
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001222 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001223}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001225/**
1226 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227 * @hw: Struct containing variables accessed by shared code
1228 */
Joe Perches64798842008-07-11 15:17:02 -07001229static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001230{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001231 s32 ret_val;
1232 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001234 if (hw->phy_reset_disable)
1235 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001236
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001237 /* Enable CRS on TX. This must be set for half-duplex operation. */
1238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239 if (ret_val)
1240 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001242 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001243
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001244 /* Options:
1245 * MDI/MDI-X = 0 (default)
1246 * 0 - Auto for all speeds
1247 * 1 - MDI mode
1248 * 2 - MDI-X mode
1249 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250 */
1251 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001253 switch (hw->mdix) {
1254 case 1:
1255 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256 break;
1257 case 2:
1258 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259 break;
1260 case 3:
1261 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262 break;
1263 case 0:
1264 default:
1265 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266 break;
1267 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001268
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001269 /* Options:
1270 * disable_polarity_correction = 0 (default)
1271 * Automatic Correction for Reversed Cable Polarity
1272 * 0 - Disabled
1273 * 1 - Enabled
1274 */
1275 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276 if (hw->disable_polarity_correction == 1)
1277 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 if (ret_val)
1280 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001281
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001282 if (hw->phy_revision < M88E1011_I_REV_4) {
1283 /* Force TX_CLK in the Extended PHY Specific Control Register
1284 * to 25MHz clock.
1285 */
1286 ret_val =
1287 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288 &phy_data);
1289 if (ret_val)
1290 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001291
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001292 phy_data |= M88E1000_EPSCR_TX_CLK_25;
Auke Kokee040222006-06-27 09:08:03 -07001293
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001294 if ((hw->phy_revision == E1000_REVISION_2) &&
1295 (hw->phy_id == M88E1111_I_PHY_ID)) {
1296 /* Vidalia Phy, set the downshift counter to 5x */
1297 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299 ret_val = e1000_write_phy_reg(hw,
1300 M88E1000_EXT_PHY_SPEC_CTRL,
1301 phy_data);
1302 if (ret_val)
1303 return ret_val;
1304 } else {
1305 /* Configure Master and Slave downshift values */
1306 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310 ret_val = e1000_write_phy_reg(hw,
1311 M88E1000_EXT_PHY_SPEC_CTRL,
1312 phy_data);
1313 if (ret_val)
1314 return ret_val;
1315 }
1316 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001318 /* SW Reset the PHY so all changes take effect */
1319 ret_val = e1000_phy_reset(hw);
1320 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001321 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001322 return ret_val;
1323 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001324
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001325 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001326}
1327
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001328/**
1329 * e1000_copper_link_autoneg - setup auto-neg
1330 * @hw: Struct containing variables accessed by shared code
1331 *
1332 * Setup auto-negotiation and flow control advertisements,
1333 * and then perform auto-negotiation.
1334 */
Joe Perches64798842008-07-11 15:17:02 -07001335static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001336{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001337 s32 ret_val;
1338 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001339
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001340 /* Perform some bounds checking on the hw->autoneg_advertised
1341 * parameter. If this variable is zero, then set it to the default.
1342 */
1343 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001344
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001345 /* If autoneg_advertised is zero, we assume it was not defaulted
1346 * by the calling code so we set to advertise full capability.
1347 */
1348 if (hw->autoneg_advertised == 0)
1349 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001350
Dirk Brandewie5377a412011-01-06 14:29:54 +00001351 /* IFE/RTL8201N PHY only supports 10/100 */
1352 if (hw->phy_type == e1000_phy_8201)
1353 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354
Emil Tantilov675ad472010-04-27 14:02:58 +00001355 e_dbg("Reconfiguring auto-neg advertisement params\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001356 ret_val = e1000_phy_setup_autoneg(hw);
1357 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001358 e_dbg("Error Setting up Auto-Negotiation\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001359 return ret_val;
1360 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001361 e_dbg("Restarting Auto-Neg\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001362
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001363 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364 * the Auto Neg Restart bit in the PHY control register.
1365 */
1366 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367 if (ret_val)
1368 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001369
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001370 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372 if (ret_val)
1373 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001374
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001375 /* Does the user want to wait for Auto-Neg to complete here, or
1376 * check at a later time (for example, callback routine).
1377 */
1378 if (hw->wait_autoneg_complete) {
1379 ret_val = e1000_wait_autoneg(hw);
1380 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001381 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001382 ("Error while waiting for autoneg to complete\n");
1383 return ret_val;
1384 }
1385 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001387 hw->get_link_status = true;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001389 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001390}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001392/**
1393 * e1000_copper_link_postconfig - post link setup
1394 * @hw: Struct containing variables accessed by shared code
1395 *
1396 * Config the MAC and the PHY after link is up.
1397 * 1) Set up the MAC to the current PHY speed/duplex
1398 * if we are on 82543. If we
1399 * are on newer silicon, we only need to configure
1400 * collision distance in the Transmit Control Register.
1401 * 2) Set up flow control on the MAC to that established with
1402 * the link partner.
1403 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404 */
Joe Perches64798842008-07-11 15:17:02 -07001405static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001406{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001407 s32 ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001408
Dirk Brandewie5377a412011-01-06 14:29:54 +00001409 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001410 e1000_config_collision_dist(hw);
1411 } else {
1412 ret_val = e1000_config_mac_to_phy(hw);
1413 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001414 e_dbg("Error configuring MAC to PHY settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001415 return ret_val;
1416 }
1417 }
1418 ret_val = e1000_config_fc_after_link_up(hw);
1419 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001420 e_dbg("Error Configuring Flow Control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001421 return ret_val;
1422 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001423
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001424 /* Config DSP to improve Giga link quality */
1425 if (hw->phy_type == e1000_phy_igp) {
1426 ret_val = e1000_config_dsp_after_link_change(hw, true);
1427 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001428 e_dbg("Error Configuring DSP after link up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001429 return ret_val;
1430 }
1431 }
Auke Kok76c224b2006-05-23 13:36:06 -07001432
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001433 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001434}
1435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001436/**
1437 * e1000_setup_copper_link - phy/speed/duplex setting
1438 * @hw: Struct containing variables accessed by shared code
1439 *
1440 * Detects which PHY is present and sets up the speed and duplex
1441 */
Joe Perches64798842008-07-11 15:17:02 -07001442static s32 e1000_setup_copper_link(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001443{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001444 s32 ret_val;
1445 u16 i;
1446 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001447
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001448 /* Check if it is a valid PHY and set PHY mode if necessary. */
1449 ret_val = e1000_copper_link_preconfig(hw);
1450 if (ret_val)
1451 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001452
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001453 if (hw->phy_type == e1000_phy_igp) {
1454 ret_val = e1000_copper_link_igp_setup(hw);
1455 if (ret_val)
1456 return ret_val;
1457 } else if (hw->phy_type == e1000_phy_m88) {
1458 ret_val = e1000_copper_link_mgp_setup(hw);
1459 if (ret_val)
1460 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001461 } else {
1462 ret_val = gbe_dhg_phy_setup(hw);
1463 if (ret_val) {
1464 e_dbg("gbe_dhg_phy_setup failed!\n");
1465 return ret_val;
1466 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001467 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001468
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001469 if (hw->autoneg) {
1470 /* Setup autoneg and flow control advertisement
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001471 * and perform autonegotiation
1472 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001473 ret_val = e1000_copper_link_autoneg(hw);
1474 if (ret_val)
1475 return ret_val;
1476 } else {
1477 /* PHY will be set to 10H, 10F, 100H,or 100F
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001478 * depending on value from forced_speed_duplex.
1479 */
Emil Tantilov675ad472010-04-27 14:02:58 +00001480 e_dbg("Forcing speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001481 ret_val = e1000_phy_force_speed_duplex(hw);
1482 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001483 e_dbg("Error Forcing Speed and Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001484 return ret_val;
1485 }
1486 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001488 /* Check link status. Wait up to 100 microseconds for link to become
1489 * valid.
1490 */
1491 for (i = 0; i < 10; i++) {
1492 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493 if (ret_val)
1494 return ret_val;
1495 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496 if (ret_val)
1497 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001499 if (phy_data & MII_SR_LINK_STATUS) {
1500 /* Config the MAC and PHY after link is up */
1501 ret_val = e1000_copper_link_postconfig(hw);
1502 if (ret_val)
1503 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001504
Emil Tantilov675ad472010-04-27 14:02:58 +00001505 e_dbg("Valid link established!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001506 return E1000_SUCCESS;
1507 }
1508 udelay(10);
1509 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510
Emil Tantilov675ad472010-04-27 14:02:58 +00001511 e_dbg("Unable to establish link!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001512 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001513}
1514
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001515/**
1516 * e1000_phy_setup_autoneg - phy settings
1517 * @hw: Struct containing variables accessed by shared code
1518 *
1519 * Configures PHY autoneg and flow control advertisement settings
1520 */
Joe Perches64798842008-07-11 15:17:02 -07001521s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001523 s32 ret_val;
1524 u16 mii_autoneg_adv_reg;
1525 u16 mii_1000t_ctrl_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001527 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529 if (ret_val)
1530 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001532 /* Read the MII 1000Base-T Control Register (Address 9). */
Dirk Brandewie5377a412011-01-06 14:29:54 +00001533 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001534 if (ret_val)
1535 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001536 else if (hw->phy_type == e1000_phy_8201)
1537 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001539 /* Need to parse both autoneg_advertised and fc and set up
1540 * the appropriate PHY registers. First we will parse for
1541 * autoneg_advertised software override. Since we can advertise
1542 * a plethora of combinations, we need to check each bit
1543 * individually.
1544 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001546 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548 * the 1000Base-T Control Register (Address 9).
1549 */
1550 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552
Emil Tantilov675ad472010-04-27 14:02:58 +00001553 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001555 /* Do we want to advertise 10 Mb Half Duplex? */
1556 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001557 e_dbg("Advertise 10mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001558 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001561 /* Do we want to advertise 10 Mb Full Duplex? */
1562 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001563 e_dbg("Advertise 10mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001564 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001567 /* Do we want to advertise 100 Mb Half Duplex? */
1568 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001569 e_dbg("Advertise 100mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001570 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001573 /* Do we want to advertise 100 Mb Full Duplex? */
1574 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001575 e_dbg("Advertise 100mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001576 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001579 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001581 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001582 ("Advertise 1000mb Half duplex requested, request denied!\n");
1583 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001585 /* Do we want to advertise 1000 Mb Full Duplex? */
1586 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001587 e_dbg("Advertise 1000mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001588 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001591 /* Check for a software override of the flow control settings, and
1592 * setup the PHY advertisement registers accordingly. If
1593 * auto-negotiation is enabled, then software will have to set the
1594 * "PAUSE" bits to the correct value in the Auto-Negotiation
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001595 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596 * auto-negotiation.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001597 *
1598 * The possible values of the "fc" parameter are:
1599 * 0: Flow control is completely disabled
1600 * 1: Rx flow control is enabled (we can receive pause frames
1601 * but not send pause frames).
1602 * 2: Tx flow control is enabled (we can send pause frames
1603 * but we do not support receiving pause frames).
1604 * 3: Both Rx and TX flow control (symmetric) are enabled.
1605 * other: No software override. The flow control configuration
1606 * in the EEPROM is used.
1607 */
1608 switch (hw->fc) {
1609 case E1000_FC_NONE: /* 0 */
1610 /* Flow control (RX & TX) is completely disabled by a
1611 * software over-ride.
1612 */
1613 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614 break;
1615 case E1000_FC_RX_PAUSE: /* 1 */
1616 /* RX Flow control is enabled, and TX Flow control is
1617 * disabled, by a software over-ride.
1618 */
1619 /* Since there really isn't a way to advertise that we are
1620 * capable of RX Pause ONLY, we will advertise that we
1621 * support both symmetric and asymmetric RX PAUSE. Later
1622 * (in e1000_config_fc_after_link_up) we will disable the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001623 * hw's ability to send PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001624 */
1625 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626 break;
1627 case E1000_FC_TX_PAUSE: /* 2 */
1628 /* TX Flow control is enabled, and RX Flow control is
1629 * disabled, by a software over-ride.
1630 */
1631 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633 break;
1634 case E1000_FC_FULL: /* 3 */
1635 /* Flow control (both RX and TX) is enabled by a software
1636 * over-ride.
1637 */
1638 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 break;
1640 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00001641 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001642 return -E1000_ERR_CONFIG;
1643 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001645 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646 if (ret_val)
1647 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648
Emil Tantilov675ad472010-04-27 14:02:58 +00001649 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650
Dirk Brandewie5377a412011-01-06 14:29:54 +00001651 if (hw->phy_type == e1000_phy_8201) {
1652 mii_1000t_ctrl_reg = 0;
1653 } else {
1654 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1655 mii_1000t_ctrl_reg);
1656 if (ret_val)
1657 return ret_val;
1658 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001660 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661}
1662
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001663/**
1664 * e1000_phy_force_speed_duplex - force link settings
1665 * @hw: Struct containing variables accessed by shared code
1666 *
1667 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668 */
Joe Perches64798842008-07-11 15:17:02 -07001669static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001671 u32 ctrl;
1672 s32 ret_val;
1673 u16 mii_ctrl_reg;
1674 u16 mii_status_reg;
1675 u16 phy_data;
1676 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001678 /* Turn off Flow control if we are forcing speed and duplex. */
1679 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680
Emil Tantilov675ad472010-04-27 14:02:58 +00001681 e_dbg("hw->fc = %d\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001683 /* Read the Device Control Register. */
1684 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001686 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688 ctrl &= ~(DEVICE_SPEED_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001690 /* Clear the Auto Speed Detect Enable bit. */
1691 ctrl &= ~E1000_CTRL_ASDE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001693 /* Read the MII Control Register. */
1694 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695 if (ret_val)
1696 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001698 /* We need to disable autoneg in order to force link and duplex. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001700 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001702 /* Are we forcing Full or Half Duplex? */
1703 if (hw->forced_speed_duplex == e1000_100_full ||
1704 hw->forced_speed_duplex == e1000_10_full) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001705 /* We want to force full duplex so we SET the full duplex bits
1706 * in the Device and MII Control Registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001707 */
1708 ctrl |= E1000_CTRL_FD;
1709 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001710 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001711 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001712 /* We want to force half duplex so we CLEAR the full duplex bits
1713 * in the Device and MII Control Registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001714 */
1715 ctrl &= ~E1000_CTRL_FD;
1716 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001717 e_dbg("Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001718 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001720 /* Are we forcing 100Mbps??? */
1721 if (hw->forced_speed_duplex == e1000_100_full ||
1722 hw->forced_speed_duplex == e1000_100_half) {
1723 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724 ctrl |= E1000_CTRL_SPD_100;
1725 mii_ctrl_reg |= MII_CR_SPEED_100;
1726 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
Emil Tantilov675ad472010-04-27 14:02:58 +00001727 e_dbg("Forcing 100mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001728 } else {
1729 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731 mii_ctrl_reg |= MII_CR_SPEED_10;
1732 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
Emil Tantilov675ad472010-04-27 14:02:58 +00001733 e_dbg("Forcing 10mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001734 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001736 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001737
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001738 /* Write the configured values back to the Device Control Reg. */
1739 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001741 if (hw->phy_type == e1000_phy_m88) {
1742 ret_val =
1743 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744 if (ret_val)
1745 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001746
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001747 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748 * MDI forced whenever speed are duplex are forced.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001749 */
1750 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751 ret_val =
1752 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753 if (ret_val)
1754 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
Emil Tantilov675ad472010-04-27 14:02:58 +00001756 e_dbg("M88E1000 PSCR: %x\n", phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001758 /* Need to reset the PHY or these changes will be ignored */
1759 mii_ctrl_reg |= MII_CR_RESET;
Auke Kok90fb5132006-11-01 08:47:30 -08001760
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001761 /* Disable MDI-X support for 10/100 */
1762 } else {
1763 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1764 * forced whenever speed or duplex are forced.
