Michel Lespinasse | 6b2dbba | 2012-10-08 16:31:25 -0700 | [diff] [blame] | 1 | /* |
| 2 | Interval Trees |
| 3 | (C) 2012 Michel Lespinasse <walken@google.com> |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, write to the Free Software |
| 17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | |
| 19 | include/linux/interval_tree_tmpl.h |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * Template for implementing interval trees |
| 24 | * |
| 25 | * ITSTRUCT: struct type of the interval tree nodes |
| 26 | * ITRB: name of struct rb_node field within ITSTRUCT |
| 27 | * ITTYPE: type of the interval endpoints |
| 28 | * ITSUBTREE: name of ITTYPE field within ITSTRUCT holding last-in-subtree |
| 29 | * ITSTART(n): start endpoint of ITSTRUCT node n |
| 30 | * ITLAST(n): last endpoing of ITSTRUCT node n |
| 31 | * ITSTATIC: 'static' or empty |
| 32 | * ITPREFIX: prefix to use for the inline tree definitions |
| 33 | */ |
| 34 | |
| 35 | /* IT(name) -> ITPREFIX_name */ |
| 36 | #define _ITNAME(prefix, name) prefix ## _ ## name |
| 37 | #define ITNAME(prefix, name) _ITNAME(prefix, name) |
| 38 | #define IT(name) ITNAME(ITPREFIX, name) |
| 39 | |
| 40 | /* Callbacks for augmented rbtree insert and remove */ |
| 41 | |
| 42 | static inline ITTYPE IT(compute_subtree_last)(ITSTRUCT *node) |
| 43 | { |
| 44 | ITTYPE max = ITLAST(node), subtree_last; |
| 45 | if (node->ITRB.rb_left) { |
| 46 | subtree_last = rb_entry(node->ITRB.rb_left, |
| 47 | ITSTRUCT, ITRB)->ITSUBTREE; |
| 48 | if (max < subtree_last) |
| 49 | max = subtree_last; |
| 50 | } |
| 51 | if (node->ITRB.rb_right) { |
| 52 | subtree_last = rb_entry(node->ITRB.rb_right, |
| 53 | ITSTRUCT, ITRB)->ITSUBTREE; |
| 54 | if (max < subtree_last) |
| 55 | max = subtree_last; |
| 56 | } |
| 57 | return max; |
| 58 | } |
| 59 | |
| 60 | static void IT(augment_propagate)(struct rb_node *rb, struct rb_node *stop) |
| 61 | { |
| 62 | while (rb != stop) { |
| 63 | ITSTRUCT *node = rb_entry(rb, ITSTRUCT, ITRB); |
| 64 | ITTYPE subtree_last = IT(compute_subtree_last)(node); |
| 65 | if (node->ITSUBTREE == subtree_last) |
| 66 | break; |
| 67 | node->ITSUBTREE = subtree_last; |
| 68 | rb = rb_parent(&node->ITRB); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | static void IT(augment_copy)(struct rb_node *rb_old, struct rb_node *rb_new) |
| 73 | { |
| 74 | ITSTRUCT *old = rb_entry(rb_old, ITSTRUCT, ITRB); |
| 75 | ITSTRUCT *new = rb_entry(rb_new, ITSTRUCT, ITRB); |
| 76 | |
| 77 | new->ITSUBTREE = old->ITSUBTREE; |
| 78 | } |
| 79 | |
| 80 | static void IT(augment_rotate)(struct rb_node *rb_old, struct rb_node *rb_new) |
| 81 | { |
| 82 | ITSTRUCT *old = rb_entry(rb_old, ITSTRUCT, ITRB); |
| 83 | ITSTRUCT *new = rb_entry(rb_new, ITSTRUCT, ITRB); |
| 84 | |
| 85 | new->ITSUBTREE = old->ITSUBTREE; |
| 86 | old->ITSUBTREE = IT(compute_subtree_last)(old); |
| 87 | } |
| 88 | |
| 89 | static const struct rb_augment_callbacks IT(augment_callbacks) = { |
| 90 | IT(augment_propagate), IT(augment_copy), IT(augment_rotate) |
| 91 | }; |
| 92 | |
| 93 | /* Insert / remove interval nodes from the tree */ |
| 94 | |
| 95 | ITSTATIC void IT(insert)(ITSTRUCT *node, struct rb_root *root) |
| 96 | { |
| 97 | struct rb_node **link = &root->rb_node, *rb_parent = NULL; |
| 98 | ITTYPE start = ITSTART(node), last = ITLAST(node); |
| 99 | ITSTRUCT *parent; |
| 100 | |
| 101 | while (*link) { |
| 102 | rb_parent = *link; |
| 103 | parent = rb_entry(rb_parent, ITSTRUCT, ITRB); |
| 104 | if (parent->ITSUBTREE < last) |
| 105 | parent->ITSUBTREE = last; |
| 106 | if (start < ITSTART(parent)) |
