blob: 774d00b8066bef282a80815bc76730792ac52cae [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Marc Zyngier1e947ba2015-01-29 11:59:54 +000031#include <asm/virt.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050032
33#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050034
35extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36
Marc Zyngier5a677ce2013-04-12 19:12:06 +010037static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010038static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000039static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050040static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
Marc Zyngier5a677ce2013-04-12 19:12:06 +010042static unsigned long hyp_idmap_start;
43static unsigned long hyp_idmap_end;
44static phys_addr_t hyp_idmap_vector;
45
Christoffer Dall38f791a2014-10-10 12:14:28 +020046#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000047
Christoffer Dall9b5fdb92013-10-02 15:32:01 -070048#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
Mario Smarduchc6473552015-01-15 15:58:56 -080049#define kvm_pud_huge(_x) pud_huge(_x)
Christoffer Dallad361f02012-11-01 17:14:45 +010050
Mario Smarduch15a49a42015-01-15 15:58:58 -080051#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
52#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
53
54static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55{
Mario Smarduch15a49a42015-01-15 15:58:58 -080056 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080057}
58
59/**
60 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61 * @kvm: pointer to kvm structure.
62 *
63 * Interface to HYP function to flush all VM TLB entries
64 */
65void kvm_flush_remote_tlbs(struct kvm *kvm)
66{
67 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080068}
Christoffer Dall342cd0a2013-01-20 18:28:06 -050069
Marc Zyngier48762762013-01-28 15:27:00 +000070static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050071{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +010072 /*
73 * This function also gets called when dealing with HYP page
74 * tables. As HYP doesn't have an associated struct kvm (and
75 * the HYP page tables are fairly static), we don't do
76 * anything there.
77 */
78 if (kvm)
79 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050080}
81
Marc Zyngier363ef892014-12-19 16:48:06 +000082/*
83 * D-Cache management functions. They take the page table entries by
84 * value, as they are flushing the cache using the kernel mapping (or
85 * kmap on 32bit).
86 */
87static void kvm_flush_dcache_pte(pte_t pte)
88{
89 __kvm_flush_dcache_pte(pte);
90}
91
92static void kvm_flush_dcache_pmd(pmd_t pmd)
93{
94 __kvm_flush_dcache_pmd(pmd);
95}
96
97static void kvm_flush_dcache_pud(pud_t pud)
98{
99 __kvm_flush_dcache_pud(pud);
100}
101
Ard Biesheuvele6fab542015-11-10 15:11:20 +0100102static bool kvm_is_device_pfn(unsigned long pfn)
103{
104 return !pfn_valid(pfn);
105}
106
Mario Smarduch15a49a42015-01-15 15:58:58 -0800107/**
108 * stage2_dissolve_pmd() - clear and flush huge PMD entry
109 * @kvm: pointer to kvm structure.
110 * @addr: IPA
111 * @pmd: pmd pointer for IPA
112 *
113 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
114 * pages in the range dirty.
115 */
116static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
117{
118 if (!kvm_pmd_huge(*pmd))
119 return;
120
121 pmd_clear(pmd);
122 kvm_tlb_flush_vmid_ipa(kvm, addr);
123 put_page(virt_to_page(pmd));
124}
125
Christoffer Dalld5d81842013-01-20 18:28:07 -0500126static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
127 int min, int max)
128{
129 void *page;
130
131 BUG_ON(max > KVM_NR_MEM_OBJS);
132 if (cache->nobjs >= min)
133 return 0;
134 while (cache->nobjs < max) {
135 page = (void *)__get_free_page(PGALLOC_GFP);
136 if (!page)
137 return -ENOMEM;
138 cache->objects[cache->nobjs++] = page;
139 }
140 return 0;
141}
142
143static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
144{
145 while (mc->nobjs)
146 free_page((unsigned long)mc->objects[--mc->nobjs]);
147}
148
149static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
150{
151 void *p;
152
153 BUG_ON(!mc || !mc->nobjs);
154 p = mc->objects[--mc->nobjs];
155 return p;
156}
157
Christoffer Dall4f853a72014-05-09 23:31:31 +0200158static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100159{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200160 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
161 pgd_clear(pgd);
162 kvm_tlb_flush_vmid_ipa(kvm, addr);
163 pud_free(NULL, pud_table);
164 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100165}
166
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100167static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500168{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200169 pmd_t *pmd_table = pmd_offset(pud, 0);
170 VM_BUG_ON(pud_huge(*pud));
171 pud_clear(pud);
172 kvm_tlb_flush_vmid_ipa(kvm, addr);
173 pmd_free(NULL, pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100174 put_page(virt_to_page(pud));
175}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500176
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100177static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100178{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200179 pte_t *pte_table = pte_offset_kernel(pmd, 0);
180 VM_BUG_ON(kvm_pmd_huge(*pmd));
181 pmd_clear(pmd);
182 kvm_tlb_flush_vmid_ipa(kvm, addr);
183 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100184 put_page(virt_to_page(pmd));
185}
186
Marc Zyngier363ef892014-12-19 16:48:06 +0000187/*
188 * Unmapping vs dcache management:
189 *
190 * If a guest maps certain memory pages as uncached, all writes will
191 * bypass the data cache and go directly to RAM. However, the CPUs
192 * can still speculate reads (not writes) and fill cache lines with
193 * data.
194 *
195 * Those cache lines will be *clean* cache lines though, so a
196 * clean+invalidate operation is equivalent to an invalidate
197 * operation, because no cache lines are marked dirty.
198 *
199 * Those clean cache lines could be filled prior to an uncached write
200 * by the guest, and the cache coherent IO subsystem would therefore
201 * end up writing old data to disk.
202 *
203 * This is why right after unmapping a page/section and invalidating
204 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
205 * the IO subsystem will never hit in the cache.