1765 */
1766 ret_val =
1767 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768 if (ret_val)
1769 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001771 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001774 ret_val =
1775 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776 if (ret_val)
1777 return ret_val;
1778 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001780 /* Write back the modified PHY MII control register. */
1781 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782 if (ret_val)
1783 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001785 udelay(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001787 /* The wait_autoneg_complete flag may be a little misleading here.
1788 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789 * But we do want to delay for a period while forcing only so we
1790 * don't generate false No Link messages. So we will wait here
1791 * only if the user has set wait_autoneg_complete to 1, which is
1792 * the default.
1793 */
1794 if (hw->wait_autoneg_complete) {
1795 /* We will wait for autoneg to complete. */
Emil Tantilov675ad472010-04-27 14:02:58 +00001796 e_dbg("Waiting for forced speed/duplex link.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001797 mii_status_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001799 /* Wait for autoneg to complete or 4.5 seconds to expire */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001800 for (i = PHY_FORCE_TIME; i > 0; i--) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001801 /* Read the MII Status Register and wait for Auto-Neg
1802 * Complete bit to be set.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001803 */
1804 ret_val =
1805 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806 if (ret_val)
1807 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001808
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001809 ret_val =
1810 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811 if (ret_val)
1812 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001814 if (mii_status_reg & MII_SR_LINK_STATUS)
1815 break;
1816 msleep(100);
1817 }
1818 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001819 /* We didn't get link. Reset the DSP and wait again
1820 * for link.
1821 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001822 ret_val = e1000_phy_reset_dsp(hw);
1823 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001824 e_dbg("Error Resetting PHY DSP\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001825 return ret_val;
1826 }
1827 }
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001828 /* This loop will early-out if the link condition has been
1829 * met
1830 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001831 for (i = PHY_FORCE_TIME; i > 0; i--) {
1832 if (mii_status_reg & MII_SR_LINK_STATUS)
1833 break;
1834 msleep(100);
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001835 /* Read the MII Status Register and wait for Auto-Neg
1836 * Complete bit to be set.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001837 */
1838 ret_val =
1839 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 if (ret_val)
1841 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001843 ret_val =
1844 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 if (ret_val)
1846 return ret_val;
1847 }
1848 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001849
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001850 if (hw->phy_type == e1000_phy_m88) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001851 /* Because we reset the PHY above, we need to re-force TX_CLK in
1852 * the Extended PHY Specific Control Register to 25MHz clock.
1853 * This value defaults back to a 2.5MHz clock when the PHY is
1854 * reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001855 */
1856 ret_val =
1857 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858 &phy_data);
1859 if (ret_val)
1860 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001861
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001862 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863 ret_val =
1864 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865 phy_data);
1866 if (ret_val)
1867 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001869 /* In addition, because of the s/w reset above, we need to
1870 * enable CRS on Tx. This must be set for both full and half
1871 * duplex operation.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001872 */
1873 ret_val =
1874 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875 if (ret_val)
1876 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001878 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879 ret_val =
1880 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881 if (ret_val)
1882 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001884 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1885 && (!hw->autoneg)
1886 && (hw->forced_speed_duplex == e1000_10_full
1887 || hw->forced_speed_duplex == e1000_10_half)) {
1888 ret_val = e1000_polarity_reversal_workaround(hw);
1889 if (ret_val)
1890 return ret_val;
1891 }
1892 }
1893 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894}
1895
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
Joe Perches64798842008-07-11 15:17:02 -07001904void e1000_config_collision_dist(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001906 u32 tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001908 if (hw->mac_type < e1000_82543)
1909 coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 else
1911 coll_dist = E1000_COLLISION_DISTANCE;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08001912
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001913 tctl = er32(TCTL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001915 tctl &= ~E1000_TCTL_COLD;
1916 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001918 ew32(TCTL, tctl);
1919 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920}
1921
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
Joe Perches64798842008-07-11 15:17:02 -07001931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001933 u32 ctrl;
1934 s32 ret_val;
1935 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001937 /* 82544 or newer MAC, Auto Speed Detection takes care of
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001938 * MAC speed/duplex configuration.
1939 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00001940 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001941 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001942
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001943 /* Read the Device Control Register and set the bits to Force Speed
1944 * and Duplex.
1945 */
1946 ctrl = er32(CTRL);
1947 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949
Dirk Brandewie5377a412011-01-06 14:29:54 +00001950 switch (hw->phy_type) {
1951 case e1000_phy_8201:
1952 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 if (ret_val)
1954 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955
Dirk Brandewie5377a412011-01-06 14:29:54 +00001956 if (phy_data & RTL_PHY_CTRL_FD)
1957 ctrl |= E1000_CTRL_FD;
1958 else
1959 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960
Dirk Brandewie5377a412011-01-06 14:29:54 +00001961 if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 ctrl |= E1000_CTRL_SPD_100;
1963 else
1964 ctrl |= E1000_CTRL_SPD_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965
Dirk Brandewie5377a412011-01-06 14:29:54 +00001966 e1000_config_collision_dist(hw);
1967 break;
1968 default:
1969 /* Set up duplex in the Device Control and Transmit Control
1970 * registers depending on negotiated values.
1971 */
1972 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001973 &phy_data);
Dirk Brandewie5377a412011-01-06 14:29:54 +00001974 if (ret_val)
1975 return ret_val;
1976
1977 if (phy_data & M88E1000_PSSR_DPLX)
1978 ctrl |= E1000_CTRL_FD;
1979 else
1980 ctrl &= ~E1000_CTRL_FD;
1981
1982 e1000_config_collision_dist(hw);
1983
1984 /* Set up speed in the Device Control register depending on
1985 * negotiated values.
1986 */
1987 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 ctrl |= E1000_CTRL_SPD_1000;
1989 else if ((phy_data & M88E1000_PSSR_SPEED) ==
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001990 M88E1000_PSSR_100MBS)
Dirk Brandewie5377a412011-01-06 14:29:54 +00001991 ctrl |= E1000_CTRL_SPD_100;
1992 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001993
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001994 /* Write the configured values back to the Device Control Reg. */
1995 ew32(CTRL, ctrl);
1996 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997}
1998
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 * Forces the MAC's flow control settings.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002009 */
Joe Perches64798842008-07-11 15:17:02 -07002010s32 e1000_force_mac_fc(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002012 u32 ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002014 /* Get the current configuration of the Device Control Register */
2015 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002017 /* Because we didn't get link via the internal auto-negotiation
2018 * mechanism (we either forced link or we got link via PHY
2019 * auto-neg), we have to manually enable/disable transmit an
2020 * receive flow control.
2021 *
2022 * The "Case" statement below enables/disable flow control
2023 * according to the "hw->fc" parameter.
2024 *
2025 * The possible values of the "fc" parameter are:
2026 * 0: Flow control is completely disabled
2027 * 1: Rx flow control is enabled (we can receive pause
2028 * frames but not send pause frames).
2029 * 2: Tx flow control is enabled (we can send pause frames
2030 * frames but we do not receive pause frames).
2031 * 3: Both Rx and TX flow control (symmetric) is enabled.
2032 * other: No other values should be possible at this point.
2033 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002035 switch (hw->fc) {
2036 case E1000_FC_NONE:
2037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 break;
2039 case E1000_FC_RX_PAUSE:
2040 ctrl &= (~E1000_CTRL_TFCE);
2041 ctrl |= E1000_CTRL_RFCE;
2042 break;
2043 case E1000_FC_TX_PAUSE:
2044 ctrl &= (~E1000_CTRL_RFCE);
2045 ctrl |= E1000_CTRL_TFCE;
2046 break;
2047 case E1000_FC_FULL:
2048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 break;
2050 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00002051 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002052 return -E1000_ERR_CONFIG;
2053 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002055 /* Disable TX Flow Control for 82542 (rev 2.0) */
2056 if (hw->mac_type == e1000_82542_rev2_0)
2057 ctrl &= (~E1000_CTRL_TFCE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002058
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002059 ew32(CTRL, ctrl);
2060 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061}
2062
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 * Configures flow control settings after link is established
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
Joe Perches64798842008-07-11 15:17:02 -07002074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002076 s32 ret_val;
2077 u16 mii_status_reg;
2078 u16 mii_nway_adv_reg;
2079 u16 mii_nway_lp_ability_reg;
2080 u16 speed;
2081 u16 duplex;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002083 /* Check for the case where we have fiber media and auto-neg failed
2084 * so we had to force link. In this case, we need to force the
2085 * configuration of the MAC to match the "fc" parameter.
2086 */
2087 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2088 || ((hw->media_type == e1000_media_type_internal_serdes)
2089 && (hw->autoneg_failed))
2090 || ((hw->media_type == e1000_media_type_copper)
2091 && (!hw->autoneg))) {
2092 ret_val = e1000_force_mac_fc(hw);
2093 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002094 e_dbg("Error forcing flow control settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002095 return ret_val;
2096 }
2097 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002099 /* Check for the case where we have copper media and auto-neg is
2100 * enabled. In this case, we need to check and see if Auto-Neg
2101 * has completed, and if so, how the PHY and link partner has
2102 * flow control configured.
2103 */
2104 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2105 /* Read the MII Status Register and check to see if AutoNeg
2106 * has completed. We read this twice because this reg has
2107 * some "sticky" (latched) bits.
2108 */
2109 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2110 if (ret_val)
2111 return ret_val;
2112 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2113 if (ret_val)
2114 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002116 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2117 /* The AutoNeg process has completed, so we now need to
2118 * read both the Auto Negotiation Advertisement Register
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002119 * (Address 4) and the Auto_Negotiation Base Page
2120 * Ability Register (Address 5) to determine how flow
2121 * control was negotiated.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002122 */
2123 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2124 &mii_nway_adv_reg);
2125 if (ret_val)
2126 return ret_val;
2127 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2128 &mii_nway_lp_ability_reg);
2129 if (ret_val)
2130 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002132 /* Two bits in the Auto Negotiation Advertisement
2133 * Register (Address 4) and two bits in the Auto
2134 * Negotiation Base Page Ability Register (Address 5)
2135 * determine flow control for both the PHY and the link
2136 * partner. The following table, taken out of the IEEE
2137 * 802.3ab/D6.0 dated March 25, 1999, describes these
2138 * PAUSE resolution bits and how flow control is
2139 * determined based upon these settings.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002140 * NOTE: DC = Don't Care
2141 *
2142 * LOCAL DEVICE | LINK PARTNER
2143 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002144 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002145 * 0 | 0 | DC | DC | E1000_FC_NONE
2146 * 0 | 1 | 0 | DC | E1000_FC_NONE
2147 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2148 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2149 * 1 | 0 | 0 | DC | E1000_FC_NONE
2150 * 1 | DC | 1 | DC | E1000_FC_FULL
2151 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2152 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2153 *
2154 */
2155 /* Are both PAUSE bits set to 1? If so, this implies
2156 * Symmetric Flow Control is enabled at both ends. The
2157 * ASM_DIR bits are irrelevant per the spec.
2158 *
2159 * For Symmetric Flow Control:
2160 *
2161 * LOCAL DEVICE | LINK PARTNER
2162 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002163 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002164 * 1 | DC | 1 | DC | E1000_FC_FULL
2165 *
2166 */
2167 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002169 /* Now we need to check if the user selected Rx
2170 * ONLY of pause frames. In this case, we had
2171 * to advertise FULL flow control because we
2172 * could not advertise Rx ONLY. Hence, we must
2173 * now check to see if we need to turn OFF the
2174 * TRANSMISSION of PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002175 */
2176 if (hw->original_fc == E1000_FC_FULL) {
2177 hw->fc = E1000_FC_FULL;
Emil Tantilov675ad472010-04-27 14:02:58 +00002178 e_dbg("Flow Control = FULL.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002179 } else {
2180 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002181 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002182 ("Flow Control = RX PAUSE frames only.\n");
2183 }
2184 }
2185 /* For receiving PAUSE frames ONLY.
2186 *
2187 * LOCAL DEVICE | LINK PARTNER
2188 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002189 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002190 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2191 *
2192 */
2193 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2194 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2195 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2196 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2197 {
2198 hw->fc = E1000_FC_TX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002199 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002200 ("Flow Control = TX PAUSE frames only.\n");
2201 }
2202 /* For transmitting PAUSE frames ONLY.
2203 *
2204 * LOCAL DEVICE | LINK PARTNER
2205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002206 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002207 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2208 *
2209 */
2210 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2214 {
2215 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002216 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002217 ("Flow Control = RX PAUSE frames only.\n");
2218 }
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002219 /* Per the IEEE spec, at this point flow control should
2220 * be disabled. However, we want to consider that we
2221 * could be connected to a legacy switch that doesn't
2222 * advertise desired flow control, but can be forced on
2223 * the link partner. So if we advertised no flow
2224 * control, that is what we will resolve to. If we
2225 * advertised some kind of receive capability (Rx Pause
2226 * Only or Full Flow Control) and the link partner
2227 * advertised none, we will configure ourselves to
2228 * enable Rx Flow Control only. We can do this safely
2229 * for two reasons: If the link partner really
2230 * didn't want flow control enabled, and we enable Rx,
2231 * no harm done since we won't be receiving any PAUSE
2232 * frames anyway. If the intent on the link partner was
2233 * to have flow control enabled, then by us enabling Rx
2234 * only, we can at least receive pause frames and
2235 * process them. This is a good idea because in most
2236 * cases, since we are predominantly a server NIC, more
2237 * times than not we will be asked to delay transmission
2238 * of packets than asking our link partner to pause
2239 * transmission of frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002240 */
2241 else if ((hw->original_fc == E1000_FC_NONE ||
2242 hw->original_fc == E1000_FC_TX_PAUSE) ||
2243 hw->fc_strict_ieee) {
2244 hw->fc = E1000_FC_NONE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002245 e_dbg("Flow Control = NONE.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002246 } else {
2247 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002248 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002249 ("Flow Control = RX PAUSE frames only.\n");
2250 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002252 /* Now we need to do one last check... If we auto-
2253 * negotiated to HALF DUPLEX, flow control should not be
2254 * enabled per IEEE 802.3 spec.
2255 */
2256 ret_val =
2257 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2258 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002259 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002260 ("Error getting link speed and duplex\n");
2261 return ret_val;
2262 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002264 if (duplex == HALF_DUPLEX)
2265 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002266
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002267 /* Now we call a subroutine to actually force the MAC
2268 * controller to use the correct flow control settings.
2269 */
2270 ret_val = e1000_force_mac_fc(hw);
2271 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002272 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002273 ("Error forcing flow control settings\n");
2274 return ret_val;
2275 }
2276 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002277 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002278 ("Copper PHY and Auto Neg has not completed.\n");
2279 }
2280 }
2281 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282}
2283
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002284/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002285 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2286 * @hw: pointer to the HW structure
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002287 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002288 * Checks for link up on the hardware. If link is not up and we have
2289 * a signal, then we need to force link up.
2290 */
Jesse Brandeburg11b7f7b2009-09-25 12:20:33 +00002291static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002292{
2293 u32 rxcw;
2294 u32 ctrl;
2295 u32 status;
2296 s32 ret_val = E1000_SUCCESS;
2297
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002298 ctrl = er32(CTRL);
2299 status = er32(STATUS);
2300 rxcw = er32(RXCW);
2301
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002302 /* If we don't have link (auto-negotiation failed or link partner
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002303 * cannot auto-negotiate), and our link partner is not trying to
2304 * auto-negotiate with us (we are receiving idles or data),
2305 * we need to force link up. We also need to give auto-negotiation
2306 * time to complete.
2307 */
2308 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2309 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2310 if (hw->autoneg_failed == 0) {
2311 hw->autoneg_failed = 1;
2312 goto out;
2313 }
Emil Tantilov675ad472010-04-27 14:02:58 +00002314 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002315
2316 /* Disable auto-negotiation in the TXCW register */
2317 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2318
2319 /* Force link-up and also force full-duplex. */
2320 ctrl = er32(CTRL);
2321 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2322 ew32(CTRL, ctrl);
2323
2324 /* Configure Flow Control after forcing link up. */
2325 ret_val = e1000_config_fc_after_link_up(hw);
2326 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002327 e_dbg("Error configuring flow control\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002328 goto out;
2329 }
2330 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002331 /* If we are forcing link and we are receiving /C/ ordered
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002332 * sets, re-enable auto-negotiation in the TXCW register
2333 * and disable forced link in the Device Control register
2334 * in an attempt to auto-negotiate with our link partner.
