blob: dc98e3844a0a94363e1c9c5dc3f74e5522ce43a2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
Linus Torvalds1da177e2005-04-16 15:20:36 -070011#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/bootmem.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
Christoph Hellwig1eeb66a2007-05-08 00:27:03 -070021#include <linux/kdebug.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23#include <asm/bitext.h>
24#include <asm/page.h>
25#include <asm/pgalloc.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <asm/vaddrs.h>
29#include <asm/traps.h>
30#include <asm/smp.h>
31#include <asm/mbus.h>
32#include <asm/cache.h>
33#include <asm/oplib.h>
34#include <asm/sbus.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49
50#include <asm/btfixup.h>
51
52enum mbus_module srmmu_modtype;
53unsigned int hwbug_bitmask;
54int vac_cache_size;
55int vac_line_size;
56
57extern struct resource sparc_iomap;
58
59extern unsigned long last_valid_pfn;
60
61extern unsigned long page_kernel;
62
63pgd_t *srmmu_swapper_pg_dir;
64
65#ifdef CONFIG_SMP
66#define FLUSH_BEGIN(mm)
67#define FLUSH_END
68#else
69#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70#define FLUSH_END }
71#endif
72
73BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75
76int flush_page_for_dma_global = 1;
77
78#ifdef CONFIG_SMP
79BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81#endif
82
83char *srmmu_name;
84
85ctxd_t *srmmu_ctx_table_phys;
86ctxd_t *srmmu_context_table;
87
88int viking_mxcc_present;
89static DEFINE_SPINLOCK(srmmu_context_spinlock);
90
91int is_hypersparc;
92
93/*
94 * In general all page table modifications should use the V8 atomic
95 * swap instruction. This insures the mmu and the cpu are in sync
96 * with respect to ref/mod bits in the page tables.
97 */
98static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99{
100 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101 return value;
102}
103
104static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105{
106 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107}
108
109/* The very generic SRMMU page table operations. */
110static inline int srmmu_device_memory(unsigned long x)
111{
112 return ((x & 0xF0000000) != 0);
113}
114
115int srmmu_cache_pagetables;
116
117/* these will be initialized in srmmu_nocache_calcsize() */
118unsigned long srmmu_nocache_size;
119unsigned long srmmu_nocache_end;
120
121/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123
124/* The context table is a nocache user with the biggest alignment needs. */
125#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126
127void *srmmu_nocache_pool;
128void *srmmu_nocache_bitmap;
129static struct bit_map srmmu_nocache_map;
130
131static unsigned long srmmu_pte_pfn(pte_t pte)
132{
133 if (srmmu_device_memory(pte_val(pte))) {
134 /* Just return something that will cause
135 * pfn_valid() to return false. This makes
136 * copy_one_pte() to just directly copy to
137 * PTE over.
138 */
139 return ~0UL;
140 }
141 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
142}
143
144static struct page *srmmu_pmd_page(pmd_t pmd)
145{
146
147 if (srmmu_device_memory(pmd_val(pmd)))
148 BUG();
149 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
150}
151
152static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
154
155
156static inline int srmmu_pte_none(pte_t pte)
157{ return !(pte_val(pte) & 0xFFFFFFF); }
158
159static inline int srmmu_pte_present(pte_t pte)
160{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162static inline void srmmu_pte_clear(pte_t *ptep)
163{ srmmu_set_pte(ptep, __pte(0)); }
164
165static inline int srmmu_pmd_none(pmd_t pmd)
166{ return !(pmd_val(pmd) & 0xFFFFFFF); }
167
168static inline int srmmu_pmd_bad(pmd_t pmd)
169{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170
171static inline int srmmu_pmd_present(pmd_t pmd)
172{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173
174static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 int i;
176 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
178}
179
180static inline int srmmu_pgd_none(pgd_t pgd)
181{ return !(pgd_val(pgd) & 0xFFFFFFF); }
182
183static inline int srmmu_pgd_bad(pgd_t pgd)
184{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185
186static inline int srmmu_pgd_present(pgd_t pgd)
187{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188
189static inline void srmmu_pgd_clear(pgd_t * pgdp)
190{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191
192static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194
195static inline pte_t srmmu_pte_mkclean(pte_t pte)
196{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197
198static inline pte_t srmmu_pte_mkold(pte_t pte)
199{ return __pte(pte_val(pte) & ~SRMMU_REF);}
200
201static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202{ return __pte(pte_val(pte) | SRMMU_WRITE);}
203
204static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
206
207static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208{ return __pte(pte_val(pte) | SRMMU_REF);}
209
210/*
211 * Conversion functions: convert a page and protection to a page entry,
212 * and a page entry and page directory to the page they refer to.
213 */
214static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216
217static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219
220static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222
223/* XXX should we hyper_flush_whole_icache here - Anton */
224static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226
227static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229
230static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231{
232 unsigned long ptp; /* Physical address, shifted right by 4 */
233 int i;
234
235 ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239 }
240}
241
242static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243{
244 unsigned long ptp; /* Physical address, shifted right by 4 */
245 int i;
246
247 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
248 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251 }
252}
253
254static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256
257/* to find an entry in a top-level page table... */
Adrian Bunk31156242005-10-03 17:37:02 -0700258static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260
261/* Find an entry in the second-level page table.. */
262static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263{
264 return (pmd_t *) srmmu_pgd_page(*dir) +
265 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266}
267
268/* Find an entry in the third-level page table.. */
269static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270{
271 void *pte;
272
273 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 return (pte_t *) pte +
275 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276}
277
278static unsigned long srmmu_swp_type(swp_entry_t entry)
279{
280 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281}
282
283static unsigned long srmmu_swp_offset(swp_entry_t entry)
284{
285 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286}
287
288static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289{
290 return (swp_entry_t) {
291 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293}
294
295/*
296 * size: bytes to allocate in the nocache area.
297 * align: bytes, number to align at.
298 * Returns the virtual address of the allocated area.