206 */
Christoffer Dall4f853a72014-05-09 23:31:31 +0200207static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
208 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100209{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200210 phys_addr_t start_addr = addr;
211 pte_t *pte, *start_pte;
212
213 start_pte = pte = pte_offset_kernel(pmd, addr);
214 do {
215 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000216 pte_t old_pte = *pte;
217
Christoffer Dall4f853a72014-05-09 23:31:31 +0200218 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200219 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000220
221 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100222 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000223 kvm_flush_dcache_pte(old_pte);
224
225 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200226 }
227 } while (pte++, addr += PAGE_SIZE, addr != end);
228
Christoffer Dall38f791a2014-10-10 12:14:28 +0200229 if (kvm_pte_table_empty(kvm, start_pte))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200230 clear_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500231}
232
Christoffer Dall4f853a72014-05-09 23:31:31 +0200233static void unmap_pmds(struct kvm *kvm, pud_t *pud,
234 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500235{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200236 phys_addr_t next, start_addr = addr;
237 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000238
Christoffer Dall4f853a72014-05-09 23:31:31 +0200239 start_pmd = pmd = pmd_offset(pud, addr);
240 do {
241 next = kvm_pmd_addr_end(addr, end);
242 if (!pmd_none(*pmd)) {
243 if (kvm_pmd_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000244 pmd_t old_pmd = *pmd;
245
Christoffer Dall4f853a72014-05-09 23:31:31 +0200246 pmd_clear(pmd);
247 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000248
249 kvm_flush_dcache_pmd(old_pmd);
250
Christoffer Dall4f853a72014-05-09 23:31:31 +0200251 put_page(virt_to_page(pmd));
252 } else {
253 unmap_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100254 }
255 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200256 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100257
Christoffer Dall38f791a2014-10-10 12:14:28 +0200258 if (kvm_pmd_table_empty(kvm, start_pmd))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200259 clear_pud_entry(kvm, pud, start_addr);
260}
261
262static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
263 phys_addr_t addr, phys_addr_t end)
264{
265 phys_addr_t next, start_addr = addr;
266 pud_t *pud, *start_pud;
267
268 start_pud = pud = pud_offset(pgd, addr);
269 do {
270 next = kvm_pud_addr_end(addr, end);
271 if (!pud_none(*pud)) {
272 if (pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000273 pud_t old_pud = *pud;
274
Christoffer Dall4f853a72014-05-09 23:31:31 +0200275 pud_clear(pud);
276 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000277
278 kvm_flush_dcache_pud(old_pud);
279
Christoffer Dall4f853a72014-05-09 23:31:31 +0200280 put_page(virt_to_page(pud));
281 } else {
282 unmap_pmds(kvm, pud, addr, next);
283 }
284 }
285 } while (pud++, addr = next, addr != end);
286
Christoffer Dall38f791a2014-10-10 12:14:28 +0200287 if (kvm_pud_table_empty(kvm, start_pud))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200288 clear_pgd_entry(kvm, pgd, start_addr);
289}
290
291
292static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
293 phys_addr_t start, u64 size)
294{
295 pgd_t *pgd;
296 phys_addr_t addr = start, end = start + size;
297 phys_addr_t next;
298
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000299 pgd = pgdp + kvm_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200300 do {
301 next = kvm_pgd_addr_end(addr, end);
Mark Rutland7cbb87d2014-10-28 19:36:45 +0000302 if (!pgd_none(*pgd))
303 unmap_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200304 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000305}
306
Marc Zyngier9d218a12014-01-15 12:50:23 +0000307static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
308 phys_addr_t addr, phys_addr_t end)
309{
310 pte_t *pte;
311
312 pte = pte_offset_kernel(pmd, addr);
313 do {
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100314 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000315 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000316 } while (pte++, addr += PAGE_SIZE, addr != end);
317}
318
319static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
320 phys_addr_t addr, phys_addr_t end)
321{
322 pmd_t *pmd;
323 phys_addr_t next;
324
325 pmd = pmd_offset(pud, addr);
326 do {
327 next = kvm_pmd_addr_end(addr, end);
328 if (!pmd_none(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000329 if (kvm_pmd_huge(*pmd))
330 kvm_flush_dcache_pmd(*pmd);
331 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000332 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000333 }
334 } while (pmd++, addr = next, addr != end);
335}
336
337static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
338 phys_addr_t addr, phys_addr_t end)
339{
340 pud_t *pud;
341 phys_addr_t next;
342
343 pud = pud_offset(pgd, addr);
344 do {
345 next = kvm_pud_addr_end(addr, end);
346 if (!pud_none(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000347 if (pud_huge(*pud))
348 kvm_flush_dcache_pud(*pud);
349 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000350 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000351 }
352 } while (pud++, addr = next, addr != end);
353}
354
355static void stage2_flush_memslot(struct kvm *kvm,
356 struct kvm_memory_slot *memslot)
357{
358 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
359 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
360 phys_addr_t next;
361 pgd_t *pgd;
362
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000363 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000364 do {
365 next = kvm_pgd_addr_end(addr, end);
366 stage2_flush_puds(kvm, pgd, addr, next);
367 } while (pgd++, addr = next, addr != end);
368}
369
370/**
371 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
372 * @kvm: The struct kvm pointer
373 *
374 * Go through the stage 2 page tables and invalidate any cache lines
375 * backing memory already mapped to the VM.
376 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000377static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000378{
379 struct kvm_memslots *slots;
380 struct kvm_memory_slot *memslot;
381 int idx;
382
383 idx = srcu_read_lock(&kvm->srcu);
384 spin_lock(&kvm->mmu_lock);
385
386 slots = kvm_memslots(kvm);
387 kvm_for_each_memslot(memslot, slots)
388 stage2_flush_memslot(kvm, memslot);
389
390 spin_unlock(&kvm->mmu_lock);
391 srcu_read_unlock(&kvm->srcu, idx);
392}
393
Marc Zyngier000d3992013-03-05 02:43:17 +0000394/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100395 * free_boot_hyp_pgd - free HYP boot page tables
396 *
397 * Free the HYP boot page tables. The bounce page is also freed.
398 */
399void free_boot_hyp_pgd(void)
400{
401 mutex_lock(&kvm_hyp_pgd_mutex);
402
403 if (boot_hyp_pgd) {
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100404 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
405 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200406 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100407 boot_hyp_pgd = NULL;
408 }
409
410 if (hyp_pgd)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100411 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100412
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100413 mutex_unlock(&kvm_hyp_pgd_mutex);
414}
415
416/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100417 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000418 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100419 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
420 * therefore contains either mappings in the kernel memory area (above
421 * PAGE_OFFSET), or device mappings in the vmalloc range (from
422 * VMALLOC_START to VMALLOC_END).