2335 */
Emil Tantilov675ad472010-04-27 14:02:58 +00002336 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002337 ew32(TXCW, hw->txcw);
2338 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2339
2340 hw->serdes_has_link = true;
2341 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002342 /* If we force link for non-auto-negotiation switch, check
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002343 * link status based on MAC synchronization for internal
2344 * serdes media type.
2345 */
2346 /* SYNCH bit and IV bit are sticky. */
2347 udelay(10);
2348 rxcw = er32(RXCW);
2349 if (rxcw & E1000_RXCW_SYNCH) {
2350 if (!(rxcw & E1000_RXCW_IV)) {
2351 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002352 e_dbg("SERDES: Link up - forced.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002353 }
2354 } else {
2355 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002356 e_dbg("SERDES: Link down - force failed.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002357 }
2358 }
2359
2360 if (E1000_TXCW_ANE & er32(TXCW)) {
2361 status = er32(STATUS);
2362 if (status & E1000_STATUS_LU) {
2363 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2364 udelay(10);
2365 rxcw = er32(RXCW);
2366 if (rxcw & E1000_RXCW_SYNCH) {
2367 if (!(rxcw & E1000_RXCW_IV)) {
2368 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002369 e_dbg("SERDES: Link up - autoneg "
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002370 "completed successfully.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002371 } else {
2372 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002373 e_dbg("SERDES: Link down - invalid"
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002374 "codewords detected in autoneg.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002375 }
2376 } else {
2377 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002378 e_dbg("SERDES: Link down - no sync.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002379 }
2380 } else {
2381 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002382 e_dbg("SERDES: Link down - autoneg failed\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002383 }
2384 }
2385
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002386 out:
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002387 return ret_val;
2388}
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002389
2390/**
2391 * e1000_check_for_link
2392 * @hw: Struct containing variables accessed by shared code
2393 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394 * Checks to see if the link status of the hardware has changed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395 * Called by any function that needs to check the link status of the adapter.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002396 */
Joe Perches64798842008-07-11 15:17:02 -07002397s32 e1000_check_for_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002399 u32 rxcw = 0;
2400 u32 ctrl;
2401 u32 status;
2402 u32 rctl;
2403 u32 icr;
2404 u32 signal = 0;
2405 s32 ret_val;
2406 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002407
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002408 ctrl = er32(CTRL);
2409 status = er32(STATUS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002411 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2412 * set when the optics detect a signal. On older adapters, it will be
2413 * cleared when there is a signal. This applies to fiber media only.
2414 */
2415 if ((hw->media_type == e1000_media_type_fiber) ||
2416 (hw->media_type == e1000_media_type_internal_serdes)) {
2417 rxcw = er32(RXCW);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002419 if (hw->media_type == e1000_media_type_fiber) {
2420 signal =
2421 (hw->mac_type >
2422 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2423 if (status & E1000_STATUS_LU)
2424 hw->get_link_status = false;
2425 }
2426 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002428 /* If we have a copper PHY then we only want to go out to the PHY
2429 * registers to see if Auto-Neg has completed and/or if our link
2430 * status has changed. The get_link_status flag will be set if we
2431 * receive a Link Status Change interrupt or we have Rx Sequence
2432 * Errors.
2433 */
2434 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2435 /* First we want to see if the MII Status Register reports
2436 * link. If so, then we want to get the current speed/duplex
2437 * of the PHY.
2438 * Read the register twice since the link bit is sticky.
2439 */
2440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2441 if (ret_val)
2442 return ret_val;
2443 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2444 if (ret_val)
2445 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002447 if (phy_data & MII_SR_LINK_STATUS) {
2448 hw->get_link_status = false;
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002449 /* Check if there was DownShift, must be checked
2450 * immediately after link-up
2451 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002452 e1000_check_downshift(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002453
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002454 /* If we are on 82544 or 82543 silicon and speed/duplex
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002455 * are forced to 10H or 10F, then we will implement the
2456 * polarity reversal workaround. We disable interrupts
2457 * first, and upon returning, place the devices
2458 * interrupt state to its previous value except for the
2459 * link status change interrupt which will
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002460 * happen due to the execution of this workaround.
2461 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002463 if ((hw->mac_type == e1000_82544
2464 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2465 && (hw->forced_speed_duplex == e1000_10_full
2466 || hw->forced_speed_duplex == e1000_10_half)) {
2467 ew32(IMC, 0xffffffff);
2468 ret_val =
2469 e1000_polarity_reversal_workaround(hw);
2470 icr = er32(ICR);
2471 ew32(ICS, (icr & ~E1000_ICS_LSC));
2472 ew32(IMS, IMS_ENABLE_MASK);
2473 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002475 } else {
2476 /* No link detected */
2477 e1000_config_dsp_after_link_change(hw, false);
2478 return 0;
2479 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002481 /* If we are forcing speed/duplex, then we simply return since
2482 * we have already determined whether we have link or not.
2483 */
2484 if (!hw->autoneg)
2485 return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002487 /* optimize the dsp settings for the igp phy */
2488 e1000_config_dsp_after_link_change(hw, true);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002489
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002490 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2491 * have Si on board that is 82544 or newer, Auto
2492 * Speed Detection takes care of MAC speed/duplex
2493 * configuration. So we only need to configure Collision
2494 * Distance in the MAC. Otherwise, we need to force
2495 * speed/duplex on the MAC to the current PHY speed/duplex
2496 * settings.
2497 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002498 if ((hw->mac_type >= e1000_82544) &&
2499 (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002500 e1000_config_collision_dist(hw);
2501 else {
2502 ret_val = e1000_config_mac_to_phy(hw);
2503 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002504 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002505 ("Error configuring MAC to PHY settings\n");
2506 return ret_val;
2507 }
2508 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002510 /* Configure Flow Control now that Auto-Neg has completed.
2511 * First, we need to restore the desired flow control settings
2512 * because we may have had to re-autoneg with a different link
2513 * partner.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002514 */
2515 ret_val = e1000_config_fc_after_link_up(hw);
2516 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002517 e_dbg("Error configuring flow control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002518 return ret_val;
2519 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002520
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002521 /* At this point we know that we are on copper and we have
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002522 * auto-negotiated link. These are conditions for checking the
2523 * link partner capability register. We use the link speed to
2524 * determine if TBI compatibility needs to be turned on or off.
2525 * If the link is not at gigabit speed, then TBI compatibility
2526 * is not needed. If we are at gigabit speed, we turn on TBI
2527 * compatibility.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002528 */
2529 if (hw->tbi_compatibility_en) {
2530 u16 speed, duplex;
2531 ret_val =
2532 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2533 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002534 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002535 ("Error getting link speed and duplex\n");
2536 return ret_val;
2537 }
2538 if (speed != SPEED_1000) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002539 /* If link speed is not set to gigabit speed, we
2540 * do not need to enable TBI compatibility.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002541 */
2542 if (hw->tbi_compatibility_on) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002543 /* If we previously were in the mode,
2544 * turn it off.
2545 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002546 rctl = er32(RCTL);
2547 rctl &= ~E1000_RCTL_SBP;
2548 ew32(RCTL, rctl);
2549 hw->tbi_compatibility_on = false;
2550 }
2551 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002552 /* If TBI compatibility is was previously off,
2553 * turn it on. For compatibility with a TBI link
2554 * partner, we will store bad packets. Some
2555 * frames have an additional byte on the end and
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002556 * will look like CRC errors to to the hardware.
2557 */
2558 if (!hw->tbi_compatibility_on) {
2559 hw->tbi_compatibility_on = true;
2560 rctl = er32(RCTL);
2561 rctl |= E1000_RCTL_SBP;
2562 ew32(RCTL, rctl);
2563 }
2564 }
2565 }
2566 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002568 if ((hw->media_type == e1000_media_type_fiber) ||
2569 (hw->media_type == e1000_media_type_internal_serdes))
2570 e1000_check_for_serdes_link_generic(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002572 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573}
2574
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002575/**
2576 * e1000_get_speed_and_duplex
2577 * @hw: Struct containing variables accessed by shared code
2578 * @speed: Speed of the connection
2579 * @duplex: Duplex setting of the connection
Ben Hutchings49ce9c22012-07-10 10:56:00 +00002580 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581 * Detects the current speed and duplex settings of the hardware.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002582 */
Joe Perches64798842008-07-11 15:17:02 -07002583s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002585 u32 status;
2586 s32 ret_val;
2587 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002589 if (hw->mac_type >= e1000_82543) {
2590 status = er32(STATUS);
2591 if (status & E1000_STATUS_SPEED_1000) {
2592 *speed = SPEED_1000;
Emil Tantilov675ad472010-04-27 14:02:58 +00002593 e_dbg("1000 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002594 } else if (status & E1000_STATUS_SPEED_100) {
2595 *speed = SPEED_100;
Emil Tantilov675ad472010-04-27 14:02:58 +00002596 e_dbg("100 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002597 } else {
2598 *speed = SPEED_10;
Emil Tantilov675ad472010-04-27 14:02:58 +00002599 e_dbg("10 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002600 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002602 if (status & E1000_STATUS_FD) {
2603 *duplex = FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002604 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002605 } else {
2606 *duplex = HALF_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002607 e_dbg(" Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002608 }
2609 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002610 e_dbg("1000 Mbs, Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002611 *speed = SPEED_1000;
2612 *duplex = FULL_DUPLEX;
2613 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002615 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2616 * even if it is operating at half duplex. Here we set the duplex
2617 * settings to match the duplex in the link partner's capabilities.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002618 */
2619 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2620 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2621 if (ret_val)
2622 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002624 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2625 *duplex = HALF_DUPLEX;
2626 else {
2627 ret_val =
2628 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2629 if (ret_val)
2630 return ret_val;
2631 if ((*speed == SPEED_100
2632 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2633 || (*speed == SPEED_10
2634 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2635 *duplex = HALF_DUPLEX;
2636 }
2637 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002639 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640}
2641
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002642/**
2643 * e1000_wait_autoneg
2644 * @hw: Struct containing variables accessed by shared code
2645 *
2646 * Blocks until autoneg completes or times out (~4.5 seconds)
2647 */
Joe Perches64798842008-07-11 15:17:02 -07002648static s32 e1000_wait_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002650 s32 ret_val;
2651 u16 i;
2652 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653
Emil Tantilov675ad472010-04-27 14:02:58 +00002654 e_dbg("Waiting for Auto-Neg to complete.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002656 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2657 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2658 /* Read the MII Status Register and wait for Auto-Neg
2659 * Complete bit to be set.
2660 */
2661 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2662 if (ret_val)
2663 return ret_val;
2664 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2665 if (ret_val)
2666 return ret_val;
2667 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2668 return E1000_SUCCESS;
2669 }
2670 msleep(100);
2671 }
2672 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673}
2674
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002675/**
2676 * e1000_raise_mdi_clk - Raises the Management Data Clock
2677 * @hw: Struct containing variables accessed by shared code
2678 * @ctrl: Device control register's current value
2679 */
Joe Perches64798842008-07-11 15:17:02 -07002680static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002682 /* Raise the clock input to the Management Data Clock (by setting the
2683 * MDC bit), and then delay 10 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002684 */
2685 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2686 E1000_WRITE_FLUSH();
2687 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688}
2689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002690/**
2691 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2692 * @hw: Struct containing variables accessed by shared code
2693 * @ctrl: Device control register's current value
2694 */
Joe Perches64798842008-07-11 15:17:02 -07002695static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002697 /* Lower the clock input to the Management Data Clock (by clearing the
2698 * MDC bit), and then delay 10 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002699 */
2700 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2701 E1000_WRITE_FLUSH();
2702 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703}
2704
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002705/**
2706 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2707 * @hw: Struct containing variables accessed by shared code
2708 * @data: Data to send out to the PHY
2709 * @count: Number of bits to shift out
2710 *
2711 * Bits are shifted out in MSB to LSB order.
2712 */
Joe Perches64798842008-07-11 15:17:02 -07002713static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002715 u32 ctrl;
2716 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002718 /* We need to shift "count" number of bits out to the PHY. So, the value
2719 * in the "data" parameter will be shifted out to the PHY one bit at a
2720 * time. In order to do this, "data" must be broken down into bits.
2721 */
2722 mask = 0x01;
2723 mask <<= (count - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002725 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002727 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2728 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002730 while (mask) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002731 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2732 * "1" and then raising and lowering the Management Data Clock.
2733 * A "0" is shifted out to the PHY by setting the MDIO bit to
2734 * "0" and then raising and lowering the clock.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002735 */
2736 if (data & mask)
2737 ctrl |= E1000_CTRL_MDIO;
2738 else
2739 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002741 ew32(CTRL, ctrl);
2742 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002744 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002746 e1000_raise_mdi_clk(hw, &ctrl);
2747 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002749 mask = mask >> 1;
2750 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002751}
2752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002753/**
2754 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2755 * @hw: Struct containing variables accessed by shared code
2756 *
2757 * Bits are shifted in in MSB to LSB order.
2758 */
Joe Perches64798842008-07-11 15:17:02 -07002759static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002761 u32 ctrl;
2762 u16 data = 0;
2763 u8 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002765 /* In order to read a register from the PHY, we need to shift in a total
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002766 * of 18 bits from the PHY. The first two bit (turnaround) times are
2767 * used to avoid contention on the MDIO pin when a read operation is
2768 * performed. These two bits are ignored by us and thrown away. Bits are
2769 * "shifted in" by raising the input to the Management Data Clock
2770 * (setting the MDC bit), and then reading the value of the MDIO bit.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002771 */
2772 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002774 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2775 * input.
2776 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002777 ctrl &= ~E1000_CTRL_MDIO_DIR;
2778 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002780 ew32(CTRL, ctrl);
2781 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002783 /* Raise and Lower the clock before reading in the data. This accounts
2784 * for the turnaround bits. The first clock occurred when we clocked out
2785 * the last bit of the Register Address.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002786 */
2787 e1000_raise_mdi_clk(hw, &ctrl);
2788 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002790 for (data = 0, i = 0; i < 16; i++) {
2791 data = data << 1;
2792 e1000_raise_mdi_clk(hw, &ctrl);
2793 ctrl = er32(CTRL);
2794 /* Check to see if we shifted in a "1". */
2795 if (ctrl & E1000_CTRL_MDIO)
2796 data |= 1;
2797 e1000_lower_mdi_clk(hw, &ctrl);
2798 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002800 e1000_raise_mdi_clk(hw, &ctrl);
2801 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002803 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804}
2805
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002806
2807/**
2808 * e1000_read_phy_reg - read a phy register
2809 * @hw: Struct containing variables accessed by shared code
2810 * @reg_addr: address of the PHY register to read
2811 *
2812 * Reads the value from a PHY register, if the value is on a specific non zero
2813 * page, sets the page first.