299 */
300static unsigned long __srmmu_get_nocache(int size, int align)
301{
302 int offset;
303
304 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 printk("Size 0x%x too small for nocache request\n", size);
306 size = SRMMU_NOCACHE_BITMAP_SHIFT;
307 }
308 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 printk("Size 0x%x unaligned int nocache request\n", size);
310 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311 }
312 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313
314 offset = bit_map_string_get(&srmmu_nocache_map,
315 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 if (offset == -1) {
318 printk("srmmu: out of nocache %d: %d/%d\n",
319 size, (int) srmmu_nocache_size,
320 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 return 0;
322 }
323
324 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325}
326
327unsigned inline long srmmu_get_nocache(int size, int align)
328{
329 unsigned long tmp;
330
331 tmp = __srmmu_get_nocache(size, align);
332
333 if (tmp)
334 memset((void *)tmp, 0, size);
335
336 return tmp;
337}
338
339void srmmu_free_nocache(unsigned long vaddr, int size)
340{
341 int offset;
342
343 if (vaddr < SRMMU_NOCACHE_VADDR) {
344 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 BUG();
347 }
348 if (vaddr+size > srmmu_nocache_end) {
349 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 vaddr, srmmu_nocache_end);
351 BUG();
352 }
353 if (size & (size-1)) {
354 printk("Size 0x%x is not a power of 2\n", size);
355 BUG();
356 }
357 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 printk("Size 0x%x is too small\n", size);
359 BUG();
360 }
361 if (vaddr & (size-1)) {
362 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 BUG();
364 }
365
366 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368
369 bit_map_clear(&srmmu_nocache_map, offset, size);
370}
371
372void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
373
374extern unsigned long probe_memory(void); /* in fault.c */
375
376/*
377 * Reserve nocache dynamically proportionally to the amount of
378 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
379 */
380void srmmu_nocache_calcsize(void)
381{
382 unsigned long sysmemavail = probe_memory() / 1024;
383 int srmmu_nocache_npages;
384
385 srmmu_nocache_npages =
386 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
387
388 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392
393 /* anything above 1280 blows up */
394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396
397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399}
400
Martin Habetse3096de2006-10-10 14:36:47 -0700401void __init srmmu_nocache_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402{
403 unsigned int bitmap_bits;
404 pgd_t *pgd;
405 pmd_t *pmd;
406 pte_t *pte;
407 unsigned long paddr, vaddr;
408 unsigned long pteval;
409
410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411
412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415
416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418
419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 init_mm.pgd = srmmu_swapper_pg_dir;
422
423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424
425 paddr = __pa((unsigned long)srmmu_nocache_pool);
426 vaddr = SRMMU_NOCACHE_VADDR;
427
428 while (vaddr < srmmu_nocache_end) {
429 pgd = pgd_offset_k(vaddr);
430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432
433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434
435 if (srmmu_cache_pagetables)
436 pteval |= SRMMU_CACHE;
437
438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439
440 vaddr += PAGE_SIZE;
441 paddr += PAGE_SIZE;
442 }
443
444 flush_cache_all();
445 flush_tlb_all();
446}
447
448static inline pgd_t *srmmu_get_pgd_fast(void)
449{
450 pgd_t *pgd = NULL;
451
452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 if (pgd) {
454 pgd_t *init = pgd_offset_k(0);
455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458 }
459
460 return pgd;
461}
462
463static void srmmu_free_pgd_fast(pgd_t *pgd)
464{
465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466}
467
468static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469{
470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471}
472
473static void srmmu_pmd_free(pmd_t * pmd)
474{
475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476}
477
478/*
479 * Hardware needs alignment to 256 only, but we align to whole page size
480 * to reduce fragmentation problems due to the buddy principle.
481 * XXX Provide actual fragmentation statistics in /proc.
482 *
483 * Alignments up to the page size are the same for physical and virtual
484 * addresses of the nocache area.
485 */
486static pte_t *
487srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
488{
489 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
490}
491
492static struct page *
493srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
494{
495 unsigned long pte;
496
497 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
498 return NULL;
499 return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
500}
501
502static void srmmu_free_pte_fast(pte_t *pte)
503{
504 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
505}
506
507static void srmmu_pte_free(struct page *pte)
508{
509 unsigned long p;
510
511 p = (unsigned long)page_address(pte); /* Cached address (for test) */
512 if (p == 0)
513 BUG();
514 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
515 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
516 srmmu_free_nocache(p, PTE_SIZE);
517}
518
519/*
520 */
521static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
522{
523 struct ctx_list *ctxp;
524
525 ctxp = ctx_free.next;
526 if(ctxp != &ctx_free) {
527 remove_from_ctx_list(ctxp);
528 add_to_used_ctxlist(ctxp);
529 mm->context = ctxp->ctx_number;
530 ctxp->ctx_mm = mm;
531 return;
532 }
533 ctxp = ctx_used.next;
534 if(ctxp->ctx_mm == old_mm)
535 ctxp = ctxp->next;
536 if(ctxp == &ctx_used)
537 panic("out of mmu contexts");
538 flush_cache_mm(ctxp->ctx_mm);
539 flush_tlb_mm(ctxp->ctx_mm);
540 remove_from_ctx_list(ctxp);
541 add_to_used_ctxlist(ctxp);
542 ctxp->ctx_mm->context = NO_CONTEXT;
543 ctxp->ctx_mm = mm;
544 mm->context = ctxp->ctx_number;
545}
546
547static inline void free_context(int context)
548{
549 struct ctx_list *ctx_old;
550
551 ctx_old = ctx_list_pool + context;
552 remove_from_ctx_list(ctx_old);
553 add_to_free_ctxlist(ctx_old);
554}
555
556
557static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
558 struct task_struct *tsk, int cpu)
559{
560 if(mm->context == NO_CONTEXT) {
561 spin_lock(&srmmu_context_spinlock);
562 alloc_context(old_mm, mm);
563 spin_unlock(&srmmu_context_spinlock);
564 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
565 }
566
567 if (is_hypersparc)
568 hyper_flush_whole_icache();
569
570 srmmu_set_context(mm->context);
571}
572
573/* Low level IO area allocation on the SRMMU. */
574static inline void srmmu_mapioaddr(unsigned long physaddr,
575 unsigned long virt_addr, int bus_type)
576{
577 pgd_t *pgdp;
578 pmd_t *pmdp;
579 pte_t *ptep;
580 unsigned long tmp;
581
582 physaddr &= PAGE_MASK;
583 pgdp = pgd_offset_k(virt_addr);
584 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
585 ptep = srmmu_pte_offset(pmdp, virt_addr);
586 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
587
588 /*
589 * I need to test whether this is consistent over all
590 * sun4m's. The bus_type represents the upper 4 bits of
591 * 36-bit physical address on the I/O space lines...
592 */
593 tmp |= (bus_type << 28);
594 tmp |= SRMMU_PRIV;
595 __flush_page_to_ram(virt_addr);
596 srmmu_set_pte(ptep, __pte(tmp));
597}
598
599static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
600 unsigned long xva, unsigned int len)
601{
602 while (len != 0) {
603 len -= PAGE_SIZE;
604 srmmu_mapioaddr(xpa, xva, bus);
605 xva += PAGE_SIZE;
606 xpa += PAGE_SIZE;
607 }
608 flush_tlb_all();
609}
610
611static inline void srmmu_unmapioaddr(unsigned long virt_addr)
612{
613 pgd_t *pgdp;
614 pmd_t *pmdp;
615 pte_t *ptep;
616
617 pgdp = pgd_offset_k(virt_addr);
618 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
619 ptep = srmmu_pte_offset(pmdp, virt_addr);
620
621 /* No need to flush uncacheable page. */
622 srmmu_pte_clear(ptep);
623}
624
625static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
626{
627 while (len != 0) {
628 len -= PAGE_SIZE;
629 srmmu_unmapioaddr(virt_addr);
630 virt_addr += PAGE_SIZE;
631 }
632 flush_tlb_all();
633}
634
635/*
636 * On the SRMMU we do not have the problems with limited tlb entries
637 * for mapping kernel pages, so we just take things from the free page
638 * pool. As a side effect we are putting a little too much pressure
639 * on the gfp() subsystem. This setup also makes the logic of the
640 * iommu mapping code a lot easier as we can transparently handle
641 * mappings on the kernel stack without any special code as we did
642 * need on the sun4c.