423 *
424 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000425 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100426void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000427{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500428 unsigned long addr;
429
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100430 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100431
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100432 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100433
Marc Zyngier4f728272013-04-12 19:12:05 +0100434 if (hyp_pgd) {
435 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100436 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100437 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100438 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
439
Christoffer Dall38f791a2014-10-10 12:14:28 +0200440 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100441 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100442 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000443 if (merged_hyp_pgd) {
444 clear_page(merged_hyp_pgd);
445 free_page((unsigned long)merged_hyp_pgd);
446 merged_hyp_pgd = NULL;
447 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100448
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500449 mutex_unlock(&kvm_hyp_pgd_mutex);
450}
451
452static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100453 unsigned long end, unsigned long pfn,
454 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500455{
456 pte_t *pte;
457 unsigned long addr;
458
Marc Zyngier3562c762013-04-12 19:12:02 +0100459 addr = start;
460 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100461 pte = pte_offset_kernel(pmd, addr);
462 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100463 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100464 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100465 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100466 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500467}
468
469static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100470 unsigned long end, unsigned long pfn,
471 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500472{
473 pmd_t *pmd;
474 pte_t *pte;
475 unsigned long addr, next;
476
Marc Zyngier3562c762013-04-12 19:12:02 +0100477 addr = start;
478 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100479 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500480
481 BUG_ON(pmd_sect(*pmd));
482
483 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100484 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500485 if (!pte) {
486 kvm_err("Cannot allocate Hyp pte\n");
487 return -ENOMEM;
488 }
489 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100490 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100491 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500492 }
493
494 next = pmd_addr_end(addr, end);
495
Marc Zyngier6060df82013-04-12 19:12:01 +0100496 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
497 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100498 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500499
500 return 0;
501}
502
Christoffer Dall38f791a2014-10-10 12:14:28 +0200503static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
504 unsigned long end, unsigned long pfn,
505 pgprot_t prot)
506{
507 pud_t *pud;
508 pmd_t *pmd;
509 unsigned long addr, next;
510 int ret;
511
512 addr = start;
513 do {
514 pud = pud_offset(pgd, addr);
515
516 if (pud_none_or_clear_bad(pud)) {
517 pmd = pmd_alloc_one(NULL, addr);
518 if (!pmd) {
519 kvm_err("Cannot allocate Hyp pmd\n");
520 return -ENOMEM;
521 }
522 pud_populate(NULL, pud, pmd);
523 get_page(virt_to_page(pud));
524 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
525 }
526
527 next = pud_addr_end(addr, end);
528 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
529 if (ret)
530 return ret;
531 pfn += (next - addr) >> PAGE_SHIFT;
532 } while (addr = next, addr != end);
533
534 return 0;
535}
536
Marc Zyngier6060df82013-04-12 19:12:01 +0100537static int __create_hyp_mappings(pgd_t *pgdp,
538 unsigned long start, unsigned long end,
539 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500540{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500541 pgd_t *pgd;
542 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500543 unsigned long addr, next;
544 int err = 0;
545
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500546 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100547 addr = start & PAGE_MASK;
548 end = PAGE_ALIGN(end);
549 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100550 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500551
Christoffer Dall38f791a2014-10-10 12:14:28 +0200552 if (pgd_none(*pgd)) {
553 pud = pud_alloc_one(NULL, addr);
554 if (!pud) {
555 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500556 err = -ENOMEM;
557 goto out;
558 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200559 pgd_populate(NULL, pgd, pud);
560 get_page(virt_to_page(pgd));
561 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500562 }
563
564 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200565 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500566 if (err)
567 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100568 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100569 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500570out:
571 mutex_unlock(&kvm_hyp_pgd_mutex);
572 return err;
573}
574
Christoffer Dall40c27292013-11-15 13:14:12 -0800575static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
576{
577 if (!is_vmalloc_addr(kaddr)) {
578 BUG_ON(!virt_addr_valid(kaddr));
579 return __pa(kaddr);
580 } else {
581 return page_to_phys(vmalloc_to_page(kaddr)) +
582 offset_in_page(kaddr);
583 }
584}
585
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500586/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100587 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500588 * @from: The virtual kernel start address of the range
589 * @to: The virtual kernel end address of the range (exclusive)
590 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100591 * The same virtual address as the kernel virtual address is also used
592 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
593 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500594 */
595int create_hyp_mappings(void *from, void *to)
596{
Christoffer Dall40c27292013-11-15 13:14:12 -0800597 phys_addr_t phys_addr;
598 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100599 unsigned long start = KERN_TO_HYP((unsigned long)from);
600 unsigned long end = KERN_TO_HYP((unsigned long)to);
601
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000602 if (is_kernel_in_hyp_mode())
603 return 0;
604
Christoffer Dall40c27292013-11-15 13:14:12 -0800605 start = start & PAGE_MASK;
606 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100607
Christoffer Dall40c27292013-11-15 13:14:12 -0800608 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
609 int err;
610
611 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
612 err = __create_hyp_mappings(hyp_pgd, virt_addr,
613 virt_addr + PAGE_SIZE,
614 __phys_to_pfn(phys_addr),
615 PAGE_HYP);
616 if (err)
617 return err;
618 }
619
620 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500621}
622
623/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100624 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
625 * @from: The kernel start VA of the range
626 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100627 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100628 *
629 * The resulting HYP VA is the same as the kernel VA, modulo
630 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500631 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100632int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500633{
Marc Zyngier6060df82013-04-12 19:12:01 +0100634 unsigned long start = KERN_TO_HYP((unsigned long)from);
635 unsigned long end = KERN_TO_HYP((unsigned long)to);
636
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000637 if (is_kernel_in_hyp_mode())
638 return 0;
639
Marc Zyngier6060df82013-04-12 19:12:01 +0100640 /* Check for a valid kernel IO mapping */
641 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
642 return -EINVAL;
643
644 return __create_hyp_mappings(hyp_pgd, start, end,
645 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500646}
647
Marc Zyngiera9873702015-03-10 19:06:59 +0000648/* Free the HW pgd, one page at a time */
649static void kvm_free_hwpgd(void *hwpgd)
650{
651 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
652}
653
654/* Allocate the HW PGD, making sure that each page gets its own refcount */
655static void *kvm_alloc_hwpgd(void)
656{
657 unsigned int size = kvm_get_hwpgd_size();
658
659 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
660}
661
Christoffer Dalld5d81842013-01-20 18:28:07 -0500662/**
663 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
664 * @kvm: The KVM struct pointer for the VM.
665 *
Vladimir Murzin9d4dc6882015-11-16 11:28:16 +0000666 * Allocates only the stage-2 HW PGD level table(s) (can support either full
667 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
668 * allocated pages.
Christoffer Dalld5d81842013-01-20 18:28:07 -0500669 *
670 * Note we don't need locking here as this is only called when the VM is
671 * created, which can only be done once.
672 */
673int kvm_alloc_stage2_pgd(struct kvm *kvm)
674{
675 pgd_t *pgd;
Marc Zyngiera9873702015-03-10 19:06:59 +0000676 void *hwpgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500677
678 if (kvm->arch.pgd != NULL) {
679 kvm_err("kvm_arch already initialized?\n");
680 return -EINVAL;
681 }
682
Marc Zyngiera9873702015-03-10 19:06:59 +0000683 hwpgd = kvm_alloc_hwpgd();
684 if (!hwpgd)
685 return -ENOMEM;
686
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000687 /*
688 * When the kernel uses more levels of page tables than the
Marc Zyngiera9873702015-03-10 19:06:59 +0000689 * guest, we allocate a fake PGD and pre-populate it to point
690 * to the next-level page table, which will be the real
691 * initial page table pointed to by the VTTBR.
Marc Zyngiera9873702015-03-10 19:06:59 +0000692 */
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000693 pgd = kvm_setup_fake_pgd(hwpgd);
694 if (IS_ERR(pgd)) {
695 kvm_free_hwpgd(hwpgd);
696 return PTR_ERR(pgd);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200697 }
698
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100699 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500700 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500701 return 0;
702}
703
Christoffer Dalld5d81842013-01-20 18:28:07 -0500704/**
705 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
706 * @kvm: The VM pointer
707 * @start: The intermediate physical base address of the range to unmap
708 * @size: The size of the area to unmap
709 *
710 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
711 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
712 * destroying the VM), otherwise another faulting VCPU may come in and mess
713 * with things behind our backs.
714 */
715static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
716{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100717 unmap_range(kvm, kvm->arch.pgd, start, size);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500718}
719
Christoffer Dall957db102014-11-27 10:35:03 +0100720static void stage2_unmap_memslot(struct kvm *kvm,
721 struct kvm_memory_slot *memslot)
722{
723 hva_t hva = memslot->userspace_addr;
724 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
725 phys_addr_t size = PAGE_SIZE * memslot->npages;
726 hva_t reg_end = hva + size;
727
728 /*
729 * A memory region could potentially cover multiple VMAs, and any holes
730 * between them, so iterate over all of them to find out if we should
731 * unmap any of them.