2814 */
Joe Perches64798842008-07-11 15:17:02 -07002815s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002816{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002817 u32 ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002818 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819
Maxime Bizonac565582012-10-20 14:53:40 +00002820 spin_lock_irqsave(&e1000_phy_lock, flags);
2821
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002822 if ((hw->phy_type == e1000_phy_igp) &&
2823 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2824 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2825 (u16) reg_addr);
Maxime Bizonac565582012-10-20 14:53:40 +00002826 if (ret_val) {
2827 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002828 return ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002829 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002830 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002832 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833 phy_data);
Maxime Bizonac565582012-10-20 14:53:40 +00002834 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002835
2836 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002837}
2838
Joe Perches64798842008-07-11 15:17:02 -07002839static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2840 u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002842 u32 i;
2843 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002844 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002846 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002847 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002848 return -E1000_ERR_PARAM;
2849 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002851 if (hw->mac_type > e1000_82543) {
2852 /* Set up Op-code, Phy Address, and register address in the MDI
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002853 * Control register. The MAC will take care of interfacing with
2854 * the PHY to retrieve the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002855 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002856 if (hw->mac_type == e1000_ce4100) {
2857 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2858 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2859 (INTEL_CE_GBE_MDIC_OP_READ) |
2860 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861
Dirk Brandewie5377a412011-01-06 14:29:54 +00002862 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863
Dirk Brandewie5377a412011-01-06 14:29:54 +00002864 /* Poll the ready bit to see if the MDI read
2865 * completed
2866 */
2867 for (i = 0; i < 64; i++) {
2868 udelay(50);
2869 mdic = readl(E1000_MDIO_CMD);
2870 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2871 break;
2872 }
2873
2874 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2875 e_dbg("MDI Read did not complete\n");
2876 return -E1000_ERR_PHY;
2877 }
2878
2879 mdic = readl(E1000_MDIO_STS);
2880 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2881 e_dbg("MDI Read Error\n");
2882 return -E1000_ERR_PHY;
2883 }
2884 *phy_data = (u16) mdic;
2885 } else {
2886 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2887 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2888 (E1000_MDIC_OP_READ));
2889
2890 ew32(MDIC, mdic);
2891
2892 /* Poll the ready bit to see if the MDI read
2893 * completed
2894 */
2895 for (i = 0; i < 64; i++) {
2896 udelay(50);
2897 mdic = er32(MDIC);
2898 if (mdic & E1000_MDIC_READY)
2899 break;
2900 }
2901 if (!(mdic & E1000_MDIC_READY)) {
2902 e_dbg("MDI Read did not complete\n");
2903 return -E1000_ERR_PHY;
2904 }
2905 if (mdic & E1000_MDIC_ERROR) {
2906 e_dbg("MDI Error\n");
2907 return -E1000_ERR_PHY;
2908 }
2909 *phy_data = (u16) mdic;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002910 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002911 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002912 /* We must first send a preamble through the MDIO pin to signal
2913 * the beginning of an MII instruction. This is done by sending
2914 * 32 consecutive "1" bits.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002915 */
2916 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002918 /* Now combine the next few fields that are required for a read
2919 * operation. We use this method instead of calling the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002920 * e1000_shift_out_mdi_bits routine five different times. The
2921 * format of a MII read instruction consists of a shift out of
2922 * 14 bits and is defined as follows:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002923 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002924 * followed by a shift in of 18 bits. This first two bits
2925 * shifted in are TurnAround bits used to avoid contention on
2926 * the MDIO pin when a READ operation is performed. These two
2927 * bits are thrown away followed by a shift in of 16 bits which
2928 * contains the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002929 */
2930 mdic = ((reg_addr) | (phy_addr << 5) |
2931 (PHY_OP_READ << 10) | (PHY_SOF << 12));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002933 e1000_shift_out_mdi_bits(hw, mdic, 14);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002935 /* Now that we've shifted out the read command to the MII, we
2936 * need to "shift in" the 16-bit value (18 total bits) of the
2937 * requested PHY register address.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002938 */
2939 *phy_data = e1000_shift_in_mdi_bits(hw);
2940 }
2941 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942}
2943
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002944/**
2945 * e1000_write_phy_reg - write a phy register
2946 *
2947 * @hw: Struct containing variables accessed by shared code
2948 * @reg_addr: address of the PHY register to write
2949 * @data: data to write to the PHY
Ben Hutchings49ce9c22012-07-10 10:56:00 +00002950 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002951 * Writes a value to a PHY register
2952 */
Joe Perches64798842008-07-11 15:17:02 -07002953s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002954{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002955 u32 ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002956 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957
Maxime Bizonac565582012-10-20 14:53:40 +00002958 spin_lock_irqsave(&e1000_phy_lock, flags);
2959
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002960 if ((hw->phy_type == e1000_phy_igp) &&
2961 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2962 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2963 (u16) reg_addr);
Maxime Bizonac565582012-10-20 14:53:40 +00002964 if (ret_val) {
2965 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002966 return ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002967 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002968 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002969
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002970 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2971 phy_data);
Maxime Bizonac565582012-10-20 14:53:40 +00002972 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002973
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002974 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002975}
2976
Joe Perches64798842008-07-11 15:17:02 -07002977static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2978 u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002980 u32 i;
2981 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002982 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002983
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002984 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002985 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002986 return -E1000_ERR_PARAM;
2987 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002988
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002989 if (hw->mac_type > e1000_82543) {
Dirk Brandewie5377a412011-01-06 14:29:54 +00002990 /* Set up Op-code, Phy Address, register address, and data
2991 * intended for the PHY register in the MDI Control register.
2992 * The MAC will take care of interfacing with the PHY to send
2993 * the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002994 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002995 if (hw->mac_type == e1000_ce4100) {
2996 mdic = (((u32) phy_data) |
2997 (reg_addr << E1000_MDIC_REG_SHIFT) |
2998 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2999 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3000 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001
Dirk Brandewie5377a412011-01-06 14:29:54 +00003002 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003
Dirk Brandewie5377a412011-01-06 14:29:54 +00003004 /* Poll the ready bit to see if the MDI read
3005 * completed
3006 */
3007 for (i = 0; i < 640; i++) {
3008 udelay(5);
3009 mdic = readl(E1000_MDIO_CMD);
3010 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3011 break;
3012 }
3013 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3014 e_dbg("MDI Write did not complete\n");
3015 return -E1000_ERR_PHY;
3016 }
3017 } else {
3018 mdic = (((u32) phy_data) |
3019 (reg_addr << E1000_MDIC_REG_SHIFT) |
3020 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3021 (E1000_MDIC_OP_WRITE));
3022
3023 ew32(MDIC, mdic);
3024
3025 /* Poll the ready bit to see if the MDI read
3026 * completed
3027 */
3028 for (i = 0; i < 641; i++) {
3029 udelay(5);
3030 mdic = er32(MDIC);
3031 if (mdic & E1000_MDIC_READY)
3032 break;
3033 }
3034 if (!(mdic & E1000_MDIC_READY)) {
3035 e_dbg("MDI Write did not complete\n");
3036 return -E1000_ERR_PHY;
3037 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003038 }
3039 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003040 /* We'll need to use the SW defined pins to shift the write
3041 * command out to the PHY. We first send a preamble to the PHY
3042 * to signal the beginning of the MII instruction. This is done
3043 * by sending 32 consecutive "1" bits.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003044 */
3045 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003046
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003047 /* Now combine the remaining required fields that will indicate
3048 * a write operation. We use this method instead of calling the
3049 * e1000_shift_out_mdi_bits routine for each field in the
3050 * command. The format of a MII write instruction is as follows:
3051 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003052 */
3053 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3054 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3055 mdic <<= 16;
3056 mdic |= (u32) phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003058 e1000_shift_out_mdi_bits(hw, mdic, 32);
3059 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003061 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062}
3063
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003064/**
3065 * e1000_phy_hw_reset - reset the phy, hardware style
3066 * @hw: Struct containing variables accessed by shared code
3067 *
3068 * Returns the PHY to the power-on reset state
3069 */
Joe Perches64798842008-07-11 15:17:02 -07003070s32 e1000_phy_hw_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003071{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003072 u32 ctrl, ctrl_ext;
3073 u32 led_ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074
Emil Tantilov675ad472010-04-27 14:02:58 +00003075 e_dbg("Resetting Phy...\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003077 if (hw->mac_type > e1000_82543) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003078 /* Read the device control register and assert the
3079 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003080 * For e1000 hardware, we delay for 10ms between the assert
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003081 * and de-assert.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003082 */
3083 ctrl = er32(CTRL);
3084 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3085 E1000_WRITE_FLUSH();
Auke Kok76c224b2006-05-23 13:36:06 -07003086
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003087 msleep(10);
Auke Kok76c224b2006-05-23 13:36:06 -07003088
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003089 ew32(CTRL, ctrl);
3090 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003091
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003092 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003093 /* Read the Extended Device Control Register, assert the
3094 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3095 * out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003096 */
3097 ctrl_ext = er32(CTRL_EXT);
3098 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3099 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3100 ew32(CTRL_EXT, ctrl_ext);
3101 E1000_WRITE_FLUSH();
3102 msleep(10);
3103 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3104 ew32(CTRL_EXT, ctrl_ext);
3105 E1000_WRITE_FLUSH();
3106 }
3107 udelay(150);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003108
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003109 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3110 /* Configure activity LED after PHY reset */
3111 led_ctrl = er32(LEDCTL);
3112 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3113 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3114 ew32(LEDCTL, led_ctrl);
3115 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003116
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003117 /* Wait for FW to finish PHY configuration. */
Greg Dietschec4dc4d12011-06-16 07:09:30 +00003118 return e1000_get_phy_cfg_done(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003119}
3120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003121/**
3122 * e1000_phy_reset - reset the phy to commit settings
3123 * @hw: Struct containing variables accessed by shared code
3124 *
3125 * Resets the PHY
3126 * Sets bit 15 of the MII Control register
3127 */
Joe Perches64798842008-07-11 15:17:02 -07003128s32 e1000_phy_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003129{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003130 s32 ret_val;
3131 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003132
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003133 switch (hw->phy_type) {
3134 case e1000_phy_igp:
3135 ret_val = e1000_phy_hw_reset(hw);
3136 if (ret_val)
3137 return ret_val;
3138 break;
3139 default:
3140 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3141 if (ret_val)
3142 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003143
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003144 phy_data |= MII_CR_RESET;
3145 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3146 if (ret_val)
3147 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003148
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003149 udelay(1);
3150 break;
3151 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003152
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003153 if (hw->phy_type == e1000_phy_igp)
3154 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003156 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003157}
3158
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003159/**
3160 * e1000_detect_gig_phy - check the phy type
3161 * @hw: Struct containing variables accessed by shared code
3162 *
3163 * Probes the expected PHY address for known PHY IDs
3164 */
Joe Perches64798842008-07-11 15:17:02 -07003165static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003167 s32 phy_init_status, ret_val;
3168 u16 phy_id_high, phy_id_low;
3169 bool match = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003170
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003171 if (hw->phy_id != 0)
3172 return E1000_SUCCESS;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003173
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003174 /* Read the PHY ID Registers to identify which PHY is onboard. */
3175 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3176 if (ret_val)
3177 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003179 hw->phy_id = (u32) (phy_id_high << 16);
3180 udelay(20);
3181 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3182 if (ret_val)
3183 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003184
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003185 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3186 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003187
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003188 switch (hw->mac_type) {
3189 case e1000_82543:
3190 if (hw->phy_id == M88E1000_E_PHY_ID)
3191 match = true;
3192 break;
3193 case e1000_82544:
3194 if (hw->phy_id == M88E1000_I_PHY_ID)
3195 match = true;
3196 break;
3197 case e1000_82540:
3198 case e1000_82545:
3199 case e1000_82545_rev_3:
3200 case e1000_82546:
3201 case e1000_82546_rev_3:
3202 if (hw->phy_id == M88E1011_I_PHY_ID)
3203 match = true;
3204 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +00003205 case e1000_ce4100:
3206 if ((hw->phy_id == RTL8211B_PHY_ID) ||
Florian Fainellicf8e09b2011-01-24 14:48:03 +00003207 (hw->phy_id == RTL8201N_PHY_ID) ||
3208 (hw->phy_id == M88E1118_E_PHY_ID))
Dirk Brandewie5377a412011-01-06 14:29:54 +00003209 match = true;
3210 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003211 case e1000_82541:
3212 case e1000_82541_rev_2:
3213 case e1000_82547:
3214 case e1000_82547_rev_2:
3215 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3216 match = true;
3217 break;
3218 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00003219 e_dbg("Invalid MAC type %d\n", hw->mac_type);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003220 return -E1000_ERR_CONFIG;
3221 }
3222 phy_init_status = e1000_set_phy_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003223
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003224 if ((match) && (phy_init_status == E1000_SUCCESS)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003225 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003226 return E1000_SUCCESS;
3227 }
Emil Tantilov675ad472010-04-27 14:02:58 +00003228 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003229 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003230}
3231
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003232/**
3233 * e1000_phy_reset_dsp - reset DSP
3234 * @hw: Struct containing variables accessed by shared code
3235 *
3236 * Resets the PHY's DSP
3237 */
Joe Perches64798842008-07-11 15:17:02 -07003238static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003240 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003242 do {
3243 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3244 if (ret_val)
3245 break;
3246 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3247 if (ret_val)
3248 break;
3249 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3250 if (ret_val)
3251 break;
3252 ret_val = E1000_SUCCESS;
3253 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003254
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003255 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003256}
3257
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003258/**
3259 * e1000_phy_igp_get_info - get igp specific registers
3260 * @hw: Struct containing variables accessed by shared code
3261 * @phy_info: PHY information structure
3262 *
3263 * Get PHY information from various PHY registers for igp PHY only.
3264 */
Joe Perches64798842008-07-11 15:17:02 -07003265static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3266 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003267{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003268 s32 ret_val;
3269 u16 phy_data, min_length, max_length, average;
3270 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003271
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003272 /* The downshift status is checked only once, after link is established,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003273 * and it stored in the hw->speed_downgraded parameter.
3274 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003275 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003276
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003277 /* IGP01E1000 does not need to support it. */
3278 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003279
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003280 /* IGP01E1000 always correct polarity reversal */
3281 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003282
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003283 /* Check polarity status */
3284 ret_val = e1000_check_polarity(hw, &polarity);
3285 if (ret_val)
3286 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003287
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003288 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003289
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003290 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3291 if (ret_val)
3292 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003293
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003294 phy_info->mdix_mode =
3295 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3296 IGP01E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003297
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003298 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3299 IGP01E1000_PSSR_SPEED_1000MBPS) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003300 /* Local/Remote Receiver Information are only valid @ 1000
3301 * Mbps
3302 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003303 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3304 if (ret_val)
3305 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003306
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003307 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3308 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3309 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3310 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3311 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3312 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003314 /* Get cable length */
3315 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3316 if (ret_val)
3317 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003318
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003319 /* Translate to old method */
3320 average = (max_length + min_length) / 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003321
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003322 if (average <= e1000_igp_cable_length_50)
3323 phy_info->cable_length = e1000_cable_length_50;
3324 else if (average <= e1000_igp_cable_length_80)
3325 phy_info->cable_length = e1000_cable_length_50_80;
3326 else if (average <= e1000_igp_cable_length_110)
3327 phy_info->cable_length = e1000_cable_length_80_110;
3328 else if (average <= e1000_igp_cable_length_140)
3329 phy_info->cable_length = e1000_cable_length_110_140;
3330 else
3331 phy_info->cable_length = e1000_cable_length_140;
3332 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003334 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003335}
3336
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003337/**
3338 * e1000_phy_m88_get_info - get m88 specific registers
3339 * @hw: Struct containing variables accessed by shared code
3340 * @phy_info: PHY information structure
3341 *
3342 * Get PHY information from various PHY registers for m88 PHY only.
3343 */
Joe Perches64798842008-07-11 15:17:02 -07003344static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3345 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003346{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003347 s32 ret_val;
3348 u16 phy_data;
3349 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003350
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003351 /* The downshift status is checked only once, after link is established,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003352 * and it stored in the hw->speed_downgraded parameter.
3353 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003354 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003355
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003356 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3357 if (ret_val)
3358 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003360 phy_info->extended_10bt_distance =
3361 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3362 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3363 e1000_10bt_ext_dist_enable_lower :
3364 e1000_10bt_ext_dist_enable_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07003365
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003366 phy_info->polarity_correction =
3367 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3368 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3369 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003370
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003371 /* Check polarity status */
3372 ret_val = e1000_check_polarity(hw, &polarity);
3373 if (ret_val)
3374 return ret_val;
3375 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003376
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003377 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3378 if (ret_val)
3379 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003381 phy_info->mdix_mode =
3382 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3383 M88E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003384
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003385 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3386 /* Cable Length Estimation and Local/Remote Receiver Information
3387 * are only valid at 1000 Mbps.