643 */
644struct thread_info *srmmu_alloc_thread_info(void)
645{
646 struct thread_info *ret;
647
648 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
649 THREAD_INFO_ORDER);
650#ifdef CONFIG_DEBUG_STACK_USAGE
651 if (ret)
652 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
653#endif /* DEBUG_STACK_USAGE */
654
655 return ret;
656}
657
658static void srmmu_free_thread_info(struct thread_info *ti)
659{
660 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
661}
662
663/* tsunami.S */
664extern void tsunami_flush_cache_all(void);
665extern void tsunami_flush_cache_mm(struct mm_struct *mm);
666extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
667extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
668extern void tsunami_flush_page_to_ram(unsigned long page);
669extern void tsunami_flush_page_for_dma(unsigned long page);
670extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
671extern void tsunami_flush_tlb_all(void);
672extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
673extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
674extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
675extern void tsunami_setup_blockops(void);
676
677/*
678 * Workaround, until we find what's going on with Swift. When low on memory,
679 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
680 * out it is already in page tables/ fault again on the same instruction.
681 * I really don't understand it, have checked it and contexts
682 * are right, flush_tlb_all is done as well, and it faults again...
683 * Strange. -jj
684 *
685 * The following code is a deadwood that may be necessary when
686 * we start to make precise page flushes again. --zaitcev
687 */
688static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
689{
690#if 0
691 static unsigned long last;
692 unsigned int val;
693 /* unsigned int n; */
694
695 if (address == last) {
696 val = srmmu_hwprobe(address);
697 if (val != 0 && pte_val(pte) != val) {
698 printk("swift_update_mmu_cache: "
699 "addr %lx put %08x probed %08x from %p\n",
700 address, pte_val(pte), val,
701 __builtin_return_address(0));
702 srmmu_flush_whole_tlb();
703 }
704 }
705 last = address;
706#endif
707}
708
709/* swift.S */
710extern void swift_flush_cache_all(void);
711extern void swift_flush_cache_mm(struct mm_struct *mm);
712extern void swift_flush_cache_range(struct vm_area_struct *vma,
713 unsigned long start, unsigned long end);
714extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
715extern void swift_flush_page_to_ram(unsigned long page);
716extern void swift_flush_page_for_dma(unsigned long page);
717extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
718extern void swift_flush_tlb_all(void);
719extern void swift_flush_tlb_mm(struct mm_struct *mm);
720extern void swift_flush_tlb_range(struct vm_area_struct *vma,
721 unsigned long start, unsigned long end);
722extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
723
724#if 0 /* P3: deadwood to debug precise flushes on Swift. */
725void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
726{
727 int cctx, ctx1;
728
729 page &= PAGE_MASK;
730 if ((ctx1 = vma->vm_mm->context) != -1) {
731 cctx = srmmu_get_context();
732/* Is context # ever different from current context? P3 */
733 if (cctx != ctx1) {
734 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
735 srmmu_set_context(ctx1);
736 swift_flush_page(page);
737 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
738 "r" (page), "i" (ASI_M_FLUSH_PROBE));
739 srmmu_set_context(cctx);
740 } else {
741 /* Rm. prot. bits from virt. c. */
742 /* swift_flush_cache_all(); */
743 /* swift_flush_cache_page(vma, page); */
744 swift_flush_page(page);
745
746 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
747 "r" (page), "i" (ASI_M_FLUSH_PROBE));
748 /* same as above: srmmu_flush_tlb_page() */
749 }
750 }
751}
752#endif
753
754/*
755 * The following are all MBUS based SRMMU modules, and therefore could
756 * be found in a multiprocessor configuration. On the whole, these
757 * chips seems to be much more touchy about DVMA and page tables
758 * with respect to cache coherency.
759 */
760
761/* Cypress flushes. */
762static void cypress_flush_cache_all(void)
763{
764 volatile unsigned long cypress_sucks;
765 unsigned long faddr, tagval;
766
767 flush_user_windows();
768 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
769 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
770 "=r" (tagval) :
771 "r" (faddr), "r" (0x40000),
772 "i" (ASI_M_DATAC_TAG));
773
774 /* If modified and valid, kick it. */
775 if((tagval & 0x60) == 0x60)
776 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
777 }
778}
779
780static void cypress_flush_cache_mm(struct mm_struct *mm)
781{
782 register unsigned long a, b, c, d, e, f, g;
783 unsigned long flags, faddr;
784 int octx;
785
786 FLUSH_BEGIN(mm)
787 flush_user_windows();
788 local_irq_save(flags);
789 octx = srmmu_get_context();
790 srmmu_set_context(mm->context);
791 a = 0x20; b = 0x40; c = 0x60;
792 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
793
794 faddr = (0x10000 - 0x100);
795 goto inside;
796 do {
797 faddr -= 0x100;
798 inside:
799 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
800 "sta %%g0, [%0 + %2] %1\n\t"
801 "sta %%g0, [%0 + %3] %1\n\t"
802 "sta %%g0, [%0 + %4] %1\n\t"
803 "sta %%g0, [%0 + %5] %1\n\t"
804 "sta %%g0, [%0 + %6] %1\n\t"
805 "sta %%g0, [%0 + %7] %1\n\t"
806 "sta %%g0, [%0 + %8] %1\n\t" : :
807 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
808 "r" (a), "r" (b), "r" (c), "r" (d),
809 "r" (e), "r" (f), "r" (g));
810 } while(faddr);
811 srmmu_set_context(octx);
812 local_irq_restore(flags);
813 FLUSH_END
814}
815
816static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
817{
818 struct mm_struct *mm = vma->vm_mm;
819 register unsigned long a, b, c, d, e, f, g;
820 unsigned long flags, faddr;
821 int octx;
822
823 FLUSH_BEGIN(mm)
824 flush_user_windows();
825 local_irq_save(flags);
826 octx = srmmu_get_context();
827 srmmu_set_context(mm->context);
828 a = 0x20; b = 0x40; c = 0x60;
829 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
830
831 start &= SRMMU_REAL_PMD_MASK;
832 while(start < end) {
833 faddr = (start + (0x10000 - 0x100));
834 goto inside;
835 do {
836 faddr -= 0x100;
837 inside:
838 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
839 "sta %%g0, [%0 + %2] %1\n\t"
840 "sta %%g0, [%0 + %3] %1\n\t"
841 "sta %%g0, [%0 + %4] %1\n\t"
842 "sta %%g0, [%0 + %5] %1\n\t"
843 "sta %%g0, [%0 + %6] %1\n\t"
844 "sta %%g0, [%0 + %7] %1\n\t"
845 "sta %%g0, [%0 + %8] %1\n\t" : :
846 "r" (faddr),
847 "i" (ASI_M_FLUSH_SEG),
848 "r" (a), "r" (b), "r" (c), "r" (d),
849 "r" (e), "r" (f), "r" (g));
850 } while (faddr != start);
851 start += SRMMU_REAL_PMD_SIZE;
852 }
853 srmmu_set_context(octx);
854 local_irq_restore(flags);
855 FLUSH_END
856}
857
858static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
859{
860 register unsigned long a, b, c, d, e, f, g;
861 struct mm_struct *mm = vma->vm_mm;
862 unsigned long flags, line;
863 int octx;
864
865 FLUSH_BEGIN(mm)
866 flush_user_windows();
867 local_irq_save(flags);
868 octx = srmmu_get_context();
869 srmmu_set_context(mm->context);
870 a = 0x20; b = 0x40; c = 0x60;
871 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
872
873 page &= PAGE_MASK;
874 line = (page + PAGE_SIZE) - 0x100;
875 goto inside;
876 do {
877 line -= 0x100;
878 inside:
879 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
880 "sta %%g0, [%0 + %2] %1\n\t"
881 "sta %%g0, [%0 + %3] %1\n\t"
882 "sta %%g0, [%0 + %4] %1\n\t"
883 "sta %%g0, [%0 + %5] %1\n\t"
884 "sta %%g0, [%0 + %6] %1\n\t"
885 "sta %%g0, [%0 + %7] %1\n\t"
886 "sta %%g0, [%0 + %8] %1\n\t" : :
887 "r" (line),
888 "i" (ASI_M_FLUSH_PAGE),
889 "r" (a), "r" (b), "r" (c), "r" (d),
890 "r" (e), "r" (f), "r" (g));
891 } while(line != page);
892 srmmu_set_context(octx);
893 local_irq_restore(flags);
894 FLUSH_END
895}
896
897/* Cypress is copy-back, at least that is how we configure it. */
898static void cypress_flush_page_to_ram(unsigned long page)
899{
900 register unsigned long a, b, c, d, e, f, g;
901 unsigned long line;
902
903 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
904 page &= PAGE_MASK;
905 line = (page + PAGE_SIZE) - 0x100;
906 goto inside;
907 do {
908 line -= 0x100;
909 inside:
910 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
911 "sta %%g0, [%0 + %2] %1\n\t"
912 "sta %%g0, [%0 + %3] %1\n\t"
913 "sta %%g0, [%0 + %4] %1\n\t"
914 "sta %%g0, [%0 + %5] %1\n\t"
915 "sta %%g0, [%0 + %6] %1\n\t"
916 "sta %%g0, [%0 + %7] %1\n\t"
917 "sta %%g0, [%0 + %8] %1\n\t" : :
918 "r" (line),
919 "i" (ASI_M_FLUSH_PAGE),
920 "r" (a), "r" (b), "r" (c), "r" (d),
921 "r" (e), "r" (f), "r" (g));
922 } while(line != page);
923}
924
925/* Cypress is also IO cache coherent. */
926static void cypress_flush_page_for_dma(unsigned long page)
927{
928}
929
930/* Cypress has unified L2 VIPT, from which both instructions and data
931 * are stored. It does not have an onboard icache of any sort, therefore
932 * no flush is necessary.