732 *
733 * +--------------------------------------------+
734 * +---------------+----------------+ +----------------+
735 * | : VMA 1 | VMA 2 | | VMA 3 : |
736 * +---------------+----------------+ +----------------+
737 * | memory region |
738 * +--------------------------------------------+
739 */
740 do {
741 struct vm_area_struct *vma = find_vma(current->mm, hva);
742 hva_t vm_start, vm_end;
743
744 if (!vma || vma->vm_start >= reg_end)
745 break;
746
747 /*
748 * Take the intersection of this VMA with the memory region
749 */
750 vm_start = max(hva, vma->vm_start);
751 vm_end = min(reg_end, vma->vm_end);
752
753 if (!(vma->vm_flags & VM_PFNMAP)) {
754 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
755 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
756 }
757 hva = vm_end;
758 } while (hva < reg_end);
759}
760
761/**
762 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
763 * @kvm: The struct kvm pointer
764 *
765 * Go through the memregions and unmap any reguler RAM
766 * backing memory already mapped to the VM.
767 */
768void stage2_unmap_vm(struct kvm *kvm)
769{
770 struct kvm_memslots *slots;
771 struct kvm_memory_slot *memslot;
772 int idx;
773
774 idx = srcu_read_lock(&kvm->srcu);
775 spin_lock(&kvm->mmu_lock);
776
777 slots = kvm_memslots(kvm);
778 kvm_for_each_memslot(memslot, slots)
779 stage2_unmap_memslot(kvm, memslot);
780
781 spin_unlock(&kvm->mmu_lock);
782 srcu_read_unlock(&kvm->srcu, idx);
783}
784
Christoffer Dalld5d81842013-01-20 18:28:07 -0500785/**
786 * kvm_free_stage2_pgd - free all stage-2 tables
787 * @kvm: The KVM struct pointer for the VM.
788 *
789 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
790 * underlying level-2 and level-3 tables before freeing the actual level-1 table
791 * and setting the struct pointer to NULL.
792 *
793 * Note we don't need locking here as this is only called when the VM is
794 * destroyed, which can only be done once.
795 */
796void kvm_free_stage2_pgd(struct kvm *kvm)
797{
798 if (kvm->arch.pgd == NULL)
799 return;
800
801 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Marc Zyngiera9873702015-03-10 19:06:59 +0000802 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000803 kvm_free_fake_pgd(kvm->arch.pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500804 kvm->arch.pgd = NULL;
805}
806
Christoffer Dall38f791a2014-10-10 12:14:28 +0200807static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
808 phys_addr_t addr)
809{
810 pgd_t *pgd;
811 pud_t *pud;
812
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000813 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200814 if (WARN_ON(pgd_none(*pgd))) {
815 if (!cache)
816 return NULL;
817 pud = mmu_memory_cache_alloc(cache);
818 pgd_populate(NULL, pgd, pud);
819 get_page(virt_to_page(pgd));
820 }
821
822 return pud_offset(pgd, addr);
823}
824
Christoffer Dallad361f02012-11-01 17:14:45 +0100825static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
826 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500827{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500828 pud_t *pud;
829 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500830
Christoffer Dall38f791a2014-10-10 12:14:28 +0200831 pud = stage2_get_pud(kvm, cache, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500832 if (pud_none(*pud)) {
833 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100834 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500835 pmd = mmu_memory_cache_alloc(cache);
836 pud_populate(NULL, pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500837 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100838 }
839
Christoffer Dallad361f02012-11-01 17:14:45 +0100840 return pmd_offset(pud, addr);
841}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500842
Christoffer Dallad361f02012-11-01 17:14:45 +0100843static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
844 *cache, phys_addr_t addr, const pmd_t *new_pmd)
845{
846 pmd_t *pmd, old_pmd;
847
848 pmd = stage2_get_pmd(kvm, cache, addr);
849 VM_BUG_ON(!pmd);
850
851 /*
852 * Mapping in huge pages should only happen through a fault. If a
853 * page is merged into a transparent huge page, the individual
854 * subpages of that huge page should be unmapped through MMU
855 * notifiers before we get here.
856 *
857 * Merging of CompoundPages is not supported; they should become
858 * splitting first, unmapped, merged, and mapped back in on-demand.
859 */
860 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
861
862 old_pmd = *pmd;
863 kvm_set_pmd(pmd, *new_pmd);
864 if (pmd_present(old_pmd))
865 kvm_tlb_flush_vmid_ipa(kvm, addr);
866 else
867 get_page(virt_to_page(pmd));
868 return 0;
869}
870
871static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800872 phys_addr_t addr, const pte_t *new_pte,
873 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100874{
875 pmd_t *pmd;
876 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800877 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
878 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
879
880 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100881
Christoffer Dall38f791a2014-10-10 12:14:28 +0200882 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100883 pmd = stage2_get_pmd(kvm, cache, addr);
884 if (!pmd) {
885 /*
886 * Ignore calls from kvm_set_spte_hva for unallocated
887 * address ranges.
888 */
889 return 0;
890 }
891
Mario Smarduch15a49a42015-01-15 15:58:58 -0800892 /*
893 * While dirty page logging - dissolve huge PMD, then continue on to
894 * allocate page.
895 */
896 if (logging_active)
897 stage2_dissolve_pmd(kvm, addr, pmd);
898
Christoffer Dallad361f02012-11-01 17:14:45 +0100899 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500900 if (pmd_none(*pmd)) {
901 if (!cache)
902 return 0; /* ignore calls from kvm_set_spte_hva */
903 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100904 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500905 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500906 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100907 }
908
909 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500910
911 if (iomap && pte_present(*pte))
912 return -EFAULT;
913
914 /* Create 2nd stage page table mapping - Level 3 */
915 old_pte = *pte;
916 kvm_set_pte(pte, *new_pte);
917 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000918 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500919 else
920 get_page(virt_to_page(pte));
921
922 return 0;
923}
924
925/**
926 * kvm_phys_addr_ioremap - map a device range to guest IPA
927 *
928 * @kvm: The KVM pointer
929 * @guest_ipa: The IPA at which to insert the mapping
930 * @pa: The physical address of the device
931 * @size: The size of the mapping
932 */
933int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700934 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500935{
936 phys_addr_t addr, end;
937 int ret = 0;
938 unsigned long pfn;
939 struct kvm_mmu_memory_cache cache = { 0, };
940
941 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
942 pfn = __phys_to_pfn(pa);
943
944 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100945 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500946
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700947 if (writable)
948 kvm_set_s2pte_writable(&pte);
949
Christoffer Dall38f791a2014-10-10 12:14:28 +0200950 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
951 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500952 if (ret)
953 goto out;
954 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -0800955 ret = stage2_set_pte(kvm, &cache, addr, &pte,
956 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500957 spin_unlock(&kvm->mmu_lock);
958 if (ret)
959 goto out;
960
961 pfn++;
962 }
963
964out:
965 mmu_free_memory_cache(&cache);
966 return ret;
967}
968
Dan Williamsba049e92016-01-15 16:56:11 -0800969static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700970{
Dan Williamsba049e92016-01-15 16:56:11 -0800971 kvm_pfn_t pfn = *pfnp;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700972 gfn_t gfn = *ipap >> PAGE_SHIFT;
973
974 if (PageTransCompound(pfn_to_page(pfn))) {
975 unsigned long mask;
976 /*
977 * The address we faulted on is backed by a transparent huge
978 * page. However, because we map the compound huge page and
979 * not the individual tail page, we need to transfer the
980 * refcount to the head page. We have to be careful that the
981 * THP doesn't start to split while we are adjusting the
982 * refcounts.