3388 */
3389 phy_info->cable_length =
3390 (e1000_cable_length) ((phy_data &
3391 M88E1000_PSSR_CABLE_LENGTH) >>
3392 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003394 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3395 if (ret_val)
3396 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003397
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003398 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3399 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3400 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3401 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3402 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3403 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003405 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003406
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003407 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003408}
3409
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003410/**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
Joe Perches64798842008-07-11 15:17:02 -07003417s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003418{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003419 s32 ret_val;
3420 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003421
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003422 phy_info->cable_length = e1000_cable_length_undefined;
3423 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425 phy_info->downshift = e1000_downshift_undefined;
3426 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003431 if (hw->media_type != e1000_media_type_copper) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003432 e_dbg("PHY info is only valid for copper media\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003433 return -E1000_ERR_CONFIG;
3434 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003436 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437 if (ret_val)
3438 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441 if (ret_val)
3442 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003444 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003445 e_dbg("PHY info is only valid if link is up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003446 return -E1000_ERR_CONFIG;
3447 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003448
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003449 if (hw->phy_type == e1000_phy_igp)
3450 return e1000_phy_igp_get_info(hw, phy_info);
Dirk Brandewie5377a412011-01-06 14:29:54 +00003451 else if ((hw->phy_type == e1000_phy_8211) ||
3452 (hw->phy_type == e1000_phy_8201))
3453 return E1000_SUCCESS;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003454 else
3455 return e1000_phy_m88_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003456}
3457
Joe Perches64798842008-07-11 15:17:02 -07003458s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003459{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003460 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003461 e_dbg("Invalid MDI setting detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003462 hw->mdix = 1;
3463 return -E1000_ERR_CONFIG;
3464 }
3465 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003466}
3467
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003468/**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003472 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jesse Brandeburg1532ece2009-09-25 12:16:14 +00003473 * is configured.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003474 */
Joe Perches64798842008-07-11 15:17:02 -07003475s32 e1000_init_eeprom_params(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003477 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478 u32 eecd = er32(EECD);
3479 s32 ret_val = E1000_SUCCESS;
3480 u16 eeprom_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003482 switch (hw->mac_type) {
3483 case e1000_82542_rev2_0:
3484 case e1000_82542_rev2_1:
3485 case e1000_82543:
3486 case e1000_82544:
3487 eeprom->type = e1000_eeprom_microwire;
3488 eeprom->word_size = 64;
3489 eeprom->opcode_bits = 3;
3490 eeprom->address_bits = 6;
3491 eeprom->delay_usec = 50;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003492 break;
3493 case e1000_82540:
3494 case e1000_82545:
3495 case e1000_82545_rev_3:
3496 case e1000_82546:
3497 case e1000_82546_rev_3:
3498 eeprom->type = e1000_eeprom_microwire;
3499 eeprom->opcode_bits = 3;
3500 eeprom->delay_usec = 50;
3501 if (eecd & E1000_EECD_SIZE) {
3502 eeprom->word_size = 256;
3503 eeprom->address_bits = 8;
3504 } else {
3505 eeprom->word_size = 64;
3506 eeprom->address_bits = 6;
3507 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003508 break;
3509 case e1000_82541:
3510 case e1000_82541_rev_2:
3511 case e1000_82547:
3512 case e1000_82547_rev_2:
3513 if (eecd & E1000_EECD_TYPE) {
3514 eeprom->type = e1000_eeprom_spi;
3515 eeprom->opcode_bits = 8;
3516 eeprom->delay_usec = 1;
3517 if (eecd & E1000_EECD_ADDR_BITS) {
3518 eeprom->page_size = 32;
3519 eeprom->address_bits = 16;
3520 } else {
3521 eeprom->page_size = 8;
3522 eeprom->address_bits = 8;
3523 }
3524 } else {
3525 eeprom->type = e1000_eeprom_microwire;
3526 eeprom->opcode_bits = 3;
3527 eeprom->delay_usec = 50;
3528 if (eecd & E1000_EECD_ADDR_BITS) {
3529 eeprom->word_size = 256;
3530 eeprom->address_bits = 8;
3531 } else {
3532 eeprom->word_size = 64;
3533 eeprom->address_bits = 6;
3534 }
3535 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003536 break;
3537 default:
3538 break;
3539 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003541 if (eeprom->type == e1000_eeprom_spi) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003542 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543 * 128B to 32KB (incremented by powers of 2).
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003544 */
3545 /* Set to default value for initial eeprom read. */
3546 eeprom->word_size = 64;
3547 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548 if (ret_val)
3549 return ret_val;
3550 eeprom_size =
3551 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552 /* 256B eeprom size was not supported in earlier hardware, so we
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003553 * bump eeprom_size up one to ensure that "1" (which maps to
3554 * 256B) is never the result used in the shifting logic below.
3555 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003556 if (eeprom_size)
3557 eeprom_size++;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003558
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003559 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560 }
3561 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003562}
3563
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003564/**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
Joe Perches64798842008-07-11 15:17:02 -07003569static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003570{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003571 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572 * wait <delay> microseconds.
3573 */
3574 *eecd = *eecd | E1000_EECD_SK;
3575 ew32(EECD, *eecd);
3576 E1000_WRITE_FLUSH();
3577 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578}
3579
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003580/**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
Joe Perches64798842008-07-11 15:17:02 -07003585static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003587 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588 * then wait 50 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003589 */
3590 *eecd = *eecd & ~E1000_EECD_SK;
3591 ew32(EECD, *eecd);
3592 E1000_WRITE_FLUSH();
3593 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594}
3595
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003596/**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
Joe Perches64798842008-07-11 15:17:02 -07003602static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003604 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605 u32 eecd;
3606 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003607
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003608 /* We need to shift "count" bits out to the EEPROM. So, value in the
3609 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610 * In order to do this, "data" must be broken down into bits.
3611 */
3612 mask = 0x01 << (count - 1);
3613 eecd = er32(EECD);
3614 if (eeprom->type == e1000_eeprom_microwire) {
3615 eecd &= ~E1000_EECD_DO;
3616 } else if (eeprom->type == e1000_eeprom_spi) {
3617 eecd |= E1000_EECD_DO;
3618 }
3619 do {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003620 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621 * "1", and then raising and then lowering the clock (the SK bit
3622 * controls the clock input to the EEPROM). A "0" is shifted
3623 * out to the EEPROM by setting "DI" to "0" and then raising and
3624 * then lowering the clock.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003625 */
3626 eecd &= ~E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003628 if (data & mask)
3629 eecd |= E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003630
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003631 ew32(EECD, eecd);
3632 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003633
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003634 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003635
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003636 e1000_raise_ee_clk(hw, &eecd);
3637 e1000_lower_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003638
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003639 mask = mask >> 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003640
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003641 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003642
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003643 /* We leave the "DI" bit set to "0" when we leave this routine. */
3644 eecd &= ~E1000_EECD_DI;
3645 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003646}
3647
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003648/**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
Joe Perches64798842008-07-11 15:17:02 -07003653static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003654{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003655 u32 eecd;
3656 u32 i;
3657 u16 data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003658
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003659 /* In order to read a register from the EEPROM, we need to shift 'count'
3660 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003661 * input to the EEPROM (setting the SK bit), and then reading the value
3662 * of the "DO" bit. During this "shifting in" process the "DI" bit
3663 * should always be clear.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003664 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003665
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003666 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003667
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003668 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669 data = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003671 for (i = 0; i < count; i++) {
3672 data = data << 1;
3673 e1000_raise_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003675 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003676
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003677 eecd &= ~(E1000_EECD_DI);
3678 if (eecd & E1000_EECD_DO)
3679 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003681 e1000_lower_ee_clk(hw, &eecd);
3682 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003684 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003685}
3686
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003687/**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003693 */
Joe Perches64798842008-07-11 15:17:02 -07003694static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003696 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697 u32 eecd, i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003698
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003699 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003700
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003701 /* Request EEPROM Access */
3702 if (hw->mac_type > e1000_82544) {
3703 eecd |= E1000_EECD_REQ;
3704 ew32(EECD, eecd);
3705 eecd = er32(EECD);
3706 while ((!(eecd & E1000_EECD_GNT)) &&
3707 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708 i++;
3709 udelay(5);
3710 eecd = er32(EECD);
3711 }
3712 if (!(eecd & E1000_EECD_GNT)) {
3713 eecd &= ~E1000_EECD_REQ;
3714 ew32(EECD, eecd);
Emil Tantilov675ad472010-04-27 14:02:58 +00003715 e_dbg("Could not acquire EEPROM grant\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003716 return -E1000_ERR_EEPROM;
3717 }
3718 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003720 /* Setup EEPROM for Read/Write */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003722 if (eeprom->type == e1000_eeprom_microwire) {
3723 /* Clear SK and DI */
3724 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003727 /* Set CS */
3728 eecd |= E1000_EECD_CS;
3729 ew32(EECD, eecd);
3730 } else if (eeprom->type == e1000_eeprom_spi) {
3731 /* Clear SK and CS */
3732 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733 ew32(EECD, eecd);
Jesse Brandeburg945a5152011-07-20 00:56:21 +00003734 E1000_WRITE_FLUSH();
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003735 udelay(1);
3736 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003737
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003738 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003739}
3740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003741/**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
Joe Perches64798842008-07-11 15:17:02 -07003745static void e1000_standby_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003746{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003747 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003749
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003750 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003752 if (eeprom->type == e1000_eeprom_microwire) {
3753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754 ew32(EECD, eecd);
3755 E1000_WRITE_FLUSH();
3756 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003757
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003758 /* Clock high */
3759 eecd |= E1000_EECD_SK;
3760 ew32(EECD, eecd);
3761 E1000_WRITE_FLUSH();
3762 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003763
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003764 /* Select EEPROM */
3765 eecd |= E1000_EECD_CS;
3766 ew32(EECD, eecd);
3767 E1000_WRITE_FLUSH();
3768 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003769
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003770 /* Clock low */
3771 eecd &= ~E1000_EECD_SK;
3772 ew32(EECD, eecd);
3773 E1000_WRITE_FLUSH();
3774 udelay(eeprom->delay_usec);
3775 } else if (eeprom->type == e1000_eeprom_spi) {
3776 /* Toggle CS to flush commands */
3777 eecd |= E1000_EECD_CS;
3778 ew32(EECD, eecd);
3779 E1000_WRITE_FLUSH();
3780 udelay(eeprom->delay_usec);
3781 eecd &= ~E1000_EECD_CS;
3782 ew32(EECD, eecd);
3783 E1000_WRITE_FLUSH();
3784 udelay(eeprom->delay_usec);
3785 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003786}
3787
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003788/**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003791 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
Joe Perches64798842008-07-11 15:17:02 -07003794static void e1000_release_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003795{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003796 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003798 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003799
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003800 if (hw->eeprom.type == e1000_eeprom_spi) {
3801 eecd |= E1000_EECD_CS; /* Pull CS high */
3802 eecd &= ~E1000_EECD_SK; /* Lower SCK */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003803
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003804 ew32(EECD, eecd);
Jesse Brandeburg945a5152011-07-20 00:56:21 +00003805 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003806
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003807 udelay(hw->eeprom.delay_usec);
3808 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809 /* cleanup eeprom */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003810
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003811 /* CS on Microwire is active-high */
3812 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003813
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003814 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003815
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003816 /* Rising edge of clock */
3817 eecd |= E1000_EECD_SK;
3818 ew32(EECD, eecd);
3819 E1000_WRITE_FLUSH();
3820 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003821
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003822 /* Falling edge of clock */
3823 eecd &= ~E1000_EECD_SK;
3824 ew32(EECD, eecd);
3825 E1000_WRITE_FLUSH();
3826 udelay(hw->eeprom.delay_usec);
3827 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003829 /* Stop requesting EEPROM access */
3830 if (hw->mac_type > e1000_82544) {
3831 eecd &= ~E1000_EECD_REQ;
3832 ew32(EECD, eecd);
3833 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003834}
3835
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003836/**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
Joe Perches64798842008-07-11 15:17:02 -07003840static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003841{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003842 u16 retry_count = 0;
3843 u8 spi_stat_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003844
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003845 /* Read "Status Register" repeatedly until the LSB is cleared. The
3846 * EEPROM will signal that the command has been completed by clearing
3847 * bit 0 of the internal status register. If it's not cleared within
3848 * 5 milliseconds, then error out.
3849 */
3850 retry_count = 0;
3851 do {
3852 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853 hw->eeprom.opcode_bits);
3854 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3855 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003858 udelay(5);
3859 retry_count += 5;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003860
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003861 e1000_standby_eeprom(hw);
3862 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003864 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865 * only 0-5mSec on 5V devices)
3866 */
3867 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003868 e_dbg("SPI EEPROM Status error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003869 return -E1000_ERR_EEPROM;
3870 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003872 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003873}
3874
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003875/**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
Joe Perches64798842008-07-11 15:17:02 -07003882s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003883{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003884 s32 ret;
3885 spin_lock(&e1000_eeprom_lock);
3886 ret = e1000_do_read_eeprom(hw, offset, words, data);
3887 spin_unlock(&e1000_eeprom_lock);
3888 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07003889}
3890
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003891static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3892 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07003893{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003894 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3895 u32 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003896
Dirk Brandewie5377a412011-01-06 14:29:54 +00003897 if (hw->mac_type == e1000_ce4100) {
3898 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3899 data);
3900 return E1000_SUCCESS;
3901 }
3902
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003903 /* If eeprom is not yet detected, do so now */
3904 if (eeprom->word_size == 0)
3905 e1000_init_eeprom_params(hw);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003906
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003907 /* A check for invalid values: offset too large, too many words, and
3908 * not enough words.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003909 */
3910 if ((offset >= eeprom->word_size)
3911 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003912 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3913 "size = %d\n", offset, eeprom->word_size);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003914 return -E1000_ERR_EEPROM;
3915 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003916
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003917 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3918 * directly. In this case, we need to acquire the EEPROM so that
3919 * FW or other port software does not interrupt.
3920 */
Jesse Brandeburg8f601b22009-09-25 12:20:11 +00003921 /* Prepare the EEPROM for bit-bang reading */
3922 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3923 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003924
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003925 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003926 * acquired the EEPROM at this point, so any returns should release it
3927 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003928 if (eeprom->type == e1000_eeprom_spi) {
3929 u16 word_in;
3930 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003932 if (e1000_spi_eeprom_ready(hw)) {
3933 e1000_release_eeprom(hw);
3934 return -E1000_ERR_EEPROM;
3935 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003936
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003937 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003938
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003939 /* Some SPI eeproms use the 8th address bit embedded in the
3940 * opcode
3941 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003942 if ((eeprom->address_bits == 8) && (offset >= 128))
3943 read_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003945 /* Send the READ command (opcode + addr) */
3946 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3947 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3948 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003949
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003950 /* Read the data. The address of the eeprom internally
3951 * increments with each byte (spi) being read, saving on the
3952 * overhead of eeprom setup and tear-down. The address counter
3953 * will roll over if reading beyond the size of the eeprom, thus
3954 * allowing the entire memory to be read starting from any
3955 * offset.
3956 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003957 for (i = 0; i < words; i++) {
3958 word_in = e1000_shift_in_ee_bits(hw, 16);
3959 data[i] = (word_in >> 8) | (word_in << 8);
3960 }
3961 } else if (eeprom->type == e1000_eeprom_microwire) {
3962 for (i = 0; i < words; i++) {
3963 /* Send the READ command (opcode + addr) */
3964 e1000_shift_out_ee_bits(hw,
3965 EEPROM_READ_OPCODE_MICROWIRE,
3966 eeprom->opcode_bits);
3967 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3968 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003970 /* Read the data. For microwire, each word requires the
3971 * overhead of eeprom setup and tear-down.