933 */
934static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
935{
936}
937
938static void cypress_flush_tlb_all(void)
939{
940 srmmu_flush_whole_tlb();
941}
942
943static void cypress_flush_tlb_mm(struct mm_struct *mm)
944{
945 FLUSH_BEGIN(mm)
946 __asm__ __volatile__(
947 "lda [%0] %3, %%g5\n\t"
948 "sta %2, [%0] %3\n\t"
949 "sta %%g0, [%1] %4\n\t"
950 "sta %%g5, [%0] %3\n"
951 : /* no outputs */
952 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
953 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
954 : "g5");
955 FLUSH_END
956}
957
958static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
959{
960 struct mm_struct *mm = vma->vm_mm;
961 unsigned long size;
962
963 FLUSH_BEGIN(mm)
964 start &= SRMMU_PGDIR_MASK;
965 size = SRMMU_PGDIR_ALIGN(end) - start;
966 __asm__ __volatile__(
967 "lda [%0] %5, %%g5\n\t"
968 "sta %1, [%0] %5\n"
969 "1:\n\t"
970 "subcc %3, %4, %3\n\t"
971 "bne 1b\n\t"
972 " sta %%g0, [%2 + %3] %6\n\t"
973 "sta %%g5, [%0] %5\n"
974 : /* no outputs */
975 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
976 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
977 "i" (ASI_M_FLUSH_PROBE)
978 : "g5", "cc");
979 FLUSH_END
980}
981
982static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
983{
984 struct mm_struct *mm = vma->vm_mm;
985
986 FLUSH_BEGIN(mm)
987 __asm__ __volatile__(
988 "lda [%0] %3, %%g5\n\t"
989 "sta %1, [%0] %3\n\t"
990 "sta %%g0, [%2] %4\n\t"
991 "sta %%g5, [%0] %3\n"
992 : /* no outputs */
993 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
994 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
995 : "g5");
996 FLUSH_END
997}
998
999/* viking.S */
1000extern void viking_flush_cache_all(void);
1001extern void viking_flush_cache_mm(struct mm_struct *mm);
1002extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1003 unsigned long end);
1004extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1005extern void viking_flush_page_to_ram(unsigned long page);
1006extern void viking_flush_page_for_dma(unsigned long page);
1007extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1008extern void viking_flush_page(unsigned long page);
1009extern void viking_mxcc_flush_page(unsigned long page);
1010extern void viking_flush_tlb_all(void);
1011extern void viking_flush_tlb_mm(struct mm_struct *mm);
1012extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1013 unsigned long end);
1014extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1015 unsigned long page);
1016extern void sun4dsmp_flush_tlb_all(void);
1017extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1018extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1019 unsigned long end);
1020extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1021 unsigned long page);
1022
1023/* hypersparc.S */
1024extern void hypersparc_flush_cache_all(void);
1025extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1026extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1027extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1028extern void hypersparc_flush_page_to_ram(unsigned long page);
1029extern void hypersparc_flush_page_for_dma(unsigned long page);
1030extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1031extern void hypersparc_flush_tlb_all(void);
1032extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1033extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1034extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1035extern void hypersparc_setup_blockops(void);
1036
1037/*
1038 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1039 * kernel mappings are done with one single contiguous chunk of
1040 * ram. On small ram machines (classics mainly) we only get
1041 * around 8mb mapped for us.
1042 */
1043
1044void __init early_pgtable_allocfail(char *type)
1045{
1046 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1047 prom_halt();
1048}
1049
1050void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1051{
1052 pgd_t *pgdp;
1053 pmd_t *pmdp;
1054 pte_t *ptep;
1055
1056 while(start < end) {
1057 pgdp = pgd_offset_k(start);
1058 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1059 pmdp = (pmd_t *) __srmmu_get_nocache(
1060 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1061 if (pmdp == NULL)
1062 early_pgtable_allocfail("pmd");
1063 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1064 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1065 }
1066 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1067 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1068 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1069 if (ptep == NULL)
1070 early_pgtable_allocfail("pte");
1071 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1072 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1073 }
1074 if (start > (0xffffffffUL - PMD_SIZE))
1075 break;
1076 start = (start + PMD_SIZE) & PMD_MASK;
1077 }
1078}
1079
1080void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1081{
1082 pgd_t *pgdp;
1083 pmd_t *pmdp;
1084 pte_t *ptep;
1085
1086 while(start < end) {
1087 pgdp = pgd_offset_k(start);
1088 if(srmmu_pgd_none(*pgdp)) {
1089 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1090 if (pmdp == NULL)
1091 early_pgtable_allocfail("pmd");
1092 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1093 srmmu_pgd_set(pgdp, pmdp);
1094 }
1095 pmdp = srmmu_pmd_offset(pgdp, start);
1096 if(srmmu_pmd_none(*pmdp)) {
1097 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1098 PTE_SIZE);
1099 if (ptep == NULL)
1100 early_pgtable_allocfail("pte");
1101 memset(ptep, 0, PTE_SIZE);
1102 srmmu_pmd_set(pmdp, ptep);
1103 }
1104 if (start > (0xffffffffUL - PMD_SIZE))
1105 break;
1106 start = (start + PMD_SIZE) & PMD_MASK;
1107 }
1108}
1109
1110/*
1111 * This is much cleaner than poking around physical address space
1112 * looking at the prom's page table directly which is what most
1113 * other OS's do. Yuck... this is much better.