983 *
984 * We are sure this doesn't happen, because mmu_notifier_retry
985 * was successful and we are holding the mmu_lock, so if this
986 * THP is trying to split, it will be blocked in the mmu
987 * notifier before touching any of the pages, specifically
988 * before being able to call __split_huge_page_refcount().
989 *
990 * We can therefore safely transfer the refcount from PG_tail
991 * to PG_head and switch the pfn from a tail page to the head
992 * page accordingly.
993 */
994 mask = PTRS_PER_PMD - 1;
995 VM_BUG_ON((gfn & mask) != (pfn & mask));
996 if (pfn & mask) {
997 *ipap &= PMD_MASK;
998 kvm_release_pfn_clean(pfn);
999 pfn &= ~mask;
1000 kvm_get_pfn(pfn);
1001 *pfnp = pfn;
1002 }
1003
1004 return true;
1005 }
1006
1007 return false;
1008}
1009
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001010static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1011{
1012 if (kvm_vcpu_trap_is_iabt(vcpu))
1013 return false;
1014
1015 return kvm_vcpu_dabt_iswrite(vcpu);
1016}
1017
Mario Smarduchc6473552015-01-15 15:58:56 -08001018/**
1019 * stage2_wp_ptes - write protect PMD range
1020 * @pmd: pointer to pmd entry
1021 * @addr: range start address
1022 * @end: range end address
1023 */
1024static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1025{
1026 pte_t *pte;
1027
1028 pte = pte_offset_kernel(pmd, addr);
1029 do {
1030 if (!pte_none(*pte)) {
1031 if (!kvm_s2pte_readonly(pte))
1032 kvm_set_s2pte_readonly(pte);
1033 }
1034 } while (pte++, addr += PAGE_SIZE, addr != end);
1035}
1036
1037/**
1038 * stage2_wp_pmds - write protect PUD range
1039 * @pud: pointer to pud entry
1040 * @addr: range start address
1041 * @end: range end address
1042 */
1043static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1044{
1045 pmd_t *pmd;
1046 phys_addr_t next;
1047
1048 pmd = pmd_offset(pud, addr);
1049
1050 do {
1051 next = kvm_pmd_addr_end(addr, end);
1052 if (!pmd_none(*pmd)) {
1053 if (kvm_pmd_huge(*pmd)) {
1054 if (!kvm_s2pmd_readonly(pmd))
1055 kvm_set_s2pmd_readonly(pmd);
1056 } else {
1057 stage2_wp_ptes(pmd, addr, next);
1058 }
1059 }
1060 } while (pmd++, addr = next, addr != end);
1061}
1062
1063/**
1064 * stage2_wp_puds - write protect PGD range
1065 * @pgd: pointer to pgd entry
1066 * @addr: range start address
1067 * @end: range end address
1068 *
1069 * Process PUD entries, for a huge PUD we cause a panic.
1070 */
1071static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1072{
1073 pud_t *pud;
1074 phys_addr_t next;
1075
1076 pud = pud_offset(pgd, addr);
1077 do {
1078 next = kvm_pud_addr_end(addr, end);
1079 if (!pud_none(*pud)) {
1080 /* TODO:PUD not supported, revisit later if supported */
1081 BUG_ON(kvm_pud_huge(*pud));
1082 stage2_wp_pmds(pud, addr, next);
1083 }
1084 } while (pud++, addr = next, addr != end);
1085}
1086
1087/**
1088 * stage2_wp_range() - write protect stage2 memory region range
1089 * @kvm: The KVM pointer
1090 * @addr: Start address of range
1091 * @end: End address of range
1092 */
1093static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1094{
1095 pgd_t *pgd;
1096 phys_addr_t next;
1097
Marc Zyngier04b8dc82015-03-10 19:07:00 +00001098 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001099 do {
1100 /*
1101 * Release kvm_mmu_lock periodically if the memory region is
1102 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001103 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1104 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001105 * will also starve other vCPUs.
1106 */
1107 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1108 cond_resched_lock(&kvm->mmu_lock);
1109
1110 next = kvm_pgd_addr_end(addr, end);
1111 if (pgd_present(*pgd))
1112 stage2_wp_puds(pgd, addr, next);
1113 } while (pgd++, addr = next, addr != end);
1114}
1115
1116/**
1117 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1118 * @kvm: The KVM pointer
1119 * @slot: The memory slot to write protect
1120 *
1121 * Called to start logging dirty pages after memory region
1122 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1123 * all present PMD and PTEs are write protected in the memory region.
1124 * Afterwards read of dirty page log can be called.
1125 *
1126 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1127 * serializing operations for VM memory regions.
1128 */
1129void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1130{
Paolo Bonzini9f6b8022015-05-17 16:20:07 +02001131 struct kvm_memslots *slots = kvm_memslots(kvm);
1132 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
Mario Smarduchc6473552015-01-15 15:58:56 -08001133 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1134 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1135
1136 spin_lock(&kvm->mmu_lock);
1137 stage2_wp_range(kvm, start, end);
1138 spin_unlock(&kvm->mmu_lock);
1139 kvm_flush_remote_tlbs(kvm);
1140}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001141
1142/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001143 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001144 * @kvm: The KVM pointer
1145 * @slot: The memory slot associated with mask
1146 * @gfn_offset: The gfn offset in memory slot
1147 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1148 * slot to be write protected
1149 *
1150 * Walks bits set in mask write protects the associated pte's. Caller must
1151 * acquire kvm_mmu_lock.
1152 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001153static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001154 struct kvm_memory_slot *slot,
1155 gfn_t gfn_offset, unsigned long mask)
1156{
1157 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1158 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1159 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1160
1161 stage2_wp_range(kvm, start, end);
1162}
Mario Smarduchc6473552015-01-15 15:58:56 -08001163
Kai Huang3b0f1d02015-01-28 10:54:23 +08001164/*
1165 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1166 * dirty pages.
1167 *
1168 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1169 * enable dirty logging for them.