3972 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003973 data[i] = e1000_shift_in_ee_bits(hw, 16);
3974 e1000_standby_eeprom(hw);
3975 }
3976 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003977
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003978 /* End this read operation */
3979 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003980
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003981 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982}
3983
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003984/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003985 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3986 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003987 *
3988 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3989 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3990 * valid.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003991 */
Joe Perches64798842008-07-11 15:17:02 -07003992s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003994 u16 checksum = 0;
3995 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003996
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003997 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3998 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003999 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004000 return -E1000_ERR_EEPROM;
4001 }
4002 checksum += eeprom_data;
4003 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004
Jeff Kirshere2faeec2011-08-30 20:58:56 -04004005#ifdef CONFIG_PARISC
4006 /* This is a signature and not a checksum on HP c8000 */
4007 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4008 return E1000_SUCCESS;
4009
4010#endif
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004011 if (checksum == (u16) EEPROM_SUM)
4012 return E1000_SUCCESS;
4013 else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004014 e_dbg("EEPROM Checksum Invalid\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004015 return -E1000_ERR_EEPROM;
4016 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004017}
4018
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004019/**
4020 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4021 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022 *
4023 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4024 * Writes the difference to word offset 63 of the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004025 */
Joe Perches64798842008-07-11 15:17:02 -07004026s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004027{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004028 u16 checksum = 0;
4029 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004031 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4032 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004033 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004034 return -E1000_ERR_EEPROM;
4035 }
4036 checksum += eeprom_data;
4037 }
4038 checksum = (u16) EEPROM_SUM - checksum;
4039 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004040 e_dbg("EEPROM Write Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004041 return -E1000_ERR_EEPROM;
4042 }
4043 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004044}
4045
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004046/**
4047 * e1000_write_eeprom - write words to the different EEPROM types.
4048 * @hw: Struct containing variables accessed by shared code
4049 * @offset: offset within the EEPROM to be written to
4050 * @words: number of words to write
4051 * @data: 16 bit word to be written to the EEPROM
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052 *
4053 * If e1000_update_eeprom_checksum is not called after this function, the
4054 * EEPROM will most likely contain an invalid checksum.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004055 */
Joe Perches64798842008-07-11 15:17:02 -07004056s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004057{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004058 s32 ret;
4059 spin_lock(&e1000_eeprom_lock);
4060 ret = e1000_do_write_eeprom(hw, offset, words, data);
4061 spin_unlock(&e1000_eeprom_lock);
4062 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07004063}
4064
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004065static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07004067{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004068 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069 s32 status = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070
Dirk Brandewie5377a412011-01-06 14:29:54 +00004071 if (hw->mac_type == e1000_ce4100) {
4072 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073 data);
4074 return E1000_SUCCESS;
4075 }
4076
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004077 /* If eeprom is not yet detected, do so now */
4078 if (eeprom->word_size == 0)
4079 e1000_init_eeprom_params(hw);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004080
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004081 /* A check for invalid values: offset too large, too many words, and
4082 * not enough words.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004083 */
4084 if ((offset >= eeprom->word_size)
4085 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004086 e_dbg("\"words\" parameter out of bounds\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004087 return -E1000_ERR_EEPROM;
4088 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004089
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004090 /* Prepare the EEPROM for writing */
4091 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4092 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004093
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004094 if (eeprom->type == e1000_eeprom_microwire) {
4095 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4096 } else {
4097 status = e1000_write_eeprom_spi(hw, offset, words, data);
4098 msleep(10);
4099 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004101 /* Done with writing */
4102 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004104 return status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004105}
4106
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004107/**
4108 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4109 * @hw: Struct containing variables accessed by shared code
4110 * @offset: offset within the EEPROM to be written to
4111 * @words: number of words to write
4112 * @data: pointer to array of 8 bit words to be written to the EEPROM
4113 */
Joe Perches64798842008-07-11 15:17:02 -07004114static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4115 u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004117 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4118 u16 widx = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004119
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004120 while (widx < words) {
4121 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004123 if (e1000_spi_eeprom_ready(hw))
4124 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004126 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004128 /* Send the WRITE ENABLE command (8 bit opcode ) */
4129 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4130 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004132 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004134 /* Some SPI eeproms use the 8th address bit embedded in the
4135 * opcode
4136 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004137 if ((eeprom->address_bits == 8) && (offset >= 128))
4138 write_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004139
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004140 /* Send the Write command (8-bit opcode + addr) */
4141 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004142
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004143 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4144 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004145
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004146 /* Send the data */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004147
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004148 /* Loop to allow for up to whole page write (32 bytes) of
4149 * eeprom
4150 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004151 while (widx < words) {
4152 u16 word_out = data[widx];
4153 word_out = (word_out >> 8) | (word_out << 8);
4154 e1000_shift_out_ee_bits(hw, word_out, 16);
4155 widx++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004156
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004157 /* Some larger eeprom sizes are capable of a 32-byte
4158 * PAGE WRITE operation, while the smaller eeproms are
4159 * capable of an 8-byte PAGE WRITE operation. Break the
4160 * inner loop to pass new address
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004161 */
4162 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4163 e1000_standby_eeprom(hw);
4164 break;
4165 }
4166 }
4167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004168
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004169 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004170}
4171
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004172/**
4173 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4174 * @hw: Struct containing variables accessed by shared code
4175 * @offset: offset within the EEPROM to be written to
4176 * @words: number of words to write
4177 * @data: pointer to array of 8 bit words to be written to the EEPROM
4178 */
Joe Perches64798842008-07-11 15:17:02 -07004179static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4180 u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004181{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004182 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4183 u32 eecd;
4184 u16 words_written = 0;
4185 u16 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004186
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004187 /* Send the write enable command to the EEPROM (3-bit opcode plus
4188 * 6/8-bit dummy address beginning with 11). It's less work to include
4189 * the 11 of the dummy address as part of the opcode than it is to shift
4190 * it over the correct number of bits for the address. This puts the
4191 * EEPROM into write/erase mode.
4192 */
4193 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4194 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004195
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004196 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004197
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004198 /* Prepare the EEPROM */
4199 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004201 while (words_written < words) {
4202 /* Send the Write command (3-bit opcode + addr) */
4203 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4204 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004206 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4207 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004208
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004209 /* Send the data */
4210 e1000_shift_out_ee_bits(hw, data[words_written], 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004211
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004212 /* Toggle the CS line. This in effect tells the EEPROM to
4213 * execute the previous command.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004214 */
4215 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004217 /* Read DO repeatedly until it is high (equal to '1'). The
4218 * EEPROM will signal that the command has been completed by
4219 * raising the DO signal. If DO does not go high in 10
4220 * milliseconds, then error out.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004221 */
4222 for (i = 0; i < 200; i++) {
4223 eecd = er32(EECD);
4224 if (eecd & E1000_EECD_DO)
4225 break;
4226 udelay(50);
4227 }
4228 if (i == 200) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004229 e_dbg("EEPROM Write did not complete\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004230 return -E1000_ERR_EEPROM;
4231 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004233 /* Recover from write */
4234 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004235
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004236 words_written++;
4237 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004239 /* Send the write disable command to the EEPROM (3-bit opcode plus
4240 * 6/8-bit dummy address beginning with 10). It's less work to include
4241 * the 10 of the dummy address as part of the opcode than it is to shift
4242 * it over the correct number of bits for the address. This takes the
4243 * EEPROM out of write/erase mode.
4244 */
4245 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004247
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004248 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004250 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004251}
4252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004253/**
4254 * e1000_read_mac_addr - read the adapters MAC from eeprom
4255 * @hw: Struct containing variables accessed by shared code
4256 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258 * second function of dual function devices
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004259 */
Joe Perches64798842008-07-11 15:17:02 -07004260s32 e1000_read_mac_addr(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004261{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004262 u16 offset;
4263 u16 eeprom_data, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004264
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004265 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266 offset = i >> 1;
4267 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004268 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004269 return -E1000_ERR_EEPROM;
4270 }
4271 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4272 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4273 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004274
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004275 switch (hw->mac_type) {
4276 default:
4277 break;
4278 case e1000_82546:
4279 case e1000_82546_rev_3:
4280 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281 hw->perm_mac_addr[5] ^= 0x01;
4282 break;
4283 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004285 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286 hw->mac_addr[i] = hw->perm_mac_addr[i];
4287 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004288}
4289
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004290/**
4291 * e1000_init_rx_addrs - Initializes receive address filters.
4292 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293 *
4294 * Places the MAC address in receive address register 0 and clears the rest
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004295 * of the receive address registers. Clears the multicast table. Assumes
Linus Torvalds1da177e2005-04-16 15:20:36 -07004296 * the receiver is in reset when the routine is called.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004297 */
Joe Perches64798842008-07-11 15:17:02 -07004298static void e1000_init_rx_addrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004299{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004300 u32 i;
4301 u32 rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004302
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004303 /* Setup the receive address. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004304 e_dbg("Programming MAC Address into RAR[0]\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004306 e1000_rar_set(hw, hw->mac_addr, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004307
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004308 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004309
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004310 /* Zero out the other 15 receive addresses. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004311 e_dbg("Clearing RAR[1-15]\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004312 for (i = 1; i < rar_num; i++) {
4313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314 E1000_WRITE_FLUSH();
4315 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316 E1000_WRITE_FLUSH();
4317 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318}
4319
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004320/**
4321 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322 * @hw: Struct containing variables accessed by shared code
4323 * @mc_addr: the multicast address to hash
4324 */
Joe Perches64798842008-07-11 15:17:02 -07004325u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004327 u32 hash_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004328
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004329 /* The portion of the address that is used for the hash table is
4330 * determined by the mc_filter_type setting.
4331 */
4332 switch (hw->mc_filter_type) {
4333 /* [0] [1] [2] [3] [4] [5]
4334 * 01 AA 00 12 34 56
4335 * LSB MSB
4336 */
4337 case 0:
4338 /* [47:36] i.e. 0x563 for above example address */
4339 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4340 break;
4341 case 1:
4342 /* [46:35] i.e. 0xAC6 for above example address */
4343 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4344 break;
4345 case 2:
4346 /* [45:34] i.e. 0x5D8 for above example address */
4347 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4348 break;
4349 case 3:
4350 /* [43:32] i.e. 0x634 for above example address */
4351 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4352 break;
4353 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004354
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004355 hash_value &= 0xFFF;
4356 return hash_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357}
4358
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004359/**
4360 * e1000_rar_set - Puts an ethernet address into a receive address register.
4361 * @hw: Struct containing variables accessed by shared code
4362 * @addr: Address to put into receive address register
4363 * @index: Receive address register to write
4364 */
Joe Perches64798842008-07-11 15:17:02 -07004365void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004366{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004367 u32 rar_low, rar_high;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004368
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004369 /* HW expects these in little endian so we reverse the byte order
4370 * from network order (big endian) to little endian
4371 */
4372 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4373 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4374 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004375
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004376 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377 * unit hang.
4378 *
4379 * Description:
4380 * If there are any Rx frames queued up or otherwise present in the HW
4381 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382 * hang. To work around this issue, we have to disable receives and
4383 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384 * redirect all Rx traffic to manageability and then reset the HW.
4385 * This flushes away Rx frames, and (since the redirections to
4386 * manageability persists across resets) keeps new ones from coming in
4387 * while we work. Then, we clear the Address Valid AV bit for all MAC
4388 * addresses and undo the re-direction to manageability.
4389 * Now, frames are coming in again, but the MAC won't accept them, so
4390 * far so good. We now proceed to initialize RSS (if necessary) and
4391 * configure the Rx unit. Last, we re-enable the AV bits and continue
4392 * on our merry way.
4393 */
4394 switch (hw->mac_type) {
4395 default:
4396 /* Indicate to hardware the Address is Valid. */
4397 rar_high |= E1000_RAH_AV;
4398 break;
4399 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004400
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004401 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402 E1000_WRITE_FLUSH();
4403 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004405}
4406
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004407/**
4408 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409 * @hw: Struct containing variables accessed by shared code
4410 * @offset: Offset in VLAN filer table to write
4411 * @value: Value to write into VLAN filter table
4412 */
Joe Perches64798842008-07-11 15:17:02 -07004413void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004414{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004415 u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004416
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004417 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420 E1000_WRITE_FLUSH();
4421 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422 E1000_WRITE_FLUSH();
4423 } else {
4424 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425 E1000_WRITE_FLUSH();
4426 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004427}
4428
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004429/**
4430 * e1000_clear_vfta - Clears the VLAN filer table
4431 * @hw: Struct containing variables accessed by shared code
4432 */
Joe Perches64798842008-07-11 15:17:02 -07004433static void e1000_clear_vfta(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004434{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004435 u32 offset;
4436 u32 vfta_value = 0;
4437 u32 vfta_offset = 0;
4438 u32 vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004439
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004440 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441 /* If the offset we want to clear is the same offset of the
4442 * manageability VLAN ID, then clear all bits except that of the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004443 * manageability unit
4444 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004445 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447 E1000_WRITE_FLUSH();
4448 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004449}
4450
Joe Perches64798842008-07-11 15:17:02 -07004451static s32 e1000_id_led_init(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004452{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004453 u32 ledctl;
4454 const u32 ledctl_mask = 0x000000FF;
4455 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457 u16 eeprom_data, i, temp;
4458 const u16 led_mask = 0x0F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004459
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004460 if (hw->mac_type < e1000_82540) {
4461 /* Nothing to do */
4462 return E1000_SUCCESS;
4463 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004464
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004465 ledctl = er32(LEDCTL);
4466 hw->ledctl_default = ledctl;
4467 hw->ledctl_mode1 = hw->ledctl_default;
4468 hw->ledctl_mode2 = hw->ledctl_default;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004469
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004470 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004471 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004472 return -E1000_ERR_EEPROM;
4473 }
Auke Kokcd94dd02006-06-27 09:08:22 -07004474
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004475 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477 eeprom_data = ID_LED_DEFAULT;
4478 }
Auke Kok90fb5132006-11-01 08:47:30 -08004479
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004480 for (i = 0; i < 4; i++) {
4481 temp = (eeprom_data >> (i << 2)) & led_mask;
4482 switch (temp) {
4483 case ID_LED_ON1_DEF2:
4484 case ID_LED_ON1_ON2:
4485 case ID_LED_ON1_OFF2:
4486 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488 break;
4489 case ID_LED_OFF1_DEF2:
4490 case ID_LED_OFF1_ON2:
4491 case ID_LED_OFF1_OFF2:
4492 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494 break;
4495 default:
4496 /* Do nothing */
4497 break;
4498 }
4499 switch (temp) {
4500 case ID_LED_DEF1_ON2:
4501 case ID_LED_ON1_ON2:
4502 case ID_LED_OFF1_ON2:
4503 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505 break;
4506 case ID_LED_DEF1_OFF2:
4507 case ID_LED_ON1_OFF2:
4508 case ID_LED_OFF1_OFF2:
4509 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511 break;
4512 default:
4513 /* Do nothing */
4514 break;
4515 }
4516 }
4517 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004518}
4519
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004520/**
4521 * e1000_setup_led
4522 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004523 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004524 * Prepares SW controlable LED for use and saves the current state of the LED.