1114 */
1115void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1116{
1117 pgd_t *pgdp;
1118 pmd_t *pmdp;
1119 pte_t *ptep;
1120 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1121 unsigned long prompte;
1122
1123 while(start <= end) {
1124 if (start == 0)
1125 break; /* probably wrap around */
1126 if(start == 0xfef00000)
1127 start = KADB_DEBUGGER_BEGVM;
1128 if(!(prompte = srmmu_hwprobe(start))) {
1129 start += PAGE_SIZE;
1130 continue;
1131 }
1132
1133 /* A red snapper, see what it really is. */
1134 what = 0;
1135
1136 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1137 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1138 what = 1;
1139 }
1140
1141 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1142 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1143 prompte)
1144 what = 2;
1145 }
1146
1147 pgdp = pgd_offset_k(start);
1148 if(what == 2) {
1149 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1150 start += SRMMU_PGDIR_SIZE;
1151 continue;
1152 }
1153 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1154 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1155 if (pmdp == NULL)
1156 early_pgtable_allocfail("pmd");
1157 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1158 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1159 }
1160 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1161 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1162 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1163 PTE_SIZE);
1164 if (ptep == NULL)
1165 early_pgtable_allocfail("pte");
1166 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1167 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1168 }
1169 if(what == 1) {
1170 /*
1171 * We bend the rule where all 16 PTPs in a pmd_t point
1172 * inside the same PTE page, and we leak a perfectly
1173 * good hardware PTE piece. Alternatives seem worse.
1174 */
1175 unsigned int x; /* Index of HW PMD in soft cluster */
1176 x = (start >> PMD_SHIFT) & 15;
1177 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1178 start += SRMMU_REAL_PMD_SIZE;
1179 continue;
1180 }
1181 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1182 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1183 start += PAGE_SIZE;
1184 }
1185}
1186
1187#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1188
1189/* Create a third-level SRMMU 16MB page mapping. */
1190static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1191{
1192 pgd_t *pgdp = pgd_offset_k(vaddr);
1193 unsigned long big_pte;
1194
1195 big_pte = KERNEL_PTE(phys_base >> 4);
1196 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1197}
1198
1199/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1200static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1201{
1202 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1203 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1204 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1205 /* Map "low" memory only */
1206 const unsigned long min_vaddr = PAGE_OFFSET;
1207 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1208
1209 if (vstart < min_vaddr || vstart >= max_vaddr)
1210 return vstart;
1211
1212 if (vend > max_vaddr || vend < min_vaddr)
1213 vend = max_vaddr;
1214
1215 while(vstart < vend) {
1216 do_large_mapping(vstart, pstart);
1217 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1218 }
1219 return vstart;
1220}
1221
1222static inline void memprobe_error(char *msg)
1223{
1224 prom_printf(msg);
1225 prom_printf("Halting now...\n");
1226 prom_halt();
1227}
1228
1229static inline void map_kernel(void)
1230{
1231 int i;
1232
1233 if (phys_base > 0) {
1234 do_large_mapping(PAGE_OFFSET, phys_base);
1235 }
1236
1237 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1238 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1239 }
1240
1241 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1242}
1243
1244/* Paging initialization on the Sparc Reference MMU. */
1245extern void sparc_context_init(int);
1246
1247void (*poke_srmmu)(void) __initdata = NULL;
1248
1249extern unsigned long bootmem_init(unsigned long *pages_avail);
1250
1251void __init srmmu_paging_init(void)
1252{
1253 int i, cpunode;
1254 char node_str[128];
1255 pgd_t *pgd;
1256 pmd_t *pmd;
1257 pte_t *pte;
1258 unsigned long pages_avail;
1259
1260 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1261
1262 if (sparc_cpu_model == sun4d)
1263 num_contexts = 65536; /* We know it is Viking */
1264 else {
1265 /* Find the number of contexts on the srmmu. */
1266 cpunode = prom_getchild(prom_root_node);
1267 num_contexts = 0;
1268 while(cpunode != 0) {
1269 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1270 if(!strcmp(node_str, "cpu")) {
1271 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1272 break;
1273 }
1274 cpunode = prom_getsibling(cpunode);
1275 }
1276 }
1277
1278 if(!num_contexts) {
1279 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1280 prom_halt();
1281 }
1282
1283 pages_avail = 0;
1284 last_valid_pfn = bootmem_init(&pages_avail);
1285
1286 srmmu_nocache_calcsize();
1287 srmmu_nocache_init();
1288 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1289 map_kernel();
1290
1291 /* ctx table has to be physically aligned to its size */
1292 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1293 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1294
1295 for(i = 0; i < num_contexts; i++)
1296 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1297
1298 flush_cache_all();
1299 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
Bob Breuera54123e2006-03-23 22:36:19 -08001300#ifdef CONFIG_SMP
1301 /* Stop from hanging here... */
1302 local_flush_tlb_all();
1303#else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304 flush_tlb_all();
Bob Breuera54123e2006-03-23 22:36:19 -08001305#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 poke_srmmu();
1307
1308#ifdef CONFIG_SUN_IO
1309 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1310 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1311#endif
1312
1313 srmmu_allocate_ptable_skeleton(
1314 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1315 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1316
1317 pgd = pgd_offset_k(PKMAP_BASE);
1318 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1319 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1320 pkmap_page_table = pte;
1321
1322 flush_cache_all();
1323 flush_tlb_all();
1324
1325 sparc_context_init(num_contexts);
1326
1327 kmap_init();
1328
1329 {
1330 unsigned long zones_size[MAX_NR_ZONES];
1331 unsigned long zholes_size[MAX_NR_ZONES];
1332 unsigned long npages;
1333 int znum;
1334
1335 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1336 zones_size[znum] = zholes_size[znum] = 0;
1337
1338 npages = max_low_pfn - pfn_base;
1339
1340 zones_size[ZONE_DMA] = npages;
1341 zholes_size[ZONE_DMA] = npages - pages_avail;
1342
1343 npages = highend_pfn - max_low_pfn;
1344 zones_size[ZONE_HIGHMEM] = npages;
1345 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1346
1347 free_area_init_node(0, &contig_page_data, zones_size,
1348 pfn_base, zholes_size);
1349 }
1350}
1351
1352static void srmmu_mmu_info(struct seq_file *m)
1353{
1354 seq_printf(m,
1355 "MMU type\t: %s\n"
1356 "contexts\t: %d\n"
1357 "nocache total\t: %ld\n"
1358 "nocache used\t: %d\n",
1359 srmmu_name,
1360 num_contexts,
1361 srmmu_nocache_size,
1362 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1363}
1364
1365static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1366{
1367}
1368
1369static void srmmu_destroy_context(struct mm_struct *mm)
1370{
1371
1372 if(mm->context != NO_CONTEXT) {
1373 flush_cache_mm(mm);
1374 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1375 flush_tlb_mm(mm);
1376 spin_lock(&srmmu_context_spinlock);
1377 free_context(mm->context);
1378 spin_unlock(&srmmu_context_spinlock);
1379 mm->context = NO_CONTEXT;
1380 }
1381}
1382
1383/* Init various srmmu chip types. */
1384static void __init srmmu_is_bad(void)
1385{
1386 prom_printf("Could not determine SRMMU chip type.\n");
1387 prom_halt();
1388}
1389
1390static void __init init_vac_layout(void)
1391{
1392 int nd, cache_lines;
1393 char node_str[128];
1394#ifdef CONFIG_SMP
1395 int cpu = 0;
1396 unsigned long max_size = 0;
1397 unsigned long min_line_size = 0x10000000;
1398#endif
1399
1400 nd = prom_getchild(prom_root_node);
1401 while((nd = prom_getsibling(nd)) != 0) {
1402 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1403 if(!strcmp(node_str, "cpu")) {
1404 vac_line_size = prom_getint(nd, "cache-line-size");
1405 if (vac_line_size == -1) {
1406 prom_printf("can't determine cache-line-size, "
1407 "halting.\n");
1408 prom_halt();
1409 }
1410 cache_lines = prom_getint(nd, "cache-nlines");
1411 if (cache_lines == -1) {
1412 prom_printf("can't determine cache-nlines, halting.\n");
1413 prom_halt();
1414 }
1415
1416 vac_cache_size = cache_lines * vac_line_size;
1417#ifdef CONFIG_SMP
1418 if(vac_cache_size > max_size)
1419 max_size = vac_cache_size;
1420 if(vac_line_size < min_line_size)
1421 min_line_size = vac_line_size;
Bob Breuera54123e2006-03-23 22:36:19 -08001422 //FIXME: cpus not contiguous!!