1170 */
1171void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1172 struct kvm_memory_slot *slot,
1173 gfn_t gfn_offset, unsigned long mask)
1174{
1175 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1176}
1177
Dan Williamsba049e92016-01-15 16:56:11 -08001178static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001179 unsigned long size, bool uncached)
1180{
1181 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1182}
1183
Christoffer Dall94f8e642013-01-20 18:28:12 -05001184static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001185 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001186 unsigned long fault_status)
1187{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001188 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001189 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001190 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001191 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001192 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001193 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001194 struct vm_area_struct *vma;
Dan Williamsba049e92016-01-15 16:56:11 -08001195 kvm_pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001196 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001197 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001198 bool logging_active = memslot_is_logging(memslot);
1199 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001200
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001201 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001202 if (fault_status == FSC_PERM && !write_fault) {
1203 kvm_err("Unexpected L2 read permission error\n");
1204 return -EFAULT;
1205 }
1206
Christoffer Dallad361f02012-11-01 17:14:45 +01001207 /* Let's check if we will get back a huge page backed by hugetlbfs */
1208 down_read(&current->mm->mmap_sem);
1209 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001210 if (unlikely(!vma)) {
1211 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1212 up_read(&current->mm->mmap_sem);
1213 return -EFAULT;
1214 }
1215
Mario Smarduch15a49a42015-01-15 15:58:58 -08001216 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001217 hugetlb = true;
1218 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001219 } else {
1220 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001221 * Pages belonging to memslots that don't have the same
1222 * alignment for userspace and IPA cannot be mapped using
1223 * block descriptors even if the pages belong to a THP for
1224 * the process, because the stage-2 block descriptor will
1225 * cover more than a single THP and we loose atomicity for
1226 * unmapping, updates, and splits of the THP or other pages
1227 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001228 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001229 if ((memslot->userspace_addr & ~PMD_MASK) !=
1230 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001231 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001232 }
1233 up_read(&current->mm->mmap_sem);
1234
Christoffer Dall94f8e642013-01-20 18:28:12 -05001235 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001236 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1237 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001238 if (ret)
1239 return ret;
1240
1241 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1242 /*
1243 * Ensure the read of mmu_notifier_seq happens before we call
1244 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1245 * the page we just got a reference to gets unmapped before we have a
1246 * chance to grab the mmu_lock, which ensure that if the page gets
1247 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1248 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1249 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1250 */
1251 smp_rmb();
1252
Christoffer Dallad361f02012-11-01 17:14:45 +01001253 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001254 if (is_error_pfn(pfn))
1255 return -EFAULT;
1256
Mario Smarduch15a49a42015-01-15 15:58:58 -08001257 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001258 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001259 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1260 } else if (logging_active) {
1261 /*
1262 * Faults on pages in a memslot with logging enabled
1263 * should not be mapped with huge pages (it introduces churn
1264 * and performance degradation), so force a pte mapping.
1265 */
1266 force_pte = true;
1267 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1268
1269 /*
1270 * Only actually map the page as writable if this was a write
1271 * fault.
1272 */
1273 if (!write_fault)
1274 writable = false;
1275 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001276
Christoffer Dallad361f02012-11-01 17:14:45 +01001277 spin_lock(&kvm->mmu_lock);
1278 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001279 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001280
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001281 if (!hugetlb && !force_pte)
1282 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001283
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001284 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001285
Christoffer Dallad361f02012-11-01 17:14:45 +01001286 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001287 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001288 new_pmd = pmd_mkhuge(new_pmd);
1289 if (writable) {
1290 kvm_set_s2pmd_writable(&new_pmd);
1291 kvm_set_pfn_dirty(pfn);
1292 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001293 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001294 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1295 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001296 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001297
Christoffer Dallad361f02012-11-01 17:14:45 +01001298 if (writable) {
1299 kvm_set_s2pte_writable(&new_pte);
1300 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001301 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001302 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001303 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001304 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001305 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001306
Christoffer Dall94f8e642013-01-20 18:28:12 -05001307out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001308 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001309 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001310 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001311 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001312}
1313
Marc Zyngieraeda9132015-03-12 18:16:52 +00001314/*
1315 * Resolve the access fault by making the page young again.
1316 * Note that because the faulting entry is guaranteed not to be
1317 * cached in the TLB, we don't need to invalidate anything.
1318 */
1319static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1320{
1321 pmd_t *pmd;
1322 pte_t *pte;
Dan Williamsba049e92016-01-15 16:56:11 -08001323 kvm_pfn_t pfn;
Marc Zyngieraeda9132015-03-12 18:16:52 +00001324 bool pfn_valid = false;
1325
1326 trace_kvm_access_fault(fault_ipa);
1327
1328 spin_lock(&vcpu->kvm->mmu_lock);
1329
1330 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1331 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1332 goto out;
1333
1334 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1335 *pmd = pmd_mkyoung(*pmd);
1336 pfn = pmd_pfn(*pmd);
1337 pfn_valid = true;
1338 goto out;
1339 }
1340
1341 pte = pte_offset_kernel(pmd, fault_ipa);
1342 if (pte_none(*pte)) /* Nothing there either */
1343 goto out;
1344
1345 *pte = pte_mkyoung(*pte); /* Just a page... */
1346 pfn = pte_pfn(*pte);
1347 pfn_valid = true;
1348out:
1349 spin_unlock(&vcpu->kvm->mmu_lock);
1350 if (pfn_valid)
1351 kvm_set_pfn_accessed(pfn);
1352}
1353
Christoffer Dall94f8e642013-01-20 18:28:12 -05001354/**
1355 * kvm_handle_guest_abort - handles all 2nd stage aborts
1356 * @vcpu: the VCPU pointer
1357 * @run: the kvm_run structure
1358 *
1359 * Any abort that gets to the host is almost guaranteed to be caused by a
1360 * missing second stage translation table entry, which can mean that either the
1361 * guest simply needs more memory and we must allocate an appropriate page or it
1362 * can mean that the guest tried to access I/O memory, which is emulated by user
1363 * space. The distinction is based on the IPA causing the fault and whether this
1364 * memory region has been registered as standard RAM by user space.
1365 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001366int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1367{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001368 unsigned long fault_status;
1369 phys_addr_t fault_ipa;
1370 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001371 unsigned long hva;
1372 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001373 gfn_t gfn;
1374 int ret, idx;
1375
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001376 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001377 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001378
Marc Zyngier7393b592012-09-17 19:27:09 +01001379 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1380 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001381
1382 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001383 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001384 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1385 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001386 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1387 kvm_vcpu_trap_get_class(vcpu),
1388 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1389 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001390 return -EFAULT;
1391 }
1392
1393 idx = srcu_read_lock(&vcpu->kvm->srcu);
1394
1395 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001396 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1397 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001398 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001399 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001400 if (is_iabt) {
1401 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001402 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001403 ret = 1;
1404 goto out_unlock;
1405 }
1406
Marc Zyngiercfe39502012-12-12 14:42:09 +00001407 /*
Marc Zyngier57c841f2016-01-29 15:01:28 +00001408 * Check for a cache maintenance operation. Since we
1409 * ended-up here, we know it is outside of any memory
1410 * slot. But we can't find out if that is for a device,
1411 * or if the guest is just being stupid. The only thing
1412 * we know for sure is that this range cannot be cached.
1413 *
1414 * So let's assume that the guest is just being
1415 * cautious, and skip the instruction.
1416 */
1417 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1418 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1419 ret = 1;
1420 goto out_unlock;
1421 }
1422
1423 /*
Marc Zyngiercfe39502012-12-12 14:42:09 +00001424 * The IPA is reported as [MAX:12], so we need to
1425 * complement it with the bottom 12 bits from the
1426 * faulting VA. This is always 12 bits, irrespective
1427 * of the page size.