4525 */
Joe Perches64798842008-07-11 15:17:02 -07004526s32 e1000_setup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004527{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004528 u32 ledctl;
4529 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004530
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004531 switch (hw->mac_type) {
4532 case e1000_82542_rev2_0:
4533 case e1000_82542_rev2_1:
4534 case e1000_82543:
4535 case e1000_82544:
4536 /* No setup necessary */
4537 break;
4538 case e1000_82541:
4539 case e1000_82547:
4540 case e1000_82541_rev_2:
4541 case e1000_82547_rev_2:
4542 /* Turn off PHY Smart Power Down (if enabled) */
4543 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544 &hw->phy_spd_default);
4545 if (ret_val)
4546 return ret_val;
4547 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548 (u16) (hw->phy_spd_default &
4549 ~IGP01E1000_GMII_SPD));
4550 if (ret_val)
4551 return ret_val;
4552 /* Fall Through */
4553 default:
4554 if (hw->media_type == e1000_media_type_fiber) {
4555 ledctl = er32(LEDCTL);
4556 /* Save current LEDCTL settings */
4557 hw->ledctl_default = ledctl;
4558 /* Turn off LED0 */
4559 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560 E1000_LEDCTL_LED0_BLINK |
4561 E1000_LEDCTL_LED0_MODE_MASK);
4562 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563 E1000_LEDCTL_LED0_MODE_SHIFT);
4564 ew32(LEDCTL, ledctl);
4565 } else if (hw->media_type == e1000_media_type_copper)
4566 ew32(LEDCTL, hw->ledctl_mode1);
4567 break;
4568 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004569
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004570 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004571}
4572
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004573/**
4574 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575 * @hw: Struct containing variables accessed by shared code
4576 */
Joe Perches64798842008-07-11 15:17:02 -07004577s32 e1000_cleanup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004579 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004580
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004581 switch (hw->mac_type) {
4582 case e1000_82542_rev2_0:
4583 case e1000_82542_rev2_1:
4584 case e1000_82543:
4585 case e1000_82544:
4586 /* No cleanup necessary */
4587 break;
4588 case e1000_82541:
4589 case e1000_82547:
4590 case e1000_82541_rev_2:
4591 case e1000_82547_rev_2:
4592 /* Turn on PHY Smart Power Down (if previously enabled) */
4593 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594 hw->phy_spd_default);
4595 if (ret_val)
4596 return ret_val;
4597 /* Fall Through */
4598 default:
4599 /* Restore LEDCTL settings */
4600 ew32(LEDCTL, hw->ledctl_default);
4601 break;
4602 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004603
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004604 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605}
4606
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004607/**
4608 * e1000_led_on - Turns on the software controllable LED
4609 * @hw: Struct containing variables accessed by shared code
4610 */
Joe Perches64798842008-07-11 15:17:02 -07004611s32 e1000_led_on(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004613 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004614
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004615 switch (hw->mac_type) {
4616 case e1000_82542_rev2_0:
4617 case e1000_82542_rev2_1:
4618 case e1000_82543:
4619 /* Set SW Defineable Pin 0 to turn on the LED */
4620 ctrl |= E1000_CTRL_SWDPIN0;
4621 ctrl |= E1000_CTRL_SWDPIO0;
4622 break;
4623 case e1000_82544:
4624 if (hw->media_type == e1000_media_type_fiber) {
4625 /* Set SW Defineable Pin 0 to turn on the LED */
4626 ctrl |= E1000_CTRL_SWDPIN0;
4627 ctrl |= E1000_CTRL_SWDPIO0;
4628 } else {
4629 /* Clear SW Defineable Pin 0 to turn on the LED */
4630 ctrl &= ~E1000_CTRL_SWDPIN0;
4631 ctrl |= E1000_CTRL_SWDPIO0;
4632 }
4633 break;
4634 default:
4635 if (hw->media_type == e1000_media_type_fiber) {
4636 /* Clear SW Defineable Pin 0 to turn on the LED */
4637 ctrl &= ~E1000_CTRL_SWDPIN0;
4638 ctrl |= E1000_CTRL_SWDPIO0;
4639 } else if (hw->media_type == e1000_media_type_copper) {
4640 ew32(LEDCTL, hw->ledctl_mode2);
4641 return E1000_SUCCESS;
4642 }
4643 break;
4644 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004645
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004646 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004647
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004648 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004649}
4650
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004651/**
4652 * e1000_led_off - Turns off the software controllable LED
4653 * @hw: Struct containing variables accessed by shared code
4654 */
Joe Perches64798842008-07-11 15:17:02 -07004655s32 e1000_led_off(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004656{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004657 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004658
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004659 switch (hw->mac_type) {
4660 case e1000_82542_rev2_0:
4661 case e1000_82542_rev2_1:
4662 case e1000_82543:
4663 /* Clear SW Defineable Pin 0 to turn off the LED */
4664 ctrl &= ~E1000_CTRL_SWDPIN0;
4665 ctrl |= E1000_CTRL_SWDPIO0;
4666 break;
4667 case e1000_82544:
4668 if (hw->media_type == e1000_media_type_fiber) {
4669 /* Clear SW Defineable Pin 0 to turn off the LED */
4670 ctrl &= ~E1000_CTRL_SWDPIN0;
4671 ctrl |= E1000_CTRL_SWDPIO0;
4672 } else {
4673 /* Set SW Defineable Pin 0 to turn off the LED */
4674 ctrl |= E1000_CTRL_SWDPIN0;
4675 ctrl |= E1000_CTRL_SWDPIO0;
4676 }
4677 break;
4678 default:
4679 if (hw->media_type == e1000_media_type_fiber) {
4680 /* Set SW Defineable Pin 0 to turn off the LED */
4681 ctrl |= E1000_CTRL_SWDPIN0;
4682 ctrl |= E1000_CTRL_SWDPIO0;
4683 } else if (hw->media_type == e1000_media_type_copper) {
4684 ew32(LEDCTL, hw->ledctl_mode1);
4685 return E1000_SUCCESS;
4686 }
4687 break;
4688 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004690 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004692 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004693}
4694
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004695/**
4696 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697 * @hw: Struct containing variables accessed by shared code
4698 */
Joe Perches64798842008-07-11 15:17:02 -07004699static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004700{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004701 volatile u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004702
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004703 temp = er32(CRCERRS);
4704 temp = er32(SYMERRS);
4705 temp = er32(MPC);
4706 temp = er32(SCC);
4707 temp = er32(ECOL);
4708 temp = er32(MCC);
4709 temp = er32(LATECOL);
4710 temp = er32(COLC);
4711 temp = er32(DC);
4712 temp = er32(SEC);
4713 temp = er32(RLEC);
4714 temp = er32(XONRXC);
4715 temp = er32(XONTXC);
4716 temp = er32(XOFFRXC);
4717 temp = er32(XOFFTXC);
4718 temp = er32(FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07004719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004720 temp = er32(PRC64);
4721 temp = er32(PRC127);
4722 temp = er32(PRC255);
4723 temp = er32(PRC511);
4724 temp = er32(PRC1023);
4725 temp = er32(PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004726
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004727 temp = er32(GPRC);
4728 temp = er32(BPRC);
4729 temp = er32(MPRC);
4730 temp = er32(GPTC);
4731 temp = er32(GORCL);
4732 temp = er32(GORCH);
4733 temp = er32(GOTCL);
4734 temp = er32(GOTCH);
4735 temp = er32(RNBC);
4736 temp = er32(RUC);
4737 temp = er32(RFC);
4738 temp = er32(ROC);
4739 temp = er32(RJC);
4740 temp = er32(TORL);
4741 temp = er32(TORH);
4742 temp = er32(TOTL);
4743 temp = er32(TOTH);
4744 temp = er32(TPR);
4745 temp = er32(TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07004746
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004747 temp = er32(PTC64);
4748 temp = er32(PTC127);
4749 temp = er32(PTC255);
4750 temp = er32(PTC511);
4751 temp = er32(PTC1023);
4752 temp = er32(PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004753
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004754 temp = er32(MPTC);
4755 temp = er32(BPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004756
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004757 if (hw->mac_type < e1000_82543)
4758 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004759
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004760 temp = er32(ALGNERRC);
4761 temp = er32(RXERRC);
4762 temp = er32(TNCRS);
4763 temp = er32(CEXTERR);
4764 temp = er32(TSCTC);
4765 temp = er32(TSCTFC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004766
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004767 if (hw->mac_type <= e1000_82544)
4768 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004769
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004770 temp = er32(MGTPRC);
4771 temp = er32(MGTPDC);
4772 temp = er32(MGTPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773}
4774
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004775/**
4776 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004778 *
4779 * Call this after e1000_init_hw. You may override the IFS defaults by setting
Joe Perchesc3033b02008-03-21 11:06:25 -07004780 * hw->ifs_params_forced to true. However, you must initialize hw->
Linus Torvalds1da177e2005-04-16 15:20:36 -07004781 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782 * before calling this function.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004783 */
Joe Perches64798842008-07-11 15:17:02 -07004784void e1000_reset_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004785{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004786 if (hw->adaptive_ifs) {
4787 if (!hw->ifs_params_forced) {
4788 hw->current_ifs_val = 0;
4789 hw->ifs_min_val = IFS_MIN;
4790 hw->ifs_max_val = IFS_MAX;
4791 hw->ifs_step_size = IFS_STEP;
4792 hw->ifs_ratio = IFS_RATIO;
4793 }
4794 hw->in_ifs_mode = false;
4795 ew32(AIT, 0);
4796 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004797 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004798 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004799}
4800
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004801/**
4802 * e1000_update_adaptive - update adaptive IFS
4803 * @hw: Struct containing variables accessed by shared code
4804 * @tx_packets: Number of transmits since last callback
4805 * @total_collisions: Number of collisions since last callback
4806 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004807 * Called during the callback/watchdog routine to update IFS value based on
4808 * the ratio of transmits to collisions.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004809 */
Joe Perches64798842008-07-11 15:17:02 -07004810void e1000_update_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004811{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004812 if (hw->adaptive_ifs) {
4813 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4814 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815 hw->in_ifs_mode = true;
4816 if (hw->current_ifs_val < hw->ifs_max_val) {
4817 if (hw->current_ifs_val == 0)
4818 hw->current_ifs_val =
4819 hw->ifs_min_val;
4820 else
4821 hw->current_ifs_val +=
4822 hw->ifs_step_size;
4823 ew32(AIT, hw->current_ifs_val);
4824 }
4825 }
4826 } else {
4827 if (hw->in_ifs_mode
4828 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829 hw->current_ifs_val = 0;
4830 hw->in_ifs_mode = false;
4831 ew32(AIT, 0);
4832 }
4833 }
4834 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004835 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004836 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004837}
4838
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004839/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004840 * e1000_get_bus_info
4841 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004843 * Gets the current PCI bus type, speed, and width of the hardware
4844 */
Joe Perches64798842008-07-11 15:17:02 -07004845void e1000_get_bus_info(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004847 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004849 switch (hw->mac_type) {
4850 case e1000_82542_rev2_0:
4851 case e1000_82542_rev2_1:
4852 hw->bus_type = e1000_bus_type_pci;
4853 hw->bus_speed = e1000_bus_speed_unknown;
4854 hw->bus_width = e1000_bus_width_unknown;
4855 break;
4856 default:
4857 status = er32(STATUS);
4858 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859 e1000_bus_type_pcix : e1000_bus_type_pci;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004860
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004861 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863 e1000_bus_speed_66 : e1000_bus_speed_120;
4864 } else if (hw->bus_type == e1000_bus_type_pci) {
4865 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866 e1000_bus_speed_66 : e1000_bus_speed_33;
4867 } else {
4868 switch (status & E1000_STATUS_PCIX_SPEED) {
4869 case E1000_STATUS_PCIX_SPEED_66:
4870 hw->bus_speed = e1000_bus_speed_66;
4871 break;
4872 case E1000_STATUS_PCIX_SPEED_100:
4873 hw->bus_speed = e1000_bus_speed_100;
4874 break;
4875 case E1000_STATUS_PCIX_SPEED_133:
4876 hw->bus_speed = e1000_bus_speed_133;
4877 break;
4878 default:
4879 hw->bus_speed = e1000_bus_speed_reserved;
4880 break;
4881 }
4882 }
4883 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884 e1000_bus_width_64 : e1000_bus_width_32;
4885 break;
4886 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004888
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004889/**
4890 * e1000_write_reg_io
4891 * @hw: Struct containing variables accessed by shared code
4892 * @offset: offset to write to
4893 * @value: value to write
4894 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004895 * Writes a value to one of the devices registers using port I/O (as opposed to
4896 * memory mapped I/O). Only 82544 and newer devices support port I/O.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004897 */
Joe Perches64798842008-07-11 15:17:02 -07004898static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004900 unsigned long io_addr = hw->io_base;
4901 unsigned long io_data = hw->io_base + 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004902
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004903 e1000_io_write(hw, io_addr, offset);
4904 e1000_io_write(hw, io_data, value);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004905}
4906
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004907/**
4908 * e1000_get_cable_length - Estimates the cable length.
4909 * @hw: Struct containing variables accessed by shared code
4910 * @min_length: The estimated minimum length
4911 * @max_length: The estimated maximum length
Linus Torvalds1da177e2005-04-16 15:20:36 -07004912 *
4913 * returns: - E1000_ERR_XXX
4914 * E1000_SUCCESS
4915 *
4916 * This function always returns a ranged length (minimum & maximum).
4917 * So for M88 phy's, this function interprets the one value returned from the
4918 * register to the minimum and maximum range.
4919 * For IGP phy's, the function calculates the range by the AGC registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004920 */
Joe Perches64798842008-07-11 15:17:02 -07004921static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922 u16 *max_length)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004924 s32 ret_val;
4925 u16 agc_value = 0;
4926 u16 i, phy_data;
4927 u16 cable_length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004929 *min_length = *max_length = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004930
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004931 /* Use old method for Phy older than IGP */
4932 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004933
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004934 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4935 &phy_data);
4936 if (ret_val)
4937 return ret_val;
4938 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4939 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004940
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004941 /* Convert the enum value to ranged values */
4942 switch (cable_length) {
4943 case e1000_cable_length_50:
4944 *min_length = 0;
4945 *max_length = e1000_igp_cable_length_50;
4946 break;
4947 case e1000_cable_length_50_80:
4948 *min_length = e1000_igp_cable_length_50;
4949 *max_length = e1000_igp_cable_length_80;
4950 break;
4951 case e1000_cable_length_80_110:
4952 *min_length = e1000_igp_cable_length_80;
4953 *max_length = e1000_igp_cable_length_110;
4954 break;
4955 case e1000_cable_length_110_140:
4956 *min_length = e1000_igp_cable_length_110;
4957 *max_length = e1000_igp_cable_length_140;
4958 break;
4959 case e1000_cable_length_140:
4960 *min_length = e1000_igp_cable_length_140;
4961 *max_length = e1000_igp_cable_length_170;
4962 break;
4963 default:
4964 return -E1000_ERR_PHY;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004965 }
4966 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4967 u16 cur_agc_value;
4968 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Jeff Kirsher66744502010-12-01 19:59:50 +00004969 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4970 IGP01E1000_PHY_AGC_A,
4971 IGP01E1000_PHY_AGC_B,
4972 IGP01E1000_PHY_AGC_C,
4973 IGP01E1000_PHY_AGC_D
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004974 };
4975 /* Read the AGC registers for all channels */
4976 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004977
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004978 ret_val =
4979 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4980 if (ret_val)
4981 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004982
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004983 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004984
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004985 /* Value bound check. */
4986 if ((cur_agc_value >=
4987 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
4988 || (cur_agc_value == 0))
4989 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004990
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004991 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004992
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004993 /* Update minimal AGC value. */
4994 if (min_agc_value > cur_agc_value)
4995 min_agc_value = cur_agc_value;
4996 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004997
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004998 /* Remove the minimal AGC result for length < 50m */
4999 if (agc_value <
5000 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5001 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005002
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005003 /* Get the average length of the remaining 3 channels */
5004 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5005 } else {
5006 /* Get the average length of all the 4 channels. */
5007 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5008 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005009
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005010 /* Set the range of the calculated length. */
5011 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5012 IGP01E1000_AGC_RANGE) > 0) ?
5013 (e1000_igp_cable_length_table[agc_value] -
5014 IGP01E1000_AGC_RANGE) : 0;
5015 *max_length = e1000_igp_cable_length_table[agc_value] +
5016 IGP01E1000_AGC_RANGE;
5017 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005018
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005019 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005020}
5021
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005022/**
5023 * e1000_check_polarity - Check the cable polarity
5024 * @hw: Struct containing variables accessed by shared code
5025 * @polarity: output parameter : 0 - Polarity is not reversed
Linus Torvalds1da177e2005-04-16 15:20:36 -07005026 * 1 - Polarity is reversed.