Linus Torvalds1da177e2005-04-16 15:20:36 -07001423 cpu++;
1424 if (cpu >= NR_CPUS || !cpu_online(cpu))
1425 break;
1426#else
1427 break;
1428#endif
1429 }
1430 }
1431 if(nd == 0) {
1432 prom_printf("No CPU nodes found, halting.\n");
1433 prom_halt();
1434 }
1435#ifdef CONFIG_SMP
1436 vac_cache_size = max_size;
1437 vac_line_size = min_line_size;
1438#endif
1439 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1440 (int)vac_cache_size, (int)vac_line_size);
1441}
1442
1443static void __init poke_hypersparc(void)
1444{
1445 volatile unsigned long clear;
1446 unsigned long mreg = srmmu_get_mmureg();
1447
1448 hyper_flush_unconditional_combined();
1449
1450 mreg &= ~(HYPERSPARC_CWENABLE);
1451 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1452 mreg |= (HYPERSPARC_CMODE);
1453
1454 srmmu_set_mmureg(mreg);
1455
1456#if 0 /* XXX I think this is bad news... -DaveM */
1457 hyper_clear_all_tags();
1458#endif
1459
1460 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1461 hyper_flush_whole_icache();
1462 clear = srmmu_get_faddr();
1463 clear = srmmu_get_fstatus();
1464}
1465
1466static void __init init_hypersparc(void)
1467{
1468 srmmu_name = "ROSS HyperSparc";
1469 srmmu_modtype = HyperSparc;
1470
1471 init_vac_layout();
1472
1473 is_hypersparc = 1;
1474
1475 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1476 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1477 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1478 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1479 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1482
1483 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1487
1488 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1491
1492
1493 poke_srmmu = poke_hypersparc;
1494
1495 hypersparc_setup_blockops();
1496}
1497
1498static void __init poke_cypress(void)
1499{
1500 unsigned long mreg = srmmu_get_mmureg();
1501 unsigned long faddr, tagval;
1502 volatile unsigned long cypress_sucks;
1503 volatile unsigned long clear;
1504
1505 clear = srmmu_get_faddr();
1506 clear = srmmu_get_fstatus();
1507
1508 if (!(mreg & CYPRESS_CENABLE)) {
1509 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1510 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1511 "sta %%g0, [%0] %2\n\t" : :
1512 "r" (faddr), "r" (0x40000),
1513 "i" (ASI_M_DATAC_TAG));
1514 }
1515 } else {
1516 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1517 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1518 "=r" (tagval) :
1519 "r" (faddr), "r" (0x40000),
1520 "i" (ASI_M_DATAC_TAG));
1521
1522 /* If modified and valid, kick it. */
1523 if((tagval & 0x60) == 0x60)
1524 cypress_sucks = *(unsigned long *)
1525 (0xf0020000 + faddr);
1526 }
1527 }
1528
1529 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1530 clear = srmmu_get_faddr();
1531 clear = srmmu_get_fstatus();
1532
1533 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1534 srmmu_set_mmureg(mreg);
1535}
1536
1537static void __init init_cypress_common(void)
1538{
1539 init_vac_layout();
1540
1541 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1542 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1543 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1544 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1545 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1546 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1547 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1548
1549 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1553
1554
1555 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1557 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1558
1559 poke_srmmu = poke_cypress;
1560}
1561
1562static void __init init_cypress_604(void)
1563{
1564 srmmu_name = "ROSS Cypress-604(UP)";
1565 srmmu_modtype = Cypress;
1566 init_cypress_common();
1567}
1568
1569static void __init init_cypress_605(unsigned long mrev)
1570{
1571 srmmu_name = "ROSS Cypress-605(MP)";
1572 if(mrev == 0xe) {
1573 srmmu_modtype = Cypress_vE;
1574 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1575 } else {
1576 if(mrev == 0xd) {
1577 srmmu_modtype = Cypress_vD;
1578 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1579 } else {
1580 srmmu_modtype = Cypress;
1581 }
1582 }
1583 init_cypress_common();
1584}
1585
1586static void __init poke_swift(void)
1587{
1588 unsigned long mreg;
1589
1590 /* Clear any crap from the cache or else... */
1591 swift_flush_cache_all();
1592
1593 /* Enable I & D caches */
1594 mreg = srmmu_get_mmureg();
1595 mreg |= (SWIFT_IE | SWIFT_DE);
1596 /*
1597 * The Swift branch folding logic is completely broken. At
1598 * trap time, if things are just right, if can mistakenly
1599 * think that a trap is coming from kernel mode when in fact
1600 * it is coming from user mode (it mis-executes the branch in
1601 * the trap code). So you see things like crashme completely
1602 * hosing your machine which is completely unacceptable. Turn
1603 * this shit off... nice job Fujitsu.
1604 */
1605 mreg &= ~(SWIFT_BF);
1606 srmmu_set_mmureg(mreg);
1607}
1608
1609#define SWIFT_MASKID_ADDR 0x10003018
1610static void __init init_swift(void)
1611{
1612 unsigned long swift_rev;
1613
1614 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1615 "srl %0, 0x18, %0\n\t" :
1616 "=r" (swift_rev) :
1617 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1618 srmmu_name = "Fujitsu Swift";
1619 switch(swift_rev) {
1620 case 0x11:
1621 case 0x20:
1622 case 0x23:
1623 case 0x30:
1624 srmmu_modtype = Swift_lots_o_bugs;
1625 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1626 /*
1627 * Gee george, I wonder why Sun is so hush hush about
1628 * this hardware bug... really braindamage stuff going
1629 * on here. However I think we can find a way to avoid
1630 * all of the workaround overhead under Linux. Basically,
1631 * any page fault can cause kernel pages to become user
1632 * accessible (the mmu gets confused and clears some of
1633 * the ACC bits in kernel ptes). Aha, sounds pretty
1634 * horrible eh? But wait, after extensive testing it appears
1635 * that if you use pgd_t level large kernel pte's (like the
1636 * 4MB pages on the Pentium) the bug does not get tripped
1637 * at all. This avoids almost all of the major overhead.