1428 */
1429 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001430 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001431 goto out_unlock;
1432 }
1433
Christoffer Dallc3058d52014-10-10 12:14:29 +02001434 /* Userspace should not be able to register out-of-bounds IPAs */
1435 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1436
Marc Zyngieraeda9132015-03-12 18:16:52 +00001437 if (fault_status == FSC_ACCESS) {
1438 handle_access_fault(vcpu, fault_ipa);
1439 ret = 1;
1440 goto out_unlock;
1441 }
1442
Christoffer Dall98047882014-08-19 12:18:04 +02001443 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001444 if (ret == 0)
1445 ret = 1;
1446out_unlock:
1447 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1448 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001449}
1450
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001451static int handle_hva_to_gpa(struct kvm *kvm,
1452 unsigned long start,
1453 unsigned long end,
1454 int (*handler)(struct kvm *kvm,
1455 gpa_t gpa, void *data),
1456 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001457{
1458 struct kvm_memslots *slots;
1459 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001460 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001461
1462 slots = kvm_memslots(kvm);
1463
1464 /* we only care about the pages that the guest sees */
1465 kvm_for_each_memslot(memslot, slots) {
1466 unsigned long hva_start, hva_end;
1467 gfn_t gfn, gfn_end;
1468
1469 hva_start = max(start, memslot->userspace_addr);
1470 hva_end = min(end, memslot->userspace_addr +
1471 (memslot->npages << PAGE_SHIFT));
1472 if (hva_start >= hva_end)
1473 continue;
1474
1475 /*
1476 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1477 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1478 */
1479 gfn = hva_to_gfn_memslot(hva_start, memslot);
1480 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1481
1482 for (; gfn < gfn_end; ++gfn) {
1483 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001484 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001485 }
1486 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001487
1488 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001489}
1490
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001491static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001492{
1493 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001494 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001495}
1496
1497int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1498{
1499 unsigned long end = hva + PAGE_SIZE;
1500
1501 if (!kvm->arch.pgd)
1502 return 0;
1503
1504 trace_kvm_unmap_hva(hva);
1505 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1506 return 0;
1507}
1508
1509int kvm_unmap_hva_range(struct kvm *kvm,
1510 unsigned long start, unsigned long end)
1511{
1512 if (!kvm->arch.pgd)
1513 return 0;
1514
1515 trace_kvm_unmap_hva_range(start, end);
1516 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1517 return 0;
1518}
1519
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001520static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001521{
1522 pte_t *pte = (pte_t *)data;
1523
Mario Smarduch15a49a42015-01-15 15:58:58 -08001524 /*
1525 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1526 * flag clear because MMU notifiers will have unmapped a huge PMD before
1527 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1528 * therefore stage2_set_pte() never needs to clear out a huge PMD
1529 * through this calling path.
1530 */
1531 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001532 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001533}
1534
1535
1536void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1537{
1538 unsigned long end = hva + PAGE_SIZE;
1539 pte_t stage2_pte;
1540
1541 if (!kvm->arch.pgd)
1542 return;
1543
1544 trace_kvm_set_spte_hva(hva);
1545 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1546 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1547}
1548
Marc Zyngier35307b92015-03-12 18:16:51 +00001549static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1550{
1551 pmd_t *pmd;
1552 pte_t *pte;
1553
1554 pmd = stage2_get_pmd(kvm, NULL, gpa);
1555 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1556 return 0;
1557
1558 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1559 if (pmd_young(*pmd)) {
1560 *pmd = pmd_mkold(*pmd);
1561 return 1;
1562 }
1563
1564 return 0;
1565 }
1566
1567 pte = pte_offset_kernel(pmd, gpa);
1568 if (pte_none(*pte))
1569 return 0;
1570
1571 if (pte_young(*pte)) {
1572 *pte = pte_mkold(*pte); /* Just a page... */
1573 return 1;
1574 }
1575
1576 return 0;
1577}
1578
1579static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1580{
1581 pmd_t *pmd;
1582 pte_t *pte;
1583
1584 pmd = stage2_get_pmd(kvm, NULL, gpa);
1585 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1586 return 0;
1587
1588 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1589 return pmd_young(*pmd);
1590
1591 pte = pte_offset_kernel(pmd, gpa);
1592 if (!pte_none(*pte)) /* Just a page... */
1593 return pte_young(*pte);
1594
1595 return 0;
1596}
1597
1598int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1599{
1600 trace_kvm_age_hva(start, end);
1601 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1602}
1603
1604int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1605{
1606 trace_kvm_test_age_hva(hva);
1607 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1608}
1609
Christoffer Dalld5d81842013-01-20 18:28:07 -05001610void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1611{
1612 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1613}
1614
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001615phys_addr_t kvm_mmu_get_httbr(void)
1616{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001617 if (__kvm_cpu_uses_extended_idmap())
1618 return virt_to_phys(merged_hyp_pgd);
1619 else
1620 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001621}
1622
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001623phys_addr_t kvm_mmu_get_boot_httbr(void)
1624{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001625 if (__kvm_cpu_uses_extended_idmap())
1626 return virt_to_phys(merged_hyp_pgd);
1627 else
1628 return virt_to_phys(boot_hyp_pgd);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001629}
1630
1631phys_addr_t kvm_get_idmap_vector(void)
1632{
1633 return hyp_idmap_vector;
1634}
1635
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001636int kvm_mmu_init(void)
1637{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001638 int err;
1639
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001640 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1641 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1642 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001643
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001644 /*
1645 * We rely on the linker script to ensure at build time that the HYP
1646 * init code does not cross a page boundary.
1647 */
1648 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001649
Christoffer Dall38f791a2014-10-10 12:14:28 +02001650 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1651 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Mark Salter5d4e08c2014-03-28 14:25:19 +00001652
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001653 if (!hyp_pgd || !boot_hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001654 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001655 err = -ENOMEM;
1656 goto out;
1657 }
1658
1659 /* Create the idmap in the boot page tables */
1660 err = __create_hyp_mappings(boot_hyp_pgd,
1661 hyp_idmap_start, hyp_idmap_end,
1662 __phys_to_pfn(hyp_idmap_start),
1663 PAGE_HYP);
1664
1665 if (err) {
1666 kvm_err("Failed to idmap %lx-%lx\n",
1667 hyp_idmap_start, hyp_idmap_end);
1668 goto out;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001669 }
1670
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001671 if (__kvm_cpu_uses_extended_idmap()) {
1672 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1673 if (!merged_hyp_pgd) {
1674 kvm_err("Failed to allocate extra HYP pgd\n");
1675 goto out;
1676 }
1677 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1678 hyp_idmap_start);
1679 return 0;
1680 }
1681
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001682 /* Map the very same page at the trampoline VA */
1683 err = __create_hyp_mappings(boot_hyp_pgd,
1684 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1685 __phys_to_pfn(hyp_idmap_start),
1686 PAGE_HYP);
1687 if (err) {
1688 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1689 TRAMPOLINE_VA);
1690 goto out;
1691 }
1692
1693 /* Map the same page again into the runtime page tables */
1694 err = __create_hyp_mappings(hyp_pgd,
1695 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1696 __phys_to_pfn(hyp_idmap_start),
1697 PAGE_HYP);
1698 if (err) {
1699 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1700 TRAMPOLINE_VA);
1701 goto out;
1702 }
1703
Christoffer Dalld5d81842013-01-20 18:28:07 -05001704 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001705out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001706 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001707 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001708}
Eric Augerdf6ce242014-06-06 11:10:23 +02001709
1710void kvm_arch_commit_memory_region(struct kvm *kvm,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001711 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001712 const struct kvm_memory_slot *old,
Paolo Bonzinif36f3f22015-05-18 13:20:23 +02001713 const struct kvm_memory_slot *new,
Eric Augerdf6ce242014-06-06 11:10:23 +02001714 enum kvm_mr_change change)
1715{
Mario Smarduchc6473552015-01-15 15:58:56 -08001716 /*
1717 * At this point memslot has been committed and there is an
1718 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1719 * memory slot is write protected.