5027 *
5028 * returns: - E1000_ERR_XXX
5029 * E1000_SUCCESS
5030 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005031 * For phy's older than IGP, this function simply reads the polarity bit in the
Linus Torvalds1da177e2005-04-16 15:20:36 -07005032 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5033 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5034 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5035 * IGP01E1000_PHY_PCS_INIT_REG.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005036 */
Joe Perches64798842008-07-11 15:17:02 -07005037static s32 e1000_check_polarity(struct e1000_hw *hw,
5038 e1000_rev_polarity *polarity)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005039{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005040 s32 ret_val;
5041 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005042
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005043 if (hw->phy_type == e1000_phy_m88) {
5044 /* return the Polarity bit in the Status register. */
5045 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5046 &phy_data);
5047 if (ret_val)
5048 return ret_val;
5049 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5050 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5051 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07005052
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005053 } else if (hw->phy_type == e1000_phy_igp) {
5054 /* Read the Status register to check the speed */
5055 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5056 &phy_data);
5057 if (ret_val)
5058 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005059
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005060 /* If speed is 1000 Mbps, must read the
5061 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5062 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005063 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5064 IGP01E1000_PSSR_SPEED_1000MBPS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005065
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005066 /* Read the GIG initialization PCS register (0x00B4) */
5067 ret_val =
5068 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5069 &phy_data);
5070 if (ret_val)
5071 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005073 /* Check the polarity bits */
5074 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5075 e1000_rev_polarity_reversed :
5076 e1000_rev_polarity_normal;
5077 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005078 /* For 10 Mbps, read the polarity bit in the status
5079 * register. (for 100 Mbps this bit is always 0)
5080 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005081 *polarity =
5082 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5083 e1000_rev_polarity_reversed :
5084 e1000_rev_polarity_normal;
5085 }
5086 }
5087 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005088}
5089
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005090/**
5091 * e1000_check_downshift - Check if Downshift occurred
5092 * @hw: Struct containing variables accessed by shared code
5093 * @downshift: output parameter : 0 - No Downshift occurred.
5094 * 1 - Downshift occurred.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005095 *
5096 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07005097 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07005098 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005099 * For phy's older than IGP, this function reads the Downshift bit in the Phy
Linus Torvalds1da177e2005-04-16 15:20:36 -07005100 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5101 * Link Health register. In IGP this bit is latched high, so the driver must
5102 * read it immediately after link is established.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005103 */
Joe Perches64798842008-07-11 15:17:02 -07005104static s32 e1000_check_downshift(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005105{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005106 s32 ret_val;
5107 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005109 if (hw->phy_type == e1000_phy_igp) {
5110 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5111 &phy_data);
5112 if (ret_val)
5113 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005114
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005115 hw->speed_downgraded =
5116 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5117 } else if (hw->phy_type == e1000_phy_m88) {
5118 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5119 &phy_data);
5120 if (ret_val)
5121 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005122
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005123 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5124 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5125 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005126
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005127 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128}
5129
Joe Perches542c3f42012-02-10 12:07:36 +00005130static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5131 IGP01E1000_PHY_AGC_PARAM_A,
5132 IGP01E1000_PHY_AGC_PARAM_B,
5133 IGP01E1000_PHY_AGC_PARAM_C,
5134 IGP01E1000_PHY_AGC_PARAM_D
5135};
5136
5137static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5138{
5139 u16 min_length, max_length;
5140 u16 phy_data, i;
5141 s32 ret_val;
5142
5143 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5144 if (ret_val)
5145 return ret_val;
5146
5147 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5148 return 0;
5149
5150 if (min_length >= e1000_igp_cable_length_50) {
5151 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5152 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5153 &phy_data);
5154 if (ret_val)
5155 return ret_val;
5156
5157 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5158
5159 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5160 phy_data);
5161 if (ret_val)
5162 return ret_val;
5163 }
5164 hw->dsp_config_state = e1000_dsp_config_activated;
5165 } else {
5166 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5167 u32 idle_errs = 0;
5168
5169 /* clear previous idle error counts */
5170 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5171 if (ret_val)
5172 return ret_val;
5173
5174 for (i = 0; i < ffe_idle_err_timeout; i++) {
5175 udelay(1000);
5176 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5177 &phy_data);
5178 if (ret_val)
5179 return ret_val;
5180
5181 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5182 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5183 hw->ffe_config_state = e1000_ffe_config_active;
5184
5185 ret_val = e1000_write_phy_reg(hw,
5186 IGP01E1000_PHY_DSP_FFE,
5187 IGP01E1000_PHY_DSP_FFE_CM_CP);
5188 if (ret_val)
5189 return ret_val;
5190 break;
5191 }
5192
5193 if (idle_errs)
5194 ffe_idle_err_timeout =
5195 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5196 }
5197 }
5198
5199 return 0;
5200}
5201
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005202/**
5203 * e1000_config_dsp_after_link_change
5204 * @hw: Struct containing variables accessed by shared code
5205 * @link_up: was link up at the time this was called
5206 *
5207 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5208 * E1000_SUCCESS at any other case.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209 *
5210 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5211 * gigabit link is achieved to improve link quality.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005212 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005213
Joe Perches64798842008-07-11 15:17:02 -07005214static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005215{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005216 s32 ret_val;
5217 u16 phy_data, phy_saved_data, speed, duplex, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005218
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005219 if (hw->phy_type != e1000_phy_igp)
5220 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005221
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005222 if (link_up) {
5223 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5224 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00005225 e_dbg("Error getting link speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005226 return ret_val;
5227 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005228
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005229 if (speed == SPEED_1000) {
Joe Perches542c3f42012-02-10 12:07:36 +00005230 ret_val = e1000_1000Mb_check_cable_length(hw);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005231 if (ret_val)
5232 return ret_val;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005233 }
5234 } else {
5235 if (hw->dsp_config_state == e1000_dsp_config_activated) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005236 /* Save off the current value of register 0x2F5B to be
5237 * restored at the end of the routines.
5238 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005239 ret_val =
5240 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005242 if (ret_val)
5243 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005244
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005245 /* Disable the PHY transmitter */
5246 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005247
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005248 if (ret_val)
5249 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005250
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005251 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005253 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005254 IGP01E1000_IEEE_FORCE_GIGA);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005255 if (ret_val)
5256 return ret_val;
5257 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5258 ret_val =
5259 e1000_read_phy_reg(hw, dsp_reg_array[i],
5260 &phy_data);
5261 if (ret_val)
5262 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005263
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005264 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5265 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005266
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005267 ret_val =
5268 e1000_write_phy_reg(hw, dsp_reg_array[i],
5269 phy_data);
5270 if (ret_val)
5271 return ret_val;
5272 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005273
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005274 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005275 IGP01E1000_IEEE_RESTART_AUTONEG);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005276 if (ret_val)
5277 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005279 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005281 /* Now enable the transmitter */
5282 ret_val =
5283 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005284
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005285 if (ret_val)
5286 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005288 hw->dsp_config_state = e1000_dsp_config_enabled;
5289 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005290
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005291 if (hw->ffe_config_state == e1000_ffe_config_active) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005292 /* Save off the current value of register 0x2F5B to be
5293 * restored at the end of the routines.
5294 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005295 ret_val =
5296 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005297
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005298 if (ret_val)
5299 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005300
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005301 /* Disable the PHY transmitter */
5302 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005303
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005304 if (ret_val)
5305 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005306
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005307 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005308
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005309 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005310 IGP01E1000_IEEE_FORCE_GIGA);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005311 if (ret_val)
5312 return ret_val;
5313 ret_val =
5314 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5315 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5316 if (ret_val)
5317 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005318
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005319 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005320 IGP01E1000_IEEE_RESTART_AUTONEG);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005321 if (ret_val)
5322 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005323
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005324 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005325
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005326 /* Now enable the transmitter */
5327 ret_val =
5328 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005329
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005330 if (ret_val)
5331 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005332
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005333 hw->ffe_config_state = e1000_ffe_config_enabled;
5334 }
5335 }
5336 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337}
5338
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005339/**
5340 * e1000_set_phy_mode - Set PHY to class A mode
5341 * @hw: Struct containing variables accessed by shared code
5342 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005343 * Assumes the following operations will follow to enable the new class mode.
5344 * 1. Do a PHY soft reset
5345 * 2. Restart auto-negotiation or force link.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005346 */
Joe Perches64798842008-07-11 15:17:02 -07005347static s32 e1000_set_phy_mode(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005348{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005349 s32 ret_val;
5350 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005352 if ((hw->mac_type == e1000_82545_rev_3) &&
5353 (hw->media_type == e1000_media_type_copper)) {
5354 ret_val =
5355 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5356 &eeprom_data);
5357 if (ret_val) {
5358 return ret_val;
5359 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005360
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005361 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5362 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5363 ret_val =
5364 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5365 0x000B);
5366 if (ret_val)
5367 return ret_val;
5368 ret_val =
5369 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5370 0x8104);
5371 if (ret_val)
5372 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005373
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005374 hw->phy_reset_disable = false;
5375 }
5376 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005377
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005378 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379}
5380
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005381/**
5382 * e1000_set_d3_lplu_state - set d3 link power state
5383 * @hw: Struct containing variables accessed by shared code
5384 * @active: true to enable lplu false to disable lplu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005385 *
5386 * This function sets the lplu state according to the active flag. When
5387 * activating lplu this function also disables smart speed and vise versa.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005388 * lplu will not be activated unless the device autonegotiation advertisement
Linus Torvalds1da177e2005-04-16 15:20:36 -07005389 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005390 *
5391 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5392 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005393 */
Joe Perches64798842008-07-11 15:17:02 -07005394static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005395{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005396 s32 ret_val;
5397 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005398
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005399 if (hw->phy_type != e1000_phy_igp)
5400 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005401
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005402 /* During driver activity LPLU should not be used or it will attain link
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005403 * from the lowest speeds starting from 10Mbps. The capability is used
5404 * for Dx transitions and states
5405 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005406 if (hw->mac_type == e1000_82541_rev_2
5407 || hw->mac_type == e1000_82547_rev_2) {
5408 ret_val =
5409 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5410 if (ret_val)
5411 return ret_val;
5412 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005413
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005414 if (!active) {
5415 if (hw->mac_type == e1000_82541_rev_2 ||
5416 hw->mac_type == e1000_82547_rev_2) {
5417 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5418 ret_val =
5419 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5420 phy_data);
5421 if (ret_val)
5422 return ret_val;
5423 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005424
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005425 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5426 * during Dx states where the power conservation is most
5427 * important. During driver activity we should enable
5428 * SmartSpeed, so performance is maintained.
5429 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005430 if (hw->smart_speed == e1000_smart_speed_on) {
5431 ret_val =
5432 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5433 &phy_data);
5434 if (ret_val)
5435 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005437 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5438 ret_val =
5439 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5440 phy_data);
5441 if (ret_val)
5442 return ret_val;
5443 } else if (hw->smart_speed == e1000_smart_speed_off) {
5444 ret_val =
5445 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5446 &phy_data);
5447 if (ret_val)
5448 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005449
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005450 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5451 ret_val =
5452 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5453 phy_data);
5454 if (ret_val)
5455 return ret_val;
5456 }
5457 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5458 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5459 || (hw->autoneg_advertised ==
5460 AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005461
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005462 if (hw->mac_type == e1000_82541_rev_2 ||
5463 hw->mac_type == e1000_82547_rev_2) {
5464 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5465 ret_val =
5466 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5467 phy_data);
5468 if (ret_val)
5469 return ret_val;
5470 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005471
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005472 /* When LPLU is enabled we should disable SmartSpeed */
5473 ret_val =
5474 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5475 &phy_data);
5476 if (ret_val)
5477 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005478
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005479 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5480 ret_val =
5481 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5482 phy_data);
5483 if (ret_val)
5484 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005485
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005486 }
5487 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005488}
5489
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005490/**
5491 * e1000_set_vco_speed
5492 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07005493 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005494 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5495 */
Joe Perches64798842008-07-11 15:17:02 -07005496static s32 e1000_set_vco_speed(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005497{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005498 s32 ret_val;
5499 u16 default_page = 0;
5500 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005501
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005502 switch (hw->mac_type) {
5503 case e1000_82545_rev_3:
5504 case e1000_82546_rev_3:
5505 break;
5506 default:
5507 return E1000_SUCCESS;
5508 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005509
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005510 /* Set PHY register 30, page 5, bit 8 to 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005511
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005512 ret_val =
5513 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5514 if (ret_val)
5515 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005516
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005517 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5518 if (ret_val)
5519 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005520
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005521 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5522 if (ret_val)
5523 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005524
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005525 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5526 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5527 if (ret_val)
5528 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005529
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005530 /* Set PHY register 30, page 4, bit 11 to 1 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005532 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5533 if (ret_val)
5534 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005535
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005536 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5537 if (ret_val)
5538 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005539
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005540 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5541 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5542 if (ret_val)
5543 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005544
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005545 ret_val =
5546 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5547 if (ret_val)
5548 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005549
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005550 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005551}
5552
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005553
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005554/**
5555 * e1000_enable_mng_pass_thru - check for bmc pass through
5556 * @hw: Struct containing variables accessed by shared code
5557 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005558 * Verifies the hardware needs to allow ARPs to be processed by the host
Joe Perchesc3033b02008-03-21 11:06:25 -07005559 * returns: - true/false
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005560 */
Joe Perches64798842008-07-11 15:17:02 -07005561u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005562{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005563 u32 manc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005564
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005565 if (hw->asf_firmware_present) {
5566 manc = er32(MANC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005567
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005568 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5569 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5570 return false;
5571 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5572 return true;
5573 }
5574 return false;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005575}
5576
Joe Perches64798842008-07-11 15:17:02 -07005577static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005578{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005579 s32 ret_val;
5580 u16 mii_status_reg;
5581 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005582
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005583 /* Polarity reversal workaround for forced 10F/10H links. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005584
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005585 /* Disable the transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005586
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005587 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5588 if (ret_val)
5589 return ret_val;
5590 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5591 if (ret_val)
5592 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005593
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005594 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5595 if (ret_val)
5596 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005598 /* This loop will early-out if the NO link condition has been met. */
5599 for (i = PHY_FORCE_TIME; i > 0; i--) {
5600 /* Read the MII Status Register and wait for Link Status bit
5601 * to be clear.
5602 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005603
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005604 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5605 if (ret_val)
5606 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005607
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005608 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5609 if (ret_val)
5610 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005611
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005612 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5613 break;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005614 msleep(100);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005615 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005616
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005617 /* Recommended delay time after link has been lost */
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005618 msleep(1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005619
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005620 /* Now we will re-enable th transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005621
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005622 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5623 if (ret_val)
5624 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005625 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005626 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5627 if (ret_val)
5628 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005629 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005630 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5631 if (ret_val)
5632 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005633 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005634 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5635 if (ret_val)
5636 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005637
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005638 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5639 if (ret_val)
5640 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005641
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005642 /* This loop will early-out if the link condition has been met. */
5643 for (i = PHY_FORCE_TIME; i > 0; i--) {
5644 /* Read the MII Status Register and wait for Link Status bit
5645 * to be set.
5646 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005647
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005648 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5649 if (ret_val)
5650 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005651
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005652 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5653 if (ret_val)
5654 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005655
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005656 if (mii_status_reg & MII_SR_LINK_STATUS)
5657 break;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005658 msleep(100);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005659 }
5660 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005661}
5662
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005663/**
5664 * e1000_get_auto_rd_done
5665 * @hw: Struct containing variables accessed by shared code
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005666 *
5667 * Check for EEPROM Auto Read bit done.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005668 * returns: - E1000_ERR_RESET if fail to reset MAC
5669 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005670 */
Joe Perches64798842008-07-11 15:17:02 -07005671static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005672{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005673 msleep(5);
5674 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005675}
5676
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005677/**
5678 * e1000_get_phy_cfg_done
5679 * @hw: Struct containing variables accessed by shared code
5680 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005681 * Checks if the PHY configuration is done
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005682 * returns: - E1000_ERR_RESET if fail to reset MAC
5683 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005684 */
Joe Perches64798842008-07-11 15:17:02 -07005685static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005686{
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005687 msleep(10);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005688 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005689}