1638 * Welcome to a world where your vendor tells you to,
1639 * "apply this kernel patch" instead of "sorry for the
1640 * broken hardware, send it back and we'll give you
1641 * properly functioning parts"
1642 */
1643 break;
1644 case 0x25:
1645 case 0x31:
1646 srmmu_modtype = Swift_bad_c;
1647 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1648 /*
1649 * You see Sun allude to this hardware bug but never
1650 * admit things directly, they'll say things like,
1651 * "the Swift chip cache problems" or similar.
1652 */
1653 break;
1654 default:
1655 srmmu_modtype = Swift_ok;
1656 break;
1657 };
1658
1659 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1660 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1661 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1662 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1663
1664
1665 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1669
1670 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1673
1674 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1675
1676 flush_page_for_dma_global = 0;
1677
1678 /*
1679 * Are you now convinced that the Swift is one of the
1680 * biggest VLSI abortions of all time? Bravo Fujitsu!
1681 * Fujitsu, the !#?!%$'d up processor people. I bet if
1682 * you examined the microcode of the Swift you'd find
1683 * XXX's all over the place.
1684 */
1685 poke_srmmu = poke_swift;
1686}
1687
1688static void turbosparc_flush_cache_all(void)
1689{
1690 flush_user_windows();
1691 turbosparc_idflash_clear();
1692}
1693
1694static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1695{
1696 FLUSH_BEGIN(mm)
1697 flush_user_windows();
1698 turbosparc_idflash_clear();
1699 FLUSH_END
1700}
1701
1702static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1703{
1704 FLUSH_BEGIN(vma->vm_mm)
1705 flush_user_windows();
1706 turbosparc_idflash_clear();
1707 FLUSH_END
1708}
1709
1710static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1711{
1712 FLUSH_BEGIN(vma->vm_mm)
1713 flush_user_windows();
1714 if (vma->vm_flags & VM_EXEC)
1715 turbosparc_flush_icache();
1716 turbosparc_flush_dcache();
1717 FLUSH_END
1718}
1719
1720/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1721static void turbosparc_flush_page_to_ram(unsigned long page)
1722{
1723#ifdef TURBOSPARC_WRITEBACK
1724 volatile unsigned long clear;
1725
1726 if (srmmu_hwprobe(page))
1727 turbosparc_flush_page_cache(page);
1728 clear = srmmu_get_fstatus();
1729#endif
1730}
1731
1732static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1733{
1734}
1735
1736static void turbosparc_flush_page_for_dma(unsigned long page)
1737{
1738 turbosparc_flush_dcache();
1739}
1740
1741static void turbosparc_flush_tlb_all(void)
1742{
1743 srmmu_flush_whole_tlb();
1744}
1745
1746static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1747{
1748 FLUSH_BEGIN(mm)
1749 srmmu_flush_whole_tlb();
1750 FLUSH_END
1751}
1752
1753static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1754{
1755 FLUSH_BEGIN(vma->vm_mm)
1756 srmmu_flush_whole_tlb();
1757 FLUSH_END
1758}
1759
1760static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1761{
1762 FLUSH_BEGIN(vma->vm_mm)
1763 srmmu_flush_whole_tlb();
1764 FLUSH_END
1765}
1766
1767
1768static void __init poke_turbosparc(void)
1769{
1770 unsigned long mreg = srmmu_get_mmureg();
1771 unsigned long ccreg;
1772
1773 /* Clear any crap from the cache or else... */
1774 turbosparc_flush_cache_all();
1775 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1776 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1777 srmmu_set_mmureg(mreg);
1778
1779 ccreg = turbosparc_get_ccreg();
1780
1781#ifdef TURBOSPARC_WRITEBACK
1782 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1783 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1784 /* Write-back D-cache, emulate VLSI
1785 * abortion number three, not number one */
1786#else
1787 /* For now let's play safe, optimize later */
1788 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1789 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1790 ccreg &= ~(TURBOSPARC_uS2);
1791 /* Emulate VLSI abortion number three, not number one */
1792#endif
1793
1794 switch (ccreg & 7) {
1795 case 0: /* No SE cache */
1796 case 7: /* Test mode */
1797 break;
1798 default:
1799 ccreg |= (TURBOSPARC_SCENABLE);
1800 }
1801 turbosparc_set_ccreg (ccreg);
1802
1803 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1804 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1805 srmmu_set_mmureg(mreg);
1806}
1807
1808static void __init init_turbosparc(void)
1809{
1810 srmmu_name = "Fujitsu TurboSparc";
1811 srmmu_modtype = TurboSparc;
1812
1813 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1814 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1815 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1816 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1817
1818 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1819 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1822
1823 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1824
1825 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1826 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1827
1828 poke_srmmu = poke_turbosparc;
1829}
1830
1831static void __init poke_tsunami(void)
1832{
1833 unsigned long mreg = srmmu_get_mmureg();
1834
1835 tsunami_flush_icache();
1836 tsunami_flush_dcache();
1837 mreg &= ~TSUNAMI_ITD;
1838 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1839 srmmu_set_mmureg(mreg);
1840}
1841
1842static void __init init_tsunami(void)
1843{
1844 /*
1845 * Tsunami's pretty sane, Sun and TI actually got it
1846 * somewhat right this time. Fujitsu should have
1847 * taken some lessons from them.
1848 */
1849
1850 srmmu_name = "TI Tsunami";
1851 srmmu_modtype = Tsunami;
1852
1853 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1854 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1855 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1856 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1857
1858
1859 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1863
1864 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1865 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1867
1868 poke_srmmu = poke_tsunami;
1869
1870 tsunami_setup_blockops();
1871}
1872
1873static void __init poke_viking(void)
1874{
1875 unsigned long mreg = srmmu_get_mmureg();
1876 static int smp_catch;
1877
1878 if(viking_mxcc_present) {
1879 unsigned long mxcc_control = mxcc_get_creg();
1880
1881 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1882 mxcc_control &= ~(MXCC_CTL_RRC);
1883 mxcc_set_creg(mxcc_control);
1884
1885 /*
1886 * We don't need memory parity checks.
1887 * XXX This is a mess, have to dig out later. ecd.
1888 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1889 */
1890
1891 /* We do cache ptables on MXCC. */
1892 mreg |= VIKING_TCENABLE;
1893 } else {
1894 unsigned long bpreg;
1895
1896 mreg &= ~(VIKING_TCENABLE);
1897 if(smp_catch++) {
1898 /* Must disable mixed-cmd mode here for other cpu's. */
1899 bpreg = viking_get_bpreg();
1900 bpreg &= ~(VIKING_ACTION_MIX);
1901 viking_set_bpreg(bpreg);
1902
1903 /* Just in case PROM does something funny. */
1904 msi_set_sync();
1905 }
1906 }
1907
1908 mreg |= VIKING_SPENABLE;
1909 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1910 mreg |= VIKING_SBENABLE;
1911 mreg &= ~(VIKING_ACENABLE);
1912 srmmu_set_mmureg(mreg);
1913
1914#ifdef CONFIG_SMP
1915 /* Avoid unnecessary cross calls. */
1916 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1917 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1918 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1919 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1920 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1921 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1922 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1923 btfixup();
1924#endif
1925}
1926
1927static void __init init_viking(void)
1928{
1929 unsigned long mreg = srmmu_get_mmureg();
1930
1931 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1932 if(mreg & VIKING_MMODE) {
1933 srmmu_name = "TI Viking";
1934 viking_mxcc_present = 0;
1935 msi_set_sync();
1936
1937 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1938 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1939 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1940
1941 /*
1942 * We need this to make sure old viking takes no hits
1943 * on it's cache for dma snoops to workaround the
1944 * "load from non-cacheable memory" interrupt bug.