1720 */
1721 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1722 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001723}
1724
1725int kvm_arch_prepare_memory_region(struct kvm *kvm,
1726 struct kvm_memory_slot *memslot,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001727 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001728 enum kvm_mr_change change)
1729{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001730 hva_t hva = mem->userspace_addr;
1731 hva_t reg_end = hva + mem->memory_size;
1732 bool writable = !(mem->flags & KVM_MEM_READONLY);
1733 int ret = 0;
1734
Mario Smarduch15a49a42015-01-15 15:58:58 -08001735 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1736 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001737 return 0;
1738
1739 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001740 * Prevent userspace from creating a memory region outside of the IPA
1741 * space addressable by the KVM guest IPA space.
1742 */
1743 if (memslot->base_gfn + memslot->npages >=
1744 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1745 return -EFAULT;
1746
1747 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001748 * A memory region could potentially cover multiple VMAs, and any holes
1749 * between them, so iterate over all of them to find out if we can map
1750 * any of them right now.
1751 *
1752 * +--------------------------------------------+
1753 * +---------------+----------------+ +----------------+
1754 * | : VMA 1 | VMA 2 | | VMA 3 : |
1755 * +---------------+----------------+ +----------------+
1756 * | memory region |
1757 * +--------------------------------------------+
1758 */
1759 do {
1760 struct vm_area_struct *vma = find_vma(current->mm, hva);
1761 hva_t vm_start, vm_end;
1762
1763 if (!vma || vma->vm_start >= reg_end)
1764 break;
1765
1766 /*
1767 * Mapping a read-only VMA is only allowed if the
1768 * memory region is configured as read-only.
1769 */
1770 if (writable && !(vma->vm_flags & VM_WRITE)) {
1771 ret = -EPERM;
1772 break;
1773 }
1774
1775 /*
1776 * Take the intersection of this VMA with the memory region
1777 */
1778 vm_start = max(hva, vma->vm_start);
1779 vm_end = min(reg_end, vma->vm_end);
1780
1781 if (vma->vm_flags & VM_PFNMAP) {
1782 gpa_t gpa = mem->guest_phys_addr +
1783 (vm_start - mem->userspace_addr);
Marek Majtykaca09f022015-09-16 12:04:55 +02001784 phys_addr_t pa;
1785
1786 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1787 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001788
Mario Smarduch15a49a42015-01-15 15:58:58 -08001789 /* IO region dirty page logging not allowed */
1790 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1791 return -EINVAL;
1792
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001793 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1794 vm_end - vm_start,
1795 writable);
1796 if (ret)
1797 break;
1798 }
1799 hva = vm_end;
1800 } while (hva < reg_end);
1801
Mario Smarduch15a49a42015-01-15 15:58:58 -08001802 if (change == KVM_MR_FLAGS_ONLY)
1803 return ret;
1804
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001805 spin_lock(&kvm->mmu_lock);
1806 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001807 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001808 else
1809 stage2_flush_memslot(kvm, memslot);
1810 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001811 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001812}
1813
1814void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1815 struct kvm_memory_slot *dont)
1816{
1817}
1818
1819int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1820 unsigned long npages)
1821{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001822 /*
1823 * Readonly memslots are not incoherent with the caches by definition,
1824 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1825 * that the guest may consider devices and hence map as uncached.
1826 * To prevent incoherency issues in these cases, tag all readonly
1827 * regions as incoherent.
1828 */
1829 if (slot->flags & KVM_MEM_READONLY)
1830 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001831 return 0;
1832}
1833
Paolo Bonzini15f46012015-05-17 21:26:08 +02001834void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
Eric Augerdf6ce242014-06-06 11:10:23 +02001835{
1836}
1837
1838void kvm_arch_flush_shadow_all(struct kvm *kvm)
1839{
1840}
1841
1842void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1843 struct kvm_memory_slot *slot)
1844{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001845 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1846 phys_addr_t size = slot->npages << PAGE_SHIFT;
1847
1848 spin_lock(&kvm->mmu_lock);
1849 unmap_stage2_range(kvm, gpa, size);
1850 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001851}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001852
1853/*
1854 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1855 *
1856 * Main problems:
1857 * - S/W ops are local to a CPU (not broadcast)
1858 * - We have line migration behind our back (speculation)
1859 * - System caches don't support S/W at all (damn!)
1860 *
1861 * In the face of the above, the best we can do is to try and convert
1862 * S/W ops to VA ops. Because the guest is not allowed to infer the
1863 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1864 * which is a rather good thing for us.
1865 *
1866 * Also, it is only used when turning caches on/off ("The expected
1867 * usage of the cache maintenance instructions that operate by set/way
1868 * is associated with the cache maintenance instructions associated
1869 * with the powerdown and powerup of caches, if this is required by
1870 * the implementation.").
1871 *
1872 * We use the following policy:
1873 *
1874 * - If we trap a S/W operation, we enable VM trapping to detect
1875 * caches being turned on/off, and do a full clean.
1876 *
1877 * - We flush the caches on both caches being turned on and off.
1878 *
1879 * - Once the caches are enabled, we stop trapping VM ops.
1880 */
1881void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1882{
1883 unsigned long hcr = vcpu_get_hcr(vcpu);
1884
1885 /*
1886 * If this is the first time we do a S/W operation
1887 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1888 * VM trapping.
1889 *
1890 * Otherwise, rely on the VM trapping to wait for the MMU +
1891 * Caches to be turned off. At that point, we'll be able to
1892 * clean the caches again.
1893 */
1894 if (!(hcr & HCR_TVM)) {
1895 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1896 vcpu_has_cache_enabled(vcpu));
1897 stage2_flush_vm(vcpu->kvm);
1898 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1899 }
1900}
1901
1902void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1903{
1904 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1905
1906 /*
1907 * If switching the MMU+caches on, need to invalidate the caches.
1908 * If switching it off, need to clean the caches.
1909 * Clean + invalidate does the trick always.
1910 */
1911 if (now_enabled != was_enabled)
1912 stage2_flush_vm(vcpu->kvm);
1913
1914 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1915 if (now_enabled)
1916 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1917
1918 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1919}