| 107 | link = &parent->ITRB.rb_left; |
| 108 | else |
| 109 | link = &parent->ITRB.rb_right; |
| 110 | } |
| 111 | |
| 112 | node->ITSUBTREE = last; |
| 113 | rb_link_node(&node->ITRB, rb_parent, link); |
| 114 | rb_insert_augmented(&node->ITRB, root, &IT(augment_callbacks)); |
| 115 | } |
| 116 | |
| 117 | ITSTATIC void IT(remove)(ITSTRUCT *node, struct rb_root *root) |
| 118 | { |
| 119 | rb_erase_augmented(&node->ITRB, root, &IT(augment_callbacks)); |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * Iterate over intervals intersecting [start;last] |
| 124 | * |
| 125 | * Note that a node's interval intersects [start;last] iff: |
| 126 | * Cond1: ITSTART(node) <= last |
| 127 | * and |
| 128 | * Cond2: start <= ITLAST(node) |
| 129 | */ |
| 130 | |
| 131 | static ITSTRUCT *IT(subtree_search)(ITSTRUCT *node, ITTYPE start, ITTYPE last) |
| 132 | { |
| 133 | while (true) { |
| 134 | /* |
| 135 | * Loop invariant: start <= node->ITSUBTREE |
| 136 | * (Cond2 is satisfied by one of the subtree nodes) |
| 137 | */ |
| 138 | if (node->ITRB.rb_left) { |
| 139 | ITSTRUCT *left = rb_entry(node->ITRB.rb_left, |
| 140 | ITSTRUCT, ITRB); |
| 141 | if (start <= left->ITSUBTREE) { |
| 142 | /* |
| 143 | * Some nodes in left subtree satisfy Cond2. |
| 144 | * Iterate to find the leftmost such node N. |
| 145 | * If it also satisfies Cond1, that's the match |
| 146 | * we are looking for. Otherwise, there is no |
| 147 | * matching interval as nodes to the right of N |
| 148 | * can't satisfy Cond1 either. |
| 149 | */ |
| 150 | node = left; |
| 151 | continue; |
| 152 | } |
| 153 | } |
| 154 | if (ITSTART(node) <= last) { /* Cond1 */ |
| 155 | if (start <= ITLAST(node)) /* Cond2 */ |
| 156 | return node; /* node is leftmost match */ |
| 157 | if (node->ITRB.rb_right) { |
| 158 | node = rb_entry(node->ITRB.rb_right, |
| 159 | ITSTRUCT, ITRB); |
| 160 | if (start <= node->ITSUBTREE) |
| 161 | continue; |
| 162 | } |
| 163 | } |
| 164 | return NULL; /* No match */ |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | ITSTATIC ITSTRUCT *IT(iter_first)(struct rb_root *root, |
| 169 | ITTYPE start, ITTYPE last) |
| 170 | { |
| 171 | ITSTRUCT *node; |
| 172 | |
| 173 | if (!root->rb_node) |
| 174 | return NULL; |
| 175 | node = rb_entry(root->rb_node, ITSTRUCT, ITRB); |
| 176 | if (node->ITSUBTREE < start) |
| 177 | return NULL; |
| 178 | return IT(subtree_search)(node, start, last); |
| 179 | } |
| 180 | |
| 181 | ITSTATIC ITSTRUCT *IT(iter_next)(ITSTRUCT *node, ITTYPE start, ITTYPE last) |
| 182 | { |
| 183 | struct rb_node *rb = node->ITRB.rb_right, *prev; |
| 184 | |
| 185 | while (true) { |
| 186 | /* |
| 187 | * Loop invariants: |
| 188 | * Cond1: ITSTART(node) <= last |
| 189 | * rb == node->ITRB.rb_right |
| 190 | * |
| 191 | * First, search right subtree if suitable |
| 192 | */ |
| 193 | if (rb) { |
| 194 | ITSTRUCT *right = rb_entry(rb, ITSTRUCT, ITRB); |
| 195 | if (start <= right->ITSUBTREE) |
| 196 | return IT(subtree_search)(right, start, last); |
| 197 | } |
| 198 | |
| 199 | /* Move up the tree until we come from a node's left child */ |
| 200 | do { |
| 201 | rb = rb_parent(&node->ITRB); |
| 202 | if (!rb) |
| 203 | return NULL; |
| 204 | prev = &node->ITRB; |
| 205 | node = rb_entry(rb, ITSTRUCT, ITRB); |
| 206 | rb = node->ITRB.rb_right; |
| 207 | } while (prev == rb); |
| 208 | |
| 209 | /* Check if the node intersects [start;last] */ |
| 210 | if (last < ITSTART(node)) /* !Cond1 */ |
| 211 | return NULL; |
| 212 | else if (start <= ITLAST(node)) /* Cond2 */ |
| 213 | return node; |
| 214 | } |
| 215 | } |