1945 * This is only necessary because of the new way in
1946 * which we use the IOMMU.
1947 */
1948 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1949
1950 flush_page_for_dma_global = 0;
1951 } else {
1952 srmmu_name = "TI Viking/MXCC";
1953 viking_mxcc_present = 1;
1954
1955 srmmu_cache_pagetables = 1;
1956
1957 /* MXCC vikings lack the DMA snooping bug. */
1958 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1959 }
1960
1961 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1962 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1964 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1965
1966#ifdef CONFIG_SMP
1967 if (sparc_cpu_model == sun4d) {
1968 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1971 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1972 } else
1973#endif
1974 {
1975 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1978 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1979 }
1980
1981 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1982 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1983
1984 poke_srmmu = poke_viking;
1985}
1986
1987/* Probe for the srmmu chip version. */
1988static void __init get_srmmu_type(void)
1989{
1990 unsigned long mreg, psr;
1991 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1992
1993 srmmu_modtype = SRMMU_INVAL_MOD;
1994 hwbug_bitmask = 0;
1995
1996 mreg = srmmu_get_mmureg(); psr = get_psr();
1997 mod_typ = (mreg & 0xf0000000) >> 28;
1998 mod_rev = (mreg & 0x0f000000) >> 24;
1999 psr_typ = (psr >> 28) & 0xf;
2000 psr_vers = (psr >> 24) & 0xf;
2001
2002 /* First, check for HyperSparc or Cypress. */
2003 if(mod_typ == 1) {
2004 switch(mod_rev) {
2005 case 7:
2006 /* UP or MP Hypersparc */
2007 init_hypersparc();
2008 break;
2009 case 0:
2010 case 2:
2011 /* Uniprocessor Cypress */
2012 init_cypress_604();
2013 break;
2014 case 10:
2015 case 11:
2016 case 12:
2017 /* _REALLY OLD_ Cypress MP chips... */
2018 case 13:
2019 case 14:
2020 case 15:
2021 /* MP Cypress mmu/cache-controller */
2022 init_cypress_605(mod_rev);
2023 break;
2024 default:
2025 /* Some other Cypress revision, assume a 605. */
2026 init_cypress_605(mod_rev);
2027 break;
2028 };
2029 return;
2030 }
2031
2032 /*
2033 * Now Fujitsu TurboSparc. It might happen that it is
2034 * in Swift emulation mode, so we will check later...
2035 */
2036 if (psr_typ == 0 && psr_vers == 5) {
2037 init_turbosparc();
2038 return;
2039 }
2040
2041 /* Next check for Fujitsu Swift. */
2042 if(psr_typ == 0 && psr_vers == 4) {
2043 int cpunode;
2044 char node_str[128];
2045
2046 /* Look if it is not a TurboSparc emulating Swift... */
2047 cpunode = prom_getchild(prom_root_node);
2048 while((cpunode = prom_getsibling(cpunode)) != 0) {
2049 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2050 if(!strcmp(node_str, "cpu")) {
2051 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2052 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2053 init_turbosparc();
2054 return;
2055 }
2056 break;
2057 }
2058 }
2059
2060 init_swift();
2061 return;
2062 }
2063
2064 /* Now the Viking family of srmmu. */
2065 if(psr_typ == 4 &&
2066 ((psr_vers == 0) ||
2067 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2068 init_viking();
2069 return;
2070 }
2071
2072 /* Finally the Tsunami. */
2073 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2074 init_tsunami();
2075 return;
2076 }
2077
2078 /* Oh well */
2079 srmmu_is_bad();
2080}
2081
2082/* don't laugh, static pagetables */
2083static void srmmu_check_pgt_cache(int low, int high)
2084{
2085}
2086
2087extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2088 tsetup_mmu_patchme, rtrap_mmu_patchme;
2089
2090extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2091 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2092
2093extern unsigned long srmmu_fault;
2094
2095#define PATCH_BRANCH(insn, dest) do { \
2096 iaddr = &(insn); \
2097 daddr = &(dest); \
2098 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2099 } while(0)
2100
2101static void __init patch_window_trap_handlers(void)
2102{
2103 unsigned long *iaddr, *daddr;
2104
2105 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2106 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2107 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2108 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2109 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2110 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2111 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2112}
2113
2114#ifdef CONFIG_SMP
2115/* Local cross-calls. */
2116static void smp_flush_page_for_dma(unsigned long page)
2117{
2118 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2119 local_flush_page_for_dma(page);
2120}
2121
2122#endif
2123
2124static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2125{
2126 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2127}
2128
2129static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2130{
2131 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2132}
2133
David S. Miller14778d92006-03-21 02:29:39 -08002134static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2135{
2136 prot &= ~__pgprot(SRMMU_CACHE);
2137
2138 return prot;
2139}
2140
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141/* Load up routines and constants for sun4m and sun4d mmu */
2142void __init ld_mmu_srmmu(void)
2143{
2144 extern void ld_mmu_iommu(void);
2145 extern void ld_mmu_iounit(void);
2146 extern void ___xchg32_sun4md(void);
2147
2148 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2149 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2150 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2151
2152 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2153 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2154
2155 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
Al Viro378e5152007-07-21 19:20:34 -07002156 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2158 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2159 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2160 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161
2162 /* Functions */
David S. Miller14778d92006-03-21 02:29:39 -08002163 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164#ifndef CONFIG_SMP
2165 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2166#endif
2167 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2168
2169 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2170 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2171
2172 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2173 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
Dave McCracken46a82b22006-09-25 23:31:48 -07002174 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175
2176 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2177
2178 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180
2181 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2182 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2183 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2184
2185 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2186 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2187 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2189
2190 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2191 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2195 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2196
2197 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2198 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2200
2201 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2202 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2203 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2204 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2205 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2206 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2207 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2209
2210 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2211 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2212 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2213 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2214 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2215 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2216 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2217 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2218 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2219 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2220 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2221 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2222
2223 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2224 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2225
2226 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2227 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2229
2230 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2231
2232 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2234
2235 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2237
2238 get_srmmu_type();
2239 patch_window_trap_handlers();
2240
2241#ifdef CONFIG_SMP
2242 /* El switcheroo... */
2243
2244 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2245 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2246 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2247 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2248 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2249 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2250 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2251 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2252 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2253 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2254 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2255
2256 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2257 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2258 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2259 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2260 if (sparc_cpu_model != sun4d) {
2261 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2262 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2265 }
2266 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2267 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2269#endif
2270
2271 if (sparc_cpu_model == sun4d)
2272 ld_mmu_iounit();
2273 else
2274 ld_mmu_iommu();
2275#ifdef CONFIG_SMP
2276 if (sparc_cpu_model == sun4d)
2277 sun4d_init_smp();
2278 else
2279 sun4m_init_smp();
2280#endif
